101
|
Yang YK, Xi WY, Xi RX, Li JY, Li Q, Gao YE. MicroRNA-494 promotes cervical cancer proliferation through the regulation of PTEN. Oncol Rep 2015; 33:2393-401. [PMID: 25738254 DOI: 10.3892/or.2015.3821] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2014] [Accepted: 02/02/2015] [Indexed: 01/11/2023] Open
Abstract
The phosphoinositide 3-kinase (PI3K)/Akt signaling pathway appears to be a key regulator in cervical carcinogenesis. The phosphatase and tensin homolog deleted on chromosome 10 (PTEN) protein is principally involved in the homeostatic maintenance of PI3K/Akt signaling and PTEN has been identified to play an important role in the occurrence and development of cervical cancer. MicroRNA (miRNA)-494 has been proven to be involved in the carcinogenesis and development of various types of cancer by directly targeting PTEN. However the role, mechanism and clinical significance of miR-494 in cervical cancer have not been further reported. In the present study, we analyzed the expression of miR-494 in -with PTEN expression and clinicopathological data of cervical cancer patients. The results showed that miR-494 expression was significantly upregulated in human cervical cancer cell lines and tissues. miR-494 upregulation was significantly associated with PTEN downregulation, adverse clinicopathological characteristics, poor overall and progression-free survival and poor prognosis. In vitro experiments showed that inhibition of miR-494 suppressed cell proliferation and growth by directly targeting the 3'-untranslated region (3'-UTR) of PTEN mRNA. These findings identified a novel molecular mechanism involved in the regulation of PTEN expression and cervical cancer progression. Results of the present study indicated that miR-494 may have an essential role in the carcinogenesis and progression of cervical cancer and targeting miR-494 may be a promising therapeutic strategy for the treatment of cervical cancer.
Collapse
Affiliation(s)
- Yong-Kang Yang
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Wen-Yan Xi
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Ru-Xing Xi
- Department of Radiotherapy, The First Affiliated Hospital of Medical College of Xi'an Jiaotong University, Xi'an, Shaanxi 710061, P.R. China
| | - Jing-Yuan Li
- Department of Orthopedics, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Qin Li
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712000, P.R. China
| | - Yan-E Gao
- Department of Gynecology and Obstetrics, The Second Affiliated Hospital of Medical School of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
102
|
Chen S, Zhao G, Miao H, Tang R, Song Y, Hu Y, Wang Z, Hou Y. MicroRNA-494 inhibits the growth and angiogenesis-regulating potential of mesenchymal stem cells. FEBS Lett 2015; 589:710-7. [DOI: 10.1016/j.febslet.2015.01.038] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2014] [Revised: 01/29/2015] [Accepted: 01/29/2015] [Indexed: 11/26/2022]
|
103
|
Zhu C, Zhao Y, Zhang Z, Ni Y, Li X, Yong H. MicroRNA-33a inhibits lung cancer cell proliferation and invasion by regulating the expression of β-catenin. Mol Med Rep 2014; 11:3647-51. [PMID: 25544258 DOI: 10.3892/mmr.2014.3134] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2014] [Accepted: 08/12/2014] [Indexed: 11/05/2022] Open
Abstract
MicroRNAs (miRNAs) are short, non‑coding RNAs that are aberrantly expressed in tumors. miRNA‑33a (miR‑33a) is closely associated with cholesterol metabolism and is essential for cellular growth. The aim of the present study was to explore the role of miR‑33a and identify its clinical significance in lung cancer cells. miR‑33a was observed to be overexpressed in the lung cancer cell lines A549 and NCI‑H460. MTT assay results demonstrated that the overexpression of miR‑33a significantly inhibited the proliferation of A549 cells, and similar results were obtained from the colony formation assay. This suggests that transfection of miR‑33a may suppress the growth of lung cancer cells. Overexpression of miR‑33a was also observed to result in marked G1/S phase cell cycle arrest in A549 and NCI‑H460 cell lines using fluorescence‑activated cell sorting analysis. Western blot analysis revealed that overexpression of miR‑33a significantly reduced the expression of β‑catenin in A549 and NCI‑H460 cells, suggesting a direct or indirect regulation of β‑catenin by miR‑33a in lung cancer cells. In conclusion, the current study may provide strategies for the treatment of lung cancer and clarify the mechanism of its progression.
Collapse
Affiliation(s)
- Changliang Zhu
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yachao Zhao
- Department of Thoracic Surgery, The 309th Hospital of the Chinese PLA, Beijing 100091, P.R. China
| | - Zhipei Zhang
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Yunfeng Ni
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Xiaofei Li
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| | - Han Yong
- Department of Thoracic Surgery, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi 710038, P.R. China
| |
Collapse
|
104
|
Libório-Kimura TN, Jung HM, Chan EKL. miR-494 represses HOXA10 expression and inhibits cell proliferation in oral cancer. Oral Oncol 2014; 51:151-7. [PMID: 25500095 DOI: 10.1016/j.oraloncology.2014.11.019] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 10/09/2014] [Accepted: 11/26/2014] [Indexed: 12/18/2022]
Abstract
OBJECTIVES miR-494 was identified as a candidate of the most significantly underexpressed microRNAs (miRNAs) in our oral cancer screen. The aim of this study was to validate whether miR-494 has a functional role in oral cancer. METHODS Quantitative miRNA analyses were performed on oral tumor RNA and oral cancer cell lines. HOXA10 was selected for further analysis based on bioinformatics analysis of miR-494 targets and a previous report of overexpression of HOXA10 in oral cancer. Transient transfection of miRNA-mimic and inhibitor were performed in SCC-25 (tongue), CAL 27 (tongue), and FaDu (pharynx) cancer cells and regulation of HOXA10 by miR-494 was investigated. Dual luciferase assay was used to verify the interaction between miR-494 and HOXA10 in reporter cells. The effect of miR-494 on cell proliferation was examined. RESULTS Our data showed that miR-494 was underexpressed whereas HOXA10 was overexpressed in oral cancer compared to normal tissues. An inverse correlation between miR-494 and HOXA10 was observed in the human tissues (p<0.05). Transient transfection of miR-494 in all cancer cell lines significantly reduced the expression of HOXA10 mRNA. The luciferase reporter that contains the 3'UTR of HOXA10 showed a significantly reduced luciferase activity by miR-494 indicating a direct interaction between HOXA10 and miR-494. Significant reduction in cell proliferation was demonstrated in tongue cancer cells transfected with miR-494. CONCLUSION miR-494 repressed the expression of HOXA10 and also reduced the proliferation of oral cancer cells. These data give more evidence of the role of miR-494 as a tumor suppressor miRNA in oral cancer.
Collapse
Affiliation(s)
- Tatiana N Libório-Kimura
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, FL 32610-0424, USA; Department of Pathology and Legal Medicine, Federal University of Amazonas, Av. Valdemar Pedrosa, 1097, CEP 69020-160 AM, Brazil.
| | - Hyun Min Jung
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, FL 32610-0424, USA.
| | - Edward K L Chan
- Department of Oral Biology, University of Florida, P.O. Box 100424, Gainesville, FL 32610-0424, USA.
| |
Collapse
|
105
|
Marino ALF, Evangelista AF, Vieira RAC, Macedo T, Kerr LM, Abrahão-Machado LF, Longatto-Filho A, Silveira HCS, Marques MMC. MicroRNA expression as risk biomarker of breast cancer metastasis: a pilot retrospective case-cohort study. BMC Cancer 2014; 14:739. [PMID: 25277099 PMCID: PMC4195914 DOI: 10.1186/1471-2407-14-739] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2013] [Accepted: 09/26/2014] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND MicroRNAs (miRNAs) are small, non-coding RNA molecules involved in post-transcriptional gene regulation and have recently been shown to play a role in cancer metastasis. In solid tumors, especially breast cancer, alterations in miRNA expression contribute to cancer pathogenesis, including metastasis. Considering the emerging role of miRNAs in metastasis, the identification of predictive markers is necessary to further the understanding of stage-specific breast cancer development. This is a retrospective analysis that aimed to identify molecular biomarkers related to distant breast cancer metastasis development. METHODS A retrospective case cohort study was performed in 64 breast cancer patients treated during the period from 1998-2001. The case group (n = 29) consisted of patients with a poor prognosis who presented with breast cancer recurrence or metastasis during follow up. The control group (n = 35) consisted of patients with a good prognosis who did not develop breast cancer recurrence or metastasis. These patient groups were stratified according to TNM clinical stage (CS) I, II and III, and the main clinical features of the patients were homogeneous. MicroRNA profiling was performed and biomarkers related to metastatic were identified independent of clinical stage. Finally, a hazard risk analysis of these biomarkers was performed to evaluate their relation to metastatic potential. RESULTS MiRNA expression profiling identified several miRNAs that were both specific and shared across all clinical stages (p ≤ 0.05). Among these, we identified miRNAs previously associated with cell motility (let-7 family) and distant metastasis (hsa-miR-21). In addition, hsa-miR-494 and hsa-miR-21 were deregulated in metastatic cases of CSI and CSII. Furthermore, metastatic miRNAs shared across all clinical stages did not present high sensitivity and specificity when compared to specific-CS miRNAs. Between them, hsa-miR-183 was the most significative of CSII, which miRNAs combination for CSII (hsa-miR-494, hsa-miR-183 and hsa-miR-21) was significant and were a more effective risk marker compared to the single miRNAs. CONCLUSIONS Women with metastatic breast cancer, especially CSII, presented up-regulated levels of miR-183, miR-494 and miR-21, which were associated with a poor prognosis. These miRNAs therefore represent new risk biomarkers of breast cancer metastasis and may be useful for future targeted therapies.
Collapse
Affiliation(s)
- Augusto LF Marino
- />Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784-400 Brazil
| | - Adriane F Evangelista
- />Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784-400 Brazil
| | - René AC Vieira
- />Department of Mastology and Breast Reconstruction, Barretos Cancer Hospital, Barretos, 14784-400 SP Brazil
| | - Taciane Macedo
- />Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784-400 Brazil
| | - Ligia M Kerr
- />Department of Pathology, Barretos Cancer Hospital, CEP: 14784-400 Barretos, SP Brazil
| | | | - Adhemar Longatto-Filho
- />Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784-400 Brazil
- />Laboratory of Medical Investigation (LIM) 14, Department of Pathology, University of São Paulo School of Medicine, São Paulo, SP 1246903 Brazil
- />Life and Health Sciences Research Institute (ICVS), School of Health Sciences, University of Minho, 4704-553 Braga, Portugal
- />ICVS/3B’s-PT Government Associate Laboratory, 4710-057 Braga/Guimarães, Portugal
| | - Henrique CS Silveira
- />Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784-400 Brazil
| | - Marcia MC Marques
- />Molecular Oncology Research Center, Barretos Cancer Hospital, Barretos, 14784-400 Brazil
- />Barretos School of Health Sciences - FACISB, Barretos, São Paulo Brazil
| |
Collapse
|
106
|
Welten SM, Bastiaansen AJ, de Jong RC, de Vries MR, Peters EA, Boonstra MC, Sheikh SP, La Monica N, Kandimalla ER, Quax PH, Nossent AY. Inhibition of 14q32 MicroRNAs miR-329, miR-487b, miR-494, and miR-495 Increases Neovascularization and Blood Flow Recovery After Ischemia. Circ Res 2014; 115:696-708. [DOI: 10.1161/circresaha.114.304747] [Citation(s) in RCA: 113] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Rationale:
Effective neovascularization is crucial for recovery after cardiovascular events.
Objective:
Because microRNAs regulate expression of up to several hundred target genes, we set out to identify microRNAs that target genes in all pathways of the multifactorial neovascularization process. Using
www.targetscan.org
, we performed a reverse target prediction analysis on a set of 197 genes involved in neovascularization. We found enrichment of binding sites for 27 microRNAs in a single microRNA gene cluster. Microarray analyses showed upregulation of 14q32 microRNAs during neovascularization in mice after single femoral artery ligation.
Methods and Results:
Gene silencing oligonucleotides (GSOs) were used to inhibit 4 14q32 microRNAs, miR-329, miR-487b, miR-494, and miR-495, 1 day before double femoral artery ligation. Blood flow recovery was followed by laser Doppler perfusion imaging. All 4 GSOs clearly improved blood flow recovery after ischemia. Mice treated with GSO-495 or GSO-329 showed increased perfusion already after 3 days (30% perfusion versus 15% in control), and those treated with GSO-329 showed a full recovery of perfusion after 7 days (versus 60% in control). Increased collateral artery diameters (arteriogenesis) were observed in adductor muscles of GSO-treated mice, as well as increased capillary densities (angiogenesis) in the ischemic soleus muscle. In vitro, treatment with GSOs led to increased sprout formation and increased arterial endothelial cell proliferation, as well as to increased arterial myofibroblast proliferation.
Conclusions:
The 14q32 microRNA gene cluster is highly involved in neovascularization. Inhibition of 14q32 microRNAs miR-329, miR-487b, miR-494, and miR-495 provides a promising tool for future therapeutic neovascularization.
Collapse
Affiliation(s)
- Sabine M.J. Welten
- From the Department of Surgery (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., M.C.B., P.H.A.Q., A.Y.N.) and Einthoven Laboratory for Experimental Vascular Medicine (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., P.H.A.Q., A.Y.N.), Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark (S.P.S.); and Idera Pharmaceuticals, Cambridge, MA (N.L.M., E.R.K.)
| | - Antonius J.N.M. Bastiaansen
- From the Department of Surgery (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., M.C.B., P.H.A.Q., A.Y.N.) and Einthoven Laboratory for Experimental Vascular Medicine (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., P.H.A.Q., A.Y.N.), Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark (S.P.S.); and Idera Pharmaceuticals, Cambridge, MA (N.L.M., E.R.K.)
| | - Rob C.M. de Jong
- From the Department of Surgery (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., M.C.B., P.H.A.Q., A.Y.N.) and Einthoven Laboratory for Experimental Vascular Medicine (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., P.H.A.Q., A.Y.N.), Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark (S.P.S.); and Idera Pharmaceuticals, Cambridge, MA (N.L.M., E.R.K.)
| | - Margreet R. de Vries
- From the Department of Surgery (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., M.C.B., P.H.A.Q., A.Y.N.) and Einthoven Laboratory for Experimental Vascular Medicine (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., P.H.A.Q., A.Y.N.), Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark (S.P.S.); and Idera Pharmaceuticals, Cambridge, MA (N.L.M., E.R.K.)
| | - Erna A.B. Peters
- From the Department of Surgery (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., M.C.B., P.H.A.Q., A.Y.N.) and Einthoven Laboratory for Experimental Vascular Medicine (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., P.H.A.Q., A.Y.N.), Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark (S.P.S.); and Idera Pharmaceuticals, Cambridge, MA (N.L.M., E.R.K.)
| | - Martin C. Boonstra
- From the Department of Surgery (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., M.C.B., P.H.A.Q., A.Y.N.) and Einthoven Laboratory for Experimental Vascular Medicine (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., P.H.A.Q., A.Y.N.), Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark (S.P.S.); and Idera Pharmaceuticals, Cambridge, MA (N.L.M., E.R.K.)
| | - Søren P. Sheikh
- From the Department of Surgery (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., M.C.B., P.H.A.Q., A.Y.N.) and Einthoven Laboratory for Experimental Vascular Medicine (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., P.H.A.Q., A.Y.N.), Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark (S.P.S.); and Idera Pharmaceuticals, Cambridge, MA (N.L.M., E.R.K.)
| | - Nicola La Monica
- From the Department of Surgery (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., M.C.B., P.H.A.Q., A.Y.N.) and Einthoven Laboratory for Experimental Vascular Medicine (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., P.H.A.Q., A.Y.N.), Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark (S.P.S.); and Idera Pharmaceuticals, Cambridge, MA (N.L.M., E.R.K.)
| | - Ekambar R. Kandimalla
- From the Department of Surgery (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., M.C.B., P.H.A.Q., A.Y.N.) and Einthoven Laboratory for Experimental Vascular Medicine (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., P.H.A.Q., A.Y.N.), Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark (S.P.S.); and Idera Pharmaceuticals, Cambridge, MA (N.L.M., E.R.K.)
| | - Paul H.A. Quax
- From the Department of Surgery (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., M.C.B., P.H.A.Q., A.Y.N.) and Einthoven Laboratory for Experimental Vascular Medicine (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., P.H.A.Q., A.Y.N.), Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark (S.P.S.); and Idera Pharmaceuticals, Cambridge, MA (N.L.M., E.R.K.)
| | - A. Yaël Nossent
- From the Department of Surgery (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., M.C.B., P.H.A.Q., A.Y.N.) and Einthoven Laboratory for Experimental Vascular Medicine (S.M.J.W., A.J.N.M.B., R.C.M.d.J., M.R.d.V., E.A.B.P., P.H.A.Q., A.Y.N.), Leiden University Medical Center, Leiden, The Netherlands; Department of Biochemistry and Pharmacology, Odense University Hospital, Odense, Denmark (S.P.S.); and Idera Pharmaceuticals, Cambridge, MA (N.L.M., E.R.K.)
| |
Collapse
|
107
|
Sun HB, Chen X, Ji H, Wu T, Lu HW, Zhang Y, Li H, Li YM. miR‑494 is an independent prognostic factor and promotes cell migration and invasion in colorectal cancer by directly targeting PTEN. Int J Oncol 2014; 45:2486-94. [PMID: 25270723 DOI: 10.3892/ijo.2014.2665] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/05/2014] [Indexed: 01/11/2023] Open
Abstract
Accumulating evidence has shown that micro-RNAs (miRNAs) are involved in multiple processes in cancer development and progression. Upregulation of miRNA-494 (miR-494) has been identified as an oncogenic miRNA and is associated with poor prognosis in several types of human cancer. However, the specific function of miR-494 in colorectal cancer remains unclear. In this study we found that the expression of miR-494 in colorectal cancer tissues and cell lines was much higher than in normal control tissues and cells, respectively. In addition, upregulation of miR-494 more frequently occurred in tissue specimens with adverse clinical stage and the presence of distant metastasis. Moreover, multivariate survival analyses demonstrated that overexpression of miR-494 is an independent prognostic factor for both progression-free and overall survival. In addition miR-494 promoted invasion and migration in colorectal cancer cells, and miR-494 directly inhibited the phosphatase and tensin homolog deleted on chromosome 10 (PTEN) expression by targeting its 3'-untranslated region (3'-UTR). Moreover, PTEN is down regulated and inversely correlated with miR-494 expression in tissues. Thus, for the first time, we provided convincing evidence that upregulation of miR-494 was associated with tumor aggressiveness and tumor metastasis and promoted cell migration and invasion by targeting PTEN gene in colorectal cancer, and miR-494 is an independent prognostic marker for colorectal cancer patients.
Collapse
Affiliation(s)
- Hai-Bing Sun
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Xi Chen
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hong Ji
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Tao Wu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hong-Wei Lu
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yan Zhang
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Hua Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| | - Yi-Ming Li
- Department of General Surgery, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi 710004, P.R. China
| |
Collapse
|
108
|
Venkatesan N, Deepa P, Vasudevan M, Khetan V, Reddy AM, Krishnakumar S. Integrated Analysis of Dysregulated miRNA-gene Expression in HMGA2-silenced Retinoblastoma Cells. Bioinform Biol Insights 2014; 8:177-91. [PMID: 25232279 PMCID: PMC4159370 DOI: 10.4137/bbi.s16958] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2014] [Revised: 07/20/2014] [Accepted: 07/21/2014] [Indexed: 12/29/2022] Open
Abstract
Retinoblastoma (RB) is a primary childhood eye cancer. HMGA2 shows promise as a molecule for targeted therapy. The involvement of miRNAs in genome-level molecular dys-regulation in HMGA2-silenced RB cells is poorly understood. Through miRNA expression microarray profiling, and an integrated array analysis of the HMGA2-silenced RB cells, the dysregulated miRNAs and the miRNA-target relationships were modelled. Loop network analysis revealed a regulatory association between the transcription factor (SOX5) and the deregulated miRNAs (miR-29a, miR-9*, miR-9-3). Silencing of HMGA2 deregulated the vital oncomirs (miR-7, miR-331, miR-26a, miR-221, miR-17~92 and miR-106b∼25) in RB cells. From this list, the role of the miR-106b∼25 cluster was examined further for its expression in primary RB tumor tissues (n = 20). The regulatory targets of miR-106b∼25 cluster namely p21 (cyclin-dependent kinase inhibitor) and BIM (pro-apoptotic gene) were elevated, and apoptotic cell death was observed, in RB tumor cells treated with the specific antagomirs of the miR-106b∼25 cluster. Thus, suppression of miR-106b∼25 cluster controls RB tumor growth. Taken together, HMGA2 mediated anti-tumor effect present in RB is, in part, mediated through the miR-106b∼25 cluster.
Collapse
Affiliation(s)
- Nalini Venkatesan
- Larsen and Toubro Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India. ; Birla Institute of Technology and Science (BITS), Pilani, Rajasthan, India
| | - Pr Deepa
- Department of Biological Sciences, Birla Institute of Technology and Science (BITS) - Pilani, Rajasthan, India
| | | | - Vikas Khetan
- Sri Bhagawan Mahavir Department of Vitreoretinal and Ocular Oncology, Medical Research Foundation, Sankara Nethralaya, Chennai, India
| | - Ashwin M Reddy
- Department of Ophthalmology, Barts Health NHS Trust, London, UK
| | - Subramanian Krishnakumar
- Larsen and Toubro Department of Ocular Pathology, Vision Research Foundation, Sankara Nethralaya, Chennai, India
| |
Collapse
|
109
|
Liang J, Zhang Y, Jiang G, Liu Z, Xiang W, Chen X, Chen Z, Zhao J. MiR-138 induces renal carcinoma cell senescence by targeting EZH2 and is downregulated in human clear cell renal cell carcinoma. Oncol Res 2014; 21:83-91. [PMID: 24406044 DOI: 10.3727/096504013x13775486749218] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
MiR-138 has been shown to be downregulated in various cancers, including head and neck squamous cell carcinoma (HNSCC) and clear cell renal carcinoma (ccRCC). In the present study, we aimed to reveal the mechanism of miR-138 induction of senescence in renal carcinoma cells and identify its specific target genes. We used qRT-PCR to analyze miR-138 expression levels in renal carcinoma cell lines and ccRCC samples. The activity of β-galactosidase was measured for functional analysis after miR-138 mimic transfection. To identify the targets of miR-138, we used three types of target prediction software to determine three candidate target genes. Furthermore, a 3'UTR luciferase assay was performed. Western blotting was used to detect the protein expression levels of candidate target genes. Additionally, knockdown of EZH2 by its siRNA was performed. The expression of miR-138 was downregulated in RCC cells lines and in tumor samples compared with their controls. Transfection of miR-138 mimic induced SN-12 cell senescence, decreased the protein expression of EZH2, and increased the protein expression of P16. Furthermore, miR-138 decreased the 3'UTR luciferase activity of EZH2. The knockdown of EZH2 by siRNA induced SN-12 cell senescence, decreased the protein expression level of EZH2, and increased the protein expression of P16. MiR-138 is a tumor-suppressor miRNA in ccRCC that induces SN-12 cell senescence by downregulating EZH2 expression and upregulating P16 expression.
Collapse
Affiliation(s)
- Jiaqian Liang
- Department of Urology, Union Hospital of Tongji Medical College, Huazhong University of Science and Technology, Wuhan, PR China
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Li L, Li Z, Kong X, Xie D, Jia Z, Jiang W, Cui J, Du Y, Wei D, Huang S, Xie K. Down-regulation of microRNA-494 via loss of SMAD4 increases FOXM1 and β-catenin signaling in pancreatic ductal adenocarcinoma cells. Gastroenterology 2014; 147:485-97.e18. [PMID: 24859161 DOI: 10.1053/j.gastro.2014.04.048] [Citation(s) in RCA: 80] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2013] [Revised: 04/15/2014] [Accepted: 04/23/2014] [Indexed: 02/03/2023]
Abstract
BACKGROUND & AIMS Dysregulation of β-catenin and the transcriptional activator FOXM1 mediate oncogenesis, but it is not clear how these proteins become dysregulated in tumors that do not typically carry mutations in adenomatous polyposis coli (APC) or β-catenin, such as pancreatic ductal adenocarcinomas (PDACs). We searched for microRNAs that regulate levels of FOXM1 in PDAC cells and samples from patients. METHODS We identified microRNAs that affect levels of FOXM1 in PDACs using bioinformatic, genetic, and pharmacologic approaches. We altered expression of the microRNA-494 (miR-494) in PDAC cell lines (AsPC-1 and PANC-1) and examined the effects on FOXM1 and β-catenin signaling and cell proliferation and colony formation. The cells were injected into immunocompromised mice and growth of xenograft tumors and liver metastases were measured. We performed immunohistochemical analyses of 10 paired PDAC and nontumor pancreatic tissue samples collected from untreated patients during surgery. RESULTS We identified miR-494 as a negative regulator of FOXM1 levels in PDAC cells, and found that levels of this microRNA were reduced in PDAC specimens, compared with nontumor tissues. Loss of response of PDAC cells to transforming growth factor β, owing to SMAD4 deficiency, reduced expression of miR-494. Transgenic expression of miR-494 in PDAC cells produced the same effects as reducing expression of FOXM1 or blocking nuclear translocation of β-catenin, reducing cell proliferation, migration, and invasion, and increasing their sensitivity to gemcitabine. Reduced expression of miR-494 correlated with PDAC metastasis and reduced survival times of patients. CONCLUSIONS Loss of SMAD4 in PDAC cells leads to reduced levels of miR-494, increased levels of FOXM1, and nuclear localization of β-catenin. miR-494 might be developed as a prognostic marker for patients with PDAC or a therapeutic target.
Collapse
Affiliation(s)
- Lei Li
- Department of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Zhaoshen Li
- Department of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China.
| | - Xiangyu Kong
- Department of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China; Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| | - Dacheng Xie
- Shanghai Key Laboratory of Pancreatic Diseases Research and Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, People's Republic of China
| | - Zhiliang Jia
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Weihua Jiang
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas; Shanghai Key Laboratory of Pancreatic Diseases Research and Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, People's Republic of China
| | - Jiujie Cui
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas; Shanghai Key Laboratory of Pancreatic Diseases Research and Department of Oncology, Shanghai Jiaotong University Affiliated First People's Hospital, Shanghai, People's Republic of China
| | - Yiqi Du
- Department of Gastroenterology, Shanghai Changhai Hospital, Second Military Medical University, Shanghai, People's Republic of China
| | - Daoyan Wei
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Suyun Huang
- Department of Neurosurgery, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Keping Xie
- Department of Gastroenterology, Hepatology and Nutrition, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
111
|
Yoo JK, Kim CH, Jung HY, Lee DR, Kim JK. Discovery and characterization of miRNA during cellular senescence in bone marrow-derived human mesenchymal stem cells. Exp Gerontol 2014; 58:139-45. [PMID: 25087724 DOI: 10.1016/j.exger.2014.07.020] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2014] [Revised: 07/24/2014] [Accepted: 07/25/2014] [Indexed: 12/18/2022]
Abstract
Cellular senescence is an irreversible cell cycle arrest in which specific mRNAs and miRNAs are involved in senescence progression. miRNAs interact with specific mRNAs to regulate various cellular mechanisms, including metabolism, proliferation, apoptosis, senescence and differentiation. In this study, we identify and characterize miRNAs during cellular senescence in mesenchymal stem cells (MSCs). Using previously reported miRNAs, expression profiling of 23 miRNAs was performed using real-time PCR analysis. Among these miRNAs, 19 miRNAs showed upregulated expression patterns in senescent MSCs compared with young MSCs, and 5 miRNAs were downregulated. These miRNAs have not been previously identified as being related to cellular senescence but seem to be related. miR-103-2*, miR-140-5p and miR-330-5p are highly upregulated, while miR-29b and miR-199b-5p are significantly downregulated in senescent MSCs. We identify unique functions of 5 miRNAs and predict putative target genes of 5 miRNAs using our previous report. Among them, miR-199b-5p directly suppressed LAMC1 expression, as shown in a luciferase assay. miR-199b-5p significantly regulates translational activity but does not control post-transcriptional activity. Likewise, miR-199b-5p modulates LAMC networks, which demonstrates the resulting phenomenon during cellular senescence, namely, that miR-199b-5p indirectly regulates cellular senescence in MSCs.
Collapse
Affiliation(s)
- Jung Ki Yoo
- Department of Pharmacy, College of Pharmacy, CHA University, 222 Yatap-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-836, Republic of Korea
| | - Chang-Hyun Kim
- College of Medicine, Dongguk Ilsan Hospital, Gyeonggi-do 410-773, Republic of Korea
| | - Ho Yong Jung
- Department of Pharmacy, College of Pharmacy, CHA University, 222 Yatap-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-836, Republic of Korea
| | - Dong Ryul Lee
- Fertility Center of CHA Gangnam Medical Center, College of Medicine, CHA University, 606-5 Yeoksam-dong, Gangnam-gu, Seoul 135-081, Republic of Korea.
| | - Jin Kyeoung Kim
- Department of Pharmacy, College of Pharmacy, CHA University, 222 Yatap-dong, Bundang-gu, Seongnam-si, Gyeonggi-do 463-836, Republic of Korea.
| |
Collapse
|
112
|
Napolitano M, Comegna M, Succoio M, Leggiero E, Pastore L, Faraonio R, Cimino F, Passaro F. Comparative analysis of gene expression data reveals novel targets of senescence-associated microRNAs. PLoS One 2014; 9:e98669. [PMID: 24905922 PMCID: PMC4048207 DOI: 10.1371/journal.pone.0098669] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2014] [Accepted: 05/06/2014] [Indexed: 11/19/2022] Open
Abstract
In the last decades, cellular senescence is viewed as a complex mechanism involved in different processes, ranging from tumor suppression to induction of age-related degenerative alterations. Senescence-inducing stimuli are myriad and, recently, we and others have demonstrated the role exerted by microRNAs in the induction and maintenance of senescence, by the identification of a subset of Senescence-Associated microRNAs (SAmiRs) up-regulated during replicative or stress-induced senescence and able to induce a premature senescent phenotype when over-expressed in human primary cells. With the intent to find novel direct targets of two specific SAmiRs, SAmiR-494 and -486-5p, and cellular pathways which they are involved in, we performed a comparative analysis of gene expression profiles available in literature to select genes down-regulated upon replicative senescence of human primary fibroblasts. Among them, we searched for SAmiR's candidate targets by analyzing with different target prediction algorithms their 3'UTR for the presence of SAmiR-binding sites. The expression profiles of selected candidates have been validated on replicative and stress-induced senescence and the targeting of the 3'UTRs was assessed by luciferase assay. Results allowed us to identify Cell Division Cycle Associated 2 (CDCA2) and Inhibitor of DNA binding/differentiation type 4 (ID4) as novel targets of SAmiR-494 and SAmiR-486-5p, respectively. Furthermore, we demonstrated that the over-expression of CDCA2 in human primary fibroblasts was able to partially counteract etoposide-induced senescence by mitigating the activation of DNA Damage Response.
Collapse
Affiliation(s)
| | - Marika Comegna
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE – Advanced Biotechnologies, Naples, Italy
| | - Mariangela Succoio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE – Advanced Biotechnologies, Naples, Italy
| | | | - Lucio Pastore
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE – Advanced Biotechnologies, Naples, Italy
| | - Raffaella Faraonio
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE – Advanced Biotechnologies, Naples, Italy
| | - Filiberto Cimino
- IRCCS SDN Foundation, Naples, Italy
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE – Advanced Biotechnologies, Naples, Italy
- * E-mail: (FC); (FP)
| | - Fabiana Passaro
- Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, Naples, Italy
- CEINGE – Advanced Biotechnologies, Naples, Italy
- * E-mail: (FC); (FP)
| |
Collapse
|
113
|
Shen PF, Chen XQ, Liao YC, Chen N, Zhou Q, Wei Q, Li X, Wang J, Zeng H. MicroRNA-494-3p targets CXCR4 to suppress the proliferation, invasion, and migration of prostate cancer. Prostate 2014; 74:756-67. [PMID: 24644030 DOI: 10.1002/pros.22795] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 02/10/2014] [Indexed: 02/05/2023]
Abstract
BACKGROUND Although SDF-1/CXCR4 pathway is a potential mechanism of tumor proliferation and progression, the mechanism of controlling CXCR4 expression is not fully understood. This study was to confirm that miR-494-3p might be a potentially post-transcriptional regulator of CXCR4 and over-expression of miR-494 might suppress prostate cancer progression and metastasis. MATERIALS AND METHODS We firstly postulated the post-transcriptional regulation of CXCR4 by miR-494-3p through bioinformatics analysis, and then it was demonstrated that miR-494-3p could regulate the CXCR4 mRNA post-transcriptionally by binding to the predicted site by dual reporter gene assays. The biological effect of miR-494-3p on prostate cancer cells proliferation, apoptosis, migration, and invasion was measured by MTT, TUNEL, flow cytometry, migration, and invasion assays. RESULTS It was shown that the mRNA and protein expression levels of CXCR4 were significantly up-regulated in PC-3 and DU145, whereas barely detected in LNCaP and RWPE-1. However, the CXCR4 protein levels were inversely related to the mature miR-494-3p expression levels in RWPE-1 and prostate cancer cells. The constitutive over-expression of miR-494-3p could down-regulate the protein level of CXCR4 in PC-3 and DU145. MiR-494-3p also could bind to the seed sequences in the 3'-UTR of the CXCR4 gene. Artificial over-expression of miR-494-3p could inhibit the growth, promote the apoptosis, and inhibit the migration and invasion of PC-3 and DU145 cells in vivo. CONCLUSIONS Our results suggested that miR-494-3p might play crucial role in prostate cancer by post-transcriptional regulation to CXCR4 mRNA. MiR-494-3p/CXCR4 pathway may be a potential therapeutic target to prevent prostate cancer progression and metastasis.
Collapse
Affiliation(s)
- Peng-fei Shen
- Department of Urology, West China Hospital, SiChuan University, Chengdu, China
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Izzotti A, Pulliero A. The effects of environmental chemical carcinogens on the microRNA machinery. Int J Hyg Environ Health 2014; 217:601-27. [PMID: 24560354 DOI: 10.1016/j.ijheh.2014.01.001] [Citation(s) in RCA: 88] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 01/03/2014] [Accepted: 01/06/2014] [Indexed: 12/29/2022]
Abstract
The first evidence that microRNA expression is early altered by exposure to environmental chemical carcinogens in still healthy organisms was obtained for cigarette smoke. To date, the cumulative experimental data indicate that similar effects are caused by a variety of environmental carcinogens, including polycyclic aromatic hydrocarbons, nitropyrenes, endocrine disruptors, airborne mixtures, carcinogens in food and water, and carcinogenic drugs. Accordingly, the alteration of miRNA expression is a general mechanism that plays an important pathogenic role in linking exposure to environmental toxic agents with their pathological consequences, mainly including cancer development. This review summarizes the existing experimental evidence concerning the effects of chemical carcinogens on the microRNA machinery. For each carcinogen, the specific microRNA alteration signature, as detected in experimental studies, is reported. These data are useful for applying microRNA alterations as early biomarkers of biological effects in healthy organisms exposed to environmental carcinogens. However, microRNA alteration results in carcinogenesis only if accompanied by other molecular damages. As an example, microRNAs altered by chemical carcinogens often inhibits the expression of mutated oncogenes. The long-term exposure to chemical carcinogens causes irreversible suppression of microRNA expression thus allowing the transduction into proteins of mutated oncogenes. This review also analyzes the existing knowledge regarding the mechanisms by which environmental carcinogens alter microRNA expression. The underlying molecular mechanism involves p53-microRNA interconnection, microRNA adduct formation, and alterations of Dicer function. On the whole, reported findings provide evidence that microRNA analysis is a molecular toxicology tool that can elucidate the pathogenic mechanisms activated by environmental carcinogens.
Collapse
Affiliation(s)
- A Izzotti
- Department of Health Sciences, University of Genoa, Italy; Mutagenesis Unit, IRCCS University Hospital San Martino - IST National Research Cancer Institute, Genoa, Italy.
| | - A Pulliero
- Department of Health Sciences, University of Genoa, Italy
| |
Collapse
|
115
|
RIES JUTTA, VAIRAKTARIS ELEFTHERIOS, AGAIMY ABBAS, KINTOPP RITA, BARAN CHRISTOPH, NEUKAM FRIEDRICHW, NKENKE EMEKA. miR-186, miR-3651 and miR-494: Potential biomarkers for oral squamous cell carcinoma extracted from whole blood. Oncol Rep 2014; 31:1429-36. [DOI: 10.3892/or.2014.2983] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Accepted: 12/02/2013] [Indexed: 11/05/2022] Open
|
116
|
Lim L, Balakrishnan A, Huskey N, Jones KD, Jodari M, Ng R, Song G, Riordan J, Anderton B, Cheung ST, Willenbring H, Dupuy A, Chen X, Brown D, Chang AN, Goga A. MicroRNA-494 within an oncogenic microRNA megacluster regulates G1/S transition in liver tumorigenesis through suppression of mutated in colorectal cancer. Hepatology 2014; 59:202-15. [PMID: 23913442 PMCID: PMC3877416 DOI: 10.1002/hep.26662] [Citation(s) in RCA: 98] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 07/26/2013] [Indexed: 12/30/2022]
Abstract
UNLABELLED Hepatocellular carcinoma (HCC) is associated with poor survival for patients and few effective treatment options, raising the need for novel therapeutic strategies. MicroRNAs (miRNAs) play important roles in tumor development and show deregulated patterns of expression in HCC. Because of the liver's unique affinity for small nucleic acids, miRNA-based therapy has been proposed in the treatment of liver disease. Thus, there is an urgent need to identify and characterize aberrantly expressed miRNAs in HCC. In our study, we profiled miRNA expression changes in de novo liver tumors driven by MYC and/or RAS, two canonical oncogenes activated in a majority of human HCCs. We identified an up-regulated miRNA megacluster comprised of 53 miRNAs on mouse chromosome 12qF1 (human homolog 14q32). This miRNA megacluster is up-regulated in all three transgenic liver models and in a subset of human HCCs. An unbiased functional analysis of all miRNAs within this cluster was performed. We found that miR-494 is overexpressed in human HCC and aids in transformation by regulating the G1 /S cell cycle transition through targeting of the Mutated in Colorectal Cancer tumor suppressor. miR-494 inhibition in human HCC cell lines decreases cellular transformation, and anti-miR-494 treatment of primary MYC-driven liver tumor formation significantly diminishes tumor size. CONCLUSION Our findings identify a new therapeutic target (miR-494) for the treatment of HCC.
Collapse
Affiliation(s)
- Lionel Lim
- Department of Cell & Tissue Biology, University of California San FranciscoSan Francisco, CA,Department of Medicine, University of California San FranciscoSan Francisco, CA,Address reprint requests to: Andrei Goga, M.D., Ph.D., Department of Cell & Tissue Biology, University of California San Francisco, 513 Parnassus Avenue, Box 0512, San Francisco, CA 94143-0512. E-mail: ; fax: 415-476-1128
| | - Asha Balakrishnan
- Department of Medicine, University of California San FranciscoSan Francisco, CA,Department of Gastroenterology, Hepatology and Endocrinology, Hannover Medical SchoolHannover, Germany,Address reprint requests to: Andrei Goga, M.D., Ph.D., Department of Cell & Tissue Biology, University of California San Francisco, 513 Parnassus Avenue, Box 0512, San Francisco, CA 94143-0512. E-mail: ; fax: 415-476-1128
| | - Noelle Huskey
- Department of Cell & Tissue Biology, University of California San FranciscoSan Francisco, CA,Department of Medicine, University of California San FranciscoSan Francisco, CA
| | - Kirk D Jones
- Department of Pathology, University of California San FranciscoSan Francisco, CA
| | - Mona Jodari
- Department of Cell & Tissue Biology, University of California San FranciscoSan Francisco, CA
| | - Raymond Ng
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan Francisco, CA
| | - Guisheng Song
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan Francisco, CA
| | - Jesse Riordan
- Anatomy and Cell Biology, University of IowaIowa City, IA
| | - Brittany Anderton
- Department of Cell & Tissue Biology, University of California San FranciscoSan Francisco, CA,Department of Medicine, University of California San FranciscoSan Francisco, CA
| | - Siu-Tim Cheung
- Department of Surgery, The University of Hong KongHong Kong
| | - Holger Willenbring
- Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San FranciscoSan Francisco, CA,Liver Center, University of California San FranciscoSan Francisco, CA
| | - Adam Dupuy
- Anatomy and Cell Biology, University of IowaIowa City, IA
| | - Xin Chen
- Liver Center, University of California San FranciscoSan Francisco, CA,Department of Bioengineering and Therapeutic Sciences, University of California San FranciscoSan Francisco, CA
| | | | | | - Andrei Goga
- Department of Cell & Tissue Biology, University of California San FranciscoSan Francisco, CA,Department of Medicine, University of California San FranciscoSan Francisco, CA,Liver Center, University of California San FranciscoSan Francisco, CA
| |
Collapse
|
117
|
UVA and UVB irradiation differentially regulate microRNA expression in human primary keratinocytes. PLoS One 2013; 8:e83392. [PMID: 24391759 PMCID: PMC3877020 DOI: 10.1371/journal.pone.0083392] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2013] [Accepted: 10/29/2013] [Indexed: 12/22/2022] Open
Abstract
MicroRNA (miRNA)-mediated regulation of the cellular transcriptome is an important epigenetic mechanism for fine-tuning regulatory pathways. These include processes related to skin cancer development, progression and metastasis. However, little is known about the role of microRNA as an intermediary in the carcinogenic processes following exposure to UV-radiation. We now show that UV irradiation of human primary keratinocytes modulates the expression of several cellular miRNAs. A common set of miRNAs was influenced by exposure to both UVA and UVB. However, each wavelength band also activated a distinct subset of miRNAs. Common sets of UVA- and UVB-regulated miRNAs harbor the regulatory elements GLYCA-nTRE, GATA-1-undefined-site-13 or Hox-2.3-undefined-site-2 in their promoters. In silico analysis indicates that the differentially expressed miRNAs responding to UV have potential functions in the cellular pathways of cell growth and proliferation. Interestingly, the expression of miR-23b, which is a differentiation marker of human keratinocytes, is remarkably up-regulated after UVA irradiation. Studying the interaction between miR-23b and its putative skin-relevant targets using a Luciferase reporter assay revealed that RRAS2 (related RAS viral oncogene homolog 2), which is strongly expressed in highly aggressive malignant skin cancer, to be a direct target of miR-23b. This study demonstrates for the first time a differential miRNA response to UVA and UVB in human primary keratinocytes. This suggests that selective regulation of signaling pathways occurs in response to different UV energies. This may shed new light on miRNA-regulated carcinogenic processes involved in UV-induced skin carcinogenesis.
Collapse
|
118
|
Lee H, Jee Y, Hong K, Hwang GS, Chun KH. MicroRNA-494, upregulated by tumor necrosis factor-α, desensitizes insulin effect in C2C12 muscle cells. PLoS One 2013; 8:e83471. [PMID: 24349514 PMCID: PMC3859653 DOI: 10.1371/journal.pone.0083471] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/04/2013] [Indexed: 12/21/2022] Open
Abstract
Chronic inflammation is fundamental for the induction of insulin resistance in the muscle tissue of vertebrates. Although several miRNAs are thought to be involved in the development of insulin resistance, the role of miRNAs in the association between inflammation and insulin resistance in muscle tissue is poorly understood. Herein, we investigated the aberrant expression of miRNAs by conducting miRNA microarray analysis of TNF-α-treated mouse C2C12 myotubes. We identified two miRNAs that were upregulated and six that were downregulated by a >1.5-fold change compared to normal cells. Among the findings, qRT-PCR analysis confirmed that miR-494 is consistently upregulated by TNF-α-induced inflammation. Overexpression of miR-494 in CHOIR/IRS1 and C2C12 myoblasts suppressed insulin action by down-regulating phosphorylations of GSK-3α/β, AS160 and p70S6K, downstream of Akt. Moreover, overexpression of miR-494 did not regulate TNF-α-mediated inflammation . Among genes bearing the seed site for miR-494, RT-PCR analysis showed that the expression of Stxbp5, an inhibitor of glucose transport, was downregulated following miR-494 inhibition. In contrast, the expression of PTEN decreased in the cells analyzed, thus showing that both positive and negative regulators of insulin action may be simultaneously controlled by miR-494. To investigate the overall effect of miR-494 on insulin signaling, we performed a PCR array analysis containing 84 genes related to the insulin signaling pathway, and we observed that 25% of genes were downregulated (P<0.05) and 11% were upregulated (P<0.05). These results confirm that miR-494 might contribute to insulin sensitivity by positive and negative regulation of the expression of diverse genes. Of note, PCR array data showed downregulation of Slc2A4, a coding gene for Glut4. Altogether, the present study concludes that the upregulation of miR-494 expression by TNF-α-mediated inflammation exacerbates insulin resistance. Therefore, we suggest that miR-494 could prove an important target for the diagnosis and therapy of inflammation-mediated insulin resistance in muscle.
Collapse
Affiliation(s)
- Hyunjoo Lee
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Yuna Jee
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Kyungki Hong
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Republic of Korea
| | - Gwi Seo Hwang
- Lab of Cell Differentiation Research, College of Oriental Medicine, Gachon University, Seongnam, Republic of Korea
| | - Kwang-Hoon Chun
- Gachon Institute of Pharmaceutical Sciences, College of Pharmacy, Gachon University, Incheon, Republic of Korea
- * E-mail:
| |
Collapse
|
119
|
MiRNAs which target CD3 subunits could be potential biomarkers for cancers. PLoS One 2013; 8:e78790. [PMID: 24244363 PMCID: PMC3823969 DOI: 10.1371/journal.pone.0078790] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 09/24/2013] [Indexed: 12/21/2022] Open
Abstract
Background T-cells play an important role in the immune response and are activated in response to the presentation of antigens bound to major histocompatibility complex (MHC) molecules participating with the T-cell receptor (TCR). T-cell receptor complexes also contain four CD3 (cluster of differentiation 3) subunits. The TCR-CD3 complex is vital for T-cell development and plays an important role in intervening cell recognition events. Since microRNAs (miRNAs) are highly stable in blood serum, some of which may target CD3 molecules, they could serve as good biomarkers for early cancer detection. The aim of this study was to see whether there is a relationship between cancers and the amount of miRNAs -targeted CD3 molecules. Methods Bioinformatics tools were used in order to predict the miRNA targets for these genes. Subsequently, these highly conserved miRNAs were evaluated to see if they are implicated in various kinds of cancers. Consequently, human disease databases were used. According to the latest research, this study attempted to investigate the possible down- or upregulation of miRNAs cancer patients. Results We identified miRNAs which target genes producing CD3 subunit molecules. The most conserved miRNAs were identified for the CD3G gene, while CD247 and CD3EAP genes had the least number and there were no conserved miRNA associated with the CD3D gene. Some of these miRNAs were found to be responsible for different cancers, following a certain pattern. Conclusions It is highly likely that miRNAs affect the CD3 molecules, impairing the immune system, recognizing and destroying cancer tumor; hence, they can be used as suitable biomarkers in distinguishing cancer in the very early stages of its development.
Collapse
|
120
|
Xiong R, Wang Z, Zhao Z, Li H, Chen W, Zhang B, Wang L, Wu L, Li W, Ding J, Chen S. MicroRNA-494 reduces DJ-1 expression and exacerbates neurodegeneration. Neurobiol Aging 2013; 35:705-14. [PMID: 24269020 DOI: 10.1016/j.neurobiolaging.2013.09.027] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2013] [Revised: 09/17/2013] [Accepted: 09/19/2013] [Indexed: 12/11/2022]
Abstract
Oxidative stress is believed to be a significant cause of Parkinson's disease (PD). DJ-1 is thought to be an oxidative sensor that protects cells from oxidative insult. It was reported that the level of total DJ-1 protein was significantly reduced in the substantia nigra of sporadic PD patients, suggesting that abnormal DJ-1 expression might contribute to PD pathogenesis. However, the molecular mechanisms underlying the regulation of DJ-1 expression are still not fully explored. As a post-transcriptional regulation of target gene expression, the roles of microRNAs in development and disease progression have received widespread concerns. Therefore, we hypothesized that microRNAs might participate in the regulation of the DJ-1 expression. In the present study, we found that miR-494 could bind to the 3'UTR of DJ-1. Overexpression of miR-494 significantly decreased the level of DJ-1 in vitro and rendered cells more susceptible to oxidative stress. In a MPTP mouse model, overexpression of miR-494 negatively regulated DJ-1 levels and exacerbated MPTP-induced neurodegeneration, as illustrated by the loss of dopaminergic neurons. In conclusion, upregulation of miR-494 contributed to oxidative stress induced neuronal death by inhibiting expression of DJ-1.
Collapse
Affiliation(s)
- Ran Xiong
- Department of Neurology and Institute of Neurology, Ruijin Hospital Affiliated to Shanghai Jiaotong University School of Medicine, Shanghai, PR China
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Gong M, Ma J, Guillemette R, Zhou M, Yang Y, Yang Y, Hock JM, Yu X. miR-335 inhibits small cell lung cancer bone metastases via IGF-IR and RANKL pathways. Mol Cancer Res 2013; 12:101-10. [PMID: 23966614 DOI: 10.1158/1541-7786.mcr-13-0136] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
UNLABELLED Small cell lung cancer (SCLC) is a rapidly progressing, incurable cancer that frequently spreads to bone. New insights are needed to identify therapeutic targets to prevent or retard SCLC metastatic progression. Human SCLC SBC-5 cells in mouse xenograft models home to skeletal and nonskeletal sites, whereas human SCLC SBC-3 cells only pervade nonskeletal sites. Because microRNAs (miRNA) often act as tumor regulators, we investigated their role in preclinical models of SCLC. miRNA expression profiling revealed selective and reduced expression of miRNA (miR)-335 and miR-29a in SBC-5 cells, compared with SBC-3 cells. In SBC-5 cells, miR-335 expression correlated with bone osteolytic lesions, whereas miR-29a expression did not. Overexpression of miR-335 in SBC-5 cells significantly reduced cell migration, invasion, proliferation, colony formation, and osteoclast induction in vitro. Importantly, in miR-335 overexpressing SBC-5 cell xenografts (n = 10), there were minimal osteolytic lesions in the majority of mice and none in three mice. Expression of RANK ligand (RANKL) and insulin-like growth factor-I receptor (IGF-IR), key mediators of bone metastases, were elevated in SBC-5 as compared with SBC-3 cells. Mechanistically, overexpression of miR-335 in SBC-5 cells reduced RANKL and IGF-IR expression. In conclusion, loss of miR-335 promoted SCLC metastatic skeletal lesions via deregulation of IGF-IR and RANKL pathways and was associated with metastatic osteolytic skeletal lesions. IMPLICATIONS These preclinical findings establish a need to pursue the role of miR-335 in human SCLC with metastatic skeletal disease.
Collapse
Affiliation(s)
- Meng Gong
- MD, PhD, Laboratory of Endocrinology and Metabolism, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, No. 37 Guoxue Xiang, Chengdu, Sichuan 610041, People's Republic of China.
| | | | | | | | | | | | | | | |
Collapse
|
122
|
Tay JW, Romeo G, Hughes QW, Baker RI. Micro-ribonucleic Acid 494 regulation of protein S expression. J Thromb Haemost 2013; 11:1547-55. [PMID: 23789915 DOI: 10.1111/jth.12331] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2013] [Indexed: 01/24/2023]
Abstract
BACKGROUND Acquired protein S (PS) deficiency is highly associated with elevated circulating estrogen levels resulting from pregnancy, oral contraceptives, and estrogen replacement therapy; however, the mechanism of estrogen-mediated acquired PS deficiency remains poorly understood. Increasing evidence indicates that estrogen receptor signaling can indirectly modulate the expression of target genes at the post-transcriptional level by modulating the expression of microRNAs (miRNAs), and miRNAs have also been demonstrated to be involved in the regulation of hemostasis. OBJECTIVES To investigate the mechanism of estrogen-mediated downregulation of PROS1 expression by the microRNA miR-494. METHODS Computational analyses of the PROS1 3'-untranslated region (UTR) were performed to identify putative miRNA-binding sites, and direct targeting of the PROS1 3'-UTR by miR-494 was determined with dual luciferase reporter assays in HuH-7 cells. Reporter vectors containing the PROS1 3'-UTR sequence with deleted miR-494-binding sites were also analyzed with luciferase reporter assays. The effects of estrogen on miR-494 and PROS1 mRNA levels in HuH-7 cells were determined by quantitative real-time PCR, and estrogen-mediated changes to secreted PS levels in culture supernatant of HuH-7 cells were measured with an ELISA. RESULTS The PROS1 3'-UTR sequence contains three putative miR-494-binding sites. miR-494 directly targets PROS1, and miR-494 levels are upregulated following estrogen treatment in HuH-7 liver cells in association with downregulated PROS1 mRNA and PS levels. CONCLUSIONS The results from this study provide the first evidence for miRNA downregulation of PROS1 by miR-494, and suggest that miR-494 is involved in the mechanism of estrogen-mediated downregulation of PS expression.
Collapse
Affiliation(s)
- J W Tay
- Department of Hematology, PathWest Laboratory Medicine, Royal Perth Hospital, Perth, WA, Australia
| | | | | | | |
Collapse
|
123
|
Cui FM, Li JX, Chen Q, Du HB, Zhang SY, Nie JH, Cao JP, Zhou PK, Hei TK, Tong J. Radon-induced alterations in micro-RNA expression profiles in transformed BEAS2B cells. JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2013; 76:107-119. [PMID: 23294299 DOI: 10.1080/15287394.2013.738176] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/01/2023]
Abstract
Radon and its progeny are confirmed to be type I carcinogenic agents accounting for increased risks in 10% of observed lung cancers globally. However, the underlying carcinogenic mechanisms are largely unknown. In the present study, BEAS2B cells were directly exposed twice to 20,000 Bq/m(3) radon gas for 20 min once (first passage) and subsequently 10 times (fifth passage). The fifth-passage cells were then subcultured for 1 and 20 generations (named Rn5-1 and Rn5-20, respectively). Molecular mechanisms indicative of malignant transformation were assessed by determination of apoptosis, seroresistance, and microRNA (miRNA) expression profiles. The microRNA profiles were used to assess the functional annotations of the target genes. Data indicated an increased seroresistance and colony efficiency on soft agar, and enhanced apoptosis resistance in the Rn5-20 cells with significant differential expressions in some miRNA, including hsa-miR-483-3p, hsa-miR-494, hsa-miR-2115*, hsa-miR-33b, hsa-miR-1246, hsa-miR-3202, hsa-miR-18a, hsa-miR-125b, hsa-miR-17*, and hsa-miR-886-3p. Functional annotation demonstrated that these miRNA target genes were predominantly involved in the regulation of cell proliferation, differentiation, and adhesion during the process of malignant transformation, which is associated with signal pathways such as mitogen-activated protein kinase (MAPK), Int and Wg (Wnt), reactive oxygen species (ROS), nuclear factor κB (NF-κB), and other genes regulating cell cycles.
Collapse
Affiliation(s)
- Feng-Mei Cui
- Department of Radiation Toxicology and Oncology, Beijing Institute of Radiation Medicine, Beijing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Lan YF, Chen HH, Lai PF, Cheng CF, Huang YT, Lee YC, Chen TW, Lin H. MicroRNA-494 reduces ATF3 expression and promotes AKI. J Am Soc Nephrol 2012; 23:2012-23. [PMID: 23160513 DOI: 10.1681/asn.2012050438] [Citation(s) in RCA: 99] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
MicroRNA-494 mediates apoptosis and necrosis in several types of cells, but its renal target and potential role in AKI are unknown. Here, we found that microRNA-494 binds to the 3'UTR of activating transcription factor 3 (ATF3) and decreases its transcription. In mice, overexpression of microRNA-494 significantly attenuated the level of ATF3 and induced inflammatory mediators, such as IL-6, monocyte chemotactic protein-1, and P-selectin, after renal ischemia/reperfusion, exacerbating apoptosis and further decreasing renal function. Activation of NF-κB mediated this proinflammatory response. In this ischemia/reperfusion model, urinary levels of microRNA-494 increased significantly before the rise in serum creatinine. In humans, urinary microRNA-494 levels were 60-fold higher in patients with AKI than normal controls. In conclusion, upregulation of microRNA-494 contributes to inflammatory or adhesion molecule-induced kidney injury after ischemia/reperfusion by inhibiting expression of ATF3. Furthermore, microRNA-494 may be a specific and noninvasive biomarker for AKI.
Collapse
Affiliation(s)
- Yi-Fan Lan
- PhD Program in Pharmacology and Toxicology, Tzu-Chi University, Hualien, Taiwan
| | | | | | | | | | | | | | | |
Collapse
|
125
|
Zhang X, Azhar G, Wei JY. The expression of microRNA and microRNA clusters in the aging heart. PLoS One 2012; 7:e34688. [PMID: 22529925 PMCID: PMC3329493 DOI: 10.1371/journal.pone.0034688] [Citation(s) in RCA: 93] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2011] [Accepted: 03/08/2012] [Indexed: 12/21/2022] Open
Abstract
BACKGROUND The microRNAs have been implicated in the process of cardiac development, cardiac hypertrophy, and heart failure. However, the impact of adult aging on cardiac expression of miRNA clusters, as well as both miRNA guide (miR) and passenger (miR*) strands has not been well established. METHODS/RESULTS We explored the expression profile of both miR and miR* in the hearts of young adult versus old mice. We found that 65 miRNAs were differentially expressed in the old versus young adult hearts; approximately half of them were clustered miRNAs that were distributed in 11 miRNA clusters. Each miRNA cluster contained from 2 to as many as 71 miRNA genes. The majority of the clusters displayed similar expression, with most cluster members within a cluster being either increased or decreased together, suggesting that most clusters are likely to be regulated by a common signaling mechanism and that the combined expression of multiple miRNA genes in a cluster could pose an impact on a broad range of targets during aging. We also found age-related changes in the expression of miR*s. The expression of both miR and miR* correlated with that of pri-miRNA transcript over the time course from development and maturation through adult aging. Age-related changes in the expression of Ago1 and Ago2 proteins in the heart were also observed. Transfection assay revealed that both Ago1 and Ago2 synergistically induced miR-21 and miR-21* when the mir-21 plasmid was co-transfected with either. CONCLUSION The data revealed age-related changes in the expression of pri-miRNA transcript, Argonaut proteins and both miR and miR* strands. The major changes occurred later in life, from middle to old age. It is likely that the expression of miR and miR* is regulated by both pri-miRNA transcription as well as Ago1 and Ago2 proteins during adult aging.
Collapse
Affiliation(s)
| | | | - Jeanne Y. Wei
- Donald W. Reynolds Department of Geriatrics, The University of Arkansas for Medical Sciences and Geriatric Research, Education and Clinical Center, Central Arkansas Veterans Healthcare System, Little Rock, Arkansas, United States of America
- * E-mail:
| |
Collapse
|