101
|
Malali A, Chaitanya G, Gowda S, Majumdar K. Analysis of cortical rhythms in intracranial EEG by temporal difference operators during epileptic seizures. Biomed Signal Process Control 2016. [DOI: 10.1016/j.bspc.2016.01.002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
102
|
Ferastraoaru V, Schulze-Bonhage A, Lipton RB, Dümpelmann M, Legatt AD, Blumberg J, Haut SR. Termination of seizure clusters is related to the duration of focal seizures. Epilepsia 2016; 57:889-95. [PMID: 27030215 DOI: 10.1111/epi.13375] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/02/2016] [Indexed: 11/27/2022]
Abstract
OBJECTIVE Clustered seizures are characterized by shorter than usual interseizure intervals and pose increased morbidity risk. This study examines the characteristics of seizures that cluster, with special attention to the final seizure in a cluster. METHODS This is a retrospective analysis of long-term inpatient monitoring data from the EPILEPSIAE project. Patients underwent presurgical evaluation from 2002 to 2009. Seizure clusters were defined by the occurrence of at least two consecutive seizures with interseizure intervals of <4 h. Other definitions of seizure clustering were examined in a sensitivity analysis. Seizures were classified into three contextually defined groups: isolated seizures (not meeting clustering criteria), terminal seizure (last seizure in a cluster), and intracluster seizures (any other seizures within a cluster). Seizure characteristics were compared among the three groups in terms of duration, type (focal seizures remaining restricted to one hemisphere vs. evolving bilaterally), seizure origin, and localization concordance among pairs of consecutive seizures. RESULTS Among 92 subjects, 77 (83%) had at least one seizure cluster. The intracluster seizures were significantly shorter than the last seizure in a cluster (p = 0.011), whereas the last seizure in a cluster resembled the isolated seizures in terms of duration. Although focal only (unilateral), seizures were shorter than seizures that evolved bilaterally and there was no correlation between the seizure type and the seizure position in relation to a cluster (p = 0.762). Frontal and temporal lobe seizures were more likely to cluster compared with other localizations (p = 0.009). Seizure pairs that are part of a cluster were more likely to have a concordant origin than were isolated seizures. Results were similar for the 2 h definition of clustering, but not for the 8 h definition of clustering. SIGNIFICANCE We demonstrated that intracluster seizures are short relative to isolated seizures and terminal seizures. Frontal and temporal lobe seizures are more likely to cluster.
Collapse
Affiliation(s)
- Victor Ferastraoaru
- Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, U.S.A.,Comprehensive Epilepsy Management Center, Montefiore Medical Center, Bronx, New York, U.S.A
| | | | - Richard B Lipton
- Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, U.S.A
| | | | - Alan D Legatt
- Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, U.S.A.,Comprehensive Epilepsy Management Center, Montefiore Medical Center, Bronx, New York, U.S.A
| | - Julie Blumberg
- Epilepsy Center, University Medical Center Freiburg, Freiburg, Germany.,Department of Neuropediatrics and Muscle Disorders, University Medical Center Freiburg, Freiburg, Germany
| | - Sheryl R Haut
- Department of Neurology, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, New York, U.S.A.,Comprehensive Epilepsy Management Center, Montefiore Medical Center, Bronx, New York, U.S.A
| |
Collapse
|
103
|
The ictal wavefront is the spatiotemporal source of discharges during spontaneous human seizures. Nat Commun 2016; 7:11098. [PMID: 27020798 PMCID: PMC4820627 DOI: 10.1038/ncomms11098] [Citation(s) in RCA: 86] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 02/19/2016] [Indexed: 11/26/2022] Open
Abstract
The extensive distribution and simultaneous termination of seizures across cortical areas has led to the hypothesis that seizures are caused by large-scale coordinated networks spanning these areas. This view, however, is difficult to reconcile with most proposed mechanisms of seizure spread and termination, which operate on a cellular scale. We hypothesize that seizures evolve into self-organized structures wherein a small seizing territory projects high-intensity electrical signals over a broad cortical area. Here we investigate human seizures on both small and large electrophysiological scales. We show that the migrating edge of the seizing territory is the source of travelling waves of synaptic activity into adjacent cortical areas. As the seizure progresses, slow dynamics in induced activity from these waves indicate a weakening and eventual failure of their source. These observations support a parsimonious theory for how large-scale evolution and termination of seizures are driven from a small, migrating cortical area. Epileptic brains display inhibitory restraint as manifested by the spread of synchronized activities being delayed in timing. Here, Elliot Smith and colleagues show fast-moving traveling wave that originates from the edge of ictal wavefront with subsequent depolarization and multiunit firing in the seizing brain regions in epileptic patients.
Collapse
|
104
|
Khan MZ. A possible significant role of zinc and GPR39 zinc sensing receptor in Alzheimer disease and epilepsy. Biomed Pharmacother 2016; 79:263-72. [PMID: 27044837 DOI: 10.1016/j.biopha.2016.02.026] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Revised: 02/16/2016] [Accepted: 02/16/2016] [Indexed: 12/14/2022] Open
Abstract
Zinc the essential trace element, plays a significant role in the brain development and in the proper brain functions at every stage of life. Misbalance of zinc (Zn(2+)) ions in the central nervous system is involved in the pathogenesis of numerous neurodegenerative disorders such as Alzheimer's disease, Depression, and Epilepsy. In brain, Zn(2+) has been identified as a ligand, capable of activating and inhibiting the receptors including the NMDA-type glutamate receptors (NMDARs), GABAA receptors, nicotinic acetylcholine receptors (nAChRs), glycine receptors (glyR) and serotonin receptors (5-HT3). Recently GPR39 has been identified as a zinc-specific receptor, widely expressed in brain tissues including the frontal cortex, amygdala, and hippocampus. GPR39, when binding with Zn(2+) has shown promising therapeutic potentials. This review presents current knowledge regarding the role of GPR39 zinc sensing receptor in brain, with a focus on Alzheimer's disease and Epilepsy. Although the results are encouraging, further research is needed to clarify zinc and GPR39 role in the treatment of Alzheimer's disease and Epilepsy.
Collapse
Affiliation(s)
- Muhammad Zahid Khan
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
105
|
Thompson S, Krishnan B, Gonzalez-Martinez J, Bulacio J, Jehi L, Mosher J, Alexopoulos A, Burgess R. Ictal infraslow activity in stereoelectroencephalography: Beyond the “DC shift”. Clin Neurophysiol 2016; 127:117-128. [DOI: 10.1016/j.clinph.2015.03.020] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2014] [Revised: 03/08/2015] [Accepted: 03/27/2015] [Indexed: 11/28/2022]
|
106
|
Richerson GB, Boison D, Faingold CL, Ryvlin P. From unwitnessed fatality to witnessed rescue: Pharmacologic intervention in sudden unexpected death in epilepsy. Epilepsia 2016; 57 Suppl 1:35-45. [PMID: 26749015 PMCID: PMC4890608 DOI: 10.1111/epi.13236] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2015] [Indexed: 12/11/2022]
Abstract
The mechanisms of sudden unexpected death in epilepsy (SUDEP) have been difficult to define, as most cases occur unwitnessed, and physiologic recordings have been obtained in only a handful of cases. However, recent data obtained from human cases and experimental studies in animal models have brought us closer to identifying potential mechanisms. Theories of SUDEP should be able to explain how a seizure starting in the forebrain can sometimes lead to changes in brainstem cardiorespiratory control mechanisms. Herein we focus on three major themes of work on the causes of SUDEP. First, evidence is reviewed identifying postictal hypoventilation as a major contributor to the cause of death. Second, data are discussed that brainstem serotonin and adenosine pathways may be involved, as well as how they may contribute. Finally, parallels are drawn between SIDS and SUDEP, and we highlight similarities pointing to the possibility of shared pathophysiology involving combined failure of respiratory and cardiovascular control mechanisms. Knowledge about the causes of SUDEP may lead to potential pharmacologic approaches for prevention. We end by describing how translation of this work may result in future applications to clinical care.
Collapse
Affiliation(s)
- George B Richerson
- Departments of Neurology and Molecular Physiology & Biophysics, University of Iowa & Veteran's Affairs Medical Center, Iowa City, Iowa, U.S.A
| | - Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute Portland, Portland, Oregon, U.S.A
| | - Carl L Faingold
- Departments of Pharmacology and Neurology and Division of Neurosurgery, Southern Illinois University School of Medicine, Springfield, Illinois, U.S.A
| | - Philippe Ryvlin
- Department of Clinical Neurosciences, Lausanne University Hospital, Lausanne, Switzerland
| |
Collapse
|
107
|
Pan S, Wang F, Wang J, Li X, Liu X. Factors influencing the duration of generalized tonic–clonic seizure. Seizure 2016; 34:44-7. [DOI: 10.1016/j.seizure.2015.11.008] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Revised: 11/23/2015] [Accepted: 11/25/2015] [Indexed: 10/22/2022] Open
|
108
|
Inhibition of adenosine metabolism induces changes in post-ictal depression, respiration, and mortality in genetically epilepsy prone rats. Epilepsy Res 2016; 119:13-9. [DOI: 10.1016/j.eplepsyres.2015.11.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2015] [Revised: 09/10/2015] [Accepted: 11/05/2015] [Indexed: 11/17/2022]
|
109
|
Cook MJ, Karoly PJ, Freestone DR, Himes D, Leyde K, Berkovic S, O'Brien T, Grayden DB, Boston R. Human focal seizures are characterized by populations of fixed duration and interval. Epilepsia 2015; 57:359-68. [PMID: 26717880 DOI: 10.1111/epi.13291] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/23/2015] [Indexed: 11/29/2022]
Abstract
OBJECTIVE We report on a quantitative analysis of data from a study that acquired continuous long-term ambulatory human electroencephalography (EEG) data over extended periods. The objectives were to examine the seizure duration and interseizure interval (ISI), their relationship to each other, and the effect of these features on the clinical manifestation of events. METHODS Chronic ambulatory intracranial EEG data acquired for the purpose of seizure prediction were analyzed and annotated. A detection algorithm identified potential seizure activity, which was manually confirmed. Events were classified as clinically corroborated, electroencephalographically identical but not clinically corroborated, or subclinical. K-means cluster analysis supplemented by finite mixture modeling was used to locate groupings of seizure duration and ISI. RESULTS Quantitative analyses confirmed well-resolved groups of seizure duration and ISIs, which were either mono-modal or multimodal, and highly subject specific. Subjects with a single population of seizures were linked to improved seizure prediction outcomes. There was a complex relationship between clinically manifest seizures, seizure duration, and interval. SIGNIFICANCE These data represent the first opportunity to reliably investigate the statistics of seizure occurrence in a realistic, long-term setting. The presence of distinct duration groups implies that the evolution of seizures follows a predetermined course. Patterns of seizure activity showed considerable variation between individuals, but were highly predictable within individuals. This finding indicates seizure dynamics are characterized by subject-specific time scales; therefore, temporal distributions of seizures should also be interpreted on an individual level. Identification of duration and interval subgroups may provide a new avenue for improving seizure prediction.
Collapse
Affiliation(s)
- Mark J Cook
- Departments of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - Philippa J Karoly
- Departments of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia.,Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Dean R Freestone
- Departments of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| | - David Himes
- NeuroVista Corporation, Seattle, Washington, U.S.A
| | - Kent Leyde
- NeuroVista Corporation, Seattle, Washington, U.S.A
| | - Samuel Berkovic
- Austin and Repatriation Medical Centre, Heidelberg, Victoria, Australia
| | | | - David B Grayden
- Departments of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia.,Department of Electrical and Electronic Engineering, University of Melbourne, Parkville, Victoria, Australia
| | - Ray Boston
- Departments of Medicine, St. Vincent's Hospital, University of Melbourne, Fitzroy, Victoria, Australia
| |
Collapse
|
110
|
Abstract
Although the vast majority of patients with status epilepticus (SE) respond fairly well to the first- or second-line anti-epileptics, a minority require anesthetic agents to put the seizures under control. An even smaller number of patients do not even respond to those and constitute the subgroup of super-refractory SE. Because of the small numbers, there are no definitive studies regarding its etiology, pathophysiology, and treatment, and those are still based on expert opinions. Encephalitides, either infectious, autoimmune, or paraneoplastic may be the main etiological factors. Induced pharmacological coma, immunosuppression, electrical brain stimulation, hypothermia, and ketamine are few of the newer but unproven therapeutic approaches that should be considered.
Collapse
Affiliation(s)
- Mauricio Ruiz Cuero
- Neurocritical Care Services, Department of Neurology, Henry Ford Hospital, K-11, 2799 West Grand Blvd, Detroit, MI, 48202, USA.
| | - Panayiotis N Varelas
- Neurocritical Care Services, Department of Neurology, Henry Ford Hospital, K-11, 2799 West Grand Blvd, Detroit, MI, 48202, USA.
- Wayne State University, Detroit, MI, USA.
| |
Collapse
|
111
|
Abstract
SUMMARY Sudden unexpected death in epilepsy (SUDEP) remains a leading cause of epilepsy-related death, and yet, its pathogenic mechanisms remain ill-defined. Although epidemiological studies of SUDEP in heterogenous populations have established a number of clinical associations, evaluation and stratification of individual risk remains difficult. Thus, potential markers as predictors of risk of SUDEP are important not only clinically but also for research on SUDEP prevention. Recordings from rare monitored cases of SUDEP demonstrate postictal generalized EEG suppression after terminal seizures, raising expectations that postictal generalized EEG suppression may identify individuals at higher risk. In this review, we consider the literature on postictal generalized EEG suppression and evaluate its relevance and utility as a possible marker of SUDEP.
Collapse
|
112
|
Gilad D, Shorer S, Ketzef M, Friedman A, Sekler I, Aizenman E, Hershfinkel M. Homeostatic regulation of KCC2 activity by the zinc receptor mZnR/GPR39 during seizures. Neurobiol Dis 2015; 81:4-13. [PMID: 25562657 PMCID: PMC4490144 DOI: 10.1016/j.nbd.2014.12.020] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Revised: 12/11/2014] [Accepted: 12/23/2014] [Indexed: 12/31/2022] Open
Abstract
The aim of this study was to investigate the role of the synaptic metabotropic zinc receptor mZnR/GPR39 in physiological adaptation to epileptic seizures. We previously demonstrated that synaptic activation of mZnR/GPR39 enhances inhibitory drive in the hippocampus by upregulating neuronal K(+)/Cl(-) co-transporter 2 (KCC2) activity. Here, we first show that mZnR/GPR39 knockout (KO) adult mice have dramatically enhanced susceptibility to seizures triggered by a single intraperitoneal injection of kainic acid, when compared to wild type (WT) littermates. Kainate also substantially enhances seizure-associated gamma oscillatory activity in juvenile mZnR/GPR39 KO hippocampal slices, a phenomenon that can be reproduced in WT tissue by extracellular Zn(2+) chelation. Importantly, kainate-induced synaptic Zn(2+) release enhances surface expression and transport activity of KCC2 in WT, but not mZnR/GPR39 KO hippocampal neurons. Kainate-dependent upregulation of KCC2 requires mZnR/GPR39 activation of the Gαq/phospholipase C/extracellular regulated kinase (ERK1/2) signaling cascade. We suggest that mZnR/GPR39-dependent upregulation of KCC2 activity provides homeostatic adaptation to an excitotoxic stimulus by increasing inhibition. As such, mZnR/GPR39 may provide a novel pharmacological target for dampening epileptic seizure activity.
Collapse
Affiliation(s)
- David Gilad
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Faculty of Health Sciences, Beer-Sheva, Israel
| | - Sharon Shorer
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Faculty of Health Sciences, Beer-Sheva, Israel
| | - Maya Ketzef
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Faculty of Health Sciences, Beer-Sheva, Israel
| | - Alon Friedman
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Faculty of Health Sciences, Beer-Sheva, Israel
| | - Israel Sekler
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Faculty of Health Sciences, Beer-Sheva, Israel
| | - Elias Aizenman
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Faculty of Health Sciences, Beer-Sheva, Israel; Department of Neurobiology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | - Michal Hershfinkel
- Department of Physiology and Cell Biology, Ben-Gurion University of the Negev, Faculty of Health Sciences, Beer-Sheva, Israel.
| |
Collapse
|
113
|
Evangelista E, Bénar C, Bonini F, Carron R, Colombet B, Régis J, Bartolomei F. Does the Thalamo-Cortical Synchrony Play a Role in Seizure Termination? Front Neurol 2015; 6:192. [PMID: 26388834 PMCID: PMC4555023 DOI: 10.3389/fneur.2015.00192] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2015] [Accepted: 08/18/2015] [Indexed: 01/21/2023] Open
Abstract
The mechanisms underlying seizure termination are still unclear despite their therapeutic importance. We studied thalamo-cortical connectivity and synchrony in human mesial temporal lobe seizures in order to analyze their role in seizure termination. Twenty-two seizures from 10 patients with drug-resistant mesial temporal lobe epilepsy undergoing pre-surgical evaluation were analyzed using intracerebral recordings [stereoelectroencephalography (SEEG)]. We performed a measure of SEEG signal interdependencies (non-linear correlation), to estimate the functional connectivity between thalamus and cortical regions. Then, we derived synchronization indices, namely global, thalamic, mesio-temporal, and thalamo-mesio temporal index at the onset and the end of seizures. In addition, an estimation of thalamic “outputs and inputs” connectivity was proposed. Thalamus was consistently involved in the last phase of all analyzed seizures and thalamic synchronization index was significantly more elevated at the end of seizure than at the onset. The global synchronization index at the end of seizure negatively correlated with seizure duration (p = 0.045) and in the same way the thalamic synchronization index showed an inverse tendency with seizure duration. Six seizures out of twenty-two displayed a particular thalamo-cortical spike-and-wave pattern at the end. They were associated to higher values of all synchronization indices and outputs from thalamus (p = 0.0079). SWP seizures displayed a higher and sustained increase of cortical and thalamo-cortical synchronization with a stronger participation of thalamic outputs. We suggest that thalamo-cortical oscillations might contribute to seizure termination via modulation of cortical synchronization. In the subgroup of SWP seizures, thalamus may exert a control on temporal lobe structures by inducing a stable hypersynchronization that ultimately leads to seizure termination.
Collapse
Affiliation(s)
- Elisa Evangelista
- Service de Neurophysiologie Clinique, CHU Timone, Assistance Publique des Hôpitaux de Marseille , Marseille , France
| | - Christian Bénar
- UMR1106, INSERM , Marseille , France ; Institut de Neurosciences des Systèmes Marseille, Aix Marseille Université , Marseille , France
| | - Francesca Bonini
- Service de Neurophysiologie Clinique, CHU Timone, Assistance Publique des Hôpitaux de Marseille , Marseille , France ; UMR1106, INSERM , Marseille , France ; Institut de Neurosciences des Systèmes Marseille, Aix Marseille Université , Marseille , France
| | - Romain Carron
- UMR1106, INSERM , Marseille , France ; Institut de Neurosciences des Systèmes Marseille, Aix Marseille Université , Marseille , France ; Service de Neurochirurgie Fonctionnelle et Stéréotaxie, Assistance Publique des Hôpitaux de Marseille , Marseille , France
| | - Bruno Colombet
- UMR1106, INSERM , Marseille , France ; Institut de Neurosciences des Systèmes Marseille, Aix Marseille Université , Marseille , France
| | - Jean Régis
- UMR1106, INSERM , Marseille , France ; Institut de Neurosciences des Systèmes Marseille, Aix Marseille Université , Marseille , France ; Service de Neurochirurgie Fonctionnelle et Stéréotaxie, Assistance Publique des Hôpitaux de Marseille , Marseille , France
| | - Fabrice Bartolomei
- Service de Neurophysiologie Clinique, CHU Timone, Assistance Publique des Hôpitaux de Marseille , Marseille , France ; UMR1106, INSERM , Marseille , France ; Institut de Neurosciences des Systèmes Marseille, Aix Marseille Université , Marseille , France
| |
Collapse
|
114
|
Afra P, Jouny CC, Bergey GK. Termination patterns of complex partial seizures: An intracranial EEG study. Seizure 2015; 32:9-15. [PMID: 26552555 DOI: 10.1016/j.seizure.2015.08.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2015] [Revised: 07/08/2015] [Accepted: 08/12/2015] [Indexed: 01/02/2023] Open
Abstract
PURPOSE While seizure onset patterns have been the subject of many reports, there have been few studies of seizure termination. In this study we report the incidence of synchronous and asynchronous termination patterns of partial seizures recorded with intracranial arrays. METHODS Data were collected from patients with intractable complex partial seizures undergoing presurgical evaluations with intracranial electrodes. Patients with seizures originating from mesial temporal and neocortical regions were grouped into three groups based on patterns of seizure termination: synchronous only (So), asynchronous only (Ao), or mixed (S/A, with both synchronous and asynchronous termination patterns). RESULTS 88% of the patients in the MT group had seizures with a synchronous pattern of termination exclusively (38%) or mixed (50%). 82% of the NC group had seizures with synchronous pattern of termination exclusively (52%) or mixed (30%). In the NC group, there was a significant difference of the range of seizure durations between So and Ao groups, with Ao exhibiting higher variability. Seizures with synchronous termination had low variability in both groups. CONCLUSIONS Synchronous seizure termination is a common pattern for complex partials seizures of both mesial temporal or neocortical onset. This may reflect stereotyped network behavior or dynamics at the seizure focus.
Collapse
Affiliation(s)
- Pegah Afra
- Department of Neurology, School of Medicine, University of Utah, Salt Lake City, UT, United States.
| | - Christopher C Jouny
- Department of Neurology, Johns Hopkins Epilepsy Center, Johns Hopkins University School of Medicine, United States
| | - Gregory K Bergey
- Department of Neurology, Johns Hopkins Epilepsy Center, Johns Hopkins University School of Medicine, United States
| |
Collapse
|
115
|
Benuzzi F, Ballotta D, Mirandola L, Ruggieri A, Vaudano AE, Zucchelli M, Ferrari E, Nichelli PF, Meletti S. An EEG-fMRI Study on the Termination of Generalized Spike-And-Wave Discharges in Absence Epilepsy. PLoS One 2015; 10:e0130943. [PMID: 26154563 PMCID: PMC4496065 DOI: 10.1371/journal.pone.0130943] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/27/2015] [Indexed: 11/18/2022] Open
Abstract
Introduction Different studies have investigated by means of EEG-fMRI coregistration the brain networks related to generalized spike-and-wave discharges (GSWD) in patients with idiopathic generalized epilepsy (IGE). These studies revealed a widespread GSWD-related neural network that involves the thalamus and regions of the default mode network. In this study we investigated which brain regions are critically involved in the termination of absence seizures (AS) in a group of IGE patients. Methods Eighteen patients (6 male; mean age 25 years) with AS were included in the EEG-fMRI study. Functional data were acquired at 3T with continuous simultaneous video-EEG recording. Event-related analysis was performed with SPM8 software, using the following regressors: (1) GSWD onset and duration; (2) GSWD offset. Data were analyzed at single-subject and at group level with a second level random effect analysis. Results A mean of 17 events for patient was recorded (mean duration of 4.2 sec). Group-level analysis related to GSWD onset respect to rest confirmed previous findings revealing thalamic activation and a precuneus/posterior cingulate deactivation. At GSWD termination we observed a decrease in BOLD signal over the bilateral dorsolateral frontal cortex respect to the baseline (and respect to GSWD onset). The contrast GSWD offset versus onset showed a BOLD signal increase over the precuneus-posterior cingulate region bilaterally. Parametric correlations between electro-clinical variables and BOLD signal at GSWD offset did not reveal significant effects. Conclusion The role of the decreased neural activity of lateral prefrontal cortex at GSWD termination deserve future investigations to ascertain if it has a role in promoting the discharge offset, as well as in the determination of the cognitive deficits often present in patients with AS. The increased BOLD signal at precuneal/posterior cingulate cortex might reflect the recovery of neural activity in regions that are “suspended” during spike and waves activity, as previously hypothesized.
Collapse
Affiliation(s)
- Francesca Benuzzi
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Daniela Ballotta
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Laura Mirandola
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, NOCSAE Hospital-ASL, Modena, Italy
| | - Andrea Ruggieri
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
| | - Anna Elisabetta Vaudano
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, NOCSAE Hospital-ASL, Modena, Italy
| | | | | | - Paolo Frigio Nichelli
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, NOCSAE Hospital-ASL, Modena, Italy
| | - Stefano Meletti
- Department of Biomedical, Metabolic and Neural Sciences, University of Modena and Reggio Emilia, Modena, Italy
- Neurology Unit, NOCSAE Hospital-ASL, Modena, Italy
- * E-mail:
| |
Collapse
|
116
|
Betjemann JP, Lowenstein DH. Status epilepticus in adults. Lancet Neurol 2015; 14:615-24. [PMID: 25908090 DOI: 10.1016/s1474-4422(15)00042-3] [Citation(s) in RCA: 325] [Impact Index Per Article: 32.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Revised: 02/03/2015] [Accepted: 03/03/2015] [Indexed: 12/28/2022]
Abstract
Status epilepticus is a common neurological emergency with considerable associated health-care costs, morbidity, and mortality. The definition of status epilepticus as a prolonged seizure or a series of seizures with incomplete return to baseline is under reconsideration in an effort to establish a more practical definition to guide management. Clinical research has focused on early seizure termination in the prehospital setting. The approach of early escalation to anaesthetic agents for refractory generalised convulsive status epilepticus, rather than additional trials of second-line anti-epileptic drugs, to avoid neuronal injury and pharmaco-resistance associated with prolonged seizures is gaining momentum. Status epilepticus is also increasingly identified in the inpatient setting as the use of extended electroencephalography monitoring becomes more commonplace. Substantial further research to enable early identification of status epilepticus and efficacy of anti-epileptic drugs will be important to improve outcomes.
Collapse
Affiliation(s)
- John P Betjemann
- Department of Neurology, University of California, San Francisco, CA, USA.
| | | |
Collapse
|
117
|
Vallone F, Cintio A, Chillemi S, Di Garbo A. Thalamic inputs modulate cortical activity: Possibility to control the generation and the termination of seizure-like behaviour. Neurocomputing 2015. [DOI: 10.1016/j.neucom.2014.09.070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
118
|
Goonawardena J, Marshman LA, Drummond KJ. Brain tumour-associated status epilepticus. J Clin Neurosci 2015; 22:29-34. [DOI: 10.1016/j.jocn.2014.03.038] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 03/27/2014] [Accepted: 03/29/2014] [Indexed: 01/27/2023]
|
119
|
Tang Y, Chen Q, Yu X, Xia W, Luo C, Huang X, Tang H, Gong Q, Zhou D. A resting-state functional connectivity study in patients at high risk for sudden unexpected death in epilepsy. Epilepsy Behav 2014; 41:33-8. [PMID: 25277976 DOI: 10.1016/j.yebeh.2014.08.140] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/24/2014] [Revised: 08/28/2014] [Accepted: 08/30/2014] [Indexed: 02/05/2023]
Abstract
OBJECTIVE Seizure-related respiratory and cardiac dysfunctions were once thought to be the direct cause of sudden unexpected death in epilepsy (SUDEP), but both may be secondary to postictal cerebral inhibition. An important issue that has not been explored to date is the neural network basis of cerebral inhibition. Our aim was to investigate the features of neural networks in patients at high risk for SUDEP using a blood oxygen level-dependent (BOLD) resting-state functional connectivity (FC) approach. SUBJECTS AND METHODS Resting-state functional magnetic resonance imaging (Rs-fMRI) data were recorded from 13 patients at high risk for SUDEP and 12 patients at low risk for SUDEP. Thirteen cerebral regions that are closely related to cardiorespiratory activity were selected as regions of interest (ROIs). The ROI-wise resting-state FC analysis was compared between the two groups. RESULTS Compared with patients at low risk for SUDEP, patients at high risk exhibited significant reductions in the resting-state FC between the pons and the right thalamus, the midbrain and the right thalamus, the bilateral anterior cingulate cortex (ACC) and the right thalamus, and the left thalamus and the right thalamus. CONCLUSIONS This investigation is the first to use neuroimaging methods in research on the mechanism of SUDEP and demonstrates the abnormally decreased resting-state FC in the ACC-thalamus-brainstem circuit in patients at high risk for SUDEP. These findings highlight the need to understand the fundamental neural network dysfunction in SUDEP, which may fill the missing link between seizure-related cardiorespiratory dysfunction and SUDEP, and provide a promising neuroimaging biomarker for risk prediction of SUDEP.
Collapse
Affiliation(s)
- Yingying Tang
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Qin Chen
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Xiaofeng Yu
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Wei Xia
- Department of Gynecology and Obstetrics, West China Second Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Chunyan Luo
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - XiaoQi Huang
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - Hehan Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China
| | - QiYong Gong
- Huaxi MR Research Center, Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| | - Dong Zhou
- Department of Neurology, West China Hospital, Sichuan University, Chengdu, Sichuan, China.
| |
Collapse
|
120
|
Moseley BD, Britton JW, So E. Increased cerebral oxygenation precedes generalized tonic clonic seizures. Epilepsy Res 2014; 108:1671-4. [DOI: 10.1016/j.eplepsyres.2014.09.017] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2014] [Accepted: 09/13/2014] [Indexed: 11/17/2022]
|
121
|
First-ever population-based study on status epilepticus in French Island of La Reunion (France) – Incidence and fatality. Seizure 2014; 23:769-73. [DOI: 10.1016/j.seizure.2014.06.009] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2014] [Revised: 06/17/2014] [Accepted: 06/19/2014] [Indexed: 12/22/2022] Open
|
122
|
Faingold CL, Kommajosyula SP, Long X, Plath K, Randall M. Serotonin and sudden death: differential effects of serotonergic drugs on seizure-induced respiratory arrest in DBA/1 mice. Epilepsy Behav 2014; 37:198-203. [PMID: 25064738 DOI: 10.1016/j.yebeh.2014.06.028] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2014] [Revised: 06/17/2014] [Accepted: 06/22/2014] [Indexed: 11/18/2022]
Abstract
In the DBA/1 mouse model of sudden unexpected death in epilepsy (SUDEP), administration of a selective serotonin (5-HT) reuptake inhibitor (SSRI), fluvoxamine, completely suppressed seizure-induced respiratory arrest (S-IRA) at 30 min after administration (i.p.) in a dose-related manner without blocking audiogenic seizures (AGSz), but another SSRI, paroxetine, reduced S-IRA but with a delayed (24 h) onset and significant toxicity. A serotonin-norepinephrine reuptake inhibitor, venlafaxine, reduced S-IRA incidence, but higher doses were ineffective. A selective 5-HT7 agonist, AS-19, was totally ineffective in reducing S-IRA. In developing DBA/1 mice that had not previously experienced AGSz, administration of a nonselective 5-HT antagonist, cyproheptadine, induced a significantly greater incidence of S-IRA than that of saline. This study confirms that certain drugs that enhance the activation of 5-HT receptors are able to prevent S-IRA, but not all serotonergic drugs are equally effective, which may be relevant to the potential use of these drugs for SUDEP prevention. Serotonergic antagonists may be problematic in patients with epilepsy.
Collapse
Affiliation(s)
- Carl L Faingold
- Departments of Pharmacology and Neurology and Division of Neurosurgery, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA.
| | - Srinivasa P Kommajosyula
- Departments of Pharmacology and Neurology and Division of Neurosurgery, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA
| | - X Long
- Departments of Pharmacology and Neurology and Division of Neurosurgery, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA
| | - Kristin Plath
- Departments of Pharmacology and Neurology and Division of Neurosurgery, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA
| | - Marcus Randall
- Departments of Pharmacology and Neurology and Division of Neurosurgery, Southern Illinois University School of Medicine, P.O. Box 19629, Springfield, IL 62794-9629, USA
| |
Collapse
|
123
|
Boido D, Gnatkovsky V, Uva L, Francione S, de Curtis M. Simultaneous enhancement of excitation and postburst inhibition at the end of focal seizures. Ann Neurol 2014; 76:826-36. [PMID: 24916758 DOI: 10.1002/ana.24193] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2014] [Revised: 06/04/2014] [Accepted: 06/04/2014] [Indexed: 11/10/2022]
Abstract
OBJECTIVE Comprehension of the events that lead to seizure termination contributes to the development of strategies to confine propagation of ictal discharges. It is commonly assumed that the inhibitory control fails during seizures and recovers after the end of the ictal event. We examine the possibility that a progressive increase of inhibition that counters an increase in the strength of excitation contributes to terminating a focal seizure. METHODS We analyzed seizures acutely induced by pharmacological manipulations (bicuculline and 4-aminopyridine) in the entorhinal cortex and in the hippocampus of the in vitro isolated guinea pig brain. RESULTS As seizures ended, extracellular and intracellular recordings showed periodic bursting that progressively decreased in frequency. During the late bursting phase, the duration, number, and rate of occurrence of spikes within single bursts remained constant, whereas cumulative spike amplitude (index of excitation during a burst) and interburst interval (index of inhibition between bursts) progressively increased. The increment of average/cumulative burst excitation and interburst interval toward seizure end was confirmed in human focal seizures recorded with intracerebral electrodes in patients with drug-resistant partial epilepsies. A postburst refractory period of circa 2 seconds that increases with time toward the end of the seizure was confirmed in the experimental model by probing interburst epochs in the CA1 region with local dentate gyrus stimulation just suprathreshold for burst generation. INTERPRETATION Our findings support the concept that focal seizures are terminated by the simultaneous and opposing enhancement of excitation (burst activity) in addition to postburst inhibition. We hypothesize that a seizure stops when postburst inhibition becomes large enough to prevent reactivation of excitation.
Collapse
Affiliation(s)
- Davide Boido
- Unit of Epileptology and Experimental Neurophysiology, Carlo Besta Neurological Institute Foundation, Milan, Italy
| | | | | | | | | |
Collapse
|
124
|
Giorgi FS, Galanopoulou AS, Moshé SL. Sex dimorphism in seizure-controlling networks. Neurobiol Dis 2014; 72 Pt B:144-52. [PMID: 24851800 DOI: 10.1016/j.nbd.2014.05.010] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2014] [Revised: 05/02/2014] [Accepted: 05/06/2014] [Indexed: 11/27/2022] Open
Abstract
Males and females show a different predisposition to certain types of seizures in clinical studies. Animal studies have provided growing evidence for sexual dimorphism of certain brain regions, including those that control seizures. Seizures are modulated by networks involving subcortical structures, including thalamus, reticular formation nuclei, and structures belonging to the basal ganglia. In animal models, the substantia nigra pars reticulata (SNR) is the best studied of these areas, given its relevant role in the expression and control of seizures throughout development in the rat. Studies with bilateral infusions of the GABA(A) receptor agonist muscimol have identified distinct roles of the anterior or posterior rat SNR in flurothyl seizure control, that follow sex-specific maturational patterns during development. These studies indicate that (a) the regional functional compartmentalization of the SNR appears only after the third week of life, (b) only the male SNR exhibits muscimol-sensitive proconvulsant effects which, in older animals, is confined to the posterior SNR, and (c) the expression of the muscimol-sensitive anticonvulsant effects become apparent earlier in females than in males. The first three postnatal days are crucial in determining the expression of the muscimol-sensitive proconvulsant effects of the immature male SNR, depending on the gonadal hormone setting. Activation of the androgen receptors during this early period seems to be important for the formation of this proconvulsant SNR region. We describe molecular/anatomical candidates underlying these age- and sex-related differences, as derived from in vitro and in vivo experiments, as well as by [(14)C]2-deoxyglucose autoradiography. These involve sex-specific patterns in the developmental changes in the structure or physiology or GABA(A) receptors or of other subcortical structures (e.g., locus coeruleus, hippocampus) that may affect the function of seizure-controlling networks.
Collapse
Affiliation(s)
- Fillippo Sean Giorgi
- Department of Clinical and Experimental Medicine, Section of Neurology, University of Pisa-Pisa University Hospital, I56126 Pisa, Italy.
| | - Aristea S Galanopoulou
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Montefiore Epilepsy Management Center, and Dominick P. Purpura Department of Neuroscience, Bronx, NY, 10461, USA
| | - Solomon L Moshé
- Saul R. Korey Department of Neurology, Laboratory of Developmental Epilepsy, Montefiore Epilepsy Management Center, and Dominick P. Purpura Department of Neuroscience, Bronx, NY, 10461, USA; Department of Pediatrics, Albert Einstein College of Medicine and Montefiore Medical Center, Bronx, NY, 10461, USA
| |
Collapse
|
125
|
Suzuki N, Tang CSM, Bekkers JM. Persistent barrage firing in cortical interneurons can be induced in vivo and may be important for the suppression of epileptiform activity. Front Cell Neurosci 2014; 8:76. [PMID: 24659955 PMCID: PMC3952511 DOI: 10.3389/fncel.2014.00076] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2014] [Accepted: 02/21/2014] [Indexed: 11/13/2022] Open
Abstract
Neural circuits are typically maintained in a state of dynamic equilibrium by balanced synaptic excitation and inhibition. However, brain regions that are particularly susceptible to epilepsy may have evolved additional specialized mechanisms for inhibiting over-excitation. Here we identify one such possible mechanism in the cerebral cortex and hippocampus of mice. Recently it was reported that some types of GABAergic interneurons can slowly integrate excitatory inputs until eventually they fire persistently in the absence of the original stimulus. This property, called persistent firing or retroaxonal barrage firing (BF), is of unknown physiological importance. We show that two common types of interneurons in cortical regions, neurogliaform (NG) cells and fast-spiking (FS) cells, are unique in exhibiting BF in acute slices (~85 and ~23% success rate for induction, respectively). BF can also be induced in vivo, although the success rate for induction is lower (~60% in NG cells). In slices, BF could reliably be triggered by trains of excitatory synaptic input, as well as by exposure to proconvulsant bath solutions (elevated extracellular K(+), blockade of GABAA receptors). Using pair recordings in slices, we confirmed that barrage-firing NG cells can produce synaptic inhibition of nearby pyramidal neurons, and that this inhibition outlasts the original excitation. The ubiquity of NG and FS cells, together with their ability to fire persistently following excessive excitation, suggests that these interneurons may function as cortical sentinels, imposing an activity-dependent brake on undesirable neuronal hyperexcitability.
Collapse
Affiliation(s)
- Norimitsu Suzuki
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia
| | - Clara S-M Tang
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia
| | - John M Bekkers
- Eccles Institute of Neuroscience, The John Curtin School of Medical Research, The Australian National University, Canberra ACT, Australia
| |
Collapse
|
126
|
|
127
|
Abstract
Several potential pathophysiologic phenomena, including "cerebral shutdown," are postulated to be responsible for SUDEP. Since the evidence for a seizure-related mechanism is strong, a poor understanding of the physiology of human seizure termination is a major handicap. However, rather than a failure of a single homeostatic mechanism, such as postictal arousal, it may be a "perfect storm" created by the lining up of a several factors that lead to death.
Collapse
|
128
|
Shen HY, Sun H, Hanthorn MM, Zhi Z, Lan JQ, Poulsen DJ, Wang RK, Boison D. Overexpression of adenosine kinase in cortical astrocytes and focal neocortical epilepsy in mice. J Neurosurg 2013; 120:628-38. [PMID: 24266544 DOI: 10.3171/2013.10.jns13918] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
OBJECT New experimental models and diagnostic methods are needed to better understand the pathophysiology of focal neocortical epilepsies in a search for improved epilepsy treatment options. The authors hypothesized that a focal disruption of adenosine homeostasis in the neocortex might be sufficient to trigger electrographic seizures. They further hypothesized that a focal disruption of adenosine homeostasis might affect microcirculation and thus offer a diagnostic opportunity for the detection of a seizure focus located in the neocortex. METHODS Focal disruption of adenosine homeostasis was achieved by injecting an adeno-associated virus (AAV) engineered to overexpress adenosine kinase (ADK), the major metabolic clearance enzyme for the brain's endogenous anticonvulsant adenosine, into the neocortex of mice. Eight weeks following virus injection, the affected brain area was imaged via optical microangiography (OMAG) to detect changes in microcirculation. After completion of imaging, cortical electroencephalography (EEG) recordings were obtained from the imaged brain area. RESULTS Viral expression of the Adk cDNA in astrocytes generated a focal area (~ 2 mm in diameter) of ADK overexpression within the neocortex. OMAG scanning revealed a reduction in vessel density within the affected brain area of approximately 23% and 29% compared with control animals and the contralateral hemisphere, respectively. EEG recordings revealed electrographic seizures within the focal area of ADK overexpression at a rate of 1.3 ± 0.2 seizures per hour (mean ± SEM). CONCLUSIONS The findings of this study suggest that focal adenosine deficiency is sufficient to generate a neocortical focus of hyperexcitability, which is also characterized by reduced vessel density. The authors conclude that their model constitutes a useful tool to study neocortical epilepsies and that OMAG constitutes a noninvasive diagnostic tool for the imaging of seizure foci with disrupted adenosine homeostasis.
Collapse
Affiliation(s)
- Hai-Ying Shen
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute, Portland, Oregon
| | | | | | | | | | | | | | | |
Collapse
|
129
|
Henshall DC. MicroRNAs in the pathophysiology and treatment of status epilepticus. Front Mol Neurosci 2013; 6:37. [PMID: 24282394 PMCID: PMC3824358 DOI: 10.3389/fnmol.2013.00037] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2013] [Accepted: 10/17/2013] [Indexed: 12/19/2022] Open
Abstract
MicroRNA (miRNA) are an important class of non-coding RNA which function as post-transcriptional regulators of gene expression in cells, repressing and fine-tuning protein output. Prolonged seizures (status epilepticus, SE) can cause damage to brain regions such as the hippocampus and result in cognitive deficits and the pathogenesis of epilepsy. Emerging work in animal models has found that SE produces select changes to miRNAs within the brain. Similar changes in over 20 miRNAs have been found in the hippocampus in two or more studies, suggesting conserved miRNA responses after SE. The miRNA changes that accompany SE are predicted to impact levels of multiple proteins involved in neuronal morphology and function, gliosis, neuroinflammation, and cell death. miRNA expression also displays select changes in the blood after SE, supporting blood genomic profiling as potential molecular biomarkers of seizure-damage or epileptogenesis. Intracerebral delivery of chemically modified antisense oligonucleotides (antagomirs) has been shown to have potent, specific and long-lasting effects on brain levels of miRNAs. Targeting miR-34a, miR-132 and miR-184 has been reported to alter seizure-induced neuronal death, whereas targeting miR-134 was neuroprotective, reduced seizure severity during status epilepticus and reduced the later emergence of recurrent spontaneous seizures. These studies support roles for miRNAs in the pathophysiology of status epilepticus and miRNAs may represent novel therapeutic targets to reduce brain injury and epileptogenesis.
Collapse
Affiliation(s)
- David C Henshall
- Department of Physiology and Medical Physics, Royal College of Surgeons in Ireland Dublin, Ireland
| |
Collapse
|
130
|
Ryvlin P, Nashef L, Lhatoo SD, Bateman LM, Bird J, Bleasel A, Boon P, Crespel A, Dworetzky BA, Høgenhaven H, Lerche H, Maillard L, Malter MP, Marchal C, Murthy JMK, Nitsche M, Pataraia E, Rabben T, Rheims S, Sadzot B, Schulze-Bonhage A, Seyal M, So EL, Spitz M, Szucs A, Tan M, Tao JX, Tomson T. Incidence and mechanisms of cardiorespiratory arrests in epilepsy monitoring units (MORTEMUS): a retrospective study. Lancet Neurol 2013; 12:966-77. [PMID: 24012372 DOI: 10.1016/s1474-4422(13)70214-x] [Citation(s) in RCA: 755] [Impact Index Per Article: 62.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
BACKGROUND Sudden unexpected death in epilepsy (SUDEP) is the leading cause of death in people with chronic refractory epilepsy. Very rarely, SUDEP occurs in epilepsy monitoring units, providing highly informative data for its still elusive pathophysiology. The MORTEMUS study expanded these data through comprehensive evaluation of cardiorespiratory arrests encountered in epilepsy monitoring units worldwide. METHODS Between Jan 1, 2008, and Dec 29, 2009, we did a systematic retrospective survey of epilepsy monitoring units located in Europe, Israel, Australia, and New Zealand, to retrieve data for all cardiorespiratory arrests recorded in these units and estimate their incidence. Epilepsy monitoring units from other regions were invited to report similar cases to further explore the mechanisms. An expert panel reviewed data, including video electroencephalogram (VEEG) and electrocardiogram material at the time of cardiorespiratory arrests whenever available. FINDINGS 147 (92%) of 160 units responded to the survey. 29 cardiorespiratory arrests, including 16 SUDEP (14 at night), nine near SUDEP, and four deaths from other causes, were reported. Cardiorespiratory data, available for ten cases of SUDEP, showed a consistent and previously unrecognised pattern whereby rapid breathing (18-50 breaths per min) developed after secondary generalised tonic-clonic seizure, followed within 3 min by transient or terminal cardiorespiratory dysfunction. Where transient, this dysfunction later recurred with terminal apnoea occurring within 11 min of the end of the seizure, followed by cardiac arrest. SUDEP incidence in adult epilepsy monitoring units was 5·1 (95% CI 2·6-9·2) per 1000 patient-years, with a risk of 1·2 (0·6-2·1) per 10,000 VEEG monitorings, probably aggravated by suboptimum supervision and possibly by antiepileptic drug withdrawal. INTERPRETATION SUDEP in epilepsy monitoring units primarily follows an early postictal, centrally mediated, severe alteration of respiratory and cardiac function induced by generalised tonic-clonic seizure, leading to immediate death or a short period of partly restored cardiorespiratory function followed by terminal apnoea then cardiac arrest. Improved supervision is warranted in epilepsy monitoring units, in particular during night time. FUNDING Commission of European Affairs of the International League Against Epilepsy.
Collapse
Affiliation(s)
- Philippe Ryvlin
- Hospices Civils de Lyon and CRNL, INSERM U1028, CNRS 5292, Lyon, France.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
Moseley BD, So E, Wirrell EC, Nelson C, Lee RW, Mandrekar J, Britton JW. Characteristics of postictal generalized EEG suppression in children. Epilepsy Res 2013; 106:123-7. [DOI: 10.1016/j.eplepsyres.2013.05.007] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2012] [Revised: 04/22/2013] [Accepted: 05/13/2013] [Indexed: 10/26/2022]
|
132
|
Boison D, Sandau US, Ruskin DN, Kawamura M, Masino SA. Homeostatic control of brain function - new approaches to understand epileptogenesis. Front Cell Neurosci 2013; 7:109. [PMID: 23882181 PMCID: PMC3712329 DOI: 10.3389/fncel.2013.00109] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2013] [Accepted: 06/22/2013] [Indexed: 12/31/2022] Open
Abstract
Neuronal excitability of the brain and ongoing homeostasis depend not only on intrinsic neuronal properties, but also on external environmental factors; together these determine the functionality of neuronal networks. Homeostatic factors become critically important during epileptogenesis, a process that involves complex disruption of self-regulatory mechanisms. Here we focus on the bioenergetic homeostatic network regulator adenosine, a purine nucleoside whose availability is largely regulated by astrocytes. Endogenous adenosine modulates complex network function through multiple mechanisms including adenosine receptor-mediated pathways, mitochondrial bioenergetics, and adenosine receptor-independent changes to the epigenome. Accumulating evidence from our laboratories shows that disruption of adenosine homeostasis plays a major role in epileptogenesis. Conversely, we have found that reconstruction of adenosine's homeostatic functions provides new hope for the prevention of epileptogenesis. We will discuss how adenosine-based therapeutic approaches may interfere with epileptogenesis on an epigenetic level, and how dietary interventions can be used to restore network homeostasis in the brain. We conclude that reconstruction of homeostatic functions in the brain offers a new conceptual advance for the treatment of neurological conditions which goes far beyond current target-centric treatment approaches.
Collapse
Affiliation(s)
- Detlev Boison
- Robert Stone Dow Neurobiology Laboratories, Legacy Research Institute Portland, OR, USA
| | | | | | | | | |
Collapse
|
133
|
Kalume F. Sudden unexpected death in Dravet syndrome: respiratory and other physiological dysfunctions. Respir Physiol Neurobiol 2013; 189:324-8. [PMID: 23850567 DOI: 10.1016/j.resp.2013.06.026] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Revised: 06/27/2013] [Accepted: 06/27/2013] [Indexed: 12/22/2022]
Abstract
Sudden unexpected deaths in epilepsy (SUDEP) occur at an alarming higher rate in patients with Dravet syndrome (DS) than in patients with most other forms of epilepsy. DS is a severe infantile-onset epilepsy caused by a heterozygote loss-of-function mutation in SCN1A, which encodes the voltage-gated-sodium channel NaV 1.1. The mechanisms leading to SUDEP in DS or other epilepsies are not completely understood. Understanding the pathophysiological mechanisms of SUDEP, common to most epilepsies and those specific to DS, may pave the way toward the discovery of effective preventive strategies for these epilepsy-related tragic events.
Collapse
Affiliation(s)
- Franck Kalume
- Departments of Neurological Surgery and Pharmacology, University of Washington, Seattle, WA 98195, United States; Center for Integrative Brain Research, Seattle Children's Research Institute, Seattle, WA 98101, United States.
| |
Collapse
|
134
|
Sah N, Sikdar SK. Transition in subicular burst firing neurons from epileptiform activity to suppressed state by feedforward inhibition. Eur J Neurosci 2013; 38:2542-56. [DOI: 10.1111/ejn.12262] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Revised: 04/21/2013] [Accepted: 04/23/2013] [Indexed: 01/03/2023]
Affiliation(s)
- Nirnath Sah
- Molecular Biophysics Unit; Indian Institute of Science; Bangalore; India
| | - Sujit K. Sikdar
- Molecular Biophysics Unit; Indian Institute of Science; Bangalore; India
| |
Collapse
|
135
|
Stamoulis C, Schomer DL, Chang BS. Information theoretic measures of network coordination in high-frequency scalp EEG reveal dynamic patterns associated with seizure termination. Epilepsy Res 2013; 105:299-315. [PMID: 23608198 DOI: 10.1016/j.eplepsyres.2013.03.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2012] [Revised: 12/06/2012] [Accepted: 03/17/2013] [Indexed: 11/18/2022]
Abstract
How a seizure terminates is still under-studied and, despite its clinical importance, remains an obscure phase of seizure evolution. Recent studies of seizure-related scalp EEGs at frequencies >100 Hz suggest that neural activity, in the form of oscillations and/or neuronal network interactions, may play an important role in preictal/ictal seizure evolution (Andrade-Valenca et al., 2011; Stamoulis et al., 2012). However, the role of high-frequency activity in seizure termination, is unknown, if it exists at all. Using information theoretic measures of network coordination, this study investigated ictal and immediate postictal neurodynamic interactions encoded in scalp EEGs from a relatively small sample of 8 patients with focal epilepsy and multiple seizures originating in temporal and/or frontal brain regions, at frequencies ≤ 100 Hz and >100 Hz, respectively. Despite some heterogeneity in the dynamics of these interactions, consistent patterns were also estimated. Specifically, in several seizures, linear or non-linear increase in high-frequency neuronal coordination during ictal intervals, coincided with a corresponding decrease in coordination at frequencies <100 Hz, suggesting a potential interference role of high-frequency activity, to disrupt abnormal ictal synchrony at lower frequencies. These changes in network synchrony started at least 20-30s prior to seizure offset, depending on the seizure duration. Opposite patterns were estimated at frequencies ≤ 100 Hz in several seizures. These results raise the possibility that high-frequency interference may occur in the form of progressive network coordination during the ictal interval, which continues during the postictal interval. This may be one of several possible mechanisms that facilitate seizure termination. In fact, inhibition of pairwise interactions between EEGs by other signals in their spatial neighborhood, quantified by negative interaction information, was estimated at frequencies ≤ 100 Hz, at least in some seizures.
Collapse
|
136
|
Synchronization Implies Seizure or Seizure Implies Synchronization? Brain Topogr 2013; 27:112-22. [DOI: 10.1007/s10548-013-0284-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2012] [Accepted: 03/26/2013] [Indexed: 10/27/2022]
|
137
|
Wu J, Yang H, Peng Y, Fang L, Zheng W, Song Z. The role of local field potential coupling in epileptic synchronization. Neural Regen Res 2013; 8:745-53. [PMID: 25206721 PMCID: PMC4146071 DOI: 10.3969/j.issn.1673-5374.2013.08.009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/25/2013] [Indexed: 11/18/2022] Open
Abstract
THIS REVIEW HOPES TO CLEARLY EXPLAIN THE FOLLOWING VIEWPOINTS (1) Neuronal synchronization underlies brain functioning, and it seems possible that blocking excessive synchronization in an epileptic neural network could reduce or even control seizures. (2) Local field potential coupling is a very common phenomenon during synchronization in networks. Removal of neurons or neuronal networks that are coupled can significantly alter the extracellular field potential. Interventions of coupling mediated by local field potentials could result in desynchronization of epileptic seizures. (3) The synchronized electrical activity generated by neurons is sensitive to changes in the size of the extracellular space, which affects the efficiency of field potential transmission and the threshold of cell excitability. (4) Manipulations of the field potential fluctuations could help block synchronization at seizure onset.
Collapse
Affiliation(s)
- Jiongxing Wu
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Heng Yang
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Yufeng Peng
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Liangjuan Fang
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Wen Zheng
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| | - Zhi Song
- Department of Neurology, the Third Xiangya Hospital, Central South University, Changsha 410013, Hunan Province, China
| |
Collapse
|
138
|
Conradsen I, Moldovan M, Jennum P, Wolf P, Farina D, Beniczky S. Dynamics of muscle activation during tonic–clonic seizures. Epilepsy Res 2013; 104:84-93. [DOI: 10.1016/j.eplepsyres.2012.09.004] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2012] [Revised: 08/24/2012] [Accepted: 09/02/2012] [Indexed: 10/27/2022]
|
139
|
Autonomic epileptic seizures, autonomic effects of seizures, and SUDEP. Epilepsy Behav 2013; 26:375-85. [PMID: 23099286 DOI: 10.1016/j.yebeh.2012.08.020] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 08/11/2012] [Indexed: 12/19/2022]
Abstract
Many generalized tonic-clonic seizures are accompanied by profound autonomic changes. However, autonomic seizures and autonomic status epilepticus can also be seen with specific electroclinical syndromes (Panayiotopoulos syndrome), etiologies, and localizations. Such autonomic symptoms may impact cardiorespiratory function. While it is likely that several factors contribute to SUDEP, further study of both ictal respiratory and cardiac changes and underlying neuroanatomical mechanisms involved in autonomic seizure semiology are likely to provide important data to improve our understanding of the pathophysiology of this devastating condition. This paper will review the association between autonomic symptoms and epileptic seizures and will highlight the work of three young investigators. Drs. Lisa Bateman and Brian Moseley will review their work on cardiorespiratory effects of recorded seizures and how this assists in our understanding of SUDEP. Dr. John Millichap will review autonomic seizures and autonomic dysfunctions related to childhood epilepsy and will discuss the importance of expanded research efforts in this field.
Collapse
|
140
|
|
141
|
Tao JX, Yung I, Lee A, Rose S, Jacobsen J, Ebersole JS. Tonic phase of a generalized convulsive seizure is an independent predictor of postictal generalized EEG suppression. Epilepsia 2013; 54:858-65. [DOI: 10.1111/epi.12094] [Citation(s) in RCA: 75] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/11/2012] [Indexed: 11/29/2022]
Affiliation(s)
- James X. Tao
- Department of Neurology; The University of Chicago; Chicago; Illinois; U.S.A
| | - Iris Yung
- Department of Neurology; The University of Chicago; Chicago; Illinois; U.S.A
| | - Anthony Lee
- Department of Neurology; The University of Chicago; Chicago; Illinois; U.S.A
| | - Sandra Rose
- Department of Neurology; The University of Chicago; Chicago; Illinois; U.S.A
| | - John Jacobsen
- Department of Neurology; The University of Chicago; Chicago; Illinois; U.S.A
| | - John S. Ebersole
- Department of Neurology; The University of Chicago; Chicago; Illinois; U.S.A
| |
Collapse
|
142
|
Human seizures self-terminate across spatial scales via a critical transition. Proc Natl Acad Sci U S A 2012; 109:21116-21. [PMID: 23213262 DOI: 10.1073/pnas.1210047110] [Citation(s) in RCA: 137] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Why seizures spontaneously terminate remains an unanswered fundamental question of epileptology. Here we present evidence that seizures self-terminate via a discontinuous critical transition or bifurcation. We show that human brain electrical activity at various spatial scales exhibits common dynamical signatures of an impending critical transition--slowing, increased correlation, and flickering--in the approach to seizure termination. In contrast, prolonged seizures (status epilepticus) repeatedly approach, but do not cross, the critical transition. To support these results, we implement a computational model that demonstrates that alternative stable attractors, representing the ictal and postictal states, emulate the observed dynamics. These results suggest that self-terminating seizures end through a common dynamical mechanism. This description constrains the specific biophysical mechanisms underlying seizure termination, suggests a dynamical understanding of status epilepticus, and demonstrates an accessible system for studying critical transitions in nature.
Collapse
|
143
|
Zemianek JM, Shultz AM, Lee S, Guaraldi M, Yanco HA, Shea TB. Transient epileptiform signaling during neuronal network development: regulation by external stimulation and bimodal GABAergic activity. Int J Dev Neurosci 2012; 31:131-7. [PMID: 23220177 DOI: 10.1016/j.ijdevneu.2012.11.003] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2012] [Revised: 11/09/2012] [Accepted: 11/10/2012] [Indexed: 01/25/2023] Open
Abstract
A predominance of excitatory activity, with protracted appearance of inhibitory activity, accompanies cortical neuronal development. It is unclear whether or not inhibitory neuronal activity is solicited exclusively by excitatory neurons or whether the transient excitatory activity displayed by developing GABAergic neurons contributes to an excitatory threshold that fosters their conversion to inhibitory activity. We addressed this possibility by culturing murine embryonic neurons on multi-electrode arrays. A wave of individual 0.2-0.4 mV signals ("spikes") appeared between approx. 20-30 days in culture, then declined. A transient wave of high amplitude (>0.5 mV) epileptiform activity coincided with the developmental decline in spikes. Bursts (clusters of ≥3 low-amplitude spikes within 0.7s prior to returning to baseline) persisted following this decline. Addition of the GABAergic antagonist bicuculline initially had no effect on signaling, consistent with delayed development of GABAergic synapses. This was followed by a period in which bicuculline inhibited overall signaling, confirming that GABAergic neurons initially display excitatory activity in ex vivo networks. Following the transient developmental wave of epileptiform signaling, bicuculline induced a resurgence of epileptiform signaling, indicating that GABAergic neurons at this point displayed inhibitory activity. The appearance of transition after the developmental and decline of epileptiform activity, rather than immediately after the developmental decline in lower-amplitude spikes, suggests that the initial excitatory activity of GABAergic neurons contributes to their transition into inhibitory neurons, and that inhibitory GABAergic activity is essential for network development. Prior studies indicate that a minority (25%) of neurons in these cultures were GABAergic, suggesting that inhibitory neurons regulate multiple excitatory neurons. A similar robust increase in signaling following cessation of inhibitory activity in an artificial neural network containing 20% inhibitory neurons supported this conclusion. Even a minor perturbation in GABAergic function may therefore foster initiation and/or amplification of seizure activity, as well as perturbations in long-term potentiation.
Collapse
Affiliation(s)
- Jill M Zemianek
- Center for Cellular Neurobiology & Neurodegeneration Research, Department of Biological Sciences, University of Massachusetts Lowell, 01854, USA
| | | | | | | | | | | |
Collapse
|
144
|
Jiruska P, de Curtis M, Jefferys JGR, Schevon CA, Schiff SJ, Schindler K. Synchronization and desynchronization in epilepsy: controversies and hypotheses. J Physiol 2012. [PMID: 23184516 PMCID: PMC3591697 DOI: 10.1113/jphysiol.2012.239590] [Citation(s) in RCA: 334] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Epilepsy has been historically seen as a functional brain disorder associated with excessive synchronization of large neuronal populations leading to a hypersynchronous state. Recent evidence showed that epileptiform phenomena, particularly seizures, result from complex interactions between neuronal networks characterized by heterogeneity of neuronal firing and dynamical evolution of synchronization. Desynchronization is often observed preceding seizures or during their early stages; in contrast, high levels of synchronization observed towards the end of seizures may facilitate termination. In this review we discuss cellular and network mechanisms responsible for such complex changes in synchronization. Recent work has identified cell-type-specific inhibitory and excitatory interactions, the dichotomy between neuronal firing and the non-local measurement of local field potentials distant to that firing, and the reflection of the neuronal dark matter problem in non-firing neurons active in seizures. These recent advances have challenged long-established views and are leading to a more rigorous and realistic understanding of the pathophysiology of epilepsy.
Collapse
Affiliation(s)
- Premysl Jiruska
- Department of Developmental Epileptology, Institute of Physiology, Academy of Sciences of Czech Republic, Prague 4-Krc, Czech Republic.
| | | | | | | | | | | |
Collapse
|
145
|
Abstract
PURPOSE OF REVIEW Epilepsy research has extended from studies at the cellular level to the investigation of interactions of large neuronal populations distant from one another: 'epileptic networks'. This article underlines the concept of epilepsies as network disorders, adding empirical evidence from electroencephalography-combined functional MRI (EEG-fMRI) studies. RECENT FINDINGS These noninvasive in-vivo EEG-fMRI epilepsy studies have characterized the ictal temporal-spatial evolution and the interictal persistence of altered activity in typical sets of (sub)cortical brain regions responsible for the clinical manifestation of the disease and its underlying encephalopathy, for example, thalamus vs. cortex in generalized; hippocampus vs. cortex in temporal lobe; a frontal near-piriform region universally in focal epilepsies. Models exist validated against intracranial EEG that can explain interictal and ictal activity based on statistical coupling between different brain regions, and if extended could guide the design of new treatments. SUMMARY The appreciation of epileptic processes at the network level will foster the development of both anticonvulsive as well as true antiepileptic treatment strategies locally modulating hub regions within the epileptic network architecture as well as entire networks by targeting their characteristic properties such as neurotransmitter or neuronal firing profiles. Treatment should reach beyond seizure control and include the improvement of cognitive function.
Collapse
|
146
|
Abstract
Understanding how epileptic seizures are initiated and propagated across large brain networks is difficult, but an even greater mystery is what makes them stop. Failure of spontaneous seizure termination leads to status epilepticus-a state of uninterrupted seizure activity that can cause death or permanent brain damage. Global factors, like changes in neuromodulators and ion concentrations, are likely to play major roles in spontaneous seizure cessation, but individual neurons also have intrinsic active ion currents that may contribute. The recently discovered gene Slack encodes a sodium-activated potassium channel that mediates a major proportion of the outward current in many neurons. Although given little attention, the current flowing through this channel may have properties consistent with a role in seizure termination.
Collapse
Affiliation(s)
- Kajsa M Igelström
- Department of Physiology, Otago School of Medical Sciences, University of Otago, Dunedin, New Zealand.
| |
Collapse
|
147
|
Abstract
The brain is naturally considered as a network of interacting elements which, when functioning properly, produces an enormous range of dynamic, adaptable behavior. However, when elements of this network fail, pathological changes ensue, including epilepsy, one of the most common brain disorders. This review examines some aspects of cortical network organization that distinguish epileptic cortex from normal brain as well as the dynamics of network activity before and during seizures, focusing primarily on focal seizures. The review is organized around four phases of the seizure: the interictal period, onset, propagation, and termination. For each phase, the authors discuss the most common rhythmic characteristics of macroscopic brain voltage activity and outline the observed functional network features. Although the characteristics of functional networks that support the epileptic seizure remain an area of active research, the prevailing trends point to a complex set of network dynamics between, before, and during seizures.
Collapse
Affiliation(s)
- Mark A Kramer
- Department of Mathematics and Statistics, Boston University, Boston, MA 02215, USA.
| | | |
Collapse
|
148
|
Semmelroch M, Elwes RDC, Lozsadi DA, Nashef L. Retrospective audit of postictal generalized EEG suppression in telemetry. Epilepsia 2011; 53:e21-4. [PMID: 22050242 DOI: 10.1111/j.1528-1167.2011.03296.x] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Sudden unexpected death in epilepsy (SUDEP) has on rare occasions occurred during electroencephalography (EEG) telemetry, and in such cases postictal EEG suppression (PI EEG-SUP) was frequently observed. More recently a retrospective case-control study reported this pattern as a risk factor for SUDEP. We retrospectively audited frequency and electroclinical features of this pattern as well as immediate management following tonic-clonic seizures during telemetry. Forty-eight patients with tonic-clonic seizures were identified from 470 consecutive EEG-videotelemetry reports. Thirteen patients (27%) with PI EEG-SUP (mean duration 38.1 s, range 6-69 s, median 38 s) were compared to 12 randomly selected controls. One seizure was analyzed per individual. Those with PI EEG-SUP were significantly more likely to be motionless after the seizure and have simple nursing interventions performed (suction, oxygen administration, placed in recovery position, vital signs checked). This pattern is relatively common and requires further study as a potential marker for increased mortality in epilepsy.
Collapse
Affiliation(s)
- Mira Semmelroch
- Department of Neuroscience, King's College Hospital, London, United Kingdom
| | | | | | | |
Collapse
|
149
|
Touboul J, Wendling F, Chauvel P, Faugeras O. Neural mass activity, bifurcations, and epilepsy. Neural Comput 2011; 23:3232-86. [PMID: 21919787 DOI: 10.1162/neco_a_00206] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
In this letter, we propose a general framework for studying neural mass models defined by ordinary differential equations. By studying the bifurcations of the solutions to these equations and their sensitivity to noise, we establish an important relation, similar to a dictionary, between their behaviors and normal and pathological, especially epileptic, cortical patterns of activity. We then apply this framework to the analysis of two models that feature most phenomena of interest, the Jansen and Rit model, and the slightly more complex model recently proposed by Wendling and Chauvel. This model-based approach allows us to test various neurophysiological hypotheses on the origin of pathological cortical behaviors and investigate the effect of medication. We also study the effects of the stochastic nature of the inputs, which gives us clues about the origins of such important phenomena as interictal spikes, interictal bursts, and fast onset activity that are of particular relevance in epilepsy.
Collapse
|
150
|
Shorvon S, Ferlisi M. The treatment of super-refractory status epilepticus: a critical review of available therapies and a clinical treatment protocol. Brain 2011; 134:2802-18. [DOI: 10.1093/brain/awr215] [Citation(s) in RCA: 430] [Impact Index Per Article: 30.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|