101
|
Pyruvic oxime nitrification and copper and nickel resistance by a Cupriavidus pauculus, an active heterotrophic nitrifier-denitrifier. ScientificWorldJournal 2014; 2014:901702. [PMID: 25580463 PMCID: PMC4279423 DOI: 10.1155/2014/901702] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2014] [Revised: 11/11/2014] [Accepted: 11/15/2014] [Indexed: 02/01/2023] Open
Abstract
Heterotrophic nitrifiers synthesize nitrogenous gasses when nitrifying ammonium ion. A Cupriavidus pauculus, previously thought an Alcaligenes sp. and noted as an active heterotrophic nitrifier-denitrifier, was examined for its ability to produce nitrogen gas (N2) and nitrous oxide (N2O) while heterotrophically nitrifying the organic substrate pyruvic oxime [CH3–C(NOH)–COOH]. Neither N2 nor N2O were produced. Nucleotide and phylogenetic analyses indicated that the organism is a member of a genus (Cupriavidus) known for its resistance to metals and its metabolism of xenobiotics. The microbe (a Cupriavidus pauculus designated as C. pauculus strain UM1) was examined for its ability to perform heterotrophic nitrification in the presence of Cu2+ and Ni2+ and to metabolize the xenobiotic phenol. The bacterium heterotrophically nitrified well when either 1 mM Cu2+ or 0.5 mM Ni2+ was present in either enriched or minimal medium. The organism also used phenol as a sole carbon source in either the presence or absence of 1 mM Cu2+ or 0.5 mM Ni2+. The ability of this isolate to perform a number of different metabolisms, its noteworthy resistance to copper and nickel, and its potential use as a bioremediation agent are discussed.
Collapse
|
102
|
Jones MD, Rodgers-Vieira EA, Hu J, Aitken MD. Association of Growth Substrates and Bacterial Genera with Benzo[ a]pyrene Mineralization in Contaminated Soil. ENVIRONMENTAL ENGINEERING SCIENCE 2014; 31:689-697. [PMID: 25469077 PMCID: PMC4245834 DOI: 10.1089/ees.2014.0275] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2014] [Accepted: 07/27/2014] [Indexed: 05/24/2023]
Abstract
Benzo[a]pyrene (BaP) is a carcinogenic polycyclic aromatic hydrocarbon (PAH) that is not known to be a bacterial growth substrate. Organisms capable of cometabolizing BaP in complex field-contaminated systems have not previously been identified. We evaluated BaP mineralization by a bacterial community from a bioreactor treating PAH-contaminated soil during coincubation with or after pre-enrichment on various PAHs as growth substrates. Pyrosequence libraries of 16S rRNA genes were used to identify bacteria that were enriched on the added growth substrate as a means of associating specific organisms with BaP mineralization. Coincubating the bioreactor-treated soil with naphthalene, phenanthrene, or pyrene inhibited BaP mineralization, whereas pre-enriching the soil on the same three PAHs enhanced BaP mineralization. Combined, these results suggest that bacteria in the bioreactor community that are capable of growing on naphthalene, phenanthrene, and/or pyrene can metabolize BaP, with coincubation competitively inhibiting BaP metabolism. Anthracene, fluoranthene, and benz[a]anthracene had little effect on BaP mineralization compared to incubations without an added growth substrate under either coincubation or pre-enrichment conditions. Substantial increases in relative abundance after pre-enrichment with phenanthrene, naphthalene, or pyrene, but not the other PAHs, suggest that members of the genera Cupriavidus and Luteimonas may have been associated with BaP mineralization.
Collapse
Affiliation(s)
- Maiysha D. Jones
- Present Address: The Procter & Gamble Company, Mason Business Center, 8700 S. Mason Montgomery Road, Mason, OH 45040. Phone:+1-513-622-5592; E-mail:
| | | | - Jing Hu
- Present Address: The Dow Chemical Company, 1803 Building, Midland, MI 48674. Phone:+1-989-638-4847; E-mail:
| | | |
Collapse
|
103
|
Berezina N, Yada B, Lefebvre R. From organic pollutants to bioplastics: insights into the bioremediation of aromatic compounds by Cupriavidus necator. N Biotechnol 2014; 32:47-53. [PMID: 25252021 DOI: 10.1016/j.nbt.2014.09.003] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 09/14/2014] [Accepted: 09/14/2014] [Indexed: 11/24/2022]
Abstract
Organic pollution by aromatic compounds is of increasing concern to our environment. Therefore, the transformation of aromatic pollutants into valuable aliphatic and biodegradable bioplastics was studied. Since benzoic acid was found to be the key compound for such bioremediation processes, its transformation, and metabolic pathways of digestion, by Cupriavidus necator were specifically analysed. It was found that the degradation of aromatic compounds follows the 2,3-dioxygenase pathway in this strain and that the batch transformations of benzoic acid with either fresh or adapted cells were limited to an initial concentration of 2.5 g/L of pollutant. The repeated fed-batch with partial withdrawal process, however, showed a 17.5-fold improvement, thus allowing the transformation of a total of 43.7 g/L in 12 weeks.
Collapse
Affiliation(s)
- Nathalie Berezina
- Materia Nova R&D Centre, Rue des Foudriers, 1, 7822 Ghislenghien, Belgium.
| | - Bopha Yada
- Materia Nova R&D Centre, Rue des Foudriers, 1, 7822 Ghislenghien, Belgium
| | - Rodrigue Lefebvre
- Materia Nova R&D Centre, Rue des Foudriers, 1, 7822 Ghislenghien, Belgium
| |
Collapse
|
104
|
Arhodomonas sp. strain Seminole and its genetic potential to degrade aromatic compounds under high-salinity conditions. Appl Environ Microbiol 2014; 80:6664-76. [PMID: 25149520 DOI: 10.1128/aem.01509-14] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
Arhodomonas sp. strain Seminole was isolated from a crude oil-impacted brine soil and shown to degrade benzene, toluene, phenol, 4-hydroxybenzoic acid (4-HBA), protocatechuic acid (PCA), and phenylacetic acid (PAA) as the sole sources of carbon at high salinity. Seminole is a member of the genus Arhodomonas in the class Gammaproteobacteria, sharing 96% 16S rRNA gene sequence similarity with Arhodomonas aquaeolei HA-1. Analysis of the genome predicted a number of catabolic genes for the metabolism of benzene, toluene, 4-HBA, and PAA. The predicted pathways were corroborated by identification of enzymes present in the cytosolic proteomes of cells grown on aromatic compounds using liquid chromatography-mass spectrometry. Genome analysis predicted a cluster of 19 genes necessary for the breakdown of benzene or toluene to acetyl coenzyme A (acetyl-CoA) and pyruvate. Of these, 12 enzymes were identified in the proteome of toluene-grown cells compared to lactate-grown cells. Genomic analysis predicted 11 genes required for 4-HBA degradation to form the tricarboxylic acid (TCA) cycle intermediates. Of these, proteomic analysis of 4-HBA-grown cells identified 6 key enzymes involved in the 4-HBA degradation pathway. Similarly, 15 genes needed for the degradation of PAA to the TCA cycle intermediates were predicted. Of these, 9 enzymes of the PAA degradation pathway were identified only in PAA-grown cells and not in lactate-grown cells. Overall, we were able to reconstruct catabolic steps for the breakdown of a variety of aromatic compounds in an extreme halophile, strain Seminole. Such knowledge is important for understanding the role of Arhodomonas spp. in the natural attenuation of hydrocarbon-impacted hypersaline environments.
Collapse
|
105
|
Wang W, Yang S, Hunsinger GB, Pienkos PT, Johnson DK. Connecting lignin-degradation pathway with pre-treatment inhibitor sensitivity of Cupriavidus necator. Front Microbiol 2014; 5:247. [PMID: 24904560 PMCID: PMC4034039 DOI: 10.3389/fmicb.2014.00247] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2014] [Accepted: 05/06/2014] [Indexed: 12/25/2022] Open
Abstract
To produce lignocellulosic biofuels economically, the complete release of monomers from the plant cell wall components, cellulose, hemicellulose, and lignin, through pre-treatment and hydrolysis (both enzymatic and chemical), and the efficient utilization of these monomers as carbon sources, is crucial. In addition, the identification and development of robust microbial biofuel production strains that can tolerate the toxic compounds generated during pre-treatment and hydrolysis is also essential. In this work, Cupriavidus necator was selected due to its capabilities for utilizing lignin monomers and producing polyhydroxylbutyrate (PHB), a bioplastic as well as an advanced biofuel intermediate. We characterized the growth kinetics of C. necator in pre-treated corn stover slurry as well as individually in the pre-sence of 11 potentially toxic compounds in the saccharified slurry. We found that C. necator was sensitive to the saccharified slurry produced from dilute acid pre-treated corn stover. Five out of 11 compounds within the slurry were characterized as toxic to C. necator, namely ammonium acetate, furfural, hydroxymethylfurfural (HMF), benzoic acid, and p-coumaric acid. Aldehydes (e.g., furfural and HMF) were more toxic than the acetate and the lignin degradation products benzoic acid and p-coumaric acid; furfural was identified as the most toxic compound. Although toxic to C. necator at high concentration, ammonium acetate, benzoic acid, and p-coumaric acid could be utilized by C. necator with a stimulating effect on C. necator growth. Consequently, the lignin degradation pathway of C. necator was reconstructed based on genomic information and literature. The efficient conversion of intermediate catechol to downstream products of cis,cis-muconate or 2-hydroxymuconate-6-semialdehyde may help improve the robustness of C. necator to benzoic acid and p-coumaric acid as well as improve PHB productivity.
Collapse
Affiliation(s)
- Wei Wang
- National Renewable Energy Laboratory, Biosciences CenterGolden, CO, USA
| | - Shihui Yang
- National Renewable Energy Laboratory, National Bioenergy CenterGolden, CO, USA
| | | | - Philip T. Pienkos
- National Renewable Energy Laboratory, National Bioenergy CenterGolden, CO, USA
| | - David K. Johnson
- National Renewable Energy Laboratory, Biosciences CenterGolden, CO, USA
| |
Collapse
|
106
|
Arora PK, Bae H. Integration of bioinformatics to biodegradation. Biol Proced Online 2014; 16:8. [PMID: 24808763 PMCID: PMC4012781 DOI: 10.1186/1480-9222-16-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Accepted: 04/19/2014] [Indexed: 12/22/2022] Open
Abstract
Bioinformatics and biodegradation are two primary scientific fields in applied microbiology and biotechnology. The present review describes development of various bioinformatics tools that may be applied in the field of biodegradation. Several databases, including the University of Minnesota Biocatalysis/Biodegradation database (UM-BBD), a database of biodegradative oxygenases (OxDBase), Biodegradation Network-Molecular Biology Database (Bionemo) MetaCyc, and BioCyc have been developed to enable access to information related to biochemistry and genetics of microbial degradation. In addition, several bioinformatics tools for predicting toxicity and biodegradation of chemicals have been developed. Furthermore, the whole genomes of several potential degrading bacteria have been sequenced and annotated using bioinformatics tools.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| | - Hanhong Bae
- School of Biotechnology, Yeungnam University, Gyeongsan 712-749, Republic of Korea
| |
Collapse
|
107
|
Construction of an engineered strain capable of degrading two isomeric nitrophenols via a sacB- and gfp-based markerless integration system. Appl Microbiol Biotechnol 2014; 98:4749-56. [DOI: 10.1007/s00253-014-5567-0] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2013] [Revised: 01/18/2014] [Accepted: 01/21/2014] [Indexed: 10/25/2022]
|
108
|
Autotrophic microbe metagenomes and metabolic pathways differentiate adjacent Red Sea brine pools. Sci Rep 2014; 3:1748. [PMID: 23624511 PMCID: PMC3638166 DOI: 10.1038/srep01748] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 04/02/2013] [Indexed: 01/29/2023] Open
Abstract
In the Red Sea, two neighboring deep-sea brine pools, Atlantis II and Discovery, have been studied extensively, and the results have shown that the temperature and concentrations of metal and methane in Atlantis II have increased over the past decades. Therefore, we investigated changes in the microbial community and metabolic pathways. Here, we compared the metagenomes of the two pools to each other and to those of deep-sea water samples. Archaea were generally absent in the Atlantis II metagenome; Bacteria in the metagenome were typically heterotrophic and depended on aromatic compounds and other extracellular organic carbon compounds as indicated by enrichment of the related metabolic pathways. In contrast, autotrophic Archaea capable of CO2 fixation and methane oxidation were identified in Discovery but not in Atlantis II. Our results suggest that hydrothermal conditions and metal precipitation in the Atlantis II pool have resulted in elimination of the autotrophic community and methanogens.
Collapse
|
109
|
Arora PK, Srivastava A, Singh VP. Bacterial degradation of nitrophenols and their derivatives. JOURNAL OF HAZARDOUS MATERIALS 2014; 266:42-59. [PMID: 24374564 DOI: 10.1016/j.jhazmat.2013.12.011] [Citation(s) in RCA: 133] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2013] [Revised: 11/22/2013] [Accepted: 12/04/2013] [Indexed: 06/03/2023]
Abstract
This review intends to provide an overview of bacterial degradation of nitrophenols (NPs) and their derivatives. The main scientific focus is on biochemical and genetic characterization of bacterial degradation of NPs. Other aspects such as bioremediation and chemotaxis correlated with biodegradation of NPs are also discussed. This review will increase our current understanding of bacterial degradation of NPs and their derivatives.
Collapse
Affiliation(s)
- Pankaj Kumar Arora
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India.
| | - Alok Srivastava
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| | - Vijay Pal Singh
- Department of Plant Science, Faculty of Applied Sciences, MJP Rohilkhand University, Bareilly, India
| |
Collapse
|
110
|
Martínez-Martínez M, Lores I, Peña-García C, Bargiela R, Reyes-Duarte D, Guazzaroni ME, Peláez AI, Sánchez J, Ferrer M. Biochemical studies on a versatile esterase that is most catalytically active with polyaromatic esters. Microb Biotechnol 2014; 7:184-91. [PMID: 24418210 PMCID: PMC3937722 DOI: 10.1111/1751-7915.12107] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 11/12/2013] [Accepted: 11/21/2013] [Indexed: 11/30/2022] Open
Abstract
Herein, we applied a community genomic approach using a naphthalene-enriched community (CN1) to isolate a versatile esterase (CN1E1) from the α/β-hydrolase family. The protein shares low-to-medium identity (≤ 57%) with known esterase/lipase-like proteins. The enzyme is most active at 25–30°C and pH 8.5; it retains approximately 55% of its activity at 4°C and less than 8% at ≥ 55°C, which indicates that it is a cold-adapted enzyme. CN1E1 has a distinct substrate preference compared with other α/β-hydrolases because it is catalytically most active for hydrolysing polyaromatic hydrocarbon (phenanthrene, anthracene, naphthalene, benzoyl, protocatechuate and phthalate) esters (7200–21 000 units g−1 protein at 40°C and pH 8.0). The enzyme also accepts 44 structurally different common esters with different levels of enantio-selectivity (1.0–55 000 units g−1 protein), including (±)-menthyl-acetate, (±)-neomenthyl acetate, (±)-pantolactone, (±)-methyl-mandelate, (±)-methyl-lactate and (±)-glycidyl 4-nitrobenzoate (in that order). The results provide the first biochemical evidence suggesting that such broad-spectrum esterases may be an ecological advantage for bacteria that mineralize recalcitrant pollutants (including oil refinery products, plasticizers and pesticides) as carbon sources under pollution pressure. They also offer a new tool for the stereo-assembly (i.e. through ester bonds) of multi-aromatic molecules with benzene rings that are useful for biology, chemistry and materials sciences for cases in which enzyme methods are not yet available.
Collapse
Affiliation(s)
- Mónica Martínez-Martínez
- Department of Applied Biocatalysis, Consejo Superior de Investigaciones Científicas (CSIC), Institute of Catalysis, Marie Curie 2, 28049, Madrid, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
111
|
Howell CC, Semple KT, Bending GD. Isolation and characterisation of azoxystrobin degrading bacteria from soil. CHEMOSPHERE 2014; 95:370-8. [PMID: 24125711 DOI: 10.1016/j.chemosphere.2013.09.048] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2013] [Revised: 08/22/2013] [Accepted: 09/10/2013] [Indexed: 05/25/2023]
Abstract
The first strobilurin fungicides were introduced in 1996, and have since been used in a vast array of disease/plant systems worldwide. The strobilurins now consist of 16 compounds and represent the 2nd most important fungicide group worldwide with 15% of the total fungicide market share. Strobilurins are moderately persistent in soil, and some degradation products (e.g. azoxystrobin acid) have been detected as contaminants of freshwater systems. Little is currently known about the transformation processes involved in the biodegradation of strobilurins or the microbial groups involved. Using sequential soil and liquid culture enrichments, we isolated two bacterial strains which were able to degrade the most widely used strobilurin, azoxystrobin, when supplied as a sole carbon source. 16S rRNA showed that the strains showed homology to Cupriavidus sp. and Rhodanobacter sp. Both isolated strains were also able to degrade the related strobilurin compounds trifloxystrobin, pyraclostrobin, and kresoxim-methyl. An additional nitrogen source was required for degradation to occur, but the addition of a further carbon source reduced compound degradation by approximately 50%. However, (14)C radiometric analysis showed that full mineralisation of azosxystrobin to (14)CO2 was negligible for both isolates. 16S rRNA T-RFLP analysis using both DNA and RNA extracts showed that degradation of azoxystrobin in soil was associated with shifts in bacterial community structure. However, the phylotypes which proliferated during degradation could not be attributed to the isolated degraders.
Collapse
Affiliation(s)
- Christopher C Howell
- School of Life Sciences, University of Warwick, Gibbet Hill Road, Coventry, Warwickshire CV4 7AL, UK.
| | | | | |
Collapse
|
112
|
Berthiaume C, Gilbert Y, Fournier-Larente J, Pluchon C, Filion G, Jubinville E, Sérodes JB, Rodriguez M, Duchaine C, Charette SJ. Identification of dichloroacetic acid degrading Cupriavidus bacteria in a drinking water distribution network model. J Appl Microbiol 2013; 116:208-21. [PMID: 24112699 DOI: 10.1111/jam.12353] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2013] [Revised: 09/05/2013] [Accepted: 09/19/2013] [Indexed: 11/26/2022]
Abstract
AIMS Bacterial community structure and composition of a drinking water network were assessed to better understand this ecosystem in relation to haloacetic acid (HAA) degradation and to identify new bacterial species having HAA degradation capacities. METHODS AND RESULTS Biofilm samples were collected from a model system, simulating the end of the drinking water distribution network and supplied with different concentrations of dichloroacetic and trichloroacetic acids at different periods over the course of a year. The samples were analysed by culturing, denaturing gradient gel electrophoresis (DGGE) and sequencing. Pipe diameter and HAA ratios did not impact the bacterial community profiles, but the season had a clear influence. Based on DGGE profiles, it appeared that a particular biomass has developed during the summer compared with the other seasons. Among the bacteria isolated in this study, those from genus Cupriavidus were able to degrade dichloroacetic acid. Moreover, these bacteria degrade dichloroacetic acid at 18°C but not at 10°C. CONCLUSIONS The microbial diversity evolved throughout the experiment, but the bacterial community was distinct during the summer. Results obtained on the capacity of Cupriavidus to degrade DCAA only at 18°C but not at 10°C indicate that water temperature is a major element affecting DCAA degradation and confirming observations made regarding season influence on HAA degradation in the drinking water distribution network. SIGNIFICANCE AND IMPACT OF THE STUDY This is the first demonstration of the HAA biodegradation capacity of the genus Cupriavidus.
Collapse
Affiliation(s)
- C Berthiaume
- Centre de recherche de l'Institut universitaire de cardiologie et de pneumologie de Québec, Quebec City, QC, Canada
| | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Zabaloy MC, Gómez MA. Isolation and characterization of indigenous 2,4-D herbicide degrading bacteria from an agricultural soil in proximity of Sauce Grande River, Argentina. ANN MICROBIOL 2013. [DOI: 10.1007/s13213-013-0731-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
114
|
An D, Caffrey SM, Soh J, Agrawal A, Brown D, Budwill K, Dong X, Dunfield P, Foght J, Gieg LM, Hallam SJ, Hanson NW, He Z, Jack TR, Klassen J, Konwar KM, Kuatsjah E, Li C, Larter S, Leopatra V, Nesbø CL, Oldenburg T, Pagé A, Ramos-Padron E, Rochman FF, Saidi-Mehrabad A, Sensen CW, Sipahimalani P, Song YC, Wilson S, Wolbring G, Wong ML, Voordouw G. Metagenomics of hydrocarbon resource environments indicates aerobic taxa and genes to be unexpectedly common. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2013; 47:10708-17. [PMID: 23889694 PMCID: PMC3864245 DOI: 10.1021/es4020184] [Citation(s) in RCA: 114] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Revised: 07/23/2013] [Accepted: 07/26/2013] [Indexed: 05/29/2023]
Abstract
Oil in subsurface reservoirs is biodegraded by resident microbial communities. Water-mediated, anaerobic conversion of hydrocarbons to methane and CO2, catalyzed by syntrophic bacteria and methanogenic archaea, is thought to be one of the dominant processes. We compared 160 microbial community compositions in ten hydrocarbon resource environments (HREs) and sequenced twelve metagenomes to characterize their metabolic potential. Although anaerobic communities were common, cores from oil sands and coal beds had unexpectedly high proportions of aerobic hydrocarbon-degrading bacteria. Likewise, most metagenomes had high proportions of genes for enzymes involved in aerobic hydrocarbon metabolism. Hence, although HREs may have been strictly anaerobic and typically methanogenic for much of their history, this may not hold today for coal beds and for the Alberta oil sands, one of the largest remaining oil reservoirs in the world. This finding may influence strategies to recover energy or chemicals from these HREs by in situ microbial processes.
Collapse
Affiliation(s)
- Dongshan An
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Sean M. Caffrey
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Jung Soh
- Visual Genomics Centre, Faculty
of Medicine, University of Calgary, Calgary,
Alberta, T2N 1N4, Canada
| | - Akhil Agrawal
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Damon Brown
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Karen Budwill
- Environment and Carbon Management Division, Alberta Innovates−Technology Futures, Edmonton,
Alberta, T6N 1E4, Canada
| | - Xiaoli Dong
- Visual Genomics Centre, Faculty
of Medicine, University of Calgary, Calgary,
Alberta, T2N 1N4, Canada
| | - Peter
F. Dunfield
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Julia Foght
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, P6G 2M7,
Canada
| | - Lisa M. Gieg
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Steven J. Hallam
- Department of Microbiology &
Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British
Columbia, V6T 1Z4, Canada
- Michael
Smith Genome Sciences Centre,
Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Niels W. Hanson
- Genome Sciences and Technology
Training Program, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Zhiguo He
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Thomas R. Jack
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Jonathan Klassen
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, P6G 2M7,
Canada
| | - Kishori M. Konwar
- Department of Microbiology &
Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Eugene Kuatsjah
- Genome Sciences and Technology
Training Program, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Carmen Li
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, P6G 2M7,
Canada
| | - Steve Larter
- Department
of Geosciences, University of Calgary,
Calgary, Alberta, T2N 1N4, Canada
| | - Verlyn Leopatra
- Department of Community Health
Sciences, University of Calgary, Alberta,
T2N 1N4, Canada
| | - Camilla L. Nesbø
- Department of Biological Sciences, University of Alberta, Edmonton, Alberta, P6G 2M7,
Canada
- Department of Biology, University of Oslo, 0313 Oslo, Norway
| | - Thomas Oldenburg
- Department
of Geosciences, University of Calgary,
Calgary, Alberta, T2N 1N4, Canada
| | - Antoine
P. Pagé
- Department of Microbiology &
Immunology, University of British Columbia, Vancouver, British Columbia, V6T 1Z4, Canada
| | - Esther Ramos-Padron
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Fauziah F. Rochman
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | | | - Christoph W. Sensen
- Visual Genomics Centre, Faculty
of Medicine, University of Calgary, Calgary,
Alberta, T2N 1N4, Canada
| | - Payal Sipahimalani
- Michael
Smith Genome Sciences Centre,
Genome Sciences Centre, BC Cancer Agency, Vancouver, British Columbia, V5Z 1L3, Canada
| | - Young C. Song
- Graduate Program in Bioinformatics, University of British Columbia, Vancouver, British
Columbia, V6T 1Z4, Canada
| | - Sandra Wilson
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Gregor Wolbring
- Department of Community Health
Sciences, University of Calgary, Alberta,
T2N 1N4, Canada
| | - Man-Ling Wong
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| | - Gerrit Voordouw
- Department of Biological Sciences, University of Calgary, Calgary, Alberta, T2N 1N4, Canada
| |
Collapse
|
115
|
mhpT encodes an active transporter involved in 3-(3-hydroxyphenyl)propionate catabolism by Escherichia coli K-12. Appl Environ Microbiol 2013; 79:6362-8. [PMID: 23934492 DOI: 10.1128/aem.02110-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Escherichia coli K-12 utilizes 3-(3-hydroxyphenyl)propionate (3HPP) as a sole carbon and energy source. Among the genes in its catabolic cluster in the genome, mhpT was proposed to encode a hypothetical transporter. Since no transporter for 3HPP uptake has been identified, we investigated whether MhpT is responsible for 3HPP uptake. MhpT fused with green fluorescent protein was found to be located at the periphery of cells by confocal microscopy, consistent with localization to the cytoplasmic membrane. Gene knockout and complementation studies clearly indicated that mhpT is essential for 3HPP catabolism in E. coli K-12 W3110 at pH 8.2. Uptake assays with (14)C-labeled substrates demonstrated that strain W3110 and strain W3110ΔmhpT containing recombinant MhpT specifically transported 3HPP but not benzoate, 3-hydroxybenzoate, or gentisate into cells. Energy dependence assays suggested that MhpT-mediated 3HPP transport was driven by the proton motive force. The change of Ala-272 of MhpT to a histidine, surprisingly, resulted in enhanced transport activity, and strain W3110ΔmhpT containing the MhpT A272H mutation had a slightly higher growth rate than the wild-type strain at pH 8.2. Hence, we demonstrated that MhpT is a specific 3HPP transporter and vital for E. coli K-12 W3110 growth on this substrate under basic conditions.
Collapse
|
116
|
Dallinger A, Horn MA. Agricultural soil and drilosphere as reservoirs of new and unusual assimilators of 2,4-dichlorophenol carbon. Environ Microbiol 2013; 16:84-100. [DOI: 10.1111/1462-2920.12209] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2013] [Accepted: 07/08/2013] [Indexed: 11/28/2022]
Affiliation(s)
- Anja Dallinger
- Department of Ecological Microbiology; University of Bayreuth; Dr.-Hans-Frisch-Straße 1-3 Bayreuth 95440 Germany
| | - Marcus A. Horn
- Department of Ecological Microbiology; University of Bayreuth; Dr.-Hans-Frisch-Straße 1-3 Bayreuth 95440 Germany
| |
Collapse
|
117
|
Shah V, Zakrzewski M, Wibberg D, Eikmeyer F, Schlüter A, Madamwar D. Taxonomic Profiling and Metagenome Analysis of a Microbial Community from a Habitat Contaminated with Industrial Discharges. MICROBIAL ECOLOGY 2013; 66:533-550. [PMID: 23797291 DOI: 10.1007/s00248-013-0253-9] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 06/03/2013] [Indexed: 06/02/2023]
Abstract
Industrial units, manufacturing dyes, chemicals, solvents, and xenobiotic compounds, produce liquid and solid wastes, which upon conventional treatment are released in the nearby environment and thus are the major cause of pollution. Soil collected from contaminated Kharicut Canal bank (N 22°57.878'; E 072°38.478'), Ahmedabad, Gujarat, India was used for metagenomic DNA preparation to study the capabilities of intrinsic microbial community in dealing with xenobiotics. Sequencing of metagenomic DNA on the Genome Sequencer FLX System using titanium chemistry resulted in 409,782 reads accounting for 133,529,997 bases of sequence information. Taxonomic analyses and gene annotations were carried out using the bioinformatics platform Sequence Analysis and Management System for Metagenomic Datasets. Taxonomic profiling was carried out by three different complementary approaches: (a) 16S rDNA, (b) environmental gene tags, and (c) lowest common ancestor. The most abundant phylum and genus were found to be "Proteobacteria" and "Pseudomonas," respectively. Metagenome reads were mapped on sequenced microbial genomes and the highest numbers of reads were allocated to Pseudomonas stutzeri A1501. Assignment of obtained metagenome reads to Gene Ontology terms, Clusters of Orthologous Groups of protein categories, protein family numbers, and Kyoto Encyclopedia of Genes and Genomes hits revealed genomic potential of indigenous microbial community. In total, 157,024 reads corresponded to 37,028 different KEGG hits, and amongst them, 11,574 reads corresponded to 131 different enzymes potentially involved in xenobiotic biodegradation. These enzymes were mapped on biodegradation pathways of xenobiotics to elucidate their roles in possible catalytic reactions. Consequently, information obtained from the present study will act as a baseline which, subsequently along with other "-omic" studies, will help in designing future bioremediation strategies in effluent treatment plants and environmental clean-up projects.
Collapse
Affiliation(s)
- Varun Shah
- BRD School of Biosciences, Sardar Patel University, Sardar Patel Maidan, Vadtal Road, Satellite Campus, Vallabh Vidyanagar 388 120, Post Box No. 39, Anand, Gujarat, India,
| | | | | | | | | | | |
Collapse
|
118
|
Larentis M, Hoermann K, Lueders T. Fine-scale degrader community profiling over an aerobic/anaerobic redox gradient in a toluene-contaminated aquifer. ENVIRONMENTAL MICROBIOLOGY REPORTS 2013; 5:225-234. [PMID: 23584966 DOI: 10.1111/1758-2229.12004] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 09/12/2012] [Accepted: 09/21/2012] [Indexed: 06/02/2023]
Abstract
Hydrocarbon contaminants in groundwater can be degraded by microbes under different redox settings, forming hot spots of degradation especially at the fringes of contaminant plumes. At a tar-oil-contaminated aquifer in Germany, it was previously shown that the distribution of anaerobic toluene degraders as traced via catabolic and ribosomal marker genes is highly correlated to zones of increased anaerobic degradation at the lower fringe of the plume. Here, we trace the respective distribution of aerobic toluene degraders over a fine-scale depth transect of sediments taken at the upper fringe of the plume and below, based on the analysis of 16S rRNA genes as well as catabolic markers in intervals of 3-10 cm. Well-defined small-scale distribution maxima of typical aerobic degrader lineages within the Pseudomonadaceae, Comamonadaceae and Burkholderiaceae are revealed over the redox gradient. An unexpected maximal abundance of 9.2 × 10⁶ toluene monooxygenase (tmoA) genes per g of sediment was detected in the strongly reduced plume core, and gene counts did not increase towards the more oxidized upper plume fringe. This may point towards unusual ecological controls of these yet unidentified aerobic degraders, and indicates that competitive niche partitioning between aerobic and anaerobic hydrocarbon degraders in the field is not yet fully understood. These findings demonstrate the potential of catabolic marker gene assays in elaborating the ecology of contaminant plumes, which is a prerequisite for developing integrated monitoring strategies for natural attenuation.
Collapse
Affiliation(s)
- Michael Larentis
- Institute of Groundwater Ecology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstr. 1, D-85764, Neuherberg, Germany
| | | | | |
Collapse
|
119
|
Romero-Silva MJ, Méndez V, Agulló L, Seeger M. Genomic and functional analyses of the gentisate and protocatechuate ring-cleavage pathways and related 3-hydroxybenzoate and 4-hydroxybenzoate peripheral pathways in Burkholderia xenovorans LB400. PLoS One 2013; 8:e56038. [PMID: 23418504 PMCID: PMC3572157 DOI: 10.1371/journal.pone.0056038] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Accepted: 01/04/2013] [Indexed: 11/24/2022] Open
Abstract
In this study, the gentisate and protocatechuate pathways in Burkholderia xenovorans LB400 were analyzed by genomic and functional approaches, and their role in 3-hydroxybenzoate (3-HBA) and 4-hydroxybenzoate (4-HBA) degradation was proposed. The LB400 genome possesses two identical mhbRTDHI gene clusters encoding the gentisate pathway and one mhbM gene encoding a 3-HBA 6-hydroxylase that converts 3-HBA into gentisate. The pca genes encoding the protocatechuate pathway and the pobA gene encoding the 4-HBA 3-monooxygenase that oxidizes 4-HBA into protocatechuate are arranged in gene clusters and single genes mainly at the minor chromosome, but also at the major chromosome and the megaplasmid. Strain LB400 was able to grow on gentisate, protocatechuate, 3-HBA and 4-HBA. Transcriptional analyses showed that the mhbD gene encoding the gentisate 1,2-dioxygenase was expressed during growth on 3-HBA, 4-HBA and gentisate, whereas the pcaG gene encoding the protocatechuate 3,4-dioxygenase was expressed only during growth on 4-HBA and protocatechuate. The mhbM gene encoding the 3-HBA 6-hydroxylase was transcribed in strain LB400 during growth on HBAs, gentisate, protocatechuate and glucose. The pobA gene encoding the 4-HBA 3-monooxygenase was expressed during growth on HBAs and glucose. 3-HBA- and 4-HBA-grown LB400 cells showed gentisate 1,2-dioxygenase activity, whereas protocatechuate 3,4-dioxygenase activity was observed only in 4-HBA-grown cells. The mhbR gene encoding a MarR-type transcriptional regulator that probably regulates the expression of the MhbT transporter, and the pcaQ and pcaR genes encoding LysR-type transcriptional regulators that regulate pcaHG and pcaIJBDC genes, respectively, were transcribed during growth on both HBAs, gentisate, protocatechuate and glucose, suggesting a basal constitutive expression. The results indicate active gentisate, protocatechuate, 3-HBA and 4-HBA catabolic pathways in B. xenovorans LB400 and suggest that 3-HBA is channeled exclusively through the gentisate route, whereas 4-HBA is funneled into the protocatechuate central pathway and potentially into the gentisate pathway.
Collapse
Affiliation(s)
- María José Romero-Silva
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Center for Nanotechnology and Systems Biology, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Valentina Méndez
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Center for Nanotechnology and Systems Biology, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Loreine Agulló
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Center for Nanotechnology and Systems Biology, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Center for Nanotechnology and Systems Biology, Universidad Técnica Federico Santa María, Valparaíso, Chile
- * E-mail:
| |
Collapse
|
120
|
Tilston EL, Collins CD, Mitchell GR, Princivalle J, Shaw LJ. Nanoscale zerovalent iron alters soil bacterial community structure and inhibits chloroaromatic biodegradation potential in Aroclor 1242-contaminated soil. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2013; 173:38-46. [PMID: 23202280 DOI: 10.1016/j.envpol.2012.09.018] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2012] [Revised: 09/24/2012] [Accepted: 09/26/2012] [Indexed: 05/20/2023]
Abstract
Nanoscale zerovalent iron (nZVI) has potential for the remediation of organochlorine-contaminated environments. Environmental safety concerns associated with in situ deployment of nZVI include potential negative impacts on indigenous microbes whose biodegradative functions could contribute to contaminant remediation. With respect to a two-step polychlorinated biphenyl remediation scenario comprising nZVI dechlorination followed by aerobic biodegradation, we examined the effect of polyacrylic acid (PAA)-coated nZVI (mean diameter = 12.5 nm) applied at 10 g nZVI kg(-1) to Aroclor-1242 contaminated and uncontaminated soil over 28 days. nZVI had a limited effect on Aroclor congener profiles, but, either directly or indirectly via changes to soil physico-chemical conditions (pH, Eh), nZVI addition caused perturbation to soil bacterial community composition, and reduced the activity of chloroaromatic mineralizing microorganisms. We conclude that nZVI addition has the potential to inhibit microbial functions that could be important for PCB remediation strategies combining nZVI treatment and biodegradation.
Collapse
Affiliation(s)
- Emma L Tilston
- Soil Research Centre, Department of Geography and Environmental Science, University of Reading, Whiteknights, Reading RG6 6DW, UK
| | | | | | | | | |
Collapse
|
121
|
Whole-genome sequence of Cupriavidus sp. strain BIS7, a heavy-metal-resistant bacterium. J Bacteriol 2013; 194:6324. [PMID: 23115161 DOI: 10.1128/jb.01608-12] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Cupriavidus sp. strain BIS7 is a Malaysian tropical soil bacterium that exhibits broad heavy-metal resistance [Co(II), Zn(II), Ni(II), Se(IV), Cu(II), chromate, Co(III), Fe(II), and Fe(III)]. It is particularly resistant to Fe(II), Fe(III), and Zn(II). Here we present the assembly and annotation of its genome.
Collapse
|
122
|
Shi Y, Chai L, Tang C, Yang Z, Zhang H, Chen R, Chen Y, Zheng Y. Characterization and genomic analysis of kraft lignin biodegradation by the beta-proteobacterium Cupriavidus basilensis B-8. BIOTECHNOLOGY FOR BIOFUELS 2013; 6:1. [PMID: 24225035 PMCID: PMC3560178 DOI: 10.1186/1754-6834-6-1] [Citation(s) in RCA: 231] [Impact Index Per Article: 19.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2012] [Accepted: 12/21/2012] [Indexed: 05/03/2023]
Abstract
BACKGROUND Lignin materials are abundant and among the most important potential sources for biofuel production. Development of an efficient lignin degradation process has considerable potential for the production of a variety of chemicals, including bioethanol. However, lignin degradation using current methods is inefficient. Given their immense environmental adaptability and biochemical versatility, bacterial could be used as a valuable tool for the rapid degradation of lignin. Kraft lignin (KL) is a polymer by-product of the pulp and paper industry resulting from alkaline sulfide treatment of lignocellulose, and it has been widely used for lignin-related studies. RESULTS Beta-proteobacterium Cupriavidus basilensis B-8 isolated from erosive bamboo slips displayed substantial KL degradation capability. With initial concentrations of 0.5-6 g L-1, at least 31.3% KL could be degraded in 7 days. The maximum degradation rate was 44.4% at the initial concentration of 2 g L-1. The optimum pH and temperature for KL degradation were 7.0 and 30°C, respectively. Manganese peroxidase (MnP) and laccase (Lac) demonstrated their greatest level of activity, 1685.3 U L-1 and 815.6 U L-1, at the third and fourth days, respectively. Many small molecule intermediates were formed during the process of KL degradation, as determined using GC-MS analysis. In order to perform metabolic reconstruction of lignin degradation in this bacterium, a draft genome sequence for C. basilensis B-8 was generated. Genomic analysis focused on the catabolic potential of this bacterium against several lignin-derived compounds. These analyses together with sequence comparisons predicted the existence of three major metabolic pathways: β-ketoadipate, phenol degradation, and gentisate pathways. CONCLUSION These results confirmed the capability of C. basilensis B-8 to promote KL degradation. Whole genomic sequencing and systematic analysis of the C. basilensis B-8 genome identified degradation steps and intermediates from this bacterial-mediated KL degradation method. Our findings provide a theoretical basis for research into the mechanisms of lignin degradation as well as a practical basis for biofuel production using lignin materials.
Collapse
Affiliation(s)
- Yan Shi
- School of Metallurgical Science and Engineering, Central South University, Changsha, 410017, PR China
| | - Liyuan Chai
- School of Metallurgical Science and Engineering, Central South University, Changsha, 410017, PR China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410017, PR China
| | - Chongjian Tang
- School of Metallurgical Science and Engineering, Central South University, Changsha, 410017, PR China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410017, PR China
| | - Zhihui Yang
- School of Metallurgical Science and Engineering, Central South University, Changsha, 410017, PR China
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha, 410017, PR China
| | - Huan Zhang
- School of Metallurgical Science and Engineering, Central South University, Changsha, 410017, PR China
| | - Runhua Chen
- School of Metallurgical Science and Engineering, Central South University, Changsha, 410017, PR China
| | - Yuehui Chen
- School of Metallurgical Science and Engineering, Central South University, Changsha, 410017, PR China
| | - Yu Zheng
- School of Metallurgical Science and Engineering, Central South University, Changsha, 410017, PR China
| |
Collapse
|
123
|
Shi L, Cai Y, Kong F, Yu Y. Specific association between bacteria and buoyant Microcystis colonies compared with other bulk bacterial communities in the eutrophic Lake Taihu, China. ENVIRONMENTAL MICROBIOLOGY REPORTS 2012; 4:669-678. [PMID: 23760939 DOI: 10.1111/1758-2229.12001] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2012] [Accepted: 09/23/2012] [Indexed: 06/02/2023]
Abstract
The diversity of buoyant Microcystis colony-associated, settling particle-associated and free-living freshwater bacteria in the eutrophic Lake Taihu in China was compared by the polymerase chain reaction-denaturing gradient gel electrophoresis (PCR-DGGE) of 16S rRNA genes and by clone library analysis. The cluster analysis of DGGE profiles revealed that the buoyant Microcystis colony associates collected in summer and winter were clustered together and were distinct from settling particle-associated and free-living bacteria. In contrast, the bacterial communities of the latter two populations collected in summer were clustered together and varied from those collected in winter. The diversity indices of the Microcystis-associated bacterial population were significantly lower than those of the other two bulk bacterial communities (P < 0.05). Clone library analysis revealed that no shared operational taxonomic units were found in the three populations. Phylogenetic analysis confirmed that buoyant Microcystis-associated bacteria were distinct from the other communities and that they were dominated by Alphaproteobacteria, Betaproteobacteria and Gammaproteobacteria. Proteobacteria, Bacteroidetes and Actinobacteria were prevalent in all three habitats. Other bacterial taxa such as Planctomycetes, Verrucomicrobia, Gemmatimonadetes and Acidobacteria were associated with settling particles and with the water column. Buoyant Microcystis colonies, settling particles and the water column in the eutrophic lake are thus inhabited by different bacterial flora. In addition, specific bacterial communities are associated with buoyant Microcystis colonies.
Collapse
Affiliation(s)
- Limei Shi
- State Key Laboratory of Lake Science and Environment, Nanjing Institute of Geography and Limnology, Chinese Academy of Sciences, 73 East Beijing Road, Nanjing, 210008, China
| | | | | | | |
Collapse
|
124
|
Wells T, Ragauskas AJ. Biotechnological opportunities with the β-ketoadipate pathway. Trends Biotechnol 2012; 30:627-37. [DOI: 10.1016/j.tibtech.2012.09.008] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2012] [Revised: 09/24/2012] [Accepted: 09/26/2012] [Indexed: 01/18/2023]
|
125
|
Marin AM, Souza EM, Pedrosa FO, Souza LM, Sassaki GL, Baura VA, Yates MG, Wassem R, Monteiro RA. Naringenin degradation by the endophytic diazotroph Herbaspirillum seropedicae SmR1. MICROBIOLOGY-SGM 2012; 159:167-175. [PMID: 23125118 DOI: 10.1099/mic.0.061135-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Several bacteria are able to degrade flavonoids either to use them as carbon sources or as a detoxification mechanism. Degradation pathways have been proposed for several bacteria, but the genes responsible are not known. We identified in the genome of the endophyte Herbaspirillum seropedicae SmR1 an operon potentially associated with the degradation of aromatic compounds. We show that this operon is involved in naringenin degradation and that its expression is induced by naringenin and chrysin, two closely related flavonoids. Mutation of fdeA, the first gene of the operon, and fdeR, its transcriptional activator, abolished the ability of H. seropedicae to degrade naringenin.
Collapse
Affiliation(s)
- A M Marin
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, 81531-980, Curitiba, PR, Brazil
| | - E M Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, 81531-980, Curitiba, PR, Brazil
| | - F O Pedrosa
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, 81531-980, Curitiba, PR, Brazil
| | - L M Souza
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, 81531-980, Curitiba, PR, Brazil
| | - G L Sassaki
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, 81531-980, Curitiba, PR, Brazil
| | - V A Baura
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, 81531-980, Curitiba, PR, Brazil
| | - M G Yates
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, 81531-980, Curitiba, PR, Brazil
| | - R Wassem
- Department of Genetics, Universidade Federal do Paraná, CP 19071, 81531-980, Curitiba, PR, Brazil
| | - R A Monteiro
- Department of Biochemistry and Molecular Biology, Universidade Federal do Paraná, CP 19046, 81531-980, Curitiba, PR, Brazil
| |
Collapse
|
126
|
Metaproteogenomic insights beyond bacterial response to naphthalene exposure and bio-stimulation. ISME JOURNAL 2012; 7:122-36. [PMID: 22832345 PMCID: PMC3526184 DOI: 10.1038/ismej.2012.82] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
Abstract
Microbial metabolism in aromatic-contaminated environments has important ecological implications, and obtaining a complete understanding of this process remains a relevant goal. To understand the roles of biodiversity and aromatic-mediated genetic and metabolic rearrangements, we conducted ‘OMIC' investigations in an anthropogenically influenced and polyaromatic hydrocarbon (PAH)-contaminated soil with (Nbs) or without (N) bio-stimulation with calcium ammonia nitrate, NH4NO3 and KH2PO4 and the commercial surfactant Iveysol, plus two naphthalene-enriched communities derived from both soils (CN2 and CN1, respectively). Using a metagenomic approach, a total of 52, 53, 14 and 12 distinct species (according to operational phylogenetic units (OPU) in our work equivalent to taxonomic species) were identified in the N, Nbs, CN1 and CN2 communities, respectively. Approximately 10 out of 95 distinct species and 238 out of 3293 clusters of orthologous groups (COGs) protein families identified were clearly stimulated under the assayed conditions, whereas only two species and 1465 COGs conformed to the common set in all of the mesocosms. Results indicated distinct biodegradation capabilities for the utilisation of potential growth-supporting aromatics, which results in bio-stimulated communities being extremely fit to naphthalene utilisation and non-stimulated communities exhibiting a greater metabolic window than previously predicted. On the basis of comparing protein expression profiles and metagenome data sets, inter-alia interactions among members were hypothesised. The utilisation of curated databases is discussed and used for first time to reconstruct ‘presumptive' degradation networks for complex microbial communities.
Collapse
|
127
|
Abstract
Here we report on the complete genome sequence of Cupriavidus basilensis OR16 NCAIM BO2487. The genome of strain OR16 contains 7,534 putative coding sequences, including a large set of xenobiotics-degrading genes and a unique glucose dehydrogenase gene that is absent from other Cupriavidus genomes.
Collapse
|
128
|
Vilchez-Vargas R, Geffers R, Suárez-Diez M, Conte I, Waliczek A, Kaser VS, Kralova M, Junca H, Pieper DH. Analysis of the microbial gene landscape and transcriptome for aromatic pollutants and alkane degradation using a novel internally calibrated microarray system. Environ Microbiol 2012; 15:1016-39. [PMID: 22515215 DOI: 10.1111/j.1462-2920.2012.02752.x] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
Despite various efforts to develop tools to detect and compare the catabolic potential and activity for pollutant degradation in environmental samples, there is still a need for an open-source, curated and reliable array method. We developed a custom array system including a novel normalization strategy that can be applied to any microarray design, allowing the calculation of the reliability of signals and make cross-experimental comparisons. Array probes, which are fully available to the scientific community, were designed from knowledge-based curated databases for key aromatic catabolic gene families and key alkane degradation genes. This design assigns signals to the respective protein subfamilies, thus directly inferring function and substrate specificity. Experimental procedures were optimized using DNA of four genome sequenced biodegradation strains and reliability of signals assessed through a novel normalization procedure, where a plasmid containing four artificial targets in increased copy numbers and co-amplified with the environmental DNA served as an internal calibration curve. The array system was applied to assess the catabolic gene landscape and transcriptome of aromatic contaminated environmental samples, confirming the abundance of catabolic gene subfamilies previously detected by functional metagenomics but also revealing the presence of previously undetected catabolic groups and specifically their expression under pollutant stress.
Collapse
Affiliation(s)
- Ramiro Vilchez-Vargas
- Microbial Interactions and Processes Research Group, HZI - Helmholtz Centre for Infection Research, Inhoffenstraße 7, D-38124 Braunschweig, Germany
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Aromatic compounds degradation plays a role in colonization of Arabidopsis thaliana and Acacia caven by Cupriavidus pinatubonensis JMP134. Antonie van Leeuwenhoek 2011; 101:713-23. [DOI: 10.1007/s10482-011-9685-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2011] [Accepted: 12/08/2011] [Indexed: 10/14/2022]
|
130
|
Pérez-Pantoja D, Donoso R, Agulló L, Córdova M, Seeger M, Pieper DH, González B. Genomic analysis of the potential for aromatic compounds biodegradation in Burkholderiales. Environ Microbiol 2011; 14:1091-117. [PMID: 22026719 DOI: 10.1111/j.1462-2920.2011.02613.x] [Citation(s) in RCA: 206] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
The relevance of the β-proteobacterial Burkholderiales order in the degradation of a vast array of aromatic compounds, including several priority pollutants, has been largely assumed. In this review, the presence and organization of genes encoding oxygenases involved in aromatics biodegradation in 80 Burkholderiales genomes is analysed. This genomic analysis underscores the impressive catabolic potential of this bacterial lineage, comprising nearly all of the central ring-cleavage pathways reported so far in bacteria and most of the peripheral pathways involved in channelling of a broad diversity of aromatic compounds. The more widespread pathways in Burkholderiales include protocatechuate ortho ring-cleavage, catechol ortho ring-cleavage, homogentisate ring-cleavage and phenylacetyl-CoA ring-cleavage pathways found in at least 60% of genomes analysed. In general, a genus-specific pattern of positional ordering of biodegradative genes is observed in the catabolic clusters of these pathways indicating recent events in its evolutionary history. In addition, a significant bias towards secondary chromosomes, now termed chromids, is observed in the distribution of catabolic genes across multipartite genomes, which is consistent with a genus-specific character. Strains isolated from environmental sources such as soil, rhizosphere, sediment or sludge show a higher content of catabolic genes in their genomes compared with strains isolated from human, animal or plant hosts, but no significant difference is found among Alcaligenaceae, Burkholderiaceae and Comamonadaceae families, indicating that habitat is more of a determinant than phylogenetic origin in shaping aromatic catabolic versatility.
Collapse
Affiliation(s)
- Danilo Pérez-Pantoja
- Center for Advanced Studies in Ecology and Biodiversity, Millennium Nucleus in Plant Functional Genomics, Facultad de Ciencias Biológicas, P. Universidad Católica de Chile, Santiago, Chile
| | | | | | | | | | | | | |
Collapse
|
131
|
Ragon M, Restoux G, Moreira D, Møller AP, López-García P. Sunlight-exposed biofilm microbial communities are naturally resistant to chernobyl ionizing-radiation levels. PLoS One 2011; 6:e21764. [PMID: 21765911 PMCID: PMC3135598 DOI: 10.1371/journal.pone.0021764] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2011] [Accepted: 06/06/2011] [Indexed: 02/06/2023] Open
Abstract
Background The Chernobyl accident represents a long-term experiment on the effects of exposure to ionizing radiation at the ecosystem level. Though studies of these effects on plants and animals are abundant, the study of how Chernobyl radiation levels affect prokaryotic and eukaryotic microbial communities is practically non-existent, except for a few reports on human pathogens or soil microorganisms. Environments enduring extreme desiccation and UV radiation, such as sunlight exposed biofilms could in principle select for organisms highly resistant to ionizing radiation as well. Methodology/Principal Findings To test this hypothesis, we explored the diversity of microorganisms belonging to the three domains of life by cultivation-independent approaches in biofilms developing on concrete walls or pillars in the Chernobyl area exposed to different levels of radiation, and we compared them with a similar biofilm from a non-irradiated site in Northern Ireland. Actinobacteria, Alphaproteobacteria, Bacteroidetes, Acidobacteria and Deinococcales were the most consistently detected bacterial groups, whereas green algae (Chlorophyta) and ascomycete fungi (Ascomycota) dominated within the eukaryotes. Close relatives to the most radio-resistant organisms known, including Rubrobacter species, Deinococcales and melanized ascomycete fungi were always detected. The diversity of bacteria and eukaryotes found in the most highly irradiated samples was comparable to that of less irradiated Chernobyl sites and Northern Ireland. However, the study of mutation frequencies in non-coding ITS regions versus SSU rRNA genes in members of a same actinobacterial operational taxonomic unit (OTU) present in Chernobyl samples and Northern Ireland showed a positive correlation between increased radiation and mutation rates. Conclusions/Significance Our results show that biofilm microbial communities in the most irradiated samples are comparable to non-irradiated samples in terms of general diversity patterns, despite increased mutation levels at the single-OTU level. Therefore, biofilm communities growing in sunlight exposed substrates are capable of coping with increased mutation rates and appear pre-adapted to levels of ionizing radiation in Chernobyl due to their natural adaptation to periodical desiccation and ambient UV radiation.
Collapse
Affiliation(s)
- Marie Ragon
- Unité d'Ecologie, Systématique et Evolution - CNRS UMR8079, Université Paris-Sud, Orsay, France
| | - Gwendal Restoux
- Unité d'Ecologie, Systématique et Evolution - CNRS UMR8079, Université Paris-Sud, Orsay, France
| | - David Moreira
- Unité d'Ecologie, Systématique et Evolution - CNRS UMR8079, Université Paris-Sud, Orsay, France
| | - Anders Pape Møller
- Unité d'Ecologie, Systématique et Evolution - CNRS UMR8079, Université Paris-Sud, Orsay, France
| | - Purificación López-García
- Unité d'Ecologie, Systématique et Evolution - CNRS UMR8079, Université Paris-Sud, Orsay, France
- * E-mail:
| |
Collapse
|
132
|
Neal AL, Kabengi N, Grider A, Bertsch PM. Can the soil bacteriumCupriavidus necatorsense ZnO nanomaterials and aqueous Zn2+differentially? Nanotoxicology 2011; 6:371-80. [DOI: 10.3109/17435390.2011.579633] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
133
|
Donoso RA, Pérez-Pantoja D, González B. Strict and direct transcriptional repression of thepobAgene by benzoate avoids 4-hydroxybenzoate degradation in the pollutant degrader bacteriumCupriavidus necatorJMP134. Environ Microbiol 2011; 13:1590-600. [DOI: 10.1111/j.1462-2920.2011.02470.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
134
|
Belchik SM, Xun L. S-glutathionyl-(chloro)hydroquinone reductases: a new class of glutathione transferases functioning as oxidoreductases. Drug Metab Rev 2011; 43:307-16. [PMID: 21425927 DOI: 10.3109/03602532.2011.552909] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Glutathione transferases (GSTs) are best known for transferring glutathione (GSH) to hydrophobic organic compounds, making the conjugates more soluble. However, the omega-class GSTs of animals and the lambda-class GSTs and dehydroascorbate reductases (DHARs) of plants have little or no activity for GSH transfer. Instead, they catalyze GSH-dependent oxidoreductions. The lambda-class GSTs reduce disulfide bonds, the DHARs reduce the disulfide bonds and dehydroascorbate, and the omega-class GSTs can reduce more substrates, including disulfide bonds, dehydroascorbate, and dimethylarsinate. Glutathionyl-(chloro)hydroquinone reductases (GS-HQRs) are the newest class of GSTs that mainly catalyze oxidoreductions. Besides the activities of the other three classes, GS-HQRs also reduce GS-hydroquinones, including GS-trichloro-p-hydroquinone, GS-dichloro-p-hydroquinone, GS-2-hydroxy-p-hydroquinone, and GS-p-hydroquinone. They are conserved and widely distributed in bacteria, fungi, protozoa, and plants, but not in animals. The four classes are phylogenetically more related to each other than to other GSTs, and they share a Cys-Pro motif at the GSH-binding site. Hydroquinones are metabolic intermediates of certain aromatic compounds. They can be auto-oxidized by O(2) to benzoquinones, which spontaneously react with GSH to form GS-hydroquinones via Michael's addition. GS-HQRs are expected to channel GS-hydroquinones, formed spontaneously or enzymatically, back to hydroquinones. When the released hydroquinones are intermediates of metabolic pathways, GS-HQRs play a maintenance role for the pathways. Further, the common presence of GS-HQRs in plants, green algae, cyanobacteria, and halobacteria suggest a beneficial role in the light-using organisms.
Collapse
Affiliation(s)
- Sara M Belchik
- School of Molecular Biosciences, Washington State University, Pullman, Washington 99164-7520, USA
| | | |
Collapse
|
135
|
Paulin MM, Nicolaisen MH, Sørensen J. (R,S)-dichlorprop herbicide in agricultural soil induces proliferation and expression of multiple dioxygenase-encoding genes in the indigenous microbial community. Environ Microbiol 2011; 13:1513-23. [DOI: 10.1111/j.1462-2920.2011.02456.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
136
|
Méndez V, Agulló L, González M, Seeger M. The homogentisate and homoprotocatechuate central pathways are involved in 3- and 4-hydroxyphenylacetate degradation by Burkholderia xenovorans LB400. PLoS One 2011; 6:e17583. [PMID: 21423751 PMCID: PMC3053370 DOI: 10.1371/journal.pone.0017583] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2010] [Accepted: 02/05/2011] [Indexed: 11/24/2022] Open
Abstract
Background Genome characterization of the model PCB-degrading bacterium Burkholderia xenovorans LB400 revealed the presence of eleven central pathways for aromatic compounds degradation, among them, the homogentisate and the homoprotocatechuate pathways. However, the functionality of these central pathways in strain LB400 has not been assessed and related peripheral pathways has not been described. Methodology/Principal Findings The aims of this study were to determine the functionality of the homogentisate and homoprotocatechuate central pathways in B. xenovorans LB400 and to establish their role in 3-hydroxyphenylacetate (3-HPA) and 4-hydroxyphenylacetate (4-HPA) catabolism. Strain LB400 was able to grow using 3-HPA and 4-HPA as sole carbon source. A genomic search in LB400 suggested the presence of mhaAB and hpaBC genes clusters encoding proteins of the 3-hydroxyphenylacetate and 4-hydroxyphenylacetate peripheral pathways. LB400 cells grown with 3-HPA and 4-HPA degraded homogentisate and homoprotocatechuate and showed homogentisate 1,2-dioxygenase and homoprotocatechuate 2,3-dioxygenase activities. Transcriptional analyses by RT-PCR showed the expression of two chromosomally-encoded homogentisate dioxygenases (BxeA2725 and BxeA3900) and the hpaD gene encoding the homoprotocatechuate 2,3-dioxygenase during 3-HPA and 4-HPA degradation. The proteome analyses by two-dimensional polyacrilamide gel electrophoresis of B. xenovorans LB400 grown in 3-HPA and 4-HPA showed the induction of fumarylacetoacetate hydrolase HmgB (BxeA3899). Conclusions/Significance This study revealed that strain LB400 used both homogentisate and homoprotocatechuate ring-cleavage pathways for 3- hydroxyphenylacetate and 4-hydroxyphenylacetate catabolism and that these four catabolic routes are functional, confirming the metabolic versatility of B. xenovorans LB400.
Collapse
Affiliation(s)
- Valentina Méndez
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Center for Nanotechnology and Systems Biology, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Loreine Agulló
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Center for Nanotechnology and Systems Biology, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Myriam González
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Center for Nanotechnology and Systems Biology, Universidad Técnica Federico Santa María, Valparaíso, Chile
| | - Michael Seeger
- Laboratorio de Microbiología Molecular y Biotecnología Ambiental, Departamento de Química and Center for Nanotechnology and Systems Biology, Universidad Técnica Federico Santa María, Valparaíso, Chile
- * E-mail:
| |
Collapse
|
137
|
Identification of tertiary butyl alcohol (TBA)-utilizing organisms in BioGAC reactors using 13C-DNA stable isotope probing. Biodegradation 2011; 22:961-72. [DOI: 10.1007/s10532-011-9455-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2010] [Accepted: 01/10/2011] [Indexed: 11/26/2022]
|
138
|
Liu YJ, Liu SJ, Drake HL, Horn MA. Alphaproteobacteria dominate active 2-methyl-4-chlorophenoxyacetic acid herbicide degraders in agricultural soil and drilosphere. Environ Microbiol 2011; 13:991-1009. [DOI: 10.1111/j.1462-2920.2010.02405.x] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
139
|
Stranzl GR, Santelli E, Bankston LA, La Clair C, Bobkov A, Schwarzenbacher R, Godzik A, Perego M, Grynberg M, Liddington RC. Structural insights into inhibition of Bacillus anthracis sporulation by a novel class of non-heme globin sensor domains. J Biol Chem 2011; 286:8448-8458. [PMID: 21216948 DOI: 10.1074/jbc.m110.207126] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Pathogenesis by Bacillus anthracis requires coordination between two distinct activities: plasmid-encoded virulence factor expression (which protects vegetative cells from immune surveillance during outgrowth and replication) and chromosomally encoded sporulation (required only during the final stages of infection). Sporulation is regulated by at least five sensor histidine kinases that are activated in response to various environmental cues. One of these kinases, BA2291, harbors a sensor domain that has ∼35% sequence identity with two plasmid proteins, pXO1-118 and pXO2-61. Because overexpression of pXO2-61 (or pXO1-118) inhibits sporulation of B. anthracis in a BA2291-dependent manner, and pXO2-61 expression is strongly up-regulated by the major virulence gene regulator, AtxA, it was suggested that their function is to titrate out an environmental signal that would otherwise promote untimely sporulation. To explore this hypothesis, we determined crystal structures of both plasmid-encoded proteins. We found that they adopt a dimeric globin fold but, most unusually, do not bind heme. Instead, they house a hydrophobic tunnel and hydrophilic chamber that are occupied by fatty acid, which engages a conserved arginine and chloride ion via its carboxyl head group. In vivo, these domains may therefore recognize changes in fatty acid synthesis, chloride ion concentration, and/or pH. Structure-based comparisons with BA2291 suggest that it binds ligand and dimerizes in an analogous fashion, consistent with the titration hypothesis. Analysis of newly sequenced bacterial genomes points to the existence of a much broader family of non-heme, globin-based sensor domains, with related but distinct functionalities, that may have evolved from an ancestral heme-linked globin.
Collapse
Affiliation(s)
- Gudrun R Stranzl
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Eugenio Santelli
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Laurie A Bankston
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Chandra La Clair
- the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, and
| | - Andrey Bobkov
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Robert Schwarzenbacher
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Adam Godzik
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037
| | - Marta Perego
- the Department of Molecular and Experimental Medicine, The Scripps Research Institute, La Jolla, California 92037, and
| | - Marcin Grynberg
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037,; the Institute of Biochemistry and Biophysics PAS, Pawinskiego 5A, 02-106 Warsaw, Poland
| | - Robert C Liddington
- From the Infectious and Inflammatory Disease Center, Sanford-Burnham Medical Research Institute, La Jolla, California 92037,.
| |
Collapse
|
140
|
Tassi F, Montegrossi G, Vaselli O, Morandi A, Capecchiacci F, Nisi B. Flux measurements of benzene and toluene from landfill cover soils. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2011; 29:50-58. [PMID: 21041416 DOI: 10.1177/0734242x10385609] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/30/2023]
Abstract
Carbon dioxide and CH(4), C(6)H(6) and C(7)H(8) fluxes from the soil cover of Case Passerini landfill site (Florence, Italy) were measured using the accumulation and static closed chamber methods, respectively. Results show that the CH(4)/CO(2), CH(4)/C(6)H(6) and CH(4)/C(7)H(8) ratios of the flux values are relatively low when compared with those of the 'pristine' biogas produced by degradation processes acting on the solid waste material disposed in the landfill. This suggests that when biogas transits through the cover soil, CH(4) is affected by degradation processes activated by oxidizing bacteria at higher extent than both CO(2) and mono-aromatics. Among the investigated hydrocarbons, C(6)H(6) has shown the highest stability in a wide range of redox conditions. Toluene behaviour only partially resembles that of C(6)H(6), possibly because de-methylation processes require less energy than that necessary for the degradation of C(6)H(6), the latter likely occurring via benzoate at anaerobic conditions and/or through various aerobic metabolic pathways at relatively shallow depth in the cover soil where free oxygen is present. According to these considerations, aromatics are likely to play an important role in the environmental impact of biogas released into the atmosphere from such anthropogenic emission sites, usually only ascribed to CO(2) and CH(4). In this regard, flux measurements using accumulation and static closed chamber methods coupled with gas chromatography and gas chromatography-mass spectrometry analysis may properly be used to obtain a dataset for the estimation of the amount of volatile organic compounds dispersed from landfills.
Collapse
Affiliation(s)
- Franco Tassi
- Department of Earth Sciences, University of Florence, Florence, Italy.
| | | | | | | | | | | |
Collapse
|
141
|
Vilchez-Vargas R, Junca H, Pieper DH. Metabolic networks, microbial ecology and ‘omics’ technologies: towards understanding in situ biodegradation processes. Environ Microbiol 2010; 12:3089-104. [DOI: 10.1111/j.1462-2920.2010.02340.x] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
142
|
Müller S, Nebe-von-Caron G. Functional single-cell analyses: flow cytometry and cell sorting of microbial populations and communities. FEMS Microbiol Rev 2010; 34:554-87. [DOI: 10.1111/j.1574-6976.2010.00214.x] [Citation(s) in RCA: 266] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
|
143
|
Abstract
Nitroaromatic compounds are relatively rare in nature and have been introduced into the environment mainly by human activities. This important class of industrial chemicals is widely used in the synthesis of many diverse products, including dyes, polymers, pesticides, and explosives. Unfortunately, their extensive use has led to environmental contamination of soil and groundwater. The nitro group, which provides chemical and functional diversity in these molecules, also contributes to the recalcitrance of these compounds to biodegradation. The electron-withdrawing nature of the nitro group, in concert with the stability of the benzene ring, makes nitroaromatic compounds resistant to oxidative degradation. Recalcitrance is further compounded by their acute toxicity, mutagenicity, and easy reduction into carcinogenic aromatic amines. Nitroaromatic compounds are hazardous to human health and are registered on the U.S. Environmental Protection Agency's list of priority pollutants for environmental remediation. Although the majority of these compounds are synthetic in nature, microorganisms in contaminated environments have rapidly adapted to their presence by evolving new biodegradation pathways that take advantage of them as sources of carbon, nitrogen, and energy. This review provides an overview of the synthesis of both man-made and biogenic nitroaromatic compounds, the bacteria that have been identified to grow on and completely mineralize nitroaromatic compounds, and the pathways that are present in these strains. The possible evolutionary origins of the newly evolved pathways are also discussed.
Collapse
Affiliation(s)
- Kou-San Ju
- Department of Microbiology, University of California, Davis, California 95616
| | - Rebecca E. Parales
- Department of Microbiology, University of California, Davis, California 95616
| |
Collapse
|
144
|
Yin Y, Xiao Y, Liu HZ, Hao F, Rayner S, Tang H, Zhou NY. Characterization of catabolic meta-nitrophenol nitroreductase from Cupriavidus necator JMP134. Appl Microbiol Biotechnol 2010; 87:2077-85. [PMID: 20508930 DOI: 10.1007/s00253-010-2666-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Revised: 04/29/2010] [Accepted: 05/06/2010] [Indexed: 10/19/2022]
Abstract
Cupriavidus necator JMP134 utilizes meta-nitrophenol (MNP) as a sole source of carbon, nitrogen, and energy. The metabolic reconstruction of MNP degradation performed in silico suggested that the mnp cluster might have played important roles in MNP degradation. In order to experimentally confirm the prediction, we have now characterized mnpA-encoded meta-nitrophenol nitroreductase involved in the initial reaction of MNP degradation. Real-time PCR analysis indicated that mnpA played an essential role in MNP degradation. MnpA was purified to homogeneity as His-tagged proteins and was considered to be a dimer as determined by gel filtration. MnpA was an MNP nitroreductase with a tightly bound flavin mononucleotide (FMN), catalyzing the partial reduction of MNP to meta-hydroxylaminophenol via meta-nitrosophenol in the presence of NADPH and oxygen. The accumulation of meta-nitrosophenol was confirmed with the results of liquid chromatography-diode array detection and time-of-flight mass spectrometry for the first time. The low K (m) and high k (cat) of MnpA as well as MNP-inducible transcription of mnpA suggested that MNP was the physiological substrate for this nitroreductase. In addition, the phylogenetic analysis revealed that nitroreductases of known physiological function including MnpA constituted a new clade in the nitro-FMN-reductase superfamily.
Collapse
Affiliation(s)
- Ying Yin
- Wuhan Institute of Virology, Chinese Academy of Sciences, China
| | | | | | | | | | | | | |
Collapse
|
145
|
Rather LJ, Knapp B, Haehnel W, Fuchs G. Coenzyme A-dependent aerobic metabolism of benzoate via epoxide formation. J Biol Chem 2010; 285:20615-24. [PMID: 20452977 DOI: 10.1074/jbc.m110.124156] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In the aerobic metabolism of aromatic substrates, oxygenases use molecular oxygen to hydroxylate and finally cleave the aromatic ring. In the case of the common intermediate benzoate, the ring cleavage substrates are either catechol (in bacteria) or 3,4-dihydroxybenzoate (protocatechuate, mainly in fungi). We have shown before that many bacteria, e.g. Azoarcus evansii, the organism studied here, use a completely different mechanism. This elaborate pathway requires formation of benzoyl-CoA, followed by an oxygenase reaction and a nonoxygenolytic ring cleavage. Benzoyl-CoA transformation is catalyzed by the iron-containing benzoyl-CoA oxygenase (BoxB) in conjunction with an FAD and iron-sulfur centers containing reductase (BoxA), which donates electrons from NADPH. Here we show that benzoyl-CoA oxygenase actually does not form the 2,3-dihydrodiol of benzoyl-CoA, as formerly postulated, but the 2,3-epoxide. An enoyl-CoA hydratase (BoxC) uses two molecules of water to first hydrolytically open the ring of 2,3-epoxybenzoyl-CoA, which may proceed via its tautomeric seven-membered oxepin ring form. Then ring C2 is hydrolyzed off as formic acid, yielding 3,4-dehydroadipyl-CoA semialdehyde. The semialdehyde is oxidized by a NADP(+)-dependent aldehyde dehydrogenase (BoxD) to 3,4-dehydroadipyl-CoA. Final products of the pathway are formic acid, acetyl-CoA, and succinyl-CoA. This overlooked pathway occurs in 4-5% of all bacteria whose genomes have been sequenced and represents an elegant strategy to cope with the high resonance energy of aromatic substrates by forming a nonaromatic epoxide.
Collapse
Affiliation(s)
- Liv J Rather
- Lehrstuhl Mikrobiologie, Fakultät Biologie, Schänzlestrasse 1, Universität Freiburg, D-79104 Freiburg, Germany
| | | | | | | |
Collapse
|
146
|
Janssen PJ, Van Houdt R, Moors H, Monsieurs P, Morin N, Michaux A, Benotmane MA, Leys N, Vallaeys T, Lapidus A, Monchy S, Médigue C, Taghavi S, McCorkle S, Dunn J, van der Lelie D, Mergeay M. The complete genome sequence of Cupriavidus metallidurans strain CH34, a master survivalist in harsh and anthropogenic environments. PLoS One 2010; 5:e10433. [PMID: 20463976 PMCID: PMC2864759 DOI: 10.1371/journal.pone.0010433] [Citation(s) in RCA: 208] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2010] [Accepted: 03/29/2010] [Indexed: 11/21/2022] Open
Abstract
Many bacteria in the environment have adapted to the presence of toxic heavy metals. Over the last 30 years, this heavy metal tolerance was the subject of extensive research. The bacterium Cupriavidus metallidurans strain CH34, originally isolated by us in 1976 from a metal processing factory, is considered a major model organism in this field because it withstands milli-molar range concentrations of over 20 different heavy metal ions. This tolerance is mostly achieved by rapid ion efflux but also by metal-complexation and -reduction. We present here the full genome sequence of strain CH34 and the manual annotation of all its genes. The genome of C. metallidurans CH34 is composed of two large circular chromosomes CHR1 and CHR2 of, respectively, 3,928,089 bp and 2,580,084 bp, and two megaplasmids pMOL28 and pMOL30 of, respectively, 171,459 bp and 233,720 bp in size. At least 25 loci for heavy-metal resistance (HMR) are distributed over the four replicons. Approximately 67% of the 6,717 coding sequences (CDSs) present in the CH34 genome could be assigned a putative function, and 9.1% (611 genes) appear to be unique to this strain. One out of five proteins is associated with either transport or transcription while the relay of environmental stimuli is governed by more than 600 signal transduction systems. The CH34 genome is most similar to the genomes of other Cupriavidus strains by correspondence between the respective CHR1 replicons but also displays similarity to the genomes of more distantly related species as a result of gene transfer and through the presence of large genomic islands. The presence of at least 57 IS elements and 19 transposons and the ability to take in and express foreign genes indicates a very dynamic and complex genome shaped by evolutionary forces. The genome data show that C. metallidurans CH34 is particularly well equipped to live in extreme conditions and anthropogenic environments that are rich in metals.
Collapse
Affiliation(s)
- Paul J Janssen
- Molecular and Cellular Biology, Belgian Nuclear Research Center SCK*CEN, Mol, Belgium.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Saavedra JM, Acevedo F, González M, Seeger M. Mineralization of PCBs by the genetically modified strain Cupriavidus necator JMS34 and its application for bioremediation of PCBs in soil. Appl Microbiol Biotechnol 2010; 87:1543-54. [DOI: 10.1007/s00253-010-2575-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2010] [Revised: 03/18/2010] [Accepted: 03/18/2010] [Indexed: 11/29/2022]
|
148
|
Characterization of MnpC, a hydroquinone dioxygenase likely involved in the meta-nitrophenol degradation by Cupriavidus necator JMP134. Curr Microbiol 2010; 61:471-6. [PMID: 20386911 DOI: 10.1007/s00284-010-9640-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2010] [Accepted: 03/17/2010] [Indexed: 10/19/2022]
Abstract
Cupriavidus necator JMP134 utilizes meta-nitrophenol (MNP) as the sole source of carbon, nitrogen, and energy. The metabolic reconstruction of MNP degradation performed in silico suggested that MnpC might have played an important role in MNP degradation. In order to experimentally confirm the prediction, we have now characterized the mnpC-encoded (amino)hydroquinone dioxygenase involved in the ring-cleavage reaction of MNP degradation. Real-time PCR analysis indicated that mnpC played an essential role in MNP degradation. MnpC was purified to homogeneity as an N-terminal six-His-tagged fusion protein, and it was proved to be a dimer as demonstrated by gel filtration. MnpC was a Fe(2+)- and Mn(2+)-dependent dioxygenase, catalyzing the ring-cleavage of hydroquinone to 4-hydroxymuconic semialdehyde in vitro and proposed as an aminohydroquinone dioxygenase involved in MNP degradation in vivo. Phylogenetic analysis suggested that MnpC diverged from the other (chloro)hydroquinone dioxygenases at an earlier point, which might result in the preference for its physiological substrate.
Collapse
|
149
|
Lykidis A, Pérez-Pantoja D, Ledger T, Mavromatis K, Anderson IJ, Ivanova NN, Hooper SD, Lapidus A, Lucas S, González B, Kyrpides NC. The complete multipartite genome sequence of Cupriavidus necator JMP134, a versatile pollutant degrader. PLoS One 2010; 5:e9729. [PMID: 20339589 PMCID: PMC2842291 DOI: 10.1371/journal.pone.0009729] [Citation(s) in RCA: 83] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2009] [Accepted: 02/17/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND Cupriavidus necator JMP134 is a Gram-negative beta-proteobacterium able to grow on a variety of aromatic and chloroaromatic compounds as its sole carbon and energy source. METHODOLOGY/PRINCIPAL FINDINGS Its genome consists of four replicons (two chromosomes and two plasmids) containing a total of 6631 protein coding genes. Comparative analysis identified 1910 core genes common to the four genomes compared (C. necator JMP134, C. necator H16, C. metallidurans CH34, R. solanacearum GMI1000). Although secondary chromosomes found in the Cupriavidus, Ralstonia, and Burkholderia lineages are all derived from plasmids, analyses of the plasmid partition proteins located on those chromosomes indicate that different plasmids gave rise to the secondary chromosomes in each lineage. The C. necator JMP134 genome contains 300 genes putatively involved in the catabolism of aromatic compounds and encodes most of the central ring-cleavage pathways. This strain also shows additional metabolic capabilities towards alicyclic compounds and the potential for catabolism of almost all proteinogenic amino acids. This remarkable catabolic potential seems to be sustained by a high degree of genetic redundancy, most probably enabling this catabolically versatile bacterium with different levels of metabolic responses and alternative regulation necessary to cope with a challenging environment. From the comparison of Cupriavidus genomes, it is possible to state that a broad metabolic capability is a general trait for Cupriavidus genus, however certain specialization towards a nutritional niche (xenobiotics degradation, chemolithoautotrophy or symbiotic nitrogen fixation) seems to be shaped mostly by the acquisition of "specialized" plasmids. CONCLUSIONS/SIGNIFICANCE The availability of the complete genome sequence for C. necator JMP134 provides the groundwork for further elucidation of the mechanisms and regulation of chloroaromatic compound biodegradation.
Collapse
Affiliation(s)
- Athanasios Lykidis
- Department of Energy (DOE)-Joint Genome Institute, Walnut Creek, California, United States of America.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
150
|
Modified 3-oxoadipate pathway for the biodegradation of methylaromatics in Pseudomonas reinekei MT1. J Bacteriol 2010; 192:1543-52. [PMID: 20061479 DOI: 10.1128/jb.01208-09] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
Catechols are central intermediates in the metabolism of aromatic compounds. Degradation of 4-methylcatechol via intradiol cleavage usually leads to the formation of 4-methylmuconolactone (4-ML) as a dead-end metabolite. Only a few microorganisms are known to mineralize 4-ML. The mml gene cluster of Pseudomonas reinekei MT1, which encodes enzymes involved in the metabolism of 4-ML, is shown here to encode 10 genes found in a 9.4-kb chromosomal region. Reverse transcription assays revealed that these genes form a single operon, where their expression is controlled by two promoters. Promoter fusion assays identified 4-methyl-3-oxoadipate as an inducer. Mineralization of 4-ML is initiated by the 4-methylmuconolactone methylisomerase encoded by mmlI. This reaction produces 3-ML and is followed by a rearrangement of the double bond catalyzed by the methylmuconolactone isomerase encoded by mmlJ. Deletion of mmlL, encoding a protein of the metallo-beta-lactamase superfamily, resulted in a loss of the capability of the strain MT1 to open the lactone ring, suggesting its function as a 4-methyl-3-oxoadipate enol-lactone hydrolase. Further metabolism can be assumed to occur by analogy with reactions known from the 3-oxoadipate pathway. mmlF and mmlG probably encode a 4-methyl-3-oxoadipyl-coenzyme A (CoA) transferase, and the mmlC gene product functions as a thiolase, transforming 4-methyl-3-oxoadipyl-CoA into methylsuccinyl-CoA and acetyl-CoA, as indicated by the accumulation of 4-methyl-3-oxoadipate in the respective deletion mutant. Accumulation of methylsuccinate by an mmlK deletion mutant indicates that the encoded acetyl-CoA hydrolase/transferase is crucial for channeling methylsuccinate into the central metabolism.
Collapse
|