101
|
Quantitative divergence of the bacterial root microbiota in Arabidopsis thaliana relatives. Proc Natl Acad Sci U S A 2013; 111:585-92. [PMID: 24379374 DOI: 10.1073/pnas.1321597111] [Citation(s) in RCA: 308] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Plants host at the contact zone with soil a distinctive root-associated bacterial microbiota believed to function in plant nutrition and health. We investigated the diversity of the root microbiota within a phylogenetic framework of hosts: three Arabidopsis thaliana ecotypes along with its sister species Arabidopsis halleri and Arabidopsis lyrata, as well as Cardamine hirsuta, which diverged from the former ∼ 35 Mya. We surveyed their microbiota under controlled environmental conditions and of A. thaliana and C. hirsuta in two natural habitats. Deep 16S rRNA gene profiling of root and corresponding soil samples identified a total of 237 quantifiable bacterial ribotypes, of which an average of 73 community members were enriched in roots. The composition of this root microbiota depends more on interactions with the environment than with host species. Interhost species microbiota diversity is largely quantitative and is greater between the three Arabidopsis species than the three A. thaliana ecotypes. Host species-specific microbiota were identified at the levels of individual community members, taxonomic groups, and whole root communities. Most of these signatures were observed in the phylogenetically distant C. hirsuta. However, the branching order of host phylogeny is incongruent with interspecies root microbiota diversity, indicating that host phylogenetic distance alone cannot explain root microbiota diversification. Our work reveals within 35 My of host divergence a largely conserved and taxonomically narrow root microbiota, which comprises stable community members belonging to the Actinomycetales, Burkholderiales, and Flavobacteriales.
Collapse
|
102
|
Rangjaroen C, Rerkasem B, Teaumroong N, Sungthong R, Lumyong S. Comparative study of endophytic and endophytic diazotrophic bacterial communities across rice landraces grown in the highlands of northern Thailand. Arch Microbiol 2013; 196:35-49. [PMID: 24264469 DOI: 10.1007/s00203-013-0940-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2013] [Revised: 08/25/2013] [Accepted: 11/04/2013] [Indexed: 11/30/2022]
Abstract
Communities of bacterial endophytes within the rice landraces cultivated in the highlands of northern Thailand were studied using fingerprinting data of 16S rRNA and nifH genes profiling by polymerase chain reaction-denaturing gradient gel electrophoresis. The bacterial communities' richness, diversity index, evenness, and stability were varied depending on the plant tissues, stages of growth, and rice cultivars. These indices for the endophytic diazotrophic bacteria within the landrace rice Bue Wah Bo were significantly the lowest. The endophytic bacteria revealed greater diversity by cluster analysis with seven clusters compared to the endophytic diazotrophic bacteria (three clusters). Principal component analysis suggested that the endophytic bacteria showed that the community structures across the rice landraces had a higher stability than those of the endophytic diazotrophic bacteria. Uncultured bacteria were found dominantly in both bacterial communities, while higher generic varieties were observed in the endophytic diazotrophic bacterial community. These differences in bacterial communities might be influenced either by genetic variation in the rice landraces or the rice cultivation system, where the nitrogen input affects the endophytic diazotrophic bacterial community.
Collapse
Affiliation(s)
- Chakrapong Rangjaroen
- Microbiology Division, Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand,
| | | | | | | | | |
Collapse
|
103
|
|
104
|
Inoculation with microorganisms of Lolium perenne L.: evaluation of plant growth parameters and endophytic colonization of roots. N Biotechnol 2013; 30:695-704. [DOI: 10.1016/j.nbt.2013.04.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Revised: 04/10/2013] [Accepted: 04/20/2013] [Indexed: 12/12/2022]
|
105
|
Sasaki K, Ikeda S, Ohkubo T, Kisara C, Sato T, Minamisawa K. Effects of plant genotype and nitrogen level on bacterial communities in rice shoots and roots. Microbes Environ 2013; 28:391-5. [PMID: 23979487 PMCID: PMC4070954 DOI: 10.1264/jsme2.me12212] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
To examine whether microbial community structure differs across rice genotypes, automated ribosomal intergenic spacer analysis (ARISA) was conducted. Nine cultivars of Oryza sativa ssp. indica or japonica and seven lines of other Oryza species were grown in paddy fields with low, standard, and high levels of N fertilization. Multidimensional scaling plots of bacterial ARISA for aerial parts of rice (shoots) revealed that the structure of shoot bacterial communities was significantly affected by plant genotype (indica or japonica) based on similarity tests, whereas root microbiomes were largely affected by the N fertilization level.
Collapse
|
106
|
Chakraborty S. Migrate or evolve: options for plant pathogens under climate change. GLOBAL CHANGE BIOLOGY 2013; 19:1985-2000. [PMID: 23554235 DOI: 10.1111/gcb.12205] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2012] [Accepted: 03/12/2013] [Indexed: 05/21/2023]
Abstract
Findings on climate change influence on plant pathogens are often inconsistent and context dependent. Knowledge of pathogens affecting agricultural crops and natural plant communities remains fragmented along disciplinary lines. By broadening the perspective beyond agriculture, this review integrates cross-disciplinary knowledge to show that at scales relevant to climate change, accelerated evolution and changing geographic distribution will be the main implications for pathogens. New races may evolve rapidly under elevated temperature and CO2 , as evolutionary forces act on massive pathogen populations boosted by a combination of increased fecundity and infection cycles under favourable microclimate within enlarged canopy. Changing geographic distribution will bring together diverse lineages/genotypes that do not share common ecological niche, potentially increasing pathogen diversity. However, the uncertainty of model predictions and a lack of synthesis of fragmented knowledge remain as major deficiencies in knowledge. The review contends that the failure to consider scale and human intervention through new technology are major sources of uncertainty. Recognizing that improved biophysical models alone will not reduce uncertainty, it proposes a generic framework to increase focus and outlines ways to integrate biophysical elements and technology change with human intervention scenarios to minimize uncertainty. To synthesize knowledge of pathogen biology and life history, the review borrows the concept of 'fitness' from population biology as a comprehensive measure of pathogen strengths and vulnerabilities, and explores the implications of pathogen mode of nutrition to fitness and its interactions with plants suffering chronic abiotic stress under climate change. Current and future disease management options can then be judged for their ability to impair pathogenic and saprophytic fitness. The review pinpoints improving confidence in model prediction by minimizing uncertainty, developing management strategies to reduce overall pathogen fitness, and finding new sources of data to trawl for climate signatures on pathogens as important challenges for future research.
Collapse
Affiliation(s)
- Sukumar Chakraborty
- CSIRO Plant Industry, Queensland Bioscience Precinct, St. Lucia, Queensland, Australia.
| |
Collapse
|
107
|
Rose TJ, Impa SM, Rose MT, Pariasca-Tanaka J, Mori A, Heuer S, Johnson-Beebout SE, Wissuwa M. Enhancing phosphorus and zinc acquisition efficiency in rice: a critical review of root traits and their potential utility in rice breeding. ANNALS OF BOTANY 2013; 112:331-45. [PMID: 23071218 PMCID: PMC3698374 DOI: 10.1093/aob/mcs217] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 08/24/2012] [Indexed: 05/18/2023]
Abstract
BACKGROUND Rice is the world's most important cereal crop and phosphorus (P) and zinc (Zn) deficiency are major constraints to its production. Where fertilizer is applied to overcome these nutritional constraints it comes at substantial cost to farmers and the efficiency of fertilizer use is low. Breeding crops that are efficient at acquiring P and Zn from native soil reserves or fertilizer sources has been advocated as a cost-effective solution, but would benefit from knowledge of genes and mechanisms that confer enhanced uptake of these nutrients by roots. SCOPE This review discusses root traits that have been linked to P and Zn uptake in rice, including traits that increase mobilization of P/Zn from soils, increase the volume of soil explored by roots or root surface area to recapture solubilized nutrients, enhance the rate of P/Zn uptake across the root membrane, and whole-plant traits that affect root growth and nutrient capture. In particular, this review focuses on the potential for these traits to be exploited through breeding programmes to produce nutrient-efficient crop cultivars. CONCLUSIONS Few root traits have so far been used successfully in plant breeding for enhanced P and Zn uptake in rice or any other crop. Insufficient genotypic variation for traits or the failure to enhance nutrient uptake under realistic field conditions are likely reasons for the limited success. More emphasis is needed on field studies in mapping populations or association panels to identify those traits and underlying genes that are able to enhance nutrient acquisition beyond the level already present in most cultivars.
Collapse
Affiliation(s)
- T. J. Rose
- Southern Cross Plant Science, Southern Cross University, PO Box 157, Lismore, NSW 2480, Australia
| | - S. M. Impa
- Crop and Environmental Sciences Division, International Rice Research Institute (IRRI), DAPO Bob 7777, Metro Manila, Philippines
| | - M. T. Rose
- School of Biological Sciences, Monash University, Clayton, VIC 3800, Australia
| | - J. Pariasca-Tanaka
- Japan International Research Center for Agricultural Sciences (JIRCAS), Stable Food Production Program, 1-1 Ohwashi Tsukuba, Ibaraki 305-8686, Japan
| | - A. Mori
- Japan International Research Center for Agricultural Sciences (JIRCAS), Stable Food Production Program, 1-1 Ohwashi Tsukuba, Ibaraki 305-8686, Japan
| | - S. Heuer
- Plant Breeding, Genetics and Biotechnology Division, International Rice Research Institute (IRRI), DAPO Bob 7777, Metro Manila, Philippines
| | - S. E. Johnson-Beebout
- Crop and Environmental Sciences Division, International Rice Research Institute (IRRI), DAPO Bob 7777, Metro Manila, Philippines
| | - M. Wissuwa
- Japan International Research Center for Agricultural Sciences (JIRCAS), Stable Food Production Program, 1-1 Ohwashi Tsukuba, Ibaraki 305-8686, Japan
| |
Collapse
|
108
|
Lacombe A, Li RW, Klimis-Zacas D, Kristo AS, Tadepalli S, Krauss E, Young R, Wu VCH. Lowbush wild blueberries have the potential to modify gut microbiota and xenobiotic metabolism in the rat colon. PLoS One 2013; 8:e67497. [PMID: 23840722 PMCID: PMC3696070 DOI: 10.1371/journal.pone.0067497] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 05/19/2013] [Indexed: 12/12/2022] Open
Abstract
The gastrointestinal tract is populated by an array of microbial species that play an important role in metabolic and immune functions. The composition of microorganisms is influenced by the components of the host's diet and can impact health. In the present study, dietary enrichment of lowbush wild blueberries (LWB) was examined to determine their effect on colon microbial composition and their potential in promoting gut health. The microbial composition and functional potential of the colon microbiota from Sprague Dawley rats fed control diets (AIN93) and LWB-enriched diets (AIN93+8% LWB powder substituting for dextrose) for 6 weeks were assessed using Illumina shotgun sequencing and bioinformatics tools. Our analysis revealed an alteration in the relative abundance of 3 phyla and 22 genera as representing approximately 14 and 8% of all phyla and genera identified, respectively. The LWB-enriched diet resulted in a significant reduction in the relative abundance of the genera Lactobacillus and Enterococcus. In addition, hierarchal analysis revealed a significant increase in the relative abundance of the phylum Actinobacteria, the order Actinomycetales, and several novel genera under the family Bifidobacteriaceae and Coriobacteriaceae, in the LWB group. Functional annotation of the shotgun sequences suggested that approximately 9% of the 4709 Kyoto Encyclopaedia of Gene and Genome (KEGG) hits identified were impacted by the LWB-diet. Open Reading Frames (ORFs) assigned to KEGG category xenobiotics biodegradation and metabolism were significantly greater in the LWB-enriched diet compared to the control and included the pathway for benzoate degradation [PATH:ko00362] and glycosaminoglycan degradation [PATH:ko00531]. Moreover, the number of ORFs assigned to the bacterial invasion of epithelial cells [PATH:ko05100] pathway was approximately 8 fold lower in the LWB group compared to controls. This study demonstrated that LWBs have the potential to promote gut health and can aid in the development of optimal diets.
Collapse
Affiliation(s)
- Alison Lacombe
- Department of Food Science and Human Nutrition, The University of Maine, Orono, Maine, United States of America
| | - Robert W. Li
- United States Department of Agriculture ARS, BARC, Bovine Functional Genomics Laboratory, Beltsville, Maryland, United States of America
| | - Dorothy Klimis-Zacas
- Department of Food Science and Human Nutrition, The University of Maine, Orono, Maine, United States of America
| | - Aleksandra S. Kristo
- Department of Food Science and Human Nutrition, The University of Maine, Orono, Maine, United States of America
| | - Shravani Tadepalli
- Department of Food Science and Human Nutrition, The University of Maine, Orono, Maine, United States of America
| | - Emily Krauss
- Department of Food Science and Human Nutrition, The University of Maine, Orono, Maine, United States of America
| | - Ryan Young
- Department of Molecular and Biomedical Sciences, The University of Maine, Orono, Maine, United States of America
| | - Vivian C. H. Wu
- Department of Food Science and Human Nutrition, The University of Maine, Orono, Maine, United States of America
| |
Collapse
|
109
|
Kozyrovska NO. Crosstalk between endophytes and a plant host within information-processing networks. ACTA ACUST UNITED AC 2013. [DOI: 10.7124/bc.00081d] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- N. O. Kozyrovska
- Institute of Molecular Biology and Genetics, National Academy of Sciences of Ukraine
| |
Collapse
|
110
|
Nissinen RM, Männistö MK, van Elsas JD. Endophytic bacterial communities in three arctic plants from low arctic fell tundra are cold-adapted and host-plant specific. FEMS Microbiol Ecol 2012; 82:510-22. [PMID: 22861658 DOI: 10.1111/j.1574-6941.2012.01464.x] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2012] [Revised: 07/16/2012] [Accepted: 07/30/2012] [Indexed: 11/27/2022] Open
Abstract
Endophytic bacteria inhabit internal plant tissues, and have been isolated from a large diversity of plants, where they form nonpathogenic relationships with their hosts. This study combines molecular and culture-dependent approaches to characterize endophytic bacterial communities of three arcto-alpine plant species (Oxyria digyna, Diapensia lapponica and Juncus trifidus) sampled in the low Arctic (69°03'N). Analyses of a 325 bacterial endophyte isolates, as well as seven clone libraries, revealed a high diversity. In particular, members of the Actinobacteria, Bacteroidetes, Firmicutes, Acidobacteria, and Proteobacteria were found. The compositions of the endophytic bacterial communities were dependent on host-plant species as well as on snow cover at sampling sites. Several bacterial genera were found to be associated tightly with specific host-plant species. In particular, Sphingomonas spp. were characteristic for D. lapponica and O. digyna, and their phylogenetic grouping corresponded to the host plant. Most of the endophyte isolates grew well and retained activity at +4 °C, and isolate as well as clone library sequences were often highly similar to sequences from bacteria from cold environments. Taken together, this study shows that arctic plants harbour a diverse community of bacterial endophytes, a portion of which seems to be tightly associated with specific plant species.
Collapse
|
111
|
Bulgarelli D, Rott M, Schlaeppi K, Ver Loren van Themaat E, Ahmadinejad N, Assenza F, Rauf P, Huettel B, Reinhardt R, Schmelzer E, Peplies J, Gloeckner FO, Amann R, Eickhorst T, Schulze-Lefert P. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota. Nature 2012; 488:91-5. [DOI: 10.1038/nature11336] [Citation(s) in RCA: 1510] [Impact Index Per Article: 116.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2011] [Accepted: 06/18/2012] [Indexed: 11/09/2022]
|
112
|
Endophytic bacterial community living in roots of healthy and ‘Candidatus Phytoplasma mali’-infected apple (Malus domestica, Borkh.) trees. Antonie Van Leeuwenhoek 2012; 102:677-87. [DOI: 10.1007/s10482-012-9766-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2012] [Accepted: 06/14/2012] [Indexed: 10/28/2022]
|
113
|
Prischl M, Hackl E, Pastar M, Pfeiffer S, Sessitsch A. Genetically modified Bt maize lines containing cry3Bb1, cry1A105 or cry1Ab2 do not affect the structure and functioning of root-associated endophyte communities. APPLIED SOIL ECOLOGY 2012. [PMID: 0 DOI: 10.1016/j.apsoil.2011.12.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
|
114
|
Dynamics of seed-borne rice endophytes on early plant growth stages. PLoS One 2012; 7:e30438. [PMID: 22363438 PMCID: PMC3281832 DOI: 10.1371/journal.pone.0030438] [Citation(s) in RCA: 242] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2011] [Accepted: 12/20/2011] [Indexed: 11/30/2022] Open
Abstract
Bacterial endophytes are ubiquitous to virtually all terrestrial plants. With the increasing appreciation of studies that unravel the mutualistic interactions between plant and microbes, we increasingly value the beneficial functions of endophytes that improve plant growth and development. However, still little is known on the source of established endophytes as well as on how plants select specific microbial communities to establish associations. Here, we used cultivation-dependent and -independent approaches to assess the endophytic bacterrial community of surface-sterilized rice seeds, encompassing two consecutive rice generations. We isolated members of nine bacterial genera. In particular, organisms affiliated with Stenotrophomonas maltophilia and Ochrobactrum spp. were isolated from both seed generations. PCR-based denaturing gradient gel electrophoresis (PCR-DGGE) of seed-extracted DNA revealed that approximately 45% of the bacterial community from the first seed generation was found in the second generation as well. In addition, we set up a greenhouse experiment to investigate abiotic and biotic factors influencing the endophytic bacterial community structure. PCR-DGGE profiles performed with DNA extracted from different plant parts showed that soil type is a major effector of the bacterial endophytes. Rice plants cultivated in neutral-pH soil favoured the growth of seed-borne Pseudomonas oryzihabitans and Rhizobium radiobacter, whereas Enterobacter-like and Dyella ginsengisoli were dominant in plants cultivated in low-pH soil. The seed-borne Stenotrophomonas maltophilia was the only conspicuous bacterial endophyte found in plants cultivated in both soils. Several members of the endophytic community originating from seeds were observed in the rhizosphere and surrounding soils. Their impact on the soil community is further discussed.
Collapse
|
115
|
Ruiz D, Ruiza D, Agaras B, de Werra P, de Werrab P, Wall LG, Valverde C. Characterization and screening of plant probiotic traits of bacteria isolated from rice seeds cultivated in Argentina. J Microbiol 2011; 49:902-12. [PMID: 22203552 DOI: 10.1007/s12275-011-1073-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2011] [Accepted: 08/01/2011] [Indexed: 10/14/2022]
Abstract
Many seeds carry endophytes, which ensure good chances of seedling colonization. In this work, we have studied the seed-borne bacterial flora of rice varieties cultivated in the northeast of Argentina. Surface-sterilized husked seeds of the rice cultivars CT6919, El Paso 144, CAMBA, and IRGA 417 contained an average of 5×10(6) CFU/g of mesophilic and copiotrophic bacteria. Microbiological, physiological, and molecular characterization of a set of 39 fast-growing isolates from the CT6919 seeds revealed an important diversity of seed-borne mesophiles and potential plant probiotic activities, including diazotrophy and antagonism of fungal pathogens. In fact, the seed-borne bacterial flora protected the rice seedlings against Curvularia sp. infection. The root colonization pattern of 2 Pantoea isolates from the seeds was studied by fluorescence microscopy of the inoculated axenic rice seedlings. Both isolates strongly colonized the site of emergence of the lateral roots and lenticels, which may represent the entry sites for endophytic spreading. These findings suggest that rice plants allow grain colonization by bacterial species that may act as natural biofertilizers and bioprotectives early from seed germination.
Collapse
Affiliation(s)
- Dante Ruiz
- Nitrasoil Argentina S.A., Av. Centenario 3359, Quilmes, Buenos Aires, Argentina
| | | | | | | | | | | | | |
Collapse
|