101
|
Koçak MN, Arslan R, Albayrak A, Tekin E, Bayraktar M, Çelik M, Kaya Z, Bekmez H, Tavaci T. An antihypertensive agent benidipine is an effective neuroprotective and antiepileptic agent: an experimental rat study. Neurol Res 2021; 43:1069-1080. [PMID: 34225559 DOI: 10.1080/01616412.2021.1949685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
BACKGROUND Benidipine is an L, N and T type calcium channel blocker drug that is widely used as an antihypertensive drug. OBJECTIVE For the first time in the literature, it was aimed to investigate the effectiveness of benidipine in controlling epileptic seizure and preventing the development of neurodegeneration in epilepsy. METHODS An experimentally epilepsy model was produced with pentylenetetrazole, and rats were divided into seven groups, in different benidipine treatment doses or with valproic acid combinations. The epileptic activities of all rats were recorded according to the Fisher&Kittner classification. Biochemical parameters, histopathological Caspase-3 activity, Wyler hippocampal sclerosis, gliosis and neuronal degenerations were investigated. RESULTS It was found that in the post-hoc analysis of epileptic activities, there was a similar antiepileptic scores among the treatment groups. IL-1 level was found to be significantly lower in the benidipine 4 mg/kg group, and TNF-alpha was lower in the group given valproic acid+benidipine 2 mg/kg (p<0.05). The other biochemical parameters were not found to be significant. Neural degeneration levels in the brain tissues were statistically significant (p<0.001). Compared with the healthy group, the most neural degeneration was in the control group, the least neural degeneration was in the valproic acid+benidipine 4 mg/kg group. CONCLUSIONS For the first time in the literature, benidipine, alone or combined with valproic acid, were found to have a statistically significant antiepileptic efficacy, and provided neuroprotection when combined with valproic acid. Benidipine will be a promising agent in the treatment of epilepsy with its antiepileptic and neuroprotective effects.
Collapse
Affiliation(s)
- Mehmet Nuri Koçak
- Department of Neurology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Remzi Arslan
- Department of Pathology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Abdulmecit Albayrak
- Department of Pharmacology, Ataturk University Faculty of Medicine, Erzurum, Turkey.,Department of Emergency Medicine, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Erdal Tekin
- Development and Design Application and Research Center, Ataturk University, Erzurum, Turkey
| | - Mustafa Bayraktar
- Department of Family Medicine, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Muhammet Çelik
- Department of Medical Biochemistry, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Zülküf Kaya
- Department of Ear, Nose and Throat, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Hüseyin Bekmez
- Department of Pharmacology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| | - Taha Tavaci
- Department of Pharmacology, Ataturk University Faculty of Medicine, Erzurum, Turkey
| |
Collapse
|
102
|
Sanati M, Aminyavari S, Khodagholi F, Hajipour MJ, Sadeghi P, Noruzi M, Moshtagh A, Behmadi H, Sharifzadeh M. PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) ameliorate learning and memory deficit in a rat model of Alzheimer's disease: Potential participation of STIMs. Neurotoxicology 2021; 85:145-159. [PMID: 34058247 DOI: 10.1016/j.neuro.2021.05.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2020] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 10/21/2022]
Abstract
The amyloid-beta (Aβ) fibrillation process seems to execute a principal role in the neuropathology of Alzheimer's disease (AD). Accordingly, novel therapeutic plans have concentrated on the inhibition or degradation of Aβ oligomers and fibrils. Biocompatible nanoparticles (NPs), e.g., gold and iron oxide NPs, take a unique capacity in redirecting Aβ fibrillation kinetics; nevertheless, their impacts on AD-related memory impairment have not been adequately evaluated in vivo. Here, we examined the effect of commercial PEGylated superparamagnetic iron oxide nanoparticles (SPIONs) on the learning and memory of an AD-animal model. The outcomes demonstrated the dose-dependent effect of SPIONs on Aβ fibrillation and learning and memory processes. In vitro and in vivo findings revealed that Low doses of SPIONs inhibited Aβ aggregation and ameliorated learning and memory deficit in the AD model, respectively. Enhanced level of hippocampal proteins, including brain-derived neurotrophic factor, BDNF, phosphorylated-cAMP response element-binding protein, p-CREB, and stromal interaction molecules, e.g., STIM1 and STIM2, were also observed. However, at high doses, SPIONs did not improve the detrimental impacts of Aβ fibrillation on spatial memory and hippocampal proteins expression. Overall, we revealed the potential capacity of SPIONs on retrieval of behavioral and molecular manifestations of AD in vivo, which needs further investigations to determine the mechanistic effect of SPIONs in the AD conundrum.
Collapse
Affiliation(s)
- Mehdi Sanati
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Birjand University of Medical Sciences, Birjand, Iran
| | - Samaneh Aminyavari
- Department of Neuroscience and Addiction Studies, School of Advanced Technologies in Medicine, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Fariba Khodagholi
- Neuroscience Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Mohammad Javad Hajipour
- The Persian Gulf Biomedical Sciences Research Institute, Persian Gulf Marine Biotechnology Research Center, Bushehr University of Medical Sciences, Bushehr, 47263, Iran; Non-Communicable Diseases Research Center, Endocrinology and Metabolism Population Sciences Institute, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Payam Sadeghi
- Department of Plastic Surgery, Cleveland Clinic, OH, USA
| | - Marzieh Noruzi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Aynaz Moshtagh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Homayoon Behmadi
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416753955, Iran
| | - Mohammad Sharifzadeh
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, 1416753955, Iran.
| |
Collapse
|
103
|
Saunders AM, Burns DK, Gottschalk WK. Reassessment of Pioglitazone for Alzheimer's Disease. Front Neurosci 2021; 15:666958. [PMID: 34220427 PMCID: PMC8243371 DOI: 10.3389/fnins.2021.666958] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 05/18/2021] [Indexed: 01/01/2023] Open
Abstract
Alzheimer's disease is a quintessential 'unmet medical need', accounting for ∼65% of progressive cognitive impairment among the elderly, and 700,000 deaths in the United States in 2020. In 2019, the cost of caring for Alzheimer's sufferers was $244B, not including the emotional and physical toll on caregivers. In spite of this dismal reality, no treatments are available that reduce the risk of developing AD or that offer prolonged mitiagation of its most devestating symptoms. This review summarizes key aspects of the biology and genetics of Alzheimer's disease, and we describe how pioglitazone improves many of the patholophysiological determinants of AD. We also summarize the results of pre-clinical experiments, longitudinal observational studies, and clinical trials. The results of animal testing suggest that pioglitazone can be corrective as well as protective, and that its efficacy is enhanced in a time- and dose-dependent manner, but the dose-effect relations are not monotonic or sigmoid. Longitudinal cohort studies suggests that it delays the onset of dementia in individuals with pre-existing type 2 diabetes mellitus, which small scale, unblinded pilot studies seem to confirm. However, the results of placebo-controlled, blinded clinical trials have not borne this out, and we discuss possible explanations for these discrepancies.
Collapse
Affiliation(s)
- Ann M. Saunders
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | - Daniel K. Burns
- Zinfandel Pharmaceuticals, Inc., Chapel Hill, NC, United States
| | | |
Collapse
|
104
|
Yakhine-Diop SMS, Rodríguez-Arribas M, Canales-Cortés S, Martínez-Chacón G, Uribe-Carretero E, Blanco-Benítez M, Duque-González G, Paredes-Barquero M, Alegre-Cortés E, Climent V, Aiastui A, López de Munain A, Bravo-San Pedro JM, Niso-Santano M, Fuentes JM, González-Polo RA. The parkinsonian LRRK2 R1441G mutation shows macroautophagy-mitophagy dysregulation concomitant with endoplasmic reticulum stress. Cell Biol Toxicol 2021; 38:889-911. [PMID: 34060004 DOI: 10.1007/s10565-021-09617-w] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 05/12/2021] [Indexed: 12/15/2022]
Abstract
Autophagy is a mechanism responsible for the degradation of cellular components to maintain their homeostasis. However, autophagy is commonly altered and compromised in several diseases, including neurodegenerative disorders. Parkinson's disease (PD) can be considered a multifactorial disease because environmental factors, genetic factors, and aging are involved. Several genes are involved in PD pathology, among which the LRRK2 gene and its mutations, inherited in an autosomal dominant manner, are responsible for most genetic PD cases. The R1441G LRRK2 mutation is, after G2019S, the most important in PD pathogenesis. Our results demonstrate a relationship between the R1441G LRRK2 mutation and a mechanistic dysregulation of autophagy that compromises cell viability. This altered autophagy mechanism is associated with organellar stress including mitochondrial (which induces mitophagy) and endoplasmic reticulum (ER) stress, consistent with the fact that patients with this mutation are more vulnerable to toxins related to PD, such as MPP+.
Collapse
Affiliation(s)
- Sokhna M S Yakhine-Diop
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Mario Rodríguez-Arribas
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Saray Canales-Cortés
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| | - Guadalupe Martínez-Chacón
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Elisabet Uribe-Carretero
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain.,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain.,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain
| | - Mercedes Blanco-Benítez
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| | - Gema Duque-González
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| | - Marta Paredes-Barquero
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| | - Eva Alegre-Cortés
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain
| | - Vicente Climent
- Departamento de Anatomía Y Embriología Humana, Facultad de Medicina, Universidad de Extremadura, Badajoz, Spain
| | - Ana Aiastui
- Cell Culture Platform, Donostia University Hospital, San Sebastián, Spain.,Neuroscience Area of Biodonostia Health Research Institute, Donostia University Hospital, San Sebastián, Spain
| | - Adolfo López de Munain
- Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain.,Department of Neurology, Donostia University Hospital, San Sebastian, Spain.,Ilundain Foundation, San Sebastian, Spain.,Department of Neurosciences, University of the Basque Country UPV-EHU, San Sebastián, Spain
| | - José M Bravo-San Pedro
- Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain.,Departamento de Fisiología, Facultad de Medicina, Universidad Complutense de Madrid, Madrid, Spain
| | - Mireia Niso-Santano
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain. .,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain.
| | - José M Fuentes
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain. .,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain.
| | - Rosa A González-Polo
- Departamento de Bioquímica Y Biología Molecular Y Genética, Facultad de Enfermería Y Terapia Ocupacional, Universidad de Extremadura, Cáceres, Spain. .,Centro de Investigación Biomédica en Red de Enfermedades (CIBERNED), Madrid, Spain. .,Instituto de Investigación Biosanitaria de Extremadura (INUBE), Cáceres, Spain.
| |
Collapse
|
105
|
Hess S, Pouzat C, Paeger L, Pippow A, Kloppenburg P. Analysis of neuronal Ca 2+ handling properties by combining perforated patch clamp recordings and the added buffer approach. Cell Calcium 2021; 97:102411. [PMID: 34082340 DOI: 10.1016/j.ceca.2021.102411] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 03/25/2021] [Accepted: 04/15/2021] [Indexed: 12/11/2022]
Abstract
Ca2+ functions as an important intracellular signal for a wide range of cellular processes. These processes are selectively activated by controlled spatiotemporal dynamics of the free cytosolic Ca2+. Intracellular Ca2+ dynamics are regulated by numerous cellular parameters. Here, we established a new way to determine neuronal Ca2+ handling properties by combining the 'added buffer' approach [1] with perforated patch-clamp recordings [2]. Since the added buffer approach typically employs the standard whole-cell configuration for concentration-controlled Ca2+ indicator loading, it only allows for the reliable estimation of the immobile fraction of intracellular Ca2+ buffers. Furthermore, crucial components of intracellular signaling pathways are being washed out during prolonged whole-cell recordings, leading to cellular deterioration. By combining the added buffer approach with perforated patch-clamp recordings, these issues are circumvented, allowing the precise quantification of the cellular Ca2+ handling properties, including immobile as well as mobile Ca2+ buffers.
Collapse
Affiliation(s)
- Simon Hess
- Institute for Zoology, Biocenter, Cologne Excellence Cluster in Aging Associated Diseases (CECAD), and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Christophe Pouzat
- Université de Paris, CNRS, MAP5 UMR 8145, 45, rue des Saints-Pères, 75006 Paris, France
| | - Lars Paeger
- Institute for Zoology, Biocenter, Cologne Excellence Cluster in Aging Associated Diseases (CECAD), and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Andreas Pippow
- Institute for Zoology, Biocenter, Cologne Excellence Cluster in Aging Associated Diseases (CECAD), and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany
| | - Peter Kloppenburg
- Institute for Zoology, Biocenter, Cologne Excellence Cluster in Aging Associated Diseases (CECAD), and Center of Molecular Medicine Cologne (CMMC), University of Cologne, Cologne, Germany.
| |
Collapse
|
106
|
Sidibé H, Dubinski A, Vande Velde C. The multi-functional RNA-binding protein G3BP1 and its potential implication in neurodegenerative disease. J Neurochem 2021; 157:944-962. [PMID: 33349931 PMCID: PMC8248322 DOI: 10.1111/jnc.15280] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 12/09/2020] [Accepted: 12/11/2020] [Indexed: 12/12/2022]
Abstract
Ras-GTPase-activating protein (GAP)-binding protein 1 (G3BP1) is a multi-functional protein that is best known for its role in the assembly and dynamics of stress granules. Recent studies have highlighted that G3BP1 also has other functions related to RNA metabolism. In the context of disease, G3BP1 has been therapeutically targeted in cancers because its over-expression is correlated with proliferation of cancerous cells and metastasis. However, evidence suggests that G3BP1 is essential for neuronal development and possibly neuronal maintenance. In this review, we will examine the many functions that are carried out by G3BP1 in the context of neurons and speculate how these functions are critical to the progression of neurodegenerative diseases. Additionally, we will highlight the similarities and differences between G3BP1 and the closely related protein G3BP2, which is frequently overlooked. Although G3BP1 and G3BP2 have both been deemed important for stress granule assembly, their roles may differ in other cellular pathways, some of which are specific to the CNS, and presents an opportunity for further exploration.
Collapse
Affiliation(s)
- Hadjara Sidibé
- Department of NeurosciencesUniversité de Montréal, and CHUM Research CenterMontréalQCCanada
| | - Alicia Dubinski
- Department of NeurosciencesUniversité de Montréal, and CHUM Research CenterMontréalQCCanada
| | - Christine Vande Velde
- Department of NeurosciencesUniversité de Montréal, and CHUM Research CenterMontréalQCCanada
| |
Collapse
|
107
|
Datta S, Jaiswal M. Mitochondrial calcium at the synapse. Mitochondrion 2021; 59:135-153. [PMID: 33895346 DOI: 10.1016/j.mito.2021.04.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2020] [Revised: 03/28/2021] [Accepted: 04/13/2021] [Indexed: 12/15/2022]
Abstract
Mitochondria are dynamic organelles, which serve various purposes, including but not limited to the production of ATP and various metabolites, buffering ions, acting as a signaling hub, etc. In recent years, mitochondria are being seen as the central regulators of cellular growth, development, and death. Since neurons are highly specialized cells with a heavy metabolic demand, it is not surprising that neurons are one of the most mitochondria-rich cells in an animal. At synapses, mitochondrial function and dynamics is tightly regulated by synaptic calcium. Calcium influx during synaptic activity causes increased mitochondrial calcium influx leading to an increased ATP production as well as buffering of synaptic calcium. While increased ATP production is required during synaptic transmission, calcium buffering by mitochondria is crucial to prevent faulty neurotransmission and excitotoxicity. Interestingly, mitochondrial calcium also regulates the mobility of mitochondria within synapses causing mitochondria to halt at the synapse during synaptic transmission. In this review, we summarize the various roles of mitochondrial calcium at the synapse.
Collapse
Affiliation(s)
- Sayantan Datta
- Tata Institute of Fundamental Research, Hyderabad, India
| | - Manish Jaiswal
- Tata Institute of Fundamental Research, Hyderabad, India.
| |
Collapse
|
108
|
Ullah H, Di Minno A, Santarcangelo C, Khan H, Daglia M. Improvement of Oxidative Stress and Mitochondrial Dysfunction by β-Caryophyllene: A Focus on the Nervous System. Antioxidants (Basel) 2021; 10:546. [PMID: 33915950 PMCID: PMC8066981 DOI: 10.3390/antiox10040546] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2021] [Revised: 03/19/2021] [Accepted: 03/28/2021] [Indexed: 02/05/2023] Open
Abstract
Mitochondrial dysfunction results in a series of defective cellular events, including decreased adenosine triphosphate (ATP) production, enhanced reactive oxygen species (ROS) output, and altered proteastasis and cellular quality control. An enhanced output of ROS may damage mitochondrial components, such as mitochondrial DNA and elements of the electron transport chain, resulting in the loss of proper electrochemical gradient across the mitochondrial inner membrane and an ensuing shutdown of mitochondrial energy production. Neurons have an increased demand for ATP and oxygen, and thus are more prone to damage induced by mitochondrial dysfunction. Mitochondrial dysfunction, damaged electron transport chains, altered membrane permeability and Ca2+ homeostasis, and impaired mitochondrial defense systems induced by oxidative stress, are pathological changes involved in neurodegenerative disorders. A growing body of evidence suggests that the use of antioxidants could stabilize mitochondria and thus may be suitable for preventing neuronal loss. Numerous natural products exhibit the potential to counter oxidative stress and mitochondrial dysfunction; however, science is still looking for a breakthrough in the treatment of neurodegenerative disorders. β-caryophyllene is a bicyclic sesquiterpene, and an active principle of essential oils derived from a large number of spices and food plants. As a selective cannabinoid receptor 2 (CB2) agonist, several studies have reported it as possessing numerous pharmacological activities such as antibacterial (e.g., Helicobacter pylori), antioxidant, anti-inflammatory, analgesic (e.g., neuropathic pain), anti-neurodegenerative and anticancer properties. The present review mainly focuses on the potential of β-caryophyllene in reducing oxidative stress and mitochondrial dysfunction, and its possible links with neuroprotection.
Collapse
Affiliation(s)
- Hammad Ullah
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (A.D.M.); (C.S.)
| | - Alessandro Di Minno
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (A.D.M.); (C.S.)
- CEINGE-Biotecnologie Avanzate, 80131 Naples, Italy
| | - Cristina Santarcangelo
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (A.D.M.); (C.S.)
| | - Haroon Khan
- Department of Pharmacy, Abdul Wali Khan University, Mardan 23200, Pakistan; or
| | - Maria Daglia
- Department of Pharmacy, University of Naples Federico II, 80131 Naples, Italy; (H.U.); (A.D.M.); (C.S.)
- International Research Center for Food Nutrition and Safety, Jiangsu University, Zhenjiang 212013, China
| |
Collapse
|
109
|
Tseng YF, Lin HC, Chao JCJ, Hsu CY, Lin HL. Calcium Channel blockers are associated with reduced risk of Parkinson's disease in patients with hypertension: A population-based retrospective cohort study. J Neurol Sci 2021; 424:117412. [PMID: 33799214 DOI: 10.1016/j.jns.2021.117412] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2020] [Revised: 03/03/2021] [Accepted: 03/21/2021] [Indexed: 12/30/2022]
Abstract
BACKGROUND The use of dihydropyridine calcium channel blockers (DCCBs) was proposed to reduce the risk of Parkinson's disease (PD). This study aimed to evaluate the association between DCCB and its dose effect and the risk of PD in patients with newly diagnosed hypertension. METHODS This population-based retrospective cohort study enrolled 107,207 patients with newly diagnosed hypertension, between 2001 and 2013, from Taiwan's National Health Insurance Research Database. Patients who had PD before hypertension or were taking antipsychotics for more than 30 days in the 6 months prior to the end of the observation period were excluded. A Cox proportional hazard model was used to estimate the risk of PD in different groups. The dose-related effects of DCCB on the risk of PD were evaluated according to the cumulative defined daily dose (DDD). RESULTS We observed 832 (1.2%) PD cases in patients treated with DCCB as compared to 950 (2.4%) PD cases in those not treated with DCCB, during a median follow-up duration of 8.3 years and 6.2 years, respectively. The risk of PD in the DCCB-treated group (hazard ratio [HR] = 0.50) was significantly lower than that in the group without DCCB treatment. DCCB reduced the risk of PD in a dose-dependent manner, with HRs ranging from 0.61 to 0.37 for DDDs of 90-180 to >720. CONCLUSIONS DCCB treatment was associated with a significantly reduced risk of PD in patients with newly diagnosed hypertension. Further clinical trials are needed to confirm the proposed neuroprotective effects of DCCB in PD.
Collapse
Affiliation(s)
- Yuan-Fu Tseng
- Department of Neurology, Sijhih Cathay General Hospital, New Taipei City, Taiwan
| | - Hsiu-Chen Lin
- Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical University, Taipei, Taiwan; Department of Laboratory Medicine, Taipei Medical University Hospital, Taipei, Taiwan
| | - Jane Chen-Jui Chao
- School of Nutrition and Health Sciences, College of Nutrition, Taipei Medical University, Taipei, Taiwan; Nutrition Research Center, Taipei Medical University Hospital, Taipei, Taiwan
| | - Chien-Yeh Hsu
- Department of Information Management, National Taipei University of Nursing and Health Sciences, Taipei, Taiwan
| | - Hsiu-Li Lin
- Department of Neurology, Sijhih Cathay General Hospital, New Taipei City, Taiwan.
| |
Collapse
|
110
|
Gonzalez-Garcia M, Fusco G, De Simone A. Membrane Interactions and Toxicity by Misfolded Protein Oligomers. Front Cell Dev Biol 2021; 9:642623. [PMID: 33791300 PMCID: PMC8006268 DOI: 10.3389/fcell.2021.642623] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2020] [Accepted: 02/08/2021] [Indexed: 01/13/2023] Open
Abstract
The conversion of otherwise soluble proteins into insoluble amyloid aggregates is associated with a range of neurodegenerative disorders, including Alzheimer’s and Parkinson’s diseases, as well as non-neuropathic conditions such as type II diabetes and systemic amyloidoses. It is increasingly evident that the most pernicious species among those forming during protein aggregation are small prefibrillar oligomers. In this review, we describe the recent progress in the characterization of the cellular and molecular interactions by toxic misfolded protein oligomers. A fundamental interaction by these aggregates involves biological membranes, resulting in two major model mechanisms at the onset of the cellular toxicity. These include the membrane disruption model, resulting in calcium imbalance, mitochondrial dysfunction and intracellular reactive oxygen species, and the direct interaction with membrane proteins, leading to the alteration of their native function. A key challenge remains in the characterization of transient interactions involving heterogeneous protein aggregates. Solving this task is crucial in the quest of identifying suitable therapeutic approaches to suppress the cellular toxicity in protein misfolding diseases.
Collapse
Affiliation(s)
- Mario Gonzalez-Garcia
- Department of Life Sciences, Imperial College London, South Kensington, United Kingdom
| | - Giuliana Fusco
- Department of Chemistry, Centre for Misfolding Diseases, University of Cambridge, Cambridge, United Kingdom
| | - Alfonso De Simone
- Department of Life Sciences, Imperial College London, South Kensington, United Kingdom.,Department of Pharmacy, University of Naples Federico II, Naples, Italy
| |
Collapse
|
111
|
Calkins DJ. Adaptive responses to neurodegenerative stress in glaucoma. Prog Retin Eye Res 2021; 84:100953. [PMID: 33640464 DOI: 10.1016/j.preteyeres.2021.100953] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2020] [Revised: 02/08/2021] [Accepted: 02/19/2021] [Indexed: 12/12/2022]
Abstract
Glaucoma causes loss of vision through degeneration of the retinal ganglion cell (RGC) projection to the brain. The disease is characterized by sensitivity to intraocular pressure (IOP) conveyed at the optic nerve head, through which RGC axons pass unmyelinated to form the optic nerve. From this point, a pathogenic triumvirate comprising inflammatory, oxidative, and metabolic stress influence both proximal structures in the retina and distal structures in the optic projection. This review focuses on metabolic stress and how the optic projection may compensate through novel adaptive mechanisms to protect excitatory signaling to the brain. In the retina and proximal nerve head, the unmyelinated RGC axon segment is energy-inefficient, which leads to increased demand for adenosine-5'-triphosphate (ATP) at the risk of vulnerability to Ca2+-related metabolic and oxidative pressure. This vulnerability may underlie the bidirectional nature of progression. However, recent evidence highlights that the optic projection in glaucoma is not passive but rather demonstrates adaptive processes that may push back against neurodegeneration. In the retina, even as synaptic and dendritic pruning ensues, early progression involves enhanced excitability of RGCs. Enhancement involves depolarization of the resting membrane potential and increased response to light, independent of RGC morphological type. This response is axogenic, arising from increased levels and translocation of voltage-gated sodium channels (NaV) in the unmyelinated segment. During this same early period, large-scale networks of gap-junction coupled astrocytes redistribute metabolic resources to the optic projection stressed by elevated IOP to slow loss of axon function. This redistribution may reflect more local remodeling, as astrocyte processes respond to focal metabolic duress by boosting glycogen turnover in response to axonal activity in an effort to promote survival of the healthiest axons. Both enhanced excitability and metabolic redistribution are transient, indicating that the same adaptive mechanisms that apparently serve to slow progression ultimately may be too expensive for the system to sustain over longer periods.
Collapse
Affiliation(s)
- David J Calkins
- The Vanderbilt Eye Institute, Nashville, TN, USA; Vanderbilt Vision Research Center, Vanderbilt University Medical Center, 1161 21st Ave S, AA7100 Medical Center North Nashville, Tennessee, 37232, USA.
| |
Collapse
|
112
|
Rosenkranz SC, Shaposhnykov AA, Träger S, Engler JB, Witte ME, Roth V, Vieira V, Paauw N, Bauer S, Schwencke-Westphal C, Schubert C, Bal LC, Schattling B, Pless O, van Horssen J, Freichel M, Friese MA. Enhancing mitochondrial activity in neurons protects against neurodegeneration in a mouse model of multiple sclerosis. eLife 2021; 10:61798. [PMID: 33565962 PMCID: PMC7993994 DOI: 10.7554/elife.61798] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Accepted: 02/10/2021] [Indexed: 12/25/2022] Open
Abstract
While transcripts of neuronal mitochondrial genes are strongly suppressed in central nervous system inflammation, it is unknown whether this results in mitochondrial dysfunction and whether an increase of mitochondrial function can rescue neurodegeneration. Here, we show that predominantly genes of the electron transport chain are suppressed in inflamed mouse neurons, resulting in impaired mitochondrial complex IV activity. This was associated with post-translational inactivation of the transcriptional co-regulator proliferator-activated receptor gamma coactivator 1-alpha (PGC-1α). In mice, neuronal overexpression of Ppargc1a, which encodes for PGC-1α, led to increased numbers of mitochondria, complex IV activity, and maximum respiratory capacity. Moreover, Ppargc1a-overexpressing neurons showed a higher mitochondrial membrane potential that related to an improved calcium buffering capacity. Accordingly, neuronal deletion of Ppargc1a aggravated neurodegeneration during experimental autoimmune encephalomyelitis, while neuronal overexpression of Ppargc1a ameliorated it. Our study provides systemic insights into mitochondrial dysfunction in neurons during inflammation and commends elevation of mitochondrial activity as a promising neuroprotective strategy.
Collapse
Affiliation(s)
- Sina C Rosenkranz
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Artem A Shaposhnykov
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Simone Träger
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan Broder Engler
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Maarten E Witte
- Department of Pathology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands.,Department of Molecular Cell Biology and Immunology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Vanessa Roth
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Vanessa Vieira
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Nanne Paauw
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Simone Bauer
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Celina Schwencke-Westphal
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Charlotte Schubert
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Lukas Can Bal
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Benjamin Schattling
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Ole Pless
- Fraunhofer ITMP ScreeningPort, Hamburg, Germany
| | - Jack van Horssen
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, MS Center Amsterdam, Amsterdam Neuroscience, Amsterdam, Netherlands
| | - Marc Freichel
- Institute of Pharmacology, Heidelberg University, Heidelberg, Germany
| | - Manuel A Friese
- Institute of Neuroimmunology and Multiple Sclerosis (INIMS), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
113
|
Kent AC, El Baradie KBY, Hamrick MW. Targeting the Mitochondrial Permeability Transition Pore to Prevent Age-Associated Cell Damage and Neurodegeneration. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6626484. [PMID: 33574977 PMCID: PMC7861926 DOI: 10.1155/2021/6626484] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2020] [Revised: 01/19/2021] [Accepted: 01/21/2021] [Indexed: 02/07/2023]
Abstract
The aging process is associated with significant alterations in mitochondrial function. These changes in mitochondrial function are thought to involve increased production of reactive oxygen species (ROS), which over time contribute to cell death, senescence, tissue degeneration, and impaired tissue repair. The mitochondrial permeability transition pore (mPTP) is likely to play a critical role in these processes, as increased ROS activates mPTP opening, which further increases ROS production. Injury and inflammation are also thought to increase mPTP opening, and chronic, low-grade inflammation is a hallmark of aging. Nicotinamide adenine dinucleotide (NAD+) can suppress the frequency and duration of mPTP opening; however, NAD+ levels are known to decline with age, further stimulating mPTP opening and increasing ROS release. Research on neurodegenerative diseases, particularly on Parkinson's disease (PD) and Alzheimer's disease (AD), has uncovered significant findings regarding mPTP openings and aging. Parkinson's disease is associated with a reduction in mitochondrial complex I activity and increased oxidative damage of DNA, both of which are linked to mPTP opening and subsequent ROS release. Similarly, AD is associated with increased mPTP openings, as evidenced by amyloid-beta (Aβ) interaction with the pore regulator cyclophilin D (CypD). Targeted therapies that can reduce the frequency and duration of mPTP opening may therefore have the potential to prevent age-related declines in cell and tissue function in various systems including the central nervous system.
Collapse
Affiliation(s)
- Andrew C. Kent
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
- University of Georgia, Athens, GA, USA
| | | | - Mark W. Hamrick
- Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| |
Collapse
|
114
|
Arnsten AFT, Datta D, Del Tredici K, Braak H. Hypothesis: Tau pathology is an initiating factor in sporadic Alzheimer's disease. Alzheimers Dement 2021; 17:115-124. [PMID: 33075193 PMCID: PMC7983919 DOI: 10.1002/alz.12192] [Citation(s) in RCA: 210] [Impact Index Per Article: 52.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Revised: 08/16/2020] [Accepted: 08/19/2020] [Indexed: 12/12/2022]
Abstract
The etiology of the common, sporadic form of Alzheimer's disease (sAD) is unknown. We hypothesize that tau pathology within select projection neurons with susceptible microenvironments can initiate sAD. This postulate rests on extensive data demonstrating that in human brains tau pathology appears about a decade before the formation of Aβ plaques (Aβps), especially targeting glutamate projection neurons in the association cortex. Data from aging rhesus monkeys show abnormal tau phosphorylation within vulnerable neurons, associated with calcium dysregulation. Abnormally phosphorylated tau (pTau) on microtubules traps APP-containing endosomes, which can increase Aβ production. As Aβ oligomers increase abnormal phosphorylation of tau, this would drive vicious cycles leading to sAD pathology over a long lifespan, with genetic and environmental factors that may accelerate pathological events. This hypothesis could be testable in the aged monkey association cortex that naturally expresses characteristics capable of promoting and sustaining abnormal tau phosphorylation and Aβ production.
Collapse
Affiliation(s)
- Amy F T Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, Connecticut, USA
| | - Kelly Del Tredici
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| | - Heiko Braak
- Clinical Neuroanatomy Section, Department of Neurology, Center for Biomedical Research, University of Ulm, Ulm, Germany
| |
Collapse
|
115
|
Piccialli I, Tedeschi V, Boscia F, Ciccone R, Casamassa A, de Rosa V, Grieco P, Secondo A, Pannaccione A. The Anemonia sulcata Toxin BDS-I Protects Astrocytes Exposed to Aβ 1-42 Oligomers by Restoring [Ca 2+] i Transients and ER Ca 2+ Signaling. Toxins (Basel) 2020; 13:20. [PMID: 33396295 PMCID: PMC7823622 DOI: 10.3390/toxins13010020] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/22/2020] [Accepted: 12/24/2020] [Indexed: 12/28/2022] Open
Abstract
Intracellular calcium concentration ([Ca2+]i) transients in astrocytes represent a highly plastic signaling pathway underlying the communication between neurons and glial cells. However, how this important phenomenon may be compromised in Alzheimer's disease (AD) remains unexplored. Moreover, the involvement of several K+ channels, including KV3.4 underlying the fast-inactivating currents, has been demonstrated in several AD models. Here, the effect of KV3.4 modulation by the marine toxin blood depressing substance-I (BDS-I) extracted from Anemonia sulcata has been studied on [Ca2+]i transients in rat primary cortical astrocytes exposed to Aβ1-42 oligomers. We showed that: (1) primary cortical astrocytes expressing KV3.4 channels displayed [Ca2+]i transients depending on the occurrence of membrane potential spikes, (2) BDS-I restored, in a dose-dependent way, [Ca2+]i transients in astrocytes exposed to Aβ1-42 oligomers (5 µM/48 h) by inhibiting hyperfunctional KV3.4 channels, (3) BDS-I counteracted Ca2+ overload into the endoplasmic reticulum (ER) induced by Aβ1-42 oligomers, (4) BDS-I prevented the expression of the ER stress markers including active caspase 12 and GRP78/BiP in astrocytes treated with Aβ1-42 oligomers, and (5) BDS-I prevented Aβ1-42-induced reactive oxygen species (ROS) production and cell suffering measured as mitochondrial activity and lactate dehydrogenase (LDH) release. Collectively, we proposed that the marine toxin BDS-I, by inhibiting the hyperfunctional KV3.4 channels and restoring [Ca2+]i oscillation frequency, prevented Aβ1-42-induced ER stress and cell suffering in astrocytes.
Collapse
Affiliation(s)
- Ilaria Piccialli
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Valentina Tedeschi
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Francesca Boscia
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Roselia Ciccone
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Antonella Casamassa
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Valeria de Rosa
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Paolo Grieco
- Department of Pharmacy, School of Medicine, Federico II Universityof Naples, 80131 Napoli, Italy;
| | - Agnese Secondo
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| | - Anna Pannaccione
- Division of Pharmacology, Department of Neuroscience, Reproductive and Dentistry Sciences, School of Medicine, Federico II University of Naples, 80131 Napoli, Italy; (I.P.); (V.T.); (F.B.); (R.C.); (A.C.); (V.d.R.)
| |
Collapse
|
116
|
Pozner T, Regensburger M, Engelhorn T, Winkler J, Winner B. Janus-faced spatacsin (SPG11): involvement in neurodevelopment and multisystem neurodegeneration. Brain 2020; 143:2369-2379. [PMID: 32355960 PMCID: PMC7447516 DOI: 10.1093/brain/awaa099] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2019] [Revised: 01/12/2020] [Accepted: 02/05/2020] [Indexed: 12/11/2022] Open
Abstract
Hereditary spastic paraplegia (HSP) is a heterogeneous group of rare motor neuron disorders characterized by progressive weakness and spasticity of the lower limbs. HSP type 11 (SPG11-HSP) is linked to pathogenic variants in the SPG11 gene and it represents the most frequent form of complex autosomal recessive HSP. The majority of SPG11-HSP patients exhibit additional neurological symptoms such as cognitive decline, thin corpus callosum, and peripheral neuropathy. Yet, the mechanisms of SPG11-linked spectrum diseases are largely unknown. Recent findings indicate that spatacsin, the 280 kDa protein encoded by SPG11, may impact the autophagy-lysosomal machinery. In this update, we summarize the current knowledge of SPG11-HSP. In addition to clinical symptoms and differential diagnosis, our work aims to link the different clinical manifestations with the respective structural abnormalities and cellular in vitro phenotypes. Moreover, we describe the impact of localization and function of spatacsin in different neuronal systems. Ultimately, we propose a model in which spatacsin bridges between neurodevelopmental and neurodegenerative phenotypes of SPG11-linked disorders.
Collapse
Affiliation(s)
- Tatyana Pozner
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany
| | - Martin Regensburger
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Department of Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany.,Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Tobias Engelhorn
- Department of Neuroradiology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Jürgen Winkler
- Department of Molecular Neurology, FAU Erlangen-Nürnberg, Erlangen, Germany
| | - Beate Winner
- Department of Stem Cell Biology, Friedrich-Alexander University (FAU) Erlangen-Nürnberg, Erlangen, Germany.,Center of Rare Diseases Erlangen (ZSEER), FAU Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
117
|
Subramanian J, Savage JC, Tremblay MÈ. Synaptic Loss in Alzheimer's Disease: Mechanistic Insights Provided by Two-Photon in vivo Imaging of Transgenic Mouse Models. Front Cell Neurosci 2020; 14:592607. [PMID: 33408613 PMCID: PMC7780885 DOI: 10.3389/fncel.2020.592607] [Citation(s) in RCA: 62] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Accepted: 11/25/2020] [Indexed: 01/05/2023] Open
Abstract
Synapse loss is the strongest correlate for cognitive decline in Alzheimer's disease. The mechanisms underlying synapse loss have been extensively investigated using mouse models expressing genes with human familial Alzheimer's disease mutations. In this review, we summarize how multiphoton in vivo imaging has improved our understanding of synapse loss mechanisms associated with excessive amyloid in the living animal brain. We also discuss evidence obtained from these imaging studies for the role of cell-intrinsic calcium dyshomeostasis and cell-extrinsic activities of microglia, which are the immune cells of the brain, in mediating synapse loss.
Collapse
Affiliation(s)
- Jaichandar Subramanian
- Department of Pharmacology & Toxicology, University of Kansas, Lawrence, KS, United States
| | - Julie C Savage
- Axe Neurosciences, Centre de Recherche du CHU de Québec, Université Laval, Québec City, QC, Canada
| | - Marie-Ève Tremblay
- Neurology and Neurosurgery Department, McGill University, Montreal, QC, Canada.,Department of Molecular Medicine, Université Laval, Québec City, QC, Canada.,Division of Medical Sciences, University of Victoria, Victoria, BC, Canada.,Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
118
|
Butterfield DA. Brain lipid peroxidation and alzheimer disease: Synergy between the Butterfield and Mattson laboratories. Ageing Res Rev 2020; 64:101049. [PMID: 32205035 PMCID: PMC7502429 DOI: 10.1016/j.arr.2020.101049] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2019] [Revised: 03/08/2020] [Accepted: 03/12/2020] [Indexed: 02/05/2023]
Abstract
Brains from persons with Alzheimer disease (AD) and its earlier stage, amnestic mild cognitive impairment (MCI), exhibit high levels of oxidative damage, including that to phospholipids. One type of oxidative damage is lipid peroxidation, the most important index of which is protein-bound 4-hydroxy-2-trans-nonenal (HNE). This highly reactive alkenal changes the conformations and lowers the activities of brain proteins to which HNE is covalently bound. Evidence exists that suggests that lipid peroxidation is the first type of oxidative damage associated with amyloid β-peptide (Aβ), a 38-42 amino acid peptide that is highly neurotoxic and critical to the pathophysiology of AD. The Butterfield laboratory is one of, if not the, first research group to show that Aβ42 oligomers led to lipid peroxidation and to demonstrate this modification in brains of subjects with AD and MCI. The Mattson laboratory, particularly when Dr. Mattson was a faculty member at the University of Kentucky, also showed evidence for lipid peroxidation associated with Aβ peptides, mostly in in vitro systems. Consequently, there is synergy between our two laboratories. Since this special tribute issue of Aging Research Reviews is dedicated to the career of Dr. Mattson, a review of some aspects of this synergy of lipid peroxidation and its relevance to AD, as well as the role of lipid peroxidation in the progression of this dementing disorder seems germane. Accordingly, this review outlines some of the individual and/or complementary research on lipid peroxidation related to AD published from our two laboratories either separately or jointly.
Collapse
Affiliation(s)
- D Allan Butterfield
- Department of Chemistry and Sanders-Brown Center on Aging, University Of Kentucky, Lexington, KY, 40506, United States.
| |
Collapse
|
119
|
Therapeutic Strategies to Target Calcium Dysregulation in Alzheimer's Disease. Cells 2020; 9:cells9112513. [PMID: 33233678 PMCID: PMC7699688 DOI: 10.3390/cells9112513] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2020] [Revised: 11/17/2020] [Accepted: 11/18/2020] [Indexed: 12/31/2022] Open
Abstract
Alzheimer’s disease (AD) is the most common form of dementia, affecting millions of people worldwide. Unfortunately, none of the current treatments are effective at improving cognitive function in AD patients and, therefore, there is an urgent need for the development of new therapies that target the early cause(s) of AD. Intracellular calcium (Ca2+) regulation is critical for proper cellular and neuronal function. It has been suggested that Ca2+ dyshomeostasis is an upstream factor of many neurodegenerative diseases, including AD. For this reason, chemical agents or small molecules aimed at targeting or correcting this Ca2+ dysregulation might serve as therapeutic strategies to prevent the development of AD. Moreover, neurons are not alone in exhibiting Ca2+ dyshomeostasis, since Ca2+ disruption is observed in other cell types in the brain in AD. In this review, we examine the distinct Ca2+ channels and compartments involved in the disease mechanisms that could be potential targets in AD.
Collapse
|
120
|
Henriksen JR, Engel TB, Petersen AL, Kempen PJ, Melander F, Roos P, Jølck RI, Andresen TL. Elucidating the anomalous membrane permeability of Ag(I), Cu(II), Zn(II) and Au(III) towards new nanoreactor strategies for synthesizing metal nanoparticles. NANOSCALE 2020; 12:22298-22306. [PMID: 33146209 DOI: 10.1039/d0nr04655h] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The main structural element defining the cell is the lipid membrane, which is an integral part of regulating the fluxes of ion and nutrition molecules in and out of the cell. Surprisingly, copper ions were found to have anomalous membrane permeability. This led us to consider a broader spectrum of cations and further a new approach for using liposomes as nanoreactors for synthesis of metal and metal alloy nanoparticles. In the present study, the high membrane permeability of Cu2+ and its neighbouring transition elements in the periodic table was investigated. The permeability of Ni2+, Cu2+, Zn2+, Ag+, Au3+, Mg2+, Ca2+ and Lu3+ was assessed, and we report that Zn2+, Cu2+, Ag+ and Au3+ surprisingly are able to cross lipid bilayers. This knowledge is highly relevant for understanding trafficking of cations in biological systems, as well as for design of novel nanoparticle and nanoreactor systems. An example of its use is presented as a platform for synthesizing single highly uniform gold nanoparticles inside liposomal nanoreactors. We envision that this approach could provide a new nanoreactor methodology for forming highly structurally constrained uniform metal and metal alloy nanoparticles, as well as new methods for in vivo tracking of liposomes.
Collapse
Affiliation(s)
- Jonas R Henriksen
- Department of Health Technology, Technical University of Denmark, Building 423, DK-2800 Lyngby, Denmark.
| | | | | | | | | | | | | | | |
Collapse
|
121
|
Howell RD, Dominguez-Lopez S, Ocañas SR, Freeman WM, Beckstead MJ. Female mice are resilient to age-related decline of substantia nigra dopamine neuron firing parameters. Neurobiol Aging 2020; 95:195-204. [PMID: 32846275 PMCID: PMC7606778 DOI: 10.1016/j.neurobiolaging.2020.07.025] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 06/03/2020] [Accepted: 07/25/2020] [Indexed: 02/06/2023]
Abstract
Degeneration of substantia nigra pars compacta dopamine neurons is a central feature in the pathology of Parkinson's disease, which is characterized by progressive loss of motor and cognitive functions. The largest risk factors for Parkinson's disease are age and sex; most cases occur after age 60 and males have nearly twice the incidence as females. Preclinical work has scarcely considered the influence of these 2 factors to disease risk and presentation. Here, we observed a progressive decline in dopamine neuron firing activity in male C57BL/6 mice by 18 months of age, while dopamine neurons from females remained largely unaffected. This was accompanied by increased mRNA expression of PINK1 in both males and females, and PARK2 primarily in males, both of which have been linked to Parkinson's. Since the declining cell properties were accompanied by only slight decreases in locomotion in both sexes, it is likely that these age-related impairments in males represent a vulnerability to further insults that could predispose the neurons to neurodegenerative processes such as in Parkinson's.
Collapse
Affiliation(s)
- Rebecca D Howell
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK; Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Sergio Dominguez-Lopez
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Sarah R Ocañas
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK; Genes & Human Disease Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK
| | - Willard M Freeman
- Department of Physiology, University of Oklahoma Health Sciences Center, Oklahoma City, OK
| | - Michael J Beckstead
- Aging & Metabolism Research Program, Oklahoma Medical Research Foundation, Oklahoma City, OK.
| |
Collapse
|
122
|
Mahan B, Antonelli MA, Burckel P, Turner S, Chung R, Habekost M, Jørgensen AL, Moynier F. Longitudinal biometal accumulation and Ca isotope composition of the Göttingen minipig brain. Metallomics 2020; 12:1585-1598. [PMID: 33084720 DOI: 10.1039/d0mt00134a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Biometals play a critical role in both the healthy and diseased brain's functioning. They accumulate in the normal aging brain, and are inherent to neurodegenerative disorders and their associated pathologies. A prominent example of this is the brain accumulation of metals such as Ca, Fe and Cu (and more ambiguously, Zn) associated with Alzheimer's disease (AD). The natural stable isotope compositions of such metals have also shown utility in constraining biological mechanisms, and in differentiating between healthy and diseased states, sometimes prior to conventional methods. Here we have detailed the distribution of the biologically relevant elements Mg, P, K, Ca, Fe, Cu and Zn in brain regions of Göttingen minipigs ranging in age from three months to nearly six years, including control animals and both a single- and double-transgenic model of AD (PS1, APP/PS1). Moreover, we have characterized the Ca isotope composition of the brain for the first time. Concentration data track rises in brain biometals with age, namely for Fe and Cu, as observed in the normal ageing brain and in AD, and biometal data point to increased soluble amyloid beta (Aβ) load prior to AD plaque identification via brain imaging. Calcium isotope results define the brain as the isotopically lightest permanent reservoir in the body, indicating that brain Ca dyshomeostasis may induce measurable isotopic disturbances in accessible downstream reservoirs such as biofluids.
Collapse
Affiliation(s)
- Brandon Mahan
- Earth and Environmental Science, James Cook University, Townsville, Queensland 4811, Australia. and Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Michael A Antonelli
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75238 Paris, France and Institute of Geochemistry and Petrology, Department of Earth Sciences, ETH Zürich, 8092 Zürich, Switzerland
| | - Pierre Burckel
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75238 Paris, France
| | - Simon Turner
- Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Roger Chung
- Thermo Fisher Isotope Development Hub, Department of Earth and Planetary Sciences, Macquarie University, Sydney, New South Wales 2109, Australia
| | - Mette Habekost
- Department of Biomedicine, Aarhus University, 8000 Aarhus C, Denmark
| | | | - Frédéric Moynier
- Université de Paris, Institut de Physique du Globe de Paris, CNRS, 75238 Paris, France
| |
Collapse
|
123
|
Nitric Oxide/Cyclic GMP-Dependent Calcium Signalling Mediates IL-6- and TNF-α-Induced Expression of Glial Fibrillary Acid Protein. J Mol Neurosci 2020; 71:854-866. [PMID: 32964397 PMCID: PMC7969574 DOI: 10.1007/s12031-020-01708-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 09/07/2020] [Indexed: 12/24/2022]
Abstract
Astrocyte activation is characterized by hypertrophy with increased glial fibrillary acidic protein (GFAP), whose expression may involve pro-inflammatory cytokines. In this study, the effects of pro-inflammatory IL-6 and TNF-α and anti-inflammatory cytokines IL-4 and IL-10 on nitric oxide (NO)/cyclic guanosine monophosphate (cGMP) signalling, intracellular calcium concentration ([Ca2+]i) and GFAP expression were investigated. In human glioblastoma astrocytoma U-373 MG cells, IL-6 and TNF-α, but not IL-4 or IL-10, increased iNOS, cGMP, [Ca2+]i and GFAP expression. The inhibitors of iNOS (1400 W), soluble guanylyl cyclase (ODQ) and IP3 receptors (ryanodine and 2-APB) reversed the increase in cGMP or [Ca2+]i, respectively, and prevented GFAP expression. In rat striatal slices, IL-6 and TNF-α, at variance with IL-4 and IL-10, promoted a concentration-dependent increase in Ca2+ efflux, an effect prevented by 1400 W, ODQ and RY/2APB. These data were confirmed by in vivo studies, where IL-6, TNF-α or the NO donor DETA/NO injected in the striatum of anaesthetised rats increased cGMP levels and increased GFAP expression. The present findings point to NO/cGMP-dependent calcium signalling as part of the mechanism mediating IL-6- and TNF-α-induced GFAP expression. As this process plays a fundamental role in driving neurotoxicity, targeting NO/cGMP-dependent calcium signalling may constitute a new approach for therapeutic interventions in neurological disorders.
Collapse
|
124
|
Kermanshahi S, Ghanavati G, Abbasi-Mesrabadi M, Gholami M, Ulloa L, Motaghinejad M, Safari S. Novel Neuroprotective Potential of Crocin in Neurodegenerative Disorders: An Illustrated Mechanistic Review. Neurochem Res 2020; 45:2573-2585. [PMID: 32940861 DOI: 10.1007/s11064-020-03134-8] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Revised: 09/11/2020] [Accepted: 09/12/2020] [Indexed: 12/17/2022]
Abstract
Neurodegenerative disorders are characterized by mitochondrial dysfunction and subsequently oxidative stress, inflammation, and apoptosis that contribute to neuronal cytotoxicity and degeneration. Recent studies reported that crocin, a carotenoid chemical compound common in crocus and gardenia flowers, has protective effects in neurodegenerative disorders due to its anti-oxidative, anti-inflammatory, and anti-apoptotic properties in the nervous system. This article reviews the new experimental, clinical, and pharmacological studies on the neuroprotective properties of crocin and its potential mechanisms to modulate metabolic oxidative stress and inflammation in neurodegenerative disorders.
Collapse
Affiliation(s)
- Sareh Kermanshahi
- Razi Drug Research Center, Iran University of Medical Sciences, Hemmat highway, Beside the Milad Tower, P.O. Box: 14496-14525, Tehran, Iran
| | - Ghazal Ghanavati
- Razi Drug Research Center, Iran University of Medical Sciences, Hemmat highway, Beside the Milad Tower, P.O. Box: 14496-14525, Tehran, Iran
| | - Mobina Abbasi-Mesrabadi
- Razi Drug Research Center, Iran University of Medical Sciences, Hemmat highway, Beside the Milad Tower, P.O. Box: 14496-14525, Tehran, Iran
| | - Mina Gholami
- Department of Medicinal Chemistry, Faculty of Pharmacy, Tehran University of Medical Sciences, Tehran, Iran
| | - Luis Ulloa
- Center for Perioperative Organ Protection, Department of Anesthesiology, Duke University, Durham, NC, USA.
| | - Majid Motaghinejad
- Razi Drug Research Center, Iran University of Medical Sciences, Hemmat highway, Beside the Milad Tower, P.O. Box: 14496-14525, Tehran, Iran.
| | - Sepideh Safari
- Razi Drug Research Center, Iran University of Medical Sciences, Hemmat highway, Beside the Milad Tower, P.O. Box: 14496-14525, Tehran, Iran
| |
Collapse
|
125
|
Nguyen LD, Fischer TT, Abreu D, Arroyo A, Urano F, Ehrlich BE. Calpain inhibitor and ibudilast rescue β cell functions in a cellular model of Wolfram syndrome. Proc Natl Acad Sci U S A 2020; 117:17389-17398. [PMID: 32632005 PMCID: PMC7382278 DOI: 10.1073/pnas.2007136117] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Wolfram syndrome is a rare multisystem disease characterized by childhood-onset diabetes mellitus and progressive neurodegeneration. Most cases are attributed to pathogenic variants in a single gene, Wolfram syndrome 1 (WFS1). There currently is no disease-modifying treatment for Wolfram syndrome, as the molecular consequences of the loss of WFS1 remain elusive. Because diabetes mellitus is the first diagnosed symptom of Wolfram syndrome, we aimed to further examine the functions of WFS1 in pancreatic β cells in the context of hyperglycemia. Knockout (KO) of WFS1 in rat insulinoma (INS1) cells impaired calcium homeostasis and protein kinase B/Akt signaling and, subsequently, decreased cell viability and glucose-stimulated insulin secretion. Targeting calcium homeostasis with reexpression of WFS1, overexpression of WFS1's interacting partner neuronal calcium sensor-1 (NCS1), or treatment with calpain inhibitor and ibudilast reversed deficits observed in WFS1-KO cells. Collectively, our findings provide insight into the disease mechanism of Wolfram syndrome and highlight new targets and drug candidates to facilitate the development of a treatment for this disorder and similar diseases.
Collapse
Affiliation(s)
- Lien D Nguyen
- Department of Pharmacology, Yale University, New Haven, CT 06520
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520
| | - Tom T Fischer
- Department of Pharmacology, Yale University, New Haven, CT 06520
- Institute of Pharmacology, University of Heidelberg, 69117 Heidelberg, Germany
| | - Damien Abreu
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110
- Medical Scientist Training Program, Washington University School of Medicine, St. Louis, MO 63110
| | - Alfredo Arroyo
- Department of Pharmacology, Yale University, New Haven, CT 06520
| | - Fumihiko Urano
- Department of Medicine, Division of Endocrinology, Metabolism, and Lipid Research, Washington University School of Medicine, St. Louis, MO 63110
- Department of Pathology and Immunology, Washington University School of Medicine, St. Louis, MO 63110
| | - Barbara E Ehrlich
- Department of Pharmacology, Yale University, New Haven, CT 06520;
- Interdepartmental Neuroscience Program, Yale University, New Haven, CT 06520
| |
Collapse
|
126
|
Ryu HS, Park KW, Choi N, Kim J, Park YM, Jo S, Kim MJ, Kim YJ, Kim J, Kim K, Koh SB, Chung SJ. Genomic Analysis Identifies New Loci Associated With Motor Complications in Parkinson's Disease. Front Neurol 2020; 11:570. [PMID: 32733355 PMCID: PMC7358548 DOI: 10.3389/fneur.2020.00570] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Accepted: 05/19/2020] [Indexed: 12/14/2022] Open
Abstract
Background: Parkinson's disease (PD) is a common neurodegenerative disorder, characterized by a clinical symptomatology involving both motor and non-motor symptoms. Motor complications associated with long-term dopaminergic treatment include motor fluctuations and levodopa-induced dyskinesia (LID), which may have a major impact on the quality of life. The clinical features and onset time of motor complications in the disease course are heterogeneous, and the etiology remains unknown. Objective: We aimed to identify genomic variants associated with the development of motor fluctuations and LID at 5 years after the onset of PD. Methods: Genomic data were obtained using Affymetrix Axiom KORV1.1 array, including an imputation genome-wide association study (GWAS) grid and other GWAS loci; functional variants of the non-synonymous exome; pharmacogenetic variants; variants in genes involved in absorption, distribution, metabolism, and excretion of drugs; and expression quantitative trait loci in 741 patients with PD. Results: FAM129B single-nucleotide polymorphism (SNP) rs10760490 was nominally associated with the occurrence of motor fluctuations at 5 years after the onset of PD [odds ratio (OR) = 2.9, 95% confidence interval (CI) = 1.8-4.8, P = 6.5 × 10-6]. GALNT14 SNP rs144125291 was significantly associated with the occurrence of LID (OR = 5.5, 95% CI = 2.9-10.3, P = 7.88 × 10-9) and was still significant after Bonferroni correction. Several other genetic variants were associated with the occurrence of motor fluctuations or LID, but the associations were not significant after Bonferroni correction. Conclusion: This study identified new loci associated with the occurrence of motor fluctuations and LID at 5 years after the onset of PD. However, further studies are needed to confirm our findings.
Collapse
Affiliation(s)
- Ho-Sung Ryu
- Department of Neurology, Kyungpook National University Hospital, Daegu, South Korea
| | - Kye Won Park
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Nari Choi
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Jinhee Kim
- Department of Neurology & Parkinson's Disease Center, Guro Hospital, Korea University, Seoul, South Korea
| | - Young-Min Park
- Department of Neurology, Dobong Hospital, Seoul, South Korea
| | - Sungyang Jo
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| | - Mi-Jung Kim
- Department of Neurology, Bobath Memorial Hospital, Seongnam-si, South Korea
| | - Young Jin Kim
- Department of Neurology, Best Heals Hospital, Ansan-si, South Korea
| | - Juyeon Kim
- Department of Neurology, Metro Hospital, Anyang, South Korea
| | - Kiju Kim
- Department of Neurology, The Good Light Hospital, Gwangju, South Korea
| | - Seong-Beom Koh
- Department of Neurology & Parkinson's Disease Center, Guro Hospital, Korea University, Seoul, South Korea
| | - Sun Ju Chung
- Department of Neurology, Asan Medical Center, University of Ulsan College of Medicine, Seoul, South Korea
| |
Collapse
|
127
|
Yu YH, Park DK, Yoo DY, Kim DS. Altered expression of parvalbumin immunoreactivity in rat main olfactory bulb following pilocarpine-induced status epilepticus. BMB Rep 2020. [PMID: 32317084 PMCID: PMC7196189 DOI: 10.5483/bmbrep.2020.53.4.002] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Epilepsy is a chronic neurological disease characterized by spontaneous recurrent seizures and caused by various factors and mechanisms. Malfunction of the olfactory bulb is frequently observed in patients with epilepsy. However, the morphological changes in the olfactory bulb during epilepsy-induced neuropathology have not been elucidated. Therefore, in the present study, we investigated the expression of parvalbumin (PV), one of the calcium-binding proteins, and morphological changes in the rat main olfactory bulb (MOB) following pilocarpine-induced status epilepticus (SE). Pilocarpine-induced SE resulted in neuronal degeneration in the external plexiform layer (EPL) and glomerular layer (GL) of the MOB. PV immunoreactivity was observed in the neuronal somas and processes in the EPL and GL of the control group. However, six hours after pilocarpine administration, PV expression was remarkably decreased in the neuronal processes compared to the somas and the average number of PV-positive interneurons was significantly decreased. Three months after pilocarpine treatment, the number of PV-positive interneurons was also significantly decreased compared to the 6 hour group in both layers. In addition, the number of NeuN-positive neurons was also significantly decreased in the EPL and GL following pilocarpine treatment. In double immunofluorescence staining for PV and MAP2, the immunoreactivity for MAP2 around the PV-positive neurons was significantly decreased three months after pilocarpine treatment. Therefore, the present findings suggest that decreases in PV-positive GABAergic interneurons and dendritic density in the MOB induced impaired calcium buffering and reciprocal synaptic transmission. Thus, these alterations may be considered key factors aggravating olfactory function in patients with epilepsy.
Collapse
Affiliation(s)
- Yeon Hee Yu
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Dae-Kyoon Park
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Dae Young Yoo
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| | - Duk-Soo Kim
- Department of Anatomy, College of Medicine, Soonchunhyang University, Cheonan 31151, Korea
| |
Collapse
|
128
|
Neuroprotective effect of regular swimming exercise on calretinin-positive striatal neurons of Parkinsonian rats. Anat Sci Int 2020; 95:429-439. [DOI: 10.1007/s12565-020-00538-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2019] [Accepted: 03/08/2020] [Indexed: 01/29/2023]
|
129
|
Pearce KM, Bell M, Linthicum WH, Wen Q, Srinivasan J, Rangamani P, Scarlata S. Gαq-mediated calcium dynamics and membrane tension modulate neurite plasticity. Mol Biol Cell 2020; 31:683-694. [PMID: 31825720 PMCID: PMC7202066 DOI: 10.1091/mbc.e19-09-0536] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Revised: 12/02/2019] [Accepted: 12/05/2019] [Indexed: 12/30/2022] Open
Abstract
The formation and disruption of synaptic connections during development are a fundamental step in neural circuit formation. Subneuronal structures such as neurites are known to be sensitive to the level of spontaneous neuronal activity, but the specifics of how neurotransmitter-induced calcium activity regulates neurite homeostasis are not yet fully understood. In response to stimulation by neurotransmitters such as acetylcholine, calcium responses in cells are mediated by the Gαq/phospholipase Cβ (PLCβ)/phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) signaling pathway. Here, we show that prolonged Gαq stimulation results in the retraction of neurites in PC12 cells and the rupture of neuronal synapses by modulating membrane tension. To understand the underlying cause, we dissected the behavior of individual components of the Gαq/PLCβ/PI(4,5)P2 pathway during retraction and correlated these with the retraction of the membrane and cytoskeletal elements impacted by calcium signaling. We developed a mathematical model that combines biochemical signaling with membrane tension and cytoskeletal mechanics to show how signaling events are coupled to retraction velocity, membrane tension, and actin dynamics. The coupling between calcium and neurite retraction is shown to be operative in the Caenorhabditis elegans nervous system. This study uncovers a novel mechanochemical connection between Gαq/PLCβ /PI(4,5)P2 that couples calcium responses with neural plasticity.
Collapse
Affiliation(s)
| | - Miriam Bell
- Mechanical and Aerospace Engineering Department, University of California, San Diego, La Jolla, CA 92093
| | | | - Qi Wen
- Department of Biomedical Engineering, and
| | - Jagan Srinivasan
- Department of Biology and Biotechnology, Worcester Polytechnic Institute, Worcester, MA 01609
| | - Padmini Rangamani
- Mechanical and Aerospace Engineering Department, University of California, San Diego, La Jolla, CA 92093
| | | |
Collapse
|
130
|
Strategies for Neuroprotection in Multiple Sclerosis and the Role of Calcium. Int J Mol Sci 2020; 21:ijms21051663. [PMID: 32121306 PMCID: PMC7084497 DOI: 10.3390/ijms21051663] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2020] [Revised: 02/16/2020] [Accepted: 02/26/2020] [Indexed: 12/12/2022] Open
Abstract
Calcium ions are vital for maintaining the physiological and biochemical processes inside cells. The central nervous system (CNS) is particularly dependent on calcium homeostasis and its dysregulation has been associated with several neurodegenerative disorders including Parkinson’s disease (PD), Alzheimer’s disease (AD) and Huntington’s disease (HD), as well as with multiple sclerosis (MS). Hence, the modulation of calcium influx into the cells and the targeting of calcium-mediated signaling pathways may present a promising therapeutic approach for these diseases. This review provides an overview on calcium channels in neurons and glial cells. Special emphasis is put on MS, a chronic autoimmune disease of the CNS. While the initial relapsing-remitting stage of MS can be treated effectively with immune modulatory and immunosuppressive drugs, the subsequent progressive stage has remained largely untreatable. Here we summarize several approaches that have been and are currently being tested for their neuroprotective capacities in MS and we discuss which role calcium could play in this regard.
Collapse
|
131
|
Remodeling of Intracellular Ca 2+ Homeostasis in Rat Hippocampal Neurons Aged In Vitro. Int J Mol Sci 2020; 21:ijms21041549. [PMID: 32102482 PMCID: PMC7073228 DOI: 10.3390/ijms21041549] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/19/2020] [Accepted: 02/20/2020] [Indexed: 12/19/2022] Open
Abstract
Aging is often associated with a cognitive decline and a susceptibility to neuronal damage. It is also the most important risk factor for neurodegenerative disorders, particularly Alzheimer's disease (AD). AD is related to an excess of neurotoxic oligomers of amyloid β peptide (Aβo); however, the molecular mechanisms are still highly controversial. Intracellular Ca2+ homeostasis plays an important role in the control of neuronal activity, including neurotransmitter release, synaptic plasticity, and memory storage, as well as neuron cell death. Recent evidence indicates that long-term cultures of rat hippocampal neurons, resembling aged neurons, undergo cell death after treatment with Aβo, whereas short-term cultures, resembling young neurons, do not. These in vitro changes are associated with the remodeling of intracellular Ca2+ homeostasis with aging, thus providing a simplistic model for investigating Ca2+ remodeling in aging. In vitro aged neurons show increased resting cytosolic Ca2+ concentration, enhanced Ca2+ store content, and Ca2+ release from the endoplasmic reticulum (ER). Ca2+ transfer from the endoplasmic reticulum (ER) to mitochondria is also enhanced. Aged neurons also show decreased store-operated Ca2+ entry (SOCE), a Ca2+ entry pathway related to memory storage. At the molecular level, in vitro remodeling is associated with changes in the expression of Ca2+ channels resembling in vivo aging, including changes in N-methyl-D-aspartate NMDA receptor and inositol 1,4,5-trisphosphate (IP3) receptor isoforms, increased expression of the mitochondrial calcium uniporter (MCU), and decreased expression of Orai1/Stim1, the molecular players involved in SOCE. Additionally, Aβo treatment exacerbates most of the changes observed in aged neurons and enhances susceptibility to cell death. Conversely, the solely effect of Aβo in young neurons is to increase ER-mitochondria colocalization and enhance Ca2+ transfer from ER to mitochondria without inducing neuronal damage. We propose that cultured rat hippocampal neurons may be a useful model to investigate Ca2+ remodeling in aging and in age-related neurodegenerative disorders.
Collapse
|
132
|
Angenendt A, Steiner R, Knörck A, Schwär G, Konrad M, Krause E, Lis A. Orai, STIM, and PMCA contribute to reduced calcium signal generation in CD8 + T cells of elderly mice. Aging (Albany NY) 2020; 12:3266-3286. [PMID: 32062611 PMCID: PMC7066920 DOI: 10.18632/aging.102809] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 01/24/2020] [Indexed: 12/22/2022]
Abstract
Ca2+ is a crucial second messenger for proper T cell function. Considering the relevance of Ca2+ signals for T cell functionality it is surprising that no mechanistic insights into T cell Ca2+ signals from elderly individuals are reported. The main Ca2+ entry mechanism in T cells are STIM-activated Orai channels. Their role during lymphocyte aging is completely unknown. Here, we report not only reduced Ca2+ signals in untouched and stimulated, but also in central and effector memory CD8+ T cells from elderly (18-24 months) compared to adult (3-6 months) mice. Two mechanisms contribute to the overall reduction in Ca2+ signals of CD8+ T cells of elderly mice: 1) Reduced Ca2+ currents through Orai channels due to decreased expressions of STIMs and Orais. 2) A faster extrusion of Ca2+ owing to an increased expression of PMCA4. The reduced Ca2+ signals correlated with a resistance of the cytotoxic efficiency of CD8+ T cells to varying free [Ca2+]ext with age. In summary, reduced STIM/Orai expression and increased Ca2+ clearing rates following enhanced PMCA4 expression contribute to reduced Ca2+ signals in CD8+ T cells of elderly mice. These changes are apparently relevant to immune function as they reduce the Ca2+ dependency of CTL cytotoxicity.
Collapse
Affiliation(s)
- Adrian Angenendt
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Romy Steiner
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany.,Present address: Section of Transplantation Immunology, Department of Surgery, Medical University of Vienna, Vienna 1090, Austria
| | - Arne Knörck
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Gertrud Schwär
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Maik Konrad
- Molecular Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Elmar Krause
- Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| | - Annette Lis
- Biophysics, Center for Integrative Physiology and Molecular Medicine, School of Medicine, Saarland University, Homburg 66421, Germany
| |
Collapse
|
133
|
Schachtschneider KM, Welge ME, Auvil LS, Chaki S, Rund LA, Madsen O, Elmore MR, Johnson RW, Groenen MA, Schook LB. Altered Hippocampal Epigenetic Regulation Underlying Reduced Cognitive Development in Response to Early Life Environmental Insults. Genes (Basel) 2020; 11:genes11020162. [PMID: 32033187 PMCID: PMC7074491 DOI: 10.3390/genes11020162] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 12/13/2022] Open
Abstract
The hippocampus is involved in learning and memory and undergoes significant growth and maturation during the neonatal period. Environmental insults during this developmental timeframe can have lasting effects on brain structure and function. This study assessed hippocampal DNA methylation and gene transcription from two independent studies reporting reduced cognitive development stemming from early life environmental insults (iron deficiency and porcine reproductive and respiratory syndrome virus (PRRSv) infection) using porcine biomedical models. In total, 420 differentially expressed genes (DEGs) were identified between the reduced cognition and control groups, including genes involved in neurodevelopment and function. Gene ontology (GO) terms enriched for DEGs were associated with immune responses, angiogenesis, and cellular development. In addition, 116 differentially methylated regions (DMRs) were identified, which overlapped 125 genes. While no GO terms were enriched for genes overlapping DMRs, many of these genes are known to be involved in neurodevelopment and function, angiogenesis, and immunity. The observed altered methylation and expression of genes involved in neurological function suggest reduced cognition in response to early life environmental insults is due to altered cholinergic signaling and calcium regulation. Finally, two DMRs overlapped with two DEGs, VWF and LRRC32, which are associated with blood brain barrier permeability and regulatory T-cell activation, respectively. These results support the role of altered hippocampal DNA methylation and gene expression in early life environmentally-induced reductions in cognitive development across independent studies.
Collapse
Affiliation(s)
- Kyle M. Schachtschneider
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60607, USA;
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.W.); (L.S.A.)
| | - Michael E. Welge
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.W.); (L.S.A.)
| | - Loretta S. Auvil
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.W.); (L.S.A.)
| | - Sulalita Chaki
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
| | - Laurie A. Rund
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
| | - Ole Madsen
- Animal Breeding and Genomics, Wageningen University, 6708 Wageningen, The Netherlands; (O.M.); (M.A.M.G.)
| | - Monica R.P. Elmore
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
| | - Rodney W. Johnson
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
| | - Martien A.M. Groenen
- Animal Breeding and Genomics, Wageningen University, 6708 Wageningen, The Netherlands; (O.M.); (M.A.M.G.)
| | - Lawrence B. Schook
- Department of Radiology, University of Illinois at Chicago, Chicago, IL 60607, USA;
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, IL 61820, USA; (M.E.W.); (L.S.A.)
- Department of Animal Sciences, University of Illinois at Urbana-Champaign, Urbana, IL 616280, USA; (S.C.); (L.A.R.); (M.R.P.E.); (R.W.J.)
- Correspondence:
| |
Collapse
|
134
|
Britzolaki A, Saurine J, Klocke B, Pitychoutis PM. A Role for SERCA Pumps in the Neurobiology of Neuropsychiatric and Neurodegenerative Disorders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1131:131-161. [PMID: 31646509 DOI: 10.1007/978-3-030-12457-1_6] [Citation(s) in RCA: 38] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Calcium (Ca2+) is a fundamental regulator of cell fate and intracellular Ca2+ homeostasis is crucial for proper function of the nerve cells. Given the complexity of neurons, a constellation of mechanisms finely tunes the intracellular Ca2+ signaling. We are focusing on the sarco/endoplasmic reticulum (SR/ER) calcium (Ca2+)-ATPase (SERCA) pump, an integral ER protein. SERCA's well established role is to preserve low cytosolic Ca2+ levels ([Ca2+]cyt), by pumping free Ca2+ ions into the ER lumen, utilizing ATP hydrolysis. The SERCA pumps are encoded by three distinct genes, SERCA1-3, resulting in 12 known protein isoforms, with tissue-dependent expression patterns. Despite the well-established structure and function of the SERCA pumps, their role in the central nervous system is not clear yet. Interestingly, SERCA-mediated Ca2+ dyshomeostasis has been associated with neuropathological conditions, such as bipolar disorder, schizophrenia, Parkinson's disease and Alzheimer's disease. We summarize here current evidence suggesting a role for SERCA in the neurobiology of neuropsychiatric and neurodegenerative disorders, thus highlighting the importance of this pump in brain physiology and pathophysiology.
Collapse
Affiliation(s)
- Aikaterini Britzolaki
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Joseph Saurine
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Benjamin Klocke
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA
| | - Pothitos M Pitychoutis
- Department of Biology & Center for Tissue Regeneration and Engineering at Dayton (TREND), University of Dayton, Dayton, OH, USA.
| |
Collapse
|
135
|
Abstract
Drosophila melanogaster, colloquially known as the fruit fly, is one of the most commonly used model organisms in scientific research. Although the final architecture of a fly and a human differs greatly, most of the fundamental biological mechanisms and pathways controlling development and survival are conserved through evolution between the two species. For this reason, Drosophila has been productively used as a model organism for over a century, to study a diverse range of biological processes, including development, learning, behavior and aging. Ca2+ signaling comprises complex pathways that impact on virtually every aspect of cellular physiology. Within such a complex field of study, Drosophila offers the advantages of consolidated molecular and genetic techniques, lack of genetic redundancy and a completely annotated genome since 2000. These and other characteristics provided the basis for the identification of many genes encoding Ca2+ signaling molecules and the disclosure of conserved Ca2+ signaling pathways. In this review, we will analyze the applications of Ca2+ imaging in the fruit fly model, highlighting in particular their impact on the study of normal brain function and pathogenesis of neurodegenerative diseases.
Collapse
|
136
|
Arnsten AFT, Datta D, Leslie S, Yang ST, Wang M, Nairn AC. Alzheimer's-like pathology in aging rhesus macaques: Unique opportunity to study the etiology and treatment of Alzheimer's disease. Proc Natl Acad Sci U S A 2019; 116:26230-26238. [PMID: 31871209 PMCID: PMC6936707 DOI: 10.1073/pnas.1903671116] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Although mouse models of Alzheimer's disease (AD) have provided tremendous breakthroughs, the etiology of later onset AD remains unknown. In particular, tau pathology in the association cortex is poorly replicated in mouse models. Aging rhesus monkeys naturally develop cognitive deficits, amyloid plaques, and the same qualitative pattern and sequence of tau pathology as humans, with tangles in the oldest animals. Thus, aging rhesus monkeys can play a key role in AD research. For example, aging monkeys can help reveal how synapses in the prefrontal association cortex are uniquely regulated compared to the primary sensory cortex in ways that render them vulnerable to calcium dysregulation and tau phosphorylation, resulting in the selective localization of tau pathology observed in AD. The ability to assay early tau phosphorylation states and perform high-quality immunoelectron microscopy in monkeys is a great advantage, as one can capture early-stage degeneration as it naturally occurs in situ. Our immunoelectron microscopy studies show that phosphorylated tau can induce an "endosomal traffic jam" that drives amyloid precursor protein cleavage to amyloid-β in endosomes. As amyloid-β increases tau phosphorylation, this creates a vicious cycle where varied precipitating factors all lead to a similar phenotype. These data may help explain why circuits with aggressive tau pathology (e.g., entorhinal cortex) may degenerate prior to producing significant amyloid pathology. Aging monkeys therefore can play an important role in identifying and testing potential therapeutics to protect the association cortex, including preventive therapies that are challenging to test in humans.
Collapse
Affiliation(s)
- Amy F. T. Arnsten
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510
| | - Dibyadeep Datta
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Shannon Leslie
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510
| | - Sheng-Tao Yang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Min Wang
- Department of Neuroscience, Yale University School of Medicine, New Haven, CT 06510
| | - Angus C. Nairn
- Department of Psychiatry, Yale University School of Medicine, New Haven, CT 06510
- Department of Pharmacology, Yale University School of Medicine, New Haven, CT 06510
| |
Collapse
|
137
|
Yong Y, Gamage K, Cheng I, Barford K, Spano A, Winckler B, Deppmann C. p75NTR and DR6 Regulate Distinct Phases of Axon Degeneration Demarcated by Spheroid Rupture. J Neurosci 2019; 39:9503-9520. [PMID: 31628183 PMCID: PMC6880466 DOI: 10.1523/jneurosci.1867-19.2019] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2019] [Revised: 09/11/2019] [Accepted: 10/13/2019] [Indexed: 12/19/2022] Open
Abstract
The regressive events associated with trophic deprivation are critical for sculpting a functional nervous system. After nerve growth factor withdrawal, sympathetic axons derived from male and female neonatal mice maintain their structural integrity for ∼18 h (latent phase) followed by a rapid and near unison disassembly of axons over the next 3 h (catastrophic phase). Here we examine the molecular basis by which axons transition from latent to catastrophic phases of degeneration following trophic withdrawal. Before catastrophic degeneration, we observed an increase in intra-axonal calcium. This calcium flux is accompanied by p75 neurotrophic factor receptor-Rho-actin-dependent expansion of calcium-rich axonal spheroids that eventually rupture, releasing their contents to the extracellular space. Conditioned media derived from degenerating axons are capable of hastening transition into the catastrophic phase of degeneration. We also found that death receptor 6, but not p75 neurotrophic factor receptor, is required for transition into the catastrophic phase in response to conditioned media but not for the intra-axonal calcium flux, spheroid formation, or rupture that occur toward the end of latency. Our results support the existence of an interaxonal degenerative signal that promotes catastrophic degeneration among trophically deprived axons.SIGNIFICANCE STATEMENT Developmental pruning shares several morphological similarities to both disease- and injury-induced degeneration, including spheroid formation. The function and underlying mechanisms governing axonal spheroid formation, however, remain unclear. In this study, we report that axons coordinate each other's degeneration during development via axonal spheroid rupture. Before irreversible breakdown of the axon in response to trophic withdrawal, p75 neurotrophic factor receptor-RhoA signaling governs the formation and growth of spheroids. These spheroids then rupture, allowing exchange of contents ≤10 kDa between the intracellular and extracellular space to drive death receptor 6 and calpain-dependent catastrophic degeneration. This finding informs not only our understanding of regressive events during development but may also provide a rationale for designing new treatments toward myriad neurodegenerative disorders.
Collapse
Affiliation(s)
| | - Kanchana Gamage
- Department of Cell Biology
- Amgen, Massachusetts & Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, Massachusetts 02138
| | - Irene Cheng
- Department of Biology
- Neuroscience Graduate Program
| | | | | | | | - Christopher Deppmann
- Department of Biology,
- Neuroscience Graduate Program
- Department of Cell Biology
- Department of Biomedical Engineering, University of Virginia, Charlottesville, Virginia 22903, and
| |
Collapse
|
138
|
Kim JM, Heo HS, Shin SC, Kwon HK, Lee JC, Sung ES, Kim HS, Park GC, Lee BJ. Increased calcium channel in the lamina propria of aging rat. Aging (Albany NY) 2019; 11:8810-8824. [PMID: 31682233 PMCID: PMC6834399 DOI: 10.18632/aging.102284] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Accepted: 09/05/2019] [Indexed: 11/26/2022]
Abstract
The alterations of the extracellular matrix (ECM) in lamina propria of the vocal folds are important changes that are associated with decreased vibrations and increased stiffness in aging vocal fold. The aim of this study was to investigate the differences in gene expression of lamina propria using next generation sequencing (NGS) in young and aging rats and to identify genes that affect aging-related ECM changes for developing novel therapeutic target molecule. Among the 40 genes suggested in the NGS analysis, voltage-gated calcium channels (VGCC) subunit alpha1 S (CACNA1S), VGCC auxiliary subunit beta 1 (CACNB1), and VGCC auxiliary subunit gamma 1 (CACNG1) were increased in the lamina propria of the old rats compared to the young rats. The synthesis of collagen I and III in hVFFs decreased after si-CACNA1S and verapamil treatment. The expression and activity of matrix metalloproteinases (MMP)-1 and -8 were increased in hVFFs after the treatment of verapamil. However, there was no change in the expression of MMP-2 and -9. These results suggest that some calcium channels may be related with the alteration of aging-related ECM in vocal folds. Calcium channel has promising potential as a novel therapeutic target for the remodeling ECM of aging lamina propria.
Collapse
Affiliation(s)
- Ji Min Kim
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea
| | - Hyoung-Sam Heo
- Division of Bio-Medical Informatics, Center for Genome Science, Korea National Institute of Health, Korea Centers for Disease Control and Prevention, Cheongju-si, Republic of Korea
| | - Sung-Chan Shin
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Hyun-Keun Kwon
- Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Pusan National University, Busan, Republic of Korea
| | - Jin-Choon Lee
- , Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Eui-Suk Sung
- , Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine and Biomedical Research Institute, Pusan National University Yangsan Hospital, Yangsan, Republic of Korea
| | - Hyung-Sik Kim
- Department of Life Science in Dentistry, school of Dentistry, Pusan National University, Yangsan, Republic of Korea.,Institute for Translational Dental Science, Pusan National University, Yangsan, Republic of Korea
| | - Gi Cheol Park
- Department of Otolaryngology-Head and Neck Surgery, Samsung Changwon Hospital, Sungkyunkwan University School of Medicine, Changwon, Republic of Korea
| | - Byung-Joo Lee
- Biomedical Research Institute, Pusan National University Hospital, Busan, Republic of Korea.,Department of Otorhinolaryngology-Head and Neck Surgery, Pusan National University School of Medicine, Pusan National University, Busan, Republic of Korea
| |
Collapse
|
139
|
Boutry M, Pierga A, Matusiak R, Branchu J, Houllegatte M, Ibrahim Y, Balse E, El Hachimi KH, Brice A, Stevanin G, Darios F. Loss of spatacsin impairs cholesterol trafficking and calcium homeostasis. Commun Biol 2019; 2:380. [PMID: 31637311 PMCID: PMC6797781 DOI: 10.1038/s42003-019-0615-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2019] [Accepted: 09/17/2019] [Indexed: 12/20/2022] Open
Abstract
Mutations in SPG11, leading to loss of spatacsin function, impair the formation of membrane tubules in lysosomes and cause lysosomal lipid accumulation. However, the full nature of lipids accumulating in lysosomes and the physiological consequences of such accumulation are unknown. Here we show that loss of spatacsin inhibits the formation of tubules on lysosomes and prevents the clearance of cholesterol from this subcellular compartment. Accumulation of cholesterol in lysosomes decreases cholesterol levels in the plasma membrane, enhancing the entry of extracellular calcium by store-operated calcium entry and increasing resting cytosolic calcium levels. Higher cytosolic calcium levels promote the nuclear translocation of the master regulator of lysosomes TFEB, preventing the formation of tubules and the clearance of cholesterol from lysosomes. Our work reveals a homeostatic balance between cholesterol trafficking and cytosolic calcium levels and shows that loss of spatacsin impairs this homeostatic equilibrium.
Collapse
Affiliation(s)
- Maxime Boutry
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
- Present Address: Cell Biology Program, Hospital for Sick Children, Peter Gilgan Centre for Research and Learning, Toronto, ON Canada
| | - Alexandre Pierga
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| | - Raphaël Matusiak
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| | - Julien Branchu
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| | - Marc Houllegatte
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Yoan Ibrahim
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| | - Elise Balse
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1166, F-75013 Paris, France
| | - Khalid-Hamid El Hachimi
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Alexis Brice
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| | - Giovanni Stevanin
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
- Ecole Pratique des Hautes Etudes, PSL Research University, Laboratoire de Neurogénétique, F-75013 Paris, France
| | - Frédéric Darios
- Sorbonne Université, UPMC Univ Paris 06, UMR S 1127, F-75013 Paris, France
- Inserm, U1127, F-75013 Paris, France
- CNRS, UMR 7225, F-75013 Paris, France
- Institut du Cerveau et de la Moelle Epinière, ICM, F-75013 Paris, France
| |
Collapse
|
140
|
Verkuil L, Danford I, Pistilli M, Collins DW, Gudiseva HV, Trachtman BT, He J, Rathi S, Haider N, Ying GS, Chavali VRM, O'Brien JM. SNP located in an AluJb repeat downstream of TMCO1, rs4657473, is protective for POAG in African Americans. Br J Ophthalmol 2019; 103:1530-1536. [PMID: 30862618 PMCID: PMC6817700 DOI: 10.1136/bjophthalmol-2018-313086] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 01/04/2019] [Accepted: 02/20/2019] [Indexed: 01/24/2023]
Abstract
AIMS To determine the association of single nucleotide polymorphisms (SNPs) downstream from the TMCO1 gene with primary open-angle glaucoma (POAG) in African Americans (AA). METHODS AA subjects were recruited for the Primary Open-Angle African American Glaucoma Genetics (POAAGG) study from the Scheie Eye Institute and its satellite sites in Philadelphia. A region containing an AluJb repeat and seven SNPs, including rs4656461 near the TMCO1 gene, were PCR-Sanger sequenced from POAAGG cases (n=1537) and controls (n=1570). Association between POAG and SNPs near TMCO1 was investigated by logistic regression analysis. Phenotypic trait associations with these SNPs were assessed by analysis of variance. Electrophoretic mobility shift assay (EMSA) was performed to assess the affinity of human T-box 5 (TBX5) protein for a predicted binding motif in the TMCO1 region. Dual Luciferase assays were performed by transfecting recombinant plasmids containing the region surrounding the above SNPs in HEK293T and trabecular meshwork cells. RESULTS The SNP rs4657473 (C>T) was associated with POAG; the TT genotype was protective (OR 0.20, 95% CI 0.09 to 0.42; p<0.001). No significant associations were found between the TMCO1 variants and phenotypic traits. EMSA confirmed the affinity of TBX5 for a predicted binding motif containing TMCO1 SNP rs4657475. Luciferase assays demonstrated a regulatory function for the genomic region around SNP rs4656561, located within AluJb repeat. CONCLUSION Our results demonstrate that a SNP downstream of TMCO1, rs4657473, is associated with POAG in an AA population. Our studies suggest a regulatory role for the previously POAG-associated locus near the TMCO1 gene that may affect gene expression.
Collapse
Affiliation(s)
- Lana Verkuil
- Ophthalmology, Scheie Eye Institute, Philadelphia, Pennsylvania, USA
| | - Ian Danford
- Ophthalmology, Scheie Eye Institute, Philadelphia, Pennsylvania, USA
| | - Maxwell Pistilli
- Ophthalmology, Scheie Eye Institute, Philadelphia, Pennsylvania, USA
| | - David W Collins
- Ophthalmology, Scheie Eye Institute, Philadelphia, Pennsylvania, USA
- Emeryville, California, USA
| | - Harini V Gudiseva
- Ophthalmology, Scheie Eye Institute, Philadelphia, Pennsylvania, USA
| | - Ben T Trachtman
- Ophthalmology, Scheie Eye Institute, Philadelphia, Pennsylvania, USA
| | - Jie He
- Ophthalmology, Scheie Eye Institute, Philadelphia, Pennsylvania, USA
| | - Sonika Rathi
- Ophthalmology, Scheie Eye Institute, Philadelphia, Pennsylvania, USA
| | - Naqi Haider
- Ophthalmology, Scheie Eye Institute, Philadelphia, Pennsylvania, USA
| | - Gui-Shuang Ying
- Ophthalmology, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | | | | |
Collapse
|
141
|
Amyloid-Beta Modulates Low-Threshold Activated Voltage-Gated L-Type Calcium Channels of Arcuate Neuropeptide Y Neurons Leading to Calcium Dysregulation and Hypothalamic Dysfunction. J Neurosci 2019; 39:8816-8825. [PMID: 31537707 DOI: 10.1523/jneurosci.0617-19.2019] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 07/17/2019] [Accepted: 09/11/2019] [Indexed: 11/21/2022] Open
Abstract
Weight loss is an early manifestation of Alzheimer's disease that can precede the cognitive decline, raising the possibility that amyloid-β (Aβ) disrupts hypothalamic neurons critical for the regulation of body weight. We previously reported that, in young transgenic mice overexpressing mutated amyloid precursor protein (Tg2576), Aβ causes dysfunction in neuropeptide Y (NPY)-expressing hypothalamic arcuate neurons before plaque formation. In this study, we examined whether Aβ causes arcuate NPY neuronal dysfunction by disrupting intracellular Ca2+ homeostasis. Here, we found that the L-type Ca2+ channel blocker nimodipine could hyperpolarize the membrane potential, decrease the spontaneous activity, and reduce the intracellular Ca2+ levels in arcuate NPY neurons from Tg2576 brain slices. In these neurons, there was a shift from high to low voltage-threshold activated L-type Ca2+ currents, resulting in increased Ca2+ influx closer to the resting membrane potential, an effect recapitulated by Aβ1-42 and reversed by nimodipine. These low voltage-threshold activated L-type Ca2+ currents were dependent in part on calcium/calmodulin-dependent protein kinase II and IP3 pathways. Furthermore, the effects on intracellular Ca2+ signaling by both a positive (ghrelin) and negative (leptin) modulator were blunted in these neurons. Nimodipine pretreatment restored the response to ghrelin-mediated feeding in young (3-5 months), but not older (10 months), female Tg2576 mice, suggesting that intracellular Ca2+ dysregulation is only reversible early in Aβ pathology. Collectively, these findings provide evidence for a key role for low-threshold activated voltage gated L-type Ca2+ channels in Aβ-mediated neuronal dysfunction and in the regulation of body weight.SIGNIFICANCE STATEMENT Weight loss is one of the earliest manifestations of Alzheimer's disease (AD), but the underlying cellular mechanisms remain unknown. Disruption of intracellular Ca2+ homeostasis by amyloid-β is hypothesized to be critical for the early neuronal dysfunction driving AD pathogenesis. Here, we demonstrate that amyloid-β causes a shift from high to low voltage-threshold activated L-type Ca2+ currents in arcuate neuropeptide Y neurons. This leads to increased Ca2+ influx closer to the resting membrane potential, resulting in intracellular Ca2+ dyshomeostasis and neuronal dysfunction, an effect reversible by the L-type Ca2+ channel blocker nimodipine early in amyloid-β pathology. These findings highlight a novel mechanism of amyloid-β-mediated neuronal dysfunction through L-type Ca2+ channels and the importance of these channels in the regulation of body weight.
Collapse
|
142
|
Holahan MR, Tzakis N, Oliveira FA. Developmental Aspects of Glucose and Calcium Availability on the Persistence of Memory Function Over the Lifespan. Front Aging Neurosci 2019; 11:253. [PMID: 31572169 PMCID: PMC6749050 DOI: 10.3389/fnagi.2019.00253] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2019] [Accepted: 08/27/2019] [Indexed: 01/09/2023] Open
Abstract
An important aspect concerning the underlying nature of memory function is an understanding of how memories are acquired and lost. The stability, and ultimate demise, of memory over the lifespan of an organism remains a critical topic in determining the neurobiological mechanisms that mediate memory representations. This has important implications for the elucidation and treatment of neurodegenerative diseases such as Alzheimer's disease (AD). One important question in the context of preserving functional plasticity over the lifespan is the determination of the neurobiological structural and functional changes that contribute to the formation of memory during the juvenile time frame that might provide protection against later memory dysfunction by promoting the establishment of redundant neural pathways. The main question being, if memory formation during the juvenile period does strengthen and preserve memory stability over the lifespan, what are the neurobiological structural or functional substrates that mediate this effect? One neural attribute whose function may be altered with early life experience and provide a mechanism to preserve memory through the lifespan is glucose transport-linked calcium (Ca2+) buffering. Because peak increases in glucose utilization overlap with a timeframe during which spatial training can enhance later memory processing, it might be the case that learning-associated changes in glucose utilization would provide an important neural functional change to preserve memory function throughout the lifespan. The glucose transporters are proteins that are reduced in AD pathology and there is evidence that glucose reductions can impair Ca2+ buffering. In the absence of an appropriate supply of ATP, provided via glucose transport and glycolysis, Ca2+ levels can rise leading to neural vulnerability with ensuing pathological outcomes. In this review, we explore the hypothesis that enhancing glucose utilization with spatial training during the preadolescent period will provide a functional enhancement that regulates glucose-dependent Ca2+ signaling during aging or neurodegeneration and provide essential neural resources to preserve functional plasticity and memory function.
Collapse
Affiliation(s)
- Matthew R. Holahan
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- Laboratory of Cellular and Molecular Neurobiology (LaNeC), Center for Mathematics, Computing and Cognition, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| | - Niko Tzakis
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
| | - Fernando A. Oliveira
- Department of Neuroscience, Carleton University, Ottawa, ON, Canada
- Laboratory of Cellular and Molecular Neurobiology (LaNeC), Center for Mathematics, Computing and Cognition, Federal University of ABC (UFABC), São Bernardo do Campo, Brazil
| |
Collapse
|
143
|
Almeida D, Brígido M, Anjos M, Ferreira S, Souza A, Lopes R. Using a portable total reflection X‐ray fluorescence system for a multielement analysis of Swiss mice brains with experimental Alzheimer's disease induced by β‐amyloid oligomers. X-RAY SPECTROMETRY 2019; 48:452-464. [DOI: 10.1002/xrs.3044] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 03/18/2019] [Indexed: 01/05/2025]
Abstract
Alzheimer's disease (AD) is a progressive and irreversible disorder whose pathological features include β‐amyloid (Aβ) plaques and neuronal and synaptic loss. Metals such as iron, copper, and zinc are increased in the brains of patients with AD. Those metals can interact with Aβ, resulting in the promotion of Aβ deposition and formation of plaque. However, no study analyzing the effects of single injection of Aβ soluble oligomers (AβOs) in the elements' homeostasis in mice was developed. Total reflection X‐ray fluorescence (TXRF) is a multielement analytical technique that can be utilized to identify and quantify trace elements present in a sample at very low concentrations. In this study, in order to evaluate the concentration of metals in brain regions of Swiss mice, three groups of female mice and three of male mice were studied: control, AD10, and AD100. The AD groups received an AβOs intracerebroventricular injection so as to induce experimental AD. Afterwards, a craniotomy was performed, and six brain compartments were dissected and evaluated. TXRF measurements were performed using a portable TXRF system that uses an X‐ray tube with a molybdenum anode and a detector Si‐PIN. It is proved to determine the following elements' concentrations: phosphorus, sulfur, potassium, iron, copper, zinc, and rubidium. Results showed differences in the elemental concentration in some brain regions between AD groups. These alterations suggest that AβOs act quickly, even before the amyloid plaques' formation, explaining cognitive deficits independently of amyloid plaques. This study helped to understand that this modification on elemental concentration can be influenced by AβOs.
Collapse
Affiliation(s)
- D.S. Almeida
- Nuclear Instrumentation Laboratory Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - M.M. Brígido
- Physics Institute State University of Rio de Janeiro Rio de Janeiro Brazil
| | - M.J. Anjos
- Physics Institute State University of Rio de Janeiro Rio de Janeiro Brazil
| | - S.T. Ferreira
- Institute of Biophysics Carlos Chagas Filho Federal University of Rio de Janeiro Rio de Janeiro Brazil
- Institute of Medical Biochemistry Leopoldo de Meis Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - A.S. Souza
- Institute of Biophysics Carlos Chagas Filho Federal University of Rio de Janeiro Rio de Janeiro Brazil
- Institute of Medical Biochemistry Leopoldo de Meis Federal University of Rio de Janeiro Rio de Janeiro Brazil
| | - R.T. Lopes
- Nuclear Instrumentation Laboratory Federal University of Rio de Janeiro Rio de Janeiro Brazil
| |
Collapse
|
144
|
Patel DV, Patel NR, Kanhed AM, Patel SP, Sinha A, Kansara DD, Mecwan AR, Patel SB, Upadhyay PN, Patel KB, Shah DB, Prajapati NK, Murumkar PR, Patel KV, Yadav MR. Novel Multitarget Directed Triazinoindole Derivatives as Anti-Alzheimer Agents. ACS Chem Neurosci 2019; 10:3635-3661. [PMID: 31310717 DOI: 10.1021/acschemneuro.9b00226] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
The multifaceted nature of Alzheimer's disease (AD) demands treatment with multitarget-directed ligands (MTDLs) to confront the key pathological aberrations. A novel series of triazinoindole derivatives were designed and synthesized. In vitro studies revealed that all the compounds showed moderate to good anticholinesterase activity; the most active compound 23e showed an IC50 value of 0.56 ± 0.02 μM for AChE and an IC50 value of 1.17 ± 0.09 μM for BuChE. These derivatives are also endowed with potent antioxidant activity. To understand the plausible binding mode of the compound 23e, molecular docking studies and molecular dynamics simulation studies were performed, and the results indicated significant interactions of 23e within the active sites of AChE as well as BuChE. Compound 23e successfully diminished H2O2-induced oxidative stress in SH-SY5Y cells and displayed excellent neuroprotective activity against H2O2 as well as Aβ-induced toxicity in SH-SY5Y cells in a concentration dependent manner. Furthermore, it did not show any significant toxicity in neuronal SH-SY5Y cells in the cytotoxicity assay. Compound 23e did not show any acute toxicity in rats at doses up to 2000 mg/kg, and it significantly reversed scopolamine-induced memory deficit in mice model. Additionally, compound 23e showed notable in silico ADMET properties. Taken collectively, these findings project compound 23e as a potential balanced MTDL in the evolution process of novel anti-AD drugs.
Collapse
Affiliation(s)
- Dushyant V. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Nirav R. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Ashish M. Kanhed
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Sagar P. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Anshuman Sinha
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Deep D. Kansara
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Annie R. Mecwan
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Sarvangee B. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Pragnesh N. Upadhyay
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Kishan B. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Dharti B. Shah
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Navnit K. Prajapati
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Prashant R. Murumkar
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Kirti V. Patel
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| | - Mange Ram Yadav
- Faculty of Pharmacy, Kalabhavan Campus, The Maharaja Sayajirao University of Baroda, Vadodara-390001 Gujarat, India
| |
Collapse
|
145
|
Jung S, Chung Y, Lee Y, Lee Y, Cho JW, Shin EJ, Kim HC, Oh YJ. Buffering of cytosolic calcium plays a neuroprotective role by preserving the autophagy-lysosome pathway during MPP +-induced neuronal death. Cell Death Discov 2019; 5:130. [PMID: 31452956 PMCID: PMC6700189 DOI: 10.1038/s41420-019-0210-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2019] [Revised: 07/30/2019] [Accepted: 08/02/2019] [Indexed: 12/14/2022] Open
Abstract
Parkinson's disease (PD) is a chronic neurodegenerative disease with no cure. Calbindin, a Ca2+-buffering protein, has been suggested to have a neuroprotective effect in the brain tissues of PD patients and in experimental models of PD. However, the underlying mechanisms remain elusive. Here, we report that in 1-methyl-4-phenylpyridinium (MPP+)-induced culture models of PD, the buffering of cytosolic Ca2+ by calbindin-D28 overexpression or treatment with a chemical Ca2+ chelator reversed impaired autophagic flux, protecting cells against MPP+-mediated neurotoxicity. When cytosolic Ca2+ overload caused by MPP+ was ameliorated, the MPP+-induced accumulation of autophagosomes decreased and the autophagic flux significantly increased. In addition, the accumulation of damaged mitochondria and p62-positive ubiquitinated protein aggregates, following MPP+ intoxication, was alleviated by cytosolic Ca2+ buffering. We showed that MPP+ treatment suppressed autophagic degradation via raising the lysosomal pH and therefore reducing cytosolic Ca2+ elevation restored the lysosomal pH acidity and normal autophagic flux. These results support the notion that functional lysosomes are required for Ca2+-mediated cell protection against MPP+-mediated neurotoxicity. Thus, our data suggest a novel process in which the modulation of Ca2+ confers neuroprotection via the autophagy-lysosome pathway. This may have implications for the pathogenesis and future therapeutic targets of PD.
Collapse
Affiliation(s)
- Shinae Jung
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul, 03722 Korea
| | - Yuhyun Chung
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul, 03722 Korea
| | - Yunsoo Lee
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul, 03722 Korea
| | - Yangsin Lee
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722 Korea
| | - Jin Won Cho
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul, 03722 Korea
- Glycosylation Network Research Center, Yonsei University, Seoul, 03722 Korea
| | - Eun-Joo Shin
- Neuropharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341 Korea
| | - Hyoung-Chun Kim
- Neuropharmacology and Toxicology Program, College of Pharmacy, Kangwon National University, Chunchon, 24341 Korea
| | - Young J. Oh
- Department of Systems Biology, Yonsei University College of Life Science and Biotechnology, Seoul, 03722 Korea
| |
Collapse
|
146
|
Qi F, Zhang R, Chen J, Zhao F, Sun Y, Du Z, Bing D, Li P, Shao S, Zhu H, Chu H. Down-regulation of Cav1.3 in auditory pathway promotes age-related hearing loss by enhancing calcium-mediated oxidative stress in male mice. Aging (Albany NY) 2019; 11:6490-6502. [PMID: 31425146 PMCID: PMC6738406 DOI: 10.18632/aging.102203] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2019] [Accepted: 08/12/2019] [Indexed: 01/24/2023]
Abstract
In this study, age related Cav1.3 expression in cochlea and auditory cortex of C57BL/6J male mice was evaluated. It was found that the expression of Cav1.3 in cochlea decreased with aging whereas this phenomenon was not observed in neuron of auditory cortex. The correlation between decreased expression of Cav1.3 and age-related hearing losses was studied in vitro, after Cav1.3 was knocked out, the rate of apoptosis of hair cells increased after being subjected to ROS stresses, accompanied with enhanced senescence. Further, Cav1.3 knock down also interfered with the electrophysiology of hair cells. The effect was further confirmed in vivo, after Cav1.3 knocked down by injection of AAV, hearing impairment was observed in C57BL/6J male mice subjected to senescence and this was accompanied by increased loss of hair cells in cochlea. The effect was further confirmed in 3D organ culture, increased loss of hair cells after Cav1.3 was knocked down under ROS stresses. Mechanistically, Cav1.3 knock out resulted in decreased intracellular calcium which subsequently reduced the inactivation of ROS from complex I, and finally resulted in increased intracellular ROS and enhanced senescence. Collectively, these findings confirmed that Cav1.3 could protect cells in auditory pathway from oxidative stresses, and decreased expression of Cav1.3 in auditory pathway could contribute to hearing losses by enhancement of calcium-mediated oxidative stress.
Collapse
Affiliation(s)
- Fan Qi
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Rongsheng Zhang
- Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Jin Chen
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Fei Zhao
- Jinzhou Medical University, Liaoning, Jinzhou 121000, China
| | - Yanbo Sun
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Zhihui Du
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Dan Bing
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Pengjun Li
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Shengli Shao
- Cancer Research Institute, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hongmei Zhu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| | - Hanqi Chu
- Department of Otolaryngology-Head and Neck Surgery, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, China
| |
Collapse
|
147
|
Resveratrol Directly Controls the Activity of Neuronal Ryanodine Receptors at the Single-Channel Level. Mol Neurobiol 2019; 57:422-434. [PMID: 31376069 DOI: 10.1007/s12035-019-01705-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2019] [Accepted: 07/10/2019] [Indexed: 01/14/2023]
Abstract
Calcium ion dyshomeostasis contributes to the progression of many neurodegenerative diseases and represents a target for the development of neuroprotective therapies, as reported by Duncan et al. (Molecules 15(3):1168-95, 2010), LaFerla (Nat Rev Neurosci 3(11):862-72, 2002), and Niittykoshi et al. (Invest Ophthalmol Vis Sci 51(12):6387-93, 2010). Dysfunctional ryanodine receptors contribute to calcium ion dyshomeostasis and potentially to the pathogenesis of neurodegenerative diseases by generating abnormal calcium ion release from the endoplasmic reticulum, according to Bruno et al. (Neurobiol Aging 33(5):1001 e1-6, 2012) and Stutzmann et al. (J Neurosci 24(2):508-13, 2004). Since ryanodine receptors share functional and structural similarities with potassium channels, as reported by Lanner et al. (Cold Spring Harb Perspect Biol 2(11):a003996, 2010), and small molecules with anti-oxidant properties, such as resveratrol (3,5,4'-trihydroxy-trans-stilbene), directly control the activity of potassium channels, according to Wang et al. (J Biomed Sci 23(1):47, 2016), McCalley et al. (Molecules 19(6):7327-40, 2014), Novakovic et al. (Mol Hum Reprod 21(6):545-51, 2015), Li et al. (Cardiovasc Res 45(4):1035-45, 2000), Gopalakrishnan et al. (Br J Pharmacol 129(7):1323-32, 2000), and Hambrock et al. (J Biol Chem 282(5):3347-56, 2007), we hypothesized that trans-resveratrol can modulate intracellular calcium signaling through direct binding and functional regulation of ryanodine receptors. The goal of our study was to identify and measure the control of ryanodine receptor activity by trans-resveratrol. Mechanisms of calcium signaling mediated by the direct interaction between trans-resveratrol and ryanodine receptors were identified and measured with single-channel electrophysiology. Addition of trans-resveratrol to the cytoplasmic face of the ryanodine receptor increased single-channel activity at physiological and elevated pathophysiological cytoplasmic calcium ion concentrations. The open probability of the channel increases after interacting with the small molecule in a dose-dependent manner, but remains also dependent on the concentration of its physiological ligand, cytoplasmic-free calcium ions. This study provides the first evidence of a direct functional interaction between trans-resveratrol and ryanodine receptors. Such functional control of ryanodine receptors by trans-resveratrol as a novel mechanism of action could provide additional rationales for the development of novel therapeutic strategies to treat and prevent neurodegenerative diseases.
Collapse
|
148
|
Arai M, Imamura O, Kondoh N, Dateki M, Takishima K. Neuronal Ca2+‐dependent activator protein 1 (NCDAP1) induces neuronal cell death by activating p53 pathway following traumatic brain injury. J Neurochem 2019; 151:795-809. [DOI: 10.1111/jnc.14803] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2019] [Revised: 06/15/2019] [Accepted: 06/18/2019] [Indexed: 11/28/2022]
Affiliation(s)
- Masaaki Arai
- Department of Biochemistry National Defense Medical College Tokorozawa Japan
| | - Osamu Imamura
- Department of Biochemistry National Defense Medical College Tokorozawa Japan
| | - Nobuo Kondoh
- Department of Oral Biochemistry Asahi University School of Dentistry Mizuho Japan
| | - Minori Dateki
- Department of Biochemistry National Defense Medical College Tokorozawa Japan
| | - Kunio Takishima
- Department of Biochemistry National Defense Medical College Tokorozawa Japan
| |
Collapse
|
149
|
González N, Arcos-López T, König A, Quintanar L, Menacho Márquez M, Outeiro TF, Fernández CO. Effects of alpha-synuclein post-translational modifications on metal binding. J Neurochem 2019; 150:507-521. [PMID: 31099098 DOI: 10.1111/jnc.14721] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 04/11/2019] [Accepted: 05/13/2019] [Indexed: 12/19/2022]
Abstract
Parkinson's disease is the second most common neurodegenerative disorder worldwide. Neurodegeneration in this pathology is characterized by the loss of dopaminergic neurons in the substantia nigra, coupled with cytoplasmic inclusions known as Lewy bodies containing α-synuclein. The brain is an organ that concentrates metal ions, and there is emerging evidence that a break-down in metal homeostasis may be a critical factor in a variety of neurodegenerative diseases. α-synuclein has emerged as an important metal-binding protein in the brain, whereas these interactions play an important role in its aggregation and might represent a link between protein aggregation, oxidative damage, and neuronal cell loss. Additionally, α-synuclein undergoes several post-translational modifications that regulate its structure and physiological function, and may be linked to the aggregation and/or oligomer formation. This review is focused on the interaction of this protein with physiologically relevant metal ions, highlighting the cases where metal-AS interactions profile as key modulators for its structural, aggregation, and membrane-binding properties. The impact of α-synuclein phosphorylation and N-terminal acetylation in the metal-binding properties of the protein are also discussed, underscoring a potential interplay between PTMs and metal ion binding in regulating α-synuclein physiological functions and its role in pathology. This article is part of the Special Issue "Synuclein".
Collapse
Affiliation(s)
- Nazareno González
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Trinidad Arcos-López
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Annekatrin König
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany
| | - Liliana Quintanar
- Department of Chemistry, Center for Research and Advanced Studies (Cinvestav), Mexico City, Mexico
| | - Mauricio Menacho Márquez
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Rosario, Argentina
| | - Tiago F Outeiro
- Department of Experimental Neurodegeneration, Center for Biostructural Imaging of Neurodegeneration, University Medical Center Göttingen, University of Göttingen, Göttingen, Germany.,Max Planck Institute for Experimental Medicine, Göttingen, Germany.,Institute of Neuroscience, The Medical School, Newcastle University, Framlington Place, Newcastle Upon Tyne, UK
| | - Claudio O Fernández
- Max Planck Laboratory for Structural Biology, Chemistry and Molecular Biophysics of Rosario (MPLbioR, UNR-MPIbpC), Instituto de Investigaciones para el Descubrimiento de Fármacos de Rosario (IIDEFAR, UNR-CONICET), Universidad Nacional de Rosario, Rosario, Argentina.,Department of NMR-based Structural Biology, Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
150
|
Masi A, Narducci R, Mannaioni G. Harnessing ionic mechanisms to achieve disease modification in neurodegenerative disorders. Pharmacol Res 2019; 147:104343. [PMID: 31279830 DOI: 10.1016/j.phrs.2019.104343] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/08/2019] [Revised: 06/19/2019] [Accepted: 07/03/2019] [Indexed: 12/12/2022]
Abstract
Progressive neuronal death is the key pathogenic event leading to clinical symptoms in neurodegenerative disorders (NDDs). Neuroprotective treatments are virtually unavailable, partly because of the marked internal heterogeneity of the mechanisms underlying pathology. Targeted neuroprotection would require deep mechanistic knowledge across the entire aetiological spectrum of each NDD and the development of tailored treatments. Although ideal, this strategy appears challenging, as it would require a degree of characterization of both the disease and the patient that is currently unavailable. The alternate strategy is to search for commonalities across molecularly distinct NDD forms and exploit these for the development of drugs with broad-spectrum efficacy. In this view, mounting evidence points to ionic mechanisms (IMs) as targets with potential therapeutic efficacy across distinct NDD subtypes. The scope of this review is to present clinical and preclinical evidence supporting the link between disruption of IMs and neuronal death in specific NDDs and to critically revise past and ongoing attempts of harnessing IMs for the development of neuroprotective treatments.
Collapse
Affiliation(s)
- A Masi
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy; School of Pharmacy, University of Camerino, Camerino, Italy.
| | - R Narducci
- Italian Institute of Technology (IIT), Department of Neuroscience and Brain Technologies, Genova, Italy
| | - G Mannaioni
- Department of Neuroscience, Psychology, Drug Research and Child Health (NEUROFARBA), Section of Pharmacology and Toxicology, University of Florence, Florence, Italy; Toxicology Unit, Azienda Ospedaliero-Universitaria Careggi, Florence, Italy
| |
Collapse
|