101
|
Igawa Y, Michel MC. Pharmacological profile of β3-adrenoceptor agonists in clinical development for the treatment of overactive bladder syndrome. Naunyn Schmiedebergs Arch Pharmacol 2012; 386:177-83. [PMID: 23263450 DOI: 10.1007/s00210-012-0824-1] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2012] [Accepted: 12/06/2012] [Indexed: 12/28/2022]
Abstract
β(3)-Adrenoceptor agonists are an emerging drug class for the treatment of the overactive bladder syndrome, and clinical proof-of-concept data have been obtained for three representatives of this class, mirabegron, ritobegron, and solabegron. We review here the pharmacological profile of these three drugs and discuss the potential clinical relevance of differences between them. In the absence of direct comparative studies, it appears that all three are strong agonists selective for β(3)- vs. β(1)- and β(2)-adrenoceptors in studies with cloned receptor subtypes. The potency of these agonists may be species-dependent, with all three having high potency in the human detrusor. All three agonists were effective in one or more animal models of bladder dysfunction, which typically involved reductions of micturition frequency. Agonist doses effective for bladder function lowered blood pressure in some cases, but the relevance of this for clinical use is difficult to determine due to species differences in the importance of cardiovascular β(3)-adrenoceptors. While limited effects on other organ systems are expected for β(3)-adrenoceptor agonists, this requires further investigation.
Collapse
|
102
|
Paul RK, Ramamoorthy A, Scheers J, Wersto RP, Toll L, Jimenez L, Bernier M, Wainer IW. Cannabinoid receptor activation correlates with the proapoptotic action of the β2-adrenergic agonist (R,R')-4-methoxy-1-naphthylfenoterol in HepG2 hepatocarcinoma cells. J Pharmacol Exp Ther 2012; 343:157-66. [PMID: 22776956 PMCID: PMC3464034 DOI: 10.1124/jpet.112.195206] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 07/06/2012] [Indexed: 12/17/2022] Open
Abstract
Inhibition of cell proliferation by fenoterol and fenoterol derivatives in 1321N1 astrocytoma cells is consistent with β(2)-adrenergic receptor (β(2)-AR) stimulation. However, the events that result in fenoterol-mediated control of cell proliferation in other cell types are not clear. Here, we compare the effect of the β(2)-AR agonists (R,R')-fenoterol (Fen) and (R,R')-4-methoxy-1-naphthylfenoterol (MNF) on signaling and cell proliferation in HepG2 hepatocarcinoma cells by using Western blotting and [(3)H]thymidine incorporation assays. Despite the expression of β(2)-AR, no cAMP accumulation was observed when cells were stimulated with isoproterenol or Fen, although the treatment elicited both mitogen-activated protein kinase and phosphatidylinositol 3-kinase/Akt activation. Unexpectedly, isoproterenol and Fen promoted HepG2 cell growth, but MNF reduced proliferation together with increased apoptosis. The mitogenic responses of Fen were attenuated by 3-(isopropylamino)-1-[(7-methyl-4-indanyl)oxy]butan-2-ol (ICI 118,551), a β(2)-AR antagonist, whereas those of MNF were unaffected. Because of the coexpression of β(2)-AR and cannabinoid receptors (CBRs) and their impact on HepG2 cell proliferation, these Gα(i)/Gα(o)-linked receptors may be implicated in MNF signaling. Cell treatment with (R)-(+)-[2,3-dihydro-5-methyl-3-(4-morpholinylmethyl)pyrrolo[1,2,3-de]-1,4-benzoxazin-6-yl]-1-napthalenylmethanone (WIN 55,212-2), a synthetic agonist of CB(1)R and CB(2)R, led to growth inhibition, whereas inverse agonists of these receptors blocked MNF mitogenic responses without affecting Fen signaling. MNF responses were sensitive to pertussis toxin. The β(2)-AR-deficient U87MG cells were refractory to Fen, but responsive to the antiproliferative actions of MNF and WIN 55,212-2. The data indicate that the presence of the naphthyl moiety in MNF results in functional coupling to the CBR pathway, providing one of the first examples of a dually acting β(2)-AR-CBR ligand.
Collapse
Affiliation(s)
- Rajib K Paul
- Laboratory of Clinical Investigation, National Institute on Aging, National Institutes of Health, Baltimore, MD 21224-6825, USA
| | | | | | | | | | | | | | | |
Collapse
|
103
|
Wu Y, Tapia PH, Fisher GW, Simons PC, Strouse JJ, Foutz T, Waggoner AS, Jarvik J, Sklar LA. Discovery of regulators of receptor internalization with high-throughput flow cytometry. Mol Pharmacol 2012; 82:645-57. [PMID: 22767611 PMCID: PMC3463215 DOI: 10.1124/mol.112.079897] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 07/05/2012] [Indexed: 11/22/2022] Open
Abstract
We developed a platform combining fluorogen-activating protein (FAP) technology with high-throughput flow cytometry to detect real-time protein trafficking to and from the plasma membrane in living cells. The hybrid platform facilitates drug discovery for trafficking receptors such as G protein-coupled receptors and was validated with the β₂-adrenergic receptor (β₂AR) system. When a chemical library containing ∼1200 off-patent drugs was screened against cells expressing FAP-tagged β₂ARs, all 33 known β₂AR-active ligands in the library were successfully identified, together with a number of compounds that might regulate receptor internalization in a nontraditional manner. Results indicated that the platform identified ligands of target proteins regardless of the associated signaling pathway; therefore, this approach presents opportunities to search for biased receptor modulators and is suitable for screening of multiplexed targets for improved efficiency. The results revealed that ligands may be biased with respect to the rate or duration of receptor internalization and that receptor internalization may be independent of activation of the mitogen-activated protein kinase pathway.
Collapse
Affiliation(s)
- Yang Wu
- Department of Pathology, School of Medicine, University of New Mexico, MSC08 4640, 700 Camino de Salud NE, IDTC Rm 2340, Albuquerque, NM 87131, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
104
|
Billington CK, Hall IP. Novel cAMP signalling paradigms: therapeutic implications for airway disease. Br J Pharmacol 2012; 166:401-10. [PMID: 22013890 DOI: 10.1111/j.1476-5381.2011.01719.x] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
Since its discovery over 50 years ago, cAMP has been the archetypal second messenger introducing students to the concept of cell signalling at the simplest level. As explored in this review, however, there are many more facets to cAMP signalling than the path from Gs-coupled receptor to adenylyl cyclase (AC) to cAMP to PKA to biological effect. After a brief description of this canonical cAMP signalling pathway, a snapshot is provided of the novel paradigms of cAMP signalling. As in the airway the cAMP pathway relays the major bronchorelaxant signal and as such is the target for frontline therapy for asthma and COPD, particular emphasis is given to airway disease and therapy. Areas discussed include biased agonism, continued signalling following internalization, modulation of cAMP by AC, control of cAMP degradation, cAMP and calcium crosstalk, Epac-mediated signalling and finally the implications of altered genotypes will be considered. LINKED ARTICLES This article is part of a themed section on Novel cAMP Signalling Paradigms. To view the other articles in this section visit http://dx.doi.org/10.1111/bph.2012.166.issue-2.
Collapse
Affiliation(s)
- Charlotte K Billington
- Division of Therapeutics and Molecular Medicine, Nottingham Respiratory Biomedical Research Unit, The University of Nottingham, Nottingham, UK.
| | | |
Collapse
|
105
|
Palea S, Rekik M, Rouget C, Camparo P, Botto H, Rischmann P, Lluel P, Westfall TD. Fenoterol functionally activates the β₃-adrenoceptor in human urinary bladder, comparison with rat and mouse: implications for drug discovery. Eur J Pharmacol 2012; 690:202-6. [PMID: 22760074 DOI: 10.1016/j.ejphar.2012.06.036] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2012] [Revised: 06/19/2012] [Accepted: 06/20/2012] [Indexed: 11/19/2022]
Abstract
Fenoterol has been reported to be a potent and selective β(2)-adrenoceptor agonist and is currently used clinically to treat asthma. Electrical field stimulation (EFS) of isolated urinary bladder mimics the voiding contraction by stimulating parasympathetic nerves, resulting in neurogenic contractions. To determine if stimulation of β(2)-adrenoceptors can inhibit this response, fenoterol was tested against EFS-induced contractions in human isolated urinary bladder and compared with mouse and rat. Bladder strips were mounted in organ baths and reproducible contractions induced by EFS. Fenoterol was added cumulatively in the presence of the β(2)-adrenoceptor antagonist ICI118551 or the β(3)-adrenoceptor antagonist L-748337. Fenoterol inhibited neurogenic contractions in all three species in a concentration-dependent manner with pEC(50) values of 6.66 ± 0.11, 6.86 ± 0.06 and 5.71 ± 0.1 in human, mouse and rat respectively. In human bladder strips ICI118551 (100 nM) did not affect responses to fenoterol, while L-748337 (0.3-3 μM) produced rightward shifts of the concentration-response curves with a pA(2) value of 8.10. In mouse bladder strips ICI118551 (30 nM) blocked the inhibitory effect of fenoterol (pA(2)=8.80), while L-748337 (10 μM) inhibited the response with a pA(2) of 5.79. In rat bladder ICI118551 (30 nM) was without effect, while L-748,337 (10 μM) inhibited the response to fenoterol with a pA(2) of 5.40. From these results it is clear that fenoterol potently activates β(3)-adrenoceptors in human isolated urinary bladder to inhibit EFS-induced contractions. Fenoterol also activates β(3)-adrenoceptors in rat, but β(2)-adrenoceptors in mouse bladder to inhibit EFS-induced contractions.
Collapse
Affiliation(s)
- Stefano Palea
- UROsphere, Faculté des Sciences Pharmaceutiques, 35, Chemin des Maraîchers Toulouse Cedex 09, 31062 Toulouse, France
| | | | | | | | | | | | | | | |
Collapse
|
106
|
Paur H, Wright PT, Sikkel MB, Tranter MH, Mansfield C, O'Gara P, Stuckey DJ, Nikolaev VO, Diakonov I, Pannell L, Gong H, Sun H, Peters NS, Petrou M, Zheng Z, Gorelik J, Lyon AR, Harding SE. High levels of circulating epinephrine trigger apical cardiodepression in a β2-adrenergic receptor/Gi-dependent manner: a new model of Takotsubo cardiomyopathy. Circulation 2012; 126:697-706. [PMID: 22732314 DOI: 10.1161/circulationaha.112.111591] [Citation(s) in RCA: 589] [Impact Index Per Article: 45.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
BACKGROUND Takotsubo cardiomyopathy is an acute heart failure syndrome characterized by myocardial hypocontractility from the mid left ventricle to the apex. It is precipitated by extreme stress and can be triggered by intravenous catecholamine administration, particularly epinephrine. Despite its grave presentation, Takotsubo cardiomyopathy is rapidly reversible, with generally good prognosis. We hypothesized that this represents switching of epinephrine signaling through the pleiotropic β(2)-adrenergic receptor (β(2)AR) from canonical stimulatory G-protein-activated cardiostimulant to inhibitory G-protein-activated cardiodepressant pathways. METHODS AND RESULTS We describe an in vivo rat model in which a high intravenous epinephrine, but not norepinephrine, bolus produces the characteristic reversible apical depression of myocardial contraction coupled with basal hypercontractility. The effect is prevented via G(i) inactivation by pertussis toxin pretreatment. β(2)AR number and functional responses were greater in isolated apical cardiomyocytes than in basal cardiomyocytes, which confirmed the higher apical sensitivity and response to circulating epinephrine. In vitro studies demonstrated high-dose epinephrine can induce direct cardiomyocyte cardiodepression and cardioprotection in a β(2)AR-Gi-dependent manner. Preventing epinephrine-G(i) effects increased mortality in the Takotsubo model, whereas β-blockers that activate β(2)AR-G(i) exacerbated the epinephrine-dependent negative inotropic effects without further deaths. In contrast, levosimendan rescued the acute cardiac dysfunction without increased mortality. CONCLUSIONS We suggest that biased agonism of epinephrine for β(2)AR-G(s) at low concentrations and for G(i) at high concentrations underpins the acute apical cardiodepression observed in Takotsubo cardiomyopathy, with an apical-basal gradient in β(2)ARs explaining the differential regional responses. We suggest this epinephrine-specific β(2)AR-G(i) signaling may have evolved as a cardioprotective strategy to limit catecholamine-induced myocardial toxicity during acute stress.
Collapse
Affiliation(s)
- Helen Paur
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| | - Peter T Wright
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| | - Markus B Sikkel
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| | - Matthew H Tranter
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| | - Catherine Mansfield
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| | - Peter O'Gara
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| | - Daniel J Stuckey
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| | - Viacheslav O Nikolaev
- Emmy Noether Group of the DFG, Dept of Cardiology and Pneumology, Georg August Univ medical Ctr, Göttingn Germany
| | - Ivan Diakonov
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| | - Laura Pannell
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| | | | - Hong Sun
- Physiology Dept, Xuzhou Medical College, Xuzhou, China
| | - Nicholas S Peters
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| | - Mario Petrou
- Cardiovasular Biomedical Rsrch Unit, Royal Brompton Hosp, London, United Kingdom
| | | | - Julia Gorelik
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| | - Alexander R Lyon
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom.,Cardiovasular Biomedical Rsrch Unit, Royal Brompton Hosp, London, United Kingdom
| | - Sian E Harding
- Myocardial Function Section, National Heart and Lung Inst, Imperial College London, London, United kingdom
| |
Collapse
|
107
|
|
108
|
Takeda Y, Yano Y, Matsuzaki K. High-throughput analysis of ligand-induced internalization of β2-adrenoceptors using the coiled-coil tag-probe method. Anal Chem 2012; 84:1754-9. [PMID: 22243418 DOI: 10.1021/ac203231n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Receptor internalization is a useful indicator of the activity of ligands. The N-terminus of the β(2)-adrenergic receptor expressed on the cell surface was labeled with fluorophores using a novel coiled-coil labeling system. Endocytosis of the receptors was automatically detected using a fluorescence image analyzer by evaluating (1) translocation of the receptor from cell-surface to intracellular regions and (2) acidification in endosomes. Both parameters increased upon agonist stimulation in a dose-dependent manner. The extent of endocytosis was significantly dependent on the agonist used, indicating the presence of a biased signaling for endocytosis. The receptor antagonists can also be screened by competitive inhibition of agonist-induced endocytosis. The image analysis approach has proven to be useful for high-throughput characterization and screening of GPCR ligands.
Collapse
Affiliation(s)
- Yuki Takeda
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
109
|
Gray NE, Lam LN, Yang K, Zhou AY, Koliwad S, Wang JC. Angiopoietin-like 4 (Angptl4) protein is a physiological mediator of intracellular lipolysis in murine adipocytes. J Biol Chem 2012; 287:8444-56. [PMID: 22267746 DOI: 10.1074/jbc.m111.294124] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Intracellular triacylglycerol (TG) hydrolysis and fatty acid release by the white adipose tissue (WAT) during a fast is stimulated by counter-regulatory factors acting in concert, although how adipocytes integrate these lipolytic inputs is unknown. We tested the role of angiopoietin-like 4 (Angptl4), a secreted protein induced by fasting or glucocorticoid treatment, in modulating intracellular adipocyte lipolysis. Glucocorticoid receptor blockade prevented fasting-induced tissue Angptl4 expression and WAT TG hydrolysis in mice, and TG hydrolysis induced by fasts of 6 or 24 h was greatly reduced in mice lacking Angptl4 (Angptl4(-/-)). Glucocorticoid treatment mimicked the lipolytic effects of fasting, although with slower kinetics, and this too required Angptl4. Thus, fasting-induced WAT TG hydrolysis requires glucocorticoid action and Angptl4. Both fasting and glucocorticoid treatment also increased WAT cAMP levels and downstream phosphorylation of lipolytic enzymes. Angptl4 deficiency markedly reduced these effects, suggesting that Angptl4 may stimulate lipolysis by modulating cAMP-dependent signaling. In support of this, cAMP levels and TG hydrolysis were reduced in primary Angptl4(-/-) murine adipocytes treated with catecholamines, which stimulate cAMP-dependent signaling to promote lipolysis, and was restored by treatment with purified human ANGPTL4. Remarkably, human ANGPTL4 treatment alone increased cAMP levels and induced lipolysis in these cells. Pharmacologic agents revealed that Angptl4 modulation of cAMP-dependent signaling occurs upstream of adenylate cyclase and downstream of receptor activation. We show that Angptl4 is a glucocorticoid-responsive mediator of fasting-induced intracellular lipolysis and stimulates cAMP signaling in adipocytes. Such a role is relevant to diseases of aberrant lipolysis, such as insulin resistance.
Collapse
Affiliation(s)
- Nora E Gray
- Department of Nutritional Science and Toxicology, University of California, Berkeley, California 94720-3104, USA
| | | | | | | | | | | |
Collapse
|
110
|
Third-generation long-acting β₂-adrenoceptor agonists: medicinal chemistry strategies employed in the identification of once-daily inhaled β₂-adrenoceptor agonists. Future Med Chem 2012; 3:1607-22. [PMID: 21942251 DOI: 10.4155/fmc.11.116] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Inhaled long-acting β(2)-adrenoceptor agonists (LABAs) are highly effective bronchodilators in the treatment of asthma and chronic obstructive pulmonary disease. There is significant interest in the development of third-generation compounds that improve upon the marketed twice-daily LABAs salmeterol and formoterol. A principal advantage sought from the next generation is duration of action that supports once-daily dosing, although improved efficacy, faster onset, and increased therapeutic index are also frequently cited as objectives. Recent publications detailing medicinal chemistry programs directed at the discovery of third-generation LABAs illustrate a wide variety of strategies that have been successfully employed towards these goals. Some recent scientific advances in the understanding of inhaled bronchodilators are discussed and the reported medicinal chemistry strategies are reviewed in the context of these advances.
Collapse
|
111
|
Abstract
The Monod-Wyman-Changeux (MWC) model was conceived in 1965 to account for the signal transduction and cooperative properties of bacterial regulatory enzymes and hemoglobin. It was soon extended to pharmacological receptors for neurotransmitters and other macromolecular entities involved in intracellular and intercellular communications. Five decades later, the two main hypotheses of the model are reexamined on the basis of a variety of regulatory proteins with known X-ray structures: (a) Regulatory proteins possess an oligomeric structure with symmetry properties, and (b) the allosteric interactions between topographically distinct sites are mediated by a conformational transition established between a few preestablished states with conservation of symmetry and ligand-directed conformational selection. Several well-documented examples are adequately represented by the MWC model, yet a few possible exceptions are noted. New questions are raised concerning the dynamics of the allosteric transitions and more complex supramolecular ensembles.
Collapse
Affiliation(s)
- Jean-Pierre Changeux
- Collège de France & Institut Pasteur, URA CNRS 2182, Paris Cedex 15 75724, France.
| |
Collapse
|
112
|
Divergent agonist selectivity in activating β1- and β2-adrenoceptors for G-protein and arrestin coupling. Biochem J 2011; 438:191-202. [PMID: 21561432 DOI: 10.1042/bj20110374] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
The functional selectivity of adrenergic ligands for activation of β1- and β2-AR (adrenoceptor) subtypes has been extensively studied in cAMP signalling. Much less is known about ligand selectivity for arrestin-mediated signalling pathways. In the present study we used resonance energy transfer methods to compare the ability of β1- and β2-ARs to form a complex with the G-protein β-subunit or β-arrestin-2 in response to a variety of agonists with various degrees of efficacy. The profiles of β1-/β2-AR selectivity of the ligands for the two receptor-transducer interactions were sharply different. For G-protein coupling, the majority of ligands were more effective in activating the β2-AR, whereas for arrestin coupling the relationship was reversed. These data indicate that the β1-AR interacts more efficiently than β2-AR with arrestin, but less efficiently than β2-AR with G-protein. A group of ligands exhibited β1-AR-selective efficacy in driving the coupling to arrestin. Dobutamine, a member of this group, had 70% of the adrenaline (epinephrine) effect on arrestin via β1-AR, but acted as a competitive antagonist of adrenaline via β2-AR. Thus the structure of such ligands appears to induce an arrestin-interacting form of the receptor only when bound to the β1-AR subtype.
Collapse
|
113
|
Vaniotis G, Allen BG, Hébert TE. Nuclear GPCRs in cardiomyocytes: an insider's view of β-adrenergic receptor signaling. Am J Physiol Heart Circ Physiol 2011; 301:H1754-64. [PMID: 21890692 DOI: 10.1152/ajpheart.00657.2011] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/11/2023]
Abstract
In recent years, we have come to appreciate the complexity of G protein-coupled receptor signaling in general and β-adrenergic receptor (β-AR) signaling in particular. Starting originally from three β-AR subtypes expressed in cardiomyocytes with relatively simple, linear signaling cascades, it is now clear that there are large receptor-based networks which provide a rich and diverse set of responses depending on their complement of signaling partners and the physiological state. More recently, it has become clear that subcellular localization of these signaling complexes also enriches the diversity of phenotypic outcomes. Here, we review our understanding of the signaling repertoire controlled by nuclear β-AR subtypes as well our understanding of the novel roles for G proteins themselves in the nucleus, with a special focus, where possible, on their effects in cardiomyocytes. Finally, we discuss the potential pathological implications of alterations in nuclear β-AR signaling.
Collapse
|
114
|
Changeux JP, Edelstein S. Conformational selection or induced fit? 50 years of debate resolved. F1000 BIOLOGY REPORTS 2011; 3:19. [PMID: 21941598 PMCID: PMC3169905 DOI: 10.3410/b3-19] [Citation(s) in RCA: 188] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Exactly 50 years ago, biochemists raised the question of the mechanism of the conformational change that mediates “allosteric” interactions between regulatory sites and biologically active sites in regulatory/receptor proteins. Do the different conformations involved already exist spontaneously in the absence of the regulatory ligands (Monod-Wyman-Changeux), such that the complementary protein conformation would be selected to mediate signal transduction, or do particular ligands induce the receptor to adopt the conformation best suited to them (Koshland-Nemethy-Filmer—induced fit)? This is not just a central question for biophysics, it also has enormous importance for drug design. Recent advances in techniques have allowed detailed experimental and theoretical comparisons with the formal models of both scenarios. Also, it has been shown that mutated receptors can adopt constitutively active confirmations in the absence of ligand. There have also been demonstrations that the atomic resolution structures of the same protein are essentially the same whether ligand is bound or not. These and other advances in past decades have produced a situation where the vast majority of the data using different categories of regulatory proteins (including regulatory enzymes, ligand-gated ion channels, G protein-coupled receptors, and nuclear receptors) support the conformational selection scheme of signal transduction.
Collapse
Affiliation(s)
- Jean-Pierre Changeux
- Collège de France and Institut PasteurCNRS URA 2182, 25 rue du Dr Roux, 75015 ParisFrance
| | - Stuart Edelstein
- European Bioinformatics Institute and University of GenevaWellcome Trust Genome Campus, Hinxton, CB10 1SDUK
| |
Collapse
|
115
|
Walker JKL, Penn RB, Hanania NA, Dickey BF, Bond RA. New perspectives regarding β(2) -adrenoceptor ligands in the treatment of asthma. Br J Pharmacol 2011; 163:18-28. [PMID: 21175591 DOI: 10.1111/j.1476-5381.2010.01178.x] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
In the last two decades several significant changes have been proposed in the receptor theory that describes how ligands can interact with G protein-coupled receptors (GPCRs). Here we briefly summarize the evolution of receptor theory and detail recent prominent advances. These include: (i) the existence of spontaneously active GPCRs that are capable of signalling even though they are unoccupied by any ligand; (ii) the discovery of ligands that can inactivate these spontaneously active receptors; (iii) the notion that a ligand may simultaneously activate more than one GPCR signalling pathway; and (iv) the notion that certain ligands may be able to preferentially direct receptor signalling to a specific pathway. Because the data supporting these receptor theory ideas are derived primarily from studies using artificial expression systems, the physiological relevance of these new paradigms remains in question. As a potential example of how these new perspectives in receptor theory relate to drug actions and clinical outcomes, we discuss their relevance to the recent controversy regarding the chronic use of β(2) -adrenoceptor agonists in the treatment of asthma.
Collapse
Affiliation(s)
- J K L Walker
- Department of Medicine, Duke University Medical Center, Durham, NC, USA
| | | | | | | | | |
Collapse
|
116
|
Billington CK, Hall IP. Real time analysis of β(2)-adrenoceptor-mediated signaling kinetics in human primary airway smooth muscle cells reveals both ligand and dose dependent differences. Respir Res 2011; 12:89. [PMID: 21722392 PMCID: PMC3143098 DOI: 10.1186/1465-9921-12-89] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 07/02/2011] [Indexed: 11/23/2022] Open
Abstract
Background β2-adrenoceptor agonists elicit bronchodilator responses by binding to β2-adrenoceptors on airway smooth muscle (ASM). In vivo, the time between drug administration and clinically relevant bronchodilation varies significantly depending on the agonist used. Our aim was to utilise a fluorescent cyclic AMP reporter probe to study the temporal profile of β2-adrenoceptor-mediated signaling induced by isoproterenol and a range of clinically relevant agonists in human primary ASM (hASM) cells by using a modified Epac protein fused to CFP and a variant of YFP. Methods Cells were imaged in real time using a spinning disk confocal system which allowed rapid and direct quantification of emission ratio imaging following direct addition of β2-adrenoceptor agonists (isoproterenol, salbutamol, salmeterol, indacaterol and formoterol) into the extracellular buffer. For pharmacological comparison a radiolabeling assay for whole cell cyclic AMP formation was used. Results Temporal analysis revealed that in hASM cells the β2-adrenoceptor agonists studied did not vary significantly in the onset of initiation. However, once a response was initiated, significant differences were observed in the rate of this response with indacaterol and isoproterenol inducing a significantly faster response than salmeterol. Contrary to expectation, reducing the concentration of isoproterenol resulted in a significantly faster initiation of response. Conclusions We conclude that confocal imaging of the Epac-based probe is a powerful tool to explore β2-adrenoceptor signaling in primary cells. The ability to analyse the kinetics of clinically used β2-adrenoceptor agonists in real time and at a single cell level gives an insight into their possible kinetics once they have reached ASM cells in vivo.
Collapse
Affiliation(s)
- Charlotte K Billington
- Division of Therapeutics and Molecular Medicine, Nottingham Respiratory Biomedical Research Unit, Floor D, South Block, University Hospital of Nottingham, The University of Nottingham, Nottingham, NG7 2UH, UK.
| | | |
Collapse
|
117
|
Petersen M, Andersen JT, Hjelvang BR, Broedbaek K, Afzal S, Nyegaard M, Børglum AD, Stender S, Køber L, Torp-Pedersen C, Poulsen HE. Association of beta-adrenergic receptor polymorphisms and mortality in carvedilol-treated chronic heart-failure patients. Br J Clin Pharmacol 2011; 71:556-65. [PMID: 21395649 DOI: 10.1111/j.1365-2125.2010.03868.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022] Open
Abstract
AIM Pharmacogenetics can be used as a tool for stratified pharmacological therapy in cardiovascular medicine. We investigated whether a predefined combination of the Arg389Gly polymorphism in the adrenergic β(1) -receptor gene (ADRB1) and the Gln27Glu polymorphism in the adrenergic β(2) -receptor gene (ADRB2) could predict survival in carvedilol- and metoprolol-treated chronic heart failure (HF) patients. METHODS Five hundred and eighty-six HF patients (carvedilol n= 82, metoprolol n= 195) were genotyped for ADRB1 Arg389Gly (rs1801253) and ADRB2 Gln27Glu (rs1042714). The end-point was all-cause mortality, and median follow-up time was 6.7 years. Patients were classified into two functional genotype groups: group 1 combination of Arg389-homozygous and Gln27-carrier (46%) and group 2 any other genotype combination (54%). Results were fitted in two multivariate Cox models. RESULTS There was a significant interaction between functional genotype group and carvedilol treatment (adjusted(1) P= 0.033, adjusted(2) P= 0.040). Patients treated with carvedilol had shorter survival in functional genotype group 1 (P= 0.004; adjusted(1) hazard ratio (HR) 2.67, 95% CI 1.27, 5.59, P= 0.010; adjusted(2) HR 2.05, 95% CI 1.06, 3.95, P= 0.033). There was no interaction between genotype group and metoprolol treatment (P= 0.61), and there was no difference in overall survival between genotype groups (P= 0.69). CONCLUSIONS A combination of ADRB1 Arg389-homozygous and ADRB2 Gln27-carrier in HF patients treated with carvedilol was associated with a two-fold increase in mortality relative to all other genotype combinations. There was no difference in survival in metoprolol-treated HF patients between genotype groups. Patients in genotype group 1 may benefit more from metoprolol than carvedilol treatment.
Collapse
Affiliation(s)
- Morten Petersen
- Laboratory of Clinical Pharmacology Q7642, Rigshospitalet, Copenhagen University Hospital, Blegdamsvej 9, DK-2100 Copenhagen, Denmark.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Dietis N, Rowbotham DJ, Lambert DG. Opioid receptor subtypes: fact or artifact? Br J Anaesth 2011; 107:8-18. [PMID: 21613279 DOI: 10.1093/bja/aer115] [Citation(s) in RCA: 110] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
There is a vast amount of pharmacological evidence favouring the existence of multiple subtypes of opioid receptors. In addition to the primary classification of µ (mu: MOP), δ (delta: DOP), κ (kappa: KOP) receptors, and the nociceptin/orphanin FQ peptide receptor (NOP), various groups have further classified the pharmacological µ into µ(1-3), the δ into δ(1-2)/δ(complexed/non-complexed), and the κ into κ(1-3). From an anaesthetic perspective, the suggestions that µ(1) produced analgesia and µ(2) produced respiratory depression are particularly important. However, subsequent to the formal identification of the primary opioid receptors (MOP/DOP/KOP/NOP) by cloning and the use of this information to produce knockout animals, evidence for these additional subtypes is lacking. Indeed, knockout of a single gene (and hence receptor) results in a loss of all function associated with that receptor. In the case of MOP knockout, analgesia and respiratory depression is lost. This suggests that further sub-classification of the primary types is unwise. So how can the wealth of pharmacological data be reconciled with new molecular information? In addition to some simple misclassification (κ(3) is probably NOP), there are several possibilities which include: (i) alternate splicing of a common gene product, (ii) receptor dimerization, (iii) interaction of a common gene product with other receptors/signalling molecules, or (iv) a combination of (i)-(iii). Assigning variations in ligand activity (pharmacological subtypes) to one or more of these molecular suggestions represents an interesting challenge for future opioid research.
Collapse
Affiliation(s)
- N Dietis
- Department of Cardiovascular Sciences (Pharmacology and Therapeutics Group), Division of Anaesthesia, Critical Care and Pain Management, University of Leicester, Leicester Royal Infirmary, Leicester LE1 5WW, UK
| | | | | |
Collapse
|
119
|
Lebon G, Warne T, Edwards PC, Bennett K, Langmead CJ, Leslie AGW, Tate CG. Agonist-bound adenosine A2A receptor structures reveal common features of GPCR activation. Nature 2011; 474:521-5. [PMID: 21593763 PMCID: PMC3146096 DOI: 10.1038/nature10136] [Citation(s) in RCA: 688] [Impact Index Per Article: 49.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Accepted: 04/21/2011] [Indexed: 12/18/2022]
Abstract
Adenosine receptors and β-adrenoceptors are G-protein-coupled receptors (GPCRs) that activate intracellular G proteins on binding the agonists adenosine or noradrenaline, respectively. GPCRs have similar structures consisting of seven transmembrane helices that contain well-conserved sequence motifs, indicating that they are probably activated by a common mechanism. Recent structures of β-adrenoceptors highlight residues in transmembrane region 5 that initially bind specifically to agonists rather than to antagonists, indicating that these residues have an important role in agonist-induced activation of receptors. Here we present two crystal structures of the thermostabilized human adenosine A(2A) receptor (A(2A)R-GL31) bound to its endogenous agonist adenosine and the synthetic agonist NECA. The structures represent an intermediate conformation between the inactive and active states, because they share all the features of GPCRs that are thought to be in a fully activated state, except that the cytoplasmic end of transmembrane helix 6 partially occludes the G-protein-binding site. The adenine substituent of the agonists binds in a similar fashion to the chemically related region of the inverse agonist ZM241385 (ref. 8). Both agonists contain a ribose group, not found in ZM241385, which extends deep into the ligand-binding pocket where it makes polar interactions with conserved residues in H7 (Ser 277(7.42) and His 278(7.43); superscripts refer to Ballesteros-Weinstein numbering) and non-polar interactions with residues in H3. In contrast, the inverse agonist ZM241385 does not interact with any of these residues and comparison with the agonist-bound structures indicates that ZM241385 sterically prevents the conformational change in H5 and therefore it acts as an inverse agonist. Comparison of the agonist-bound structures of A(2A)R with the agonist-bound structures of β-adrenoceptors indicates that the contraction of the ligand-binding pocket caused by the inward motion of helices 3, 5 and 7 may be a common feature in the activation of all GPCRs.
Collapse
Affiliation(s)
- Guillaume Lebon
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | | | | | | | | |
Collapse
|
120
|
Michel MC, Harding SE, Bond RA. Are there functional β₃-adrenoceptors in the human heart? Br J Pharmacol 2011; 162:817-22. [PMID: 20735409 DOI: 10.1111/j.1476-5381.2010.01005.x] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
β₃-Adrenoceptor mRNA is expressed in the human heart, but corresponding receptor protein has not yet consistently been demonstrated. Furthermore, their physiological role remains highly controversial. For example, in human atria these receptors apparently do not promote cAMP formation. Evidence presented in this issue of the BJP suggests that a previously reported β₃-adrenoceptor-mediated stimulation of Ca(2+) channels at room temperature is absent at physiological temperatures, and that β₃-adrenoceptors have no effect on atrial contraction. Drugs classified as β₃-adrenoceptor agonists cause contraction in human atria but in most cases this involves β₁- and/or β₂-adrenoceptors. In contrast, in human ventricles β₃-adrenoceptor agonists can exhibit negative inotropic effects, potentially involving Pertussis toxin-sensitive G-proteins and activation of a NO synthase. However, firmer pharmacological evidence is required that these effects indeed occur via β₃-adrenoceptors. Whether the expected future use of β₃-adrenoceptor agonists in the treatment of urinary bladder dysfunction is associated with adverse events related to cardiac function remains to be determined from clinical studies.
Collapse
Affiliation(s)
- Martin C Michel
- Department of Pharmacology & Pharmacotherapy, University of Amsterdam, Amsterdam, The Netherlands.
| | | | | |
Collapse
|
121
|
Affiliation(s)
- Jonathan R. S. Arch
- Clore Laboratory, University of Buckingham, Hunter Street, Buckingham MK18 1EG, UK
| |
Collapse
|
122
|
Baker JG, Hill SJ, Summers RJ. Evolution of β-blockers: from anti-anginal drugs to ligand-directed signalling. Trends Pharmacol Sci 2011; 32:227-34. [PMID: 21429598 PMCID: PMC3081074 DOI: 10.1016/j.tips.2011.02.010] [Citation(s) in RCA: 87] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2011] [Revised: 02/16/2011] [Accepted: 02/16/2011] [Indexed: 01/14/2023]
Abstract
Sir James Black developed β-blockers, one of the most useful groups of drugs in use today. Not only are they being used for their original purpose to treat angina and cardiac arrhythmias, but they are also effective therapeutics for hypertension, cardiac failure, glaucoma, migraine and anxiety. Recent studies suggest that they might also prove useful in diseases as diverse as osteoporosis, cancer and malaria. They have also provided some of the most useful tools for pharmacological research that have underpinned the development of concepts such as receptor subtype selectivity, agonism and inverse agonism, and ligand-directed signalling bias. This article examines how β-blockers have evolved and indicates how they might be used in the future.
Collapse
Affiliation(s)
- Jillian G. Baker
- Institute of Cell Signalling, School of Biomedical Sciences, Medical School, Queen's Medical Centre, Nottingham, UK
| | - Stephen J. Hill
- Institute of Cell Signalling, School of Biomedical Sciences, Medical School, Queen's Medical Centre, Nottingham, UK
| | - Roger J. Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, 399, Royal Parade, Parkville, Vic 3052, Australia
| |
Collapse
|
123
|
Newman-Tancredi A. Biased agonism at serotonin 5-HT1A receptors: preferential postsynaptic activity for improved therapy of CNS disorders. ACTA ACUST UNITED AC 2011. [DOI: 10.2217/npy.11.12] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
124
|
Desirable properties of β3-adrenoceptor agonists: implications for the selection of drug development candidates. Eur J Pharmacol 2011; 657:1-3. [PMID: 21315709 DOI: 10.1016/j.ejphar.2011.01.061] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2010] [Revised: 12/21/2010] [Accepted: 01/17/2011] [Indexed: 12/20/2022]
Abstract
β3-adrenoceptor agonists are currently in clinical development for the treatment of overactive bladder and considered for several other indications. This Perspective discusses desirable properties of such drugs mainly based on the example of overactive bladder, but at least partly they should also be applicable to other indications of β(3)-adrenoceptor agonists or other drug classes and therapeutic areas. These include degree of selectivity for the molecular target in terms of affinity, intrinsic efficacy and ligand-directed signaling. The ability to cause agonist-induced desensitization and the potential impact of gene polymorphisms also need to be considered. Depending on intended indication, specific pharmacokinetic considerations may also apply. These findings challenge the usefulness of high-throughput screening assays based upon a single molecular response in an artificial system and emphasize the need for early use of in vivo testing in species considered to be predictive for the human situation.
Collapse
|
125
|
Evans BA, Broxton N, Merlin J, Sato M, Hutchinson DS, Christopoulos A, Summers RJ. Quantification of functional selectivity at the human α(1A)-adrenoceptor. Mol Pharmacol 2011; 79:298-307. [PMID: 20978120 DOI: 10.1124/mol.110.067454] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
Although G protein-coupled receptors are often categorized in terms of their primary coupling to a given type of Gα protein subunit, it is now well established that many show promiscuous coupling and activate multiple signaling pathways. Furthermore, some agonists selectively activate signaling pathways by promoting interaction between distinct receptor conformational states and particular Gα subunits or alternative signaling proteins. We have tested the capacity of agonists to stimulate Ca(2+) release, cAMP accumulation, and changes in extracellular acidification rate (ECAR) at the human α(1A)-adrenoceptor. Signaling bias factors were determined by novel application of an operational model of agonism and compared with the reference endogenous agonist norepinephrine; values significantly different from 1.0 indicated an agonist that promoted receptor conformations distinct from that favored by norepinephrine. Oxymetazoline was a full agonist for ECAR and a partial agonist for Ca(2+) release (bias factor 8.2) but failed to stimulate cAMP production. Phenylephrine showed substantial bias toward ECAR versus Ca(2+) release or cAMP accumulation (bias factors 21 and 33, respectively) but did not display bias between Ca(2+) and cAMP pathways. Cirazoline and N-[5-(4,5-dihydro-1H-imidazol-2-yl)-2-hydroxy-5,6,7,8-tetrahydronaphthalen-1-yl]methanesulfonamide (A61603) displayed bias toward cAMP relative to Ca(2+) release (bias factors of 7.4 and 8.6). It is noteworthy that epinephrine, a second endogenous adrenoceptor agonist, did not display bias relative to norepinephrine. Our finding that phenylephrine displayed significant signaling bias, despite being highly similar in structure to epinephrine, indicates that subtle differences in agonist-receptor interaction can affect conformational changes in cytoplasmic domains and thereby modulate the repertoire of effector proteins that are activated.
Collapse
Affiliation(s)
- Bronwyn A Evans
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences and Department of Pharmacology, Monash University, 399 Royal Parade, Parkville, Victoria 3052, Australia
| | | | | | | | | | | | | |
Collapse
|
126
|
Warne T, Moukhametzianov R, Baker JG, Nehmé R, Edwards PC, Leslie AG, Schertler GF, Tate CG. The structural basis for agonist and partial agonist action on a β(1)-adrenergic receptor. Nature 2011; 469:241-4. [PMID: 21228877 PMCID: PMC3023143 DOI: 10.1038/nature09746] [Citation(s) in RCA: 503] [Impact Index Per Article: 35.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 12/09/2010] [Indexed: 12/02/2022]
Abstract
β-adrenergic receptors (βARs) are G-protein-coupled receptors (GPCRs) that activate intracellular G proteins upon binding catecholamine agonist ligands such as adrenaline and noradrenaline. Synthetic ligands have been developed that either activate or inhibit βARs for the treatment of asthma, hypertension or cardiac dysfunction. These ligands are classified as either full agonists, partial agonists or antagonists, depending on whether the cellular response is similar to that of the native ligand, reduced or inhibited, respectively. However, the structural basis for these different ligand efficacies is unknown. Here we present four crystal structures of the thermostabilized turkey (Meleagris gallopavo) β(1)-adrenergic receptor (β(1)AR-m23) bound to the full agonists carmoterol and isoprenaline and the partial agonists salbutamol and dobutamine. In each case, agonist binding induces a 1 Å contraction of the catecholamine-binding pocket relative to the antagonist bound receptor. Full agonists can form hydrogen bonds with two conserved serine residues in transmembrane helix 5 (Ser(5.42) and Ser(5.46)), but partial agonists only interact with Ser(5.42) (superscripts refer to Ballesteros-Weinstein numbering). The structures provide an understanding of the pharmacological differences between different ligand classes, illuminating how GPCRs function and providing a solid foundation for the structure-based design of novel ligands with predictable efficacies.
Collapse
Affiliation(s)
- Tony Warne
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | - Rony Nehmé
- MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK
| | | | | | - Gebhard F.X. Schertler
- Joint corresponding authors: MRC Laboratory of Molecular Biology, Hills Road, Cambridge CB2 0QH, UK, , , Telephone +44-(0)1223-402266, Fax +44-(0)1223-213556
| | | |
Collapse
|
127
|
Michel MC, Ochodnicky P, Summers RJ. Tissue functions mediated by beta(3)-adrenoceptors-findings and challenges. NAUNYN-SCHMIEDEBERG'S ARCHIVES OF PHARMACOLOGY 2010; 382:103-8. [PMID: 20517594 PMCID: PMC2904903 DOI: 10.1007/s00210-010-0529-2] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Accepted: 05/18/2010] [Indexed: 11/26/2022]
Abstract
As β3-adrenoceptor agonists metamorphose from experimental tools into therapeutic drugs, it is vital to obtain a comprehensive picture of the cell and tissue functions mediated by this receptor subtype in humans. Human tissues with proven functions and/or a high expression of β3-adrenoceptors include the urinary bladder, the gall bladder, and other parts of the gastrointestinal tract. While several other β3-adrenoceptor functions have been proposed based on results obtained in animals, their relevance to humans remains uncertain. For instance, β3-adrenoceptors perform an important role in thermogenesis and lipolysis in rodent brown and white adipose tissue, respectively, but their role in humans appears less significant. Moreover, the use of tools such as the agonist BRL 37344 and the antagonist SR59230A to demonstrate functional involvement of β3-adrenoceptors may lead in many cases to misleading conclusions as they can also interact with other β-adrenoceptor subtypes or even non-adrenoceptor targets. In conclusion, we propose that many responses attributed to β3-adrenoceptor stimulation may need re-evaluation in the light of the development of more selective tools. Moreover, findings in experimental animals need to be extended to humans in order to better understand the potential additional indications and side effects of the β3-adrenoceptor agonists that are beginning to enter clinical medicine.
Collapse
Affiliation(s)
- Martin C. Michel
- Department of Pharmacology and Pharmacotherapy, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, Netherlands
| | - Peter Ochodnicky
- Department of Pharmacology and Pharmacotherapy, Academic Medical Center, University of Amsterdam, Meibergdreef 15, 1105 AZ Amsterdam, Netherlands
| | - Roger J. Summers
- Drug Discovery Biology, Monash Institute of Pharmaceutical Sciences, Monash University, 399 Royal Parade, Parkville, 3052 Australia
| |
Collapse
|
128
|
Abstract
G protein-coupled receptors are the largest group of membrane proteins and are the targets for approximately 30% of drugs currently used therapeutically. These 7-transmembrane-spanning proteins continue to provide new opportunities to develop therapeutics based on emerging knowledge of their structure, signalling properties and interactions with other proteins. This themed issue of the British Journal of Pharmacology contains a series of papers that cover these issues and identify approaches that may determine future directions. Many of these papers contain material that was presented at the 5th International Molecular Pharmacology of G Protein-Coupled Receptors meeting held in Sydney Australia in late 2008.
Collapse
|
129
|
Dessy C, Balligand JL. Beta3-adrenergic receptors in cardiac and vascular tissues emerging concepts and therapeutic perspectives. ADVANCES IN PHARMACOLOGY (SAN DIEGO, CALIF.) 2010; 59:135-63. [PMID: 20933201 DOI: 10.1016/s1054-3589(10)59005-7] [Citation(s) in RCA: 71] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Catecholamines released by the orthosympathetic system play a major role in the short- and long-term regulation of cardiovascular function. Beta1- and beta2-adrenoreceptors (ARs) have classically been considered as mediating most of their effects on cardiac contraction. After their initial cloning and pharmacologic characterization in the late 1980s, beta3-ARs have been mostly thought of as receptors mediating metabolic effects (e.g., lipolysis) in adipocytes. However, definitive evidence for their expression and functional coupling in cardiovascular tissues (including in humans) has recently initiated a re-examination of their implication in the pathophysiology of cardiovascular diseases. Distinctive pharmacodynamic properties of beta3-AR, e.g., their upregulation in disease and resistance to desensitization, suggest that they may be attractive targets for therapeutic intervention. They may substitute efficient vasodilating pathways when beta1/2-ARs are inoperative. In the heart, their contractile effects, which are functionally antipathetic to those of beta1/2-AR, may protect the myocardium against adverse effects of excessive catecholamine stimulation and perhaps mediate additional ancillary effects on key aspects of electrophysiology or remodeling. Longitudinal studies in animals and patients with different stages of heart failure are now needed to identify the optimal therapeutic scheme using specific combinations of agonists or antagonists at all three beta-ARs.
Collapse
Affiliation(s)
- Chantal Dessy
- Pole of Pharmacology and Therapeutics, Institute of Experimental and Clinical Research, Université catholique de Louvain, Brussels, Belgium
| | | |
Collapse
|