101
|
Foley SL, Johnson TJ, Ricke SC, Nayak R, Danzeisen J. Salmonella pathogenicity and host adaptation in chicken-associated serovars. Microbiol Mol Biol Rev 2013; 77:582-607. [PMID: 24296573 PMCID: PMC3973385 DOI: 10.1128/mmbr.00015-13] [Citation(s) in RCA: 211] [Impact Index Per Article: 17.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Enteric pathogens such as Salmonella enterica cause significant morbidity and mortality. S. enterica serovars are a diverse group of pathogens that have evolved to survive in a wide range of environments and across multiple hosts. S. enterica serovars such as S. Typhi, S. Dublin, and S. Gallinarum have a restricted host range, in which they are typically associated with one or a few host species, while S. Enteritidis and S. Typhimurium have broad host ranges. This review examines how S. enterica has evolved through adaptation to different host environments, especially as related to the chicken host, and continues to be an important human pathogen. Several factors impact host range, and these include the acquisition of genes via horizontal gene transfer with plasmids, transposons, and phages, which can potentially expand host range, and the loss of genes or their function, which would reduce the range of hosts that the organism can infect. S. Gallinarum, with a limited host range, has a large number of pseudogenes in its genome compared to broader-host-range serovars. S. enterica serovars such as S. Kentucky and S. Heidelberg also often have plasmids that may help them colonize poultry more efficiently. The ability to colonize different hosts also involves interactions with the host's immune system and commensal organisms that are present. Thus, the factors that impact the ability of Salmonella to colonize a particular host species, such as chickens, are complex and multifactorial, involving the host, the pathogen, and extrinsic pressures. It is the interplay of these factors which leads to the differences in host ranges that we observe today.
Collapse
|
102
|
Kim JS, Kim BH, Jang JI, Eom JS, Kim HG, Bang IS, Park YK. Functional insight from the tetratricopeptide repeat-like motifs of the type III secretion chaperone SicA in Salmonella enterica serovar Typhimurium. FEMS Microbiol Lett 2013; 350:146-53. [PMID: 24224875 DOI: 10.1111/1574-6968.12315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2013] [Revised: 10/24/2013] [Accepted: 10/24/2013] [Indexed: 01/23/2023] Open
Abstract
SicA functions both as a class II chaperone for SipB and SipC of the type III secretion system (T3SS)-1 and as a transcriptional cofactor for the AraC-type transcription factor InvF in Salmonella enterica subsp. enterica serovar Typhimurium. Bioinformatic analysis has predicted that SicA possesses three tetratricopeptide repeat (TPR)-like motifs, which are important for protein-protein interactions and serve as multiprotein complex mediators. To investigate whether the TPR-like motifs in SicA are critical for its transcriptional cofactor function, the canonical residues in these motifs were mutated to glutamate (SicAA44E , SicAA78E , and SicAG112E ). None of these mutants except SicAA44E were able to activate the expression of the sipB and sigD genes. SicAA44E still has a capacity to interact with InvF in vitro, and despite its instability in cell, it could activate the sigDE operon. This suggests that TPR motifs are important for the transcriptional cofactor function of the SicA chaperone.
Collapse
Affiliation(s)
- Jin Seok Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul, Korea
| | | | | | | | | | | | | |
Collapse
|
103
|
Salmonella typhimurium intercepts Escherichia coli signaling to enhance antibiotic tolerance. Proc Natl Acad Sci U S A 2013; 110:14420-5. [PMID: 23946425 DOI: 10.1073/pnas.1308085110] [Citation(s) in RCA: 125] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Bacterial communication plays an important role in many population-based phenotypes and interspecies interactions, including those in host environments. These interspecies interactions may prove critical to some infectious diseases, and it follows that communication between pathogenic bacteria and commensal bacteria is a subject of growing interest. Recent studies have shown that Escherichia coli uses the signaling molecule indole to increase antibiotic tolerance throughout its population. Here, we show that the intestinal pathogen Salmonella typhimurium increases its antibiotic tolerance in response to indole, even though S. typhimurium does not natively produce indole. Increased antibiotic tolerance can be induced in S. typhimurium by both exogenous indole added to clonal S. typhimurium populations and indole produced by E. coli in mixed-microbial communities. Our data show that indole-induced tolerance in S. typhimurium is mediated primarily by the oxidative stress response and, to a lesser extent, by the phage shock response, which were previously shown to mediate indole-induced tolerance in E. coli. Further, we find that indole signaling by E. coli induces S. typhimurium antibiotic tolerance in a Caenorhabditis elegans model for gastrointestinal infection. These results suggest that the intestinal pathogen S. typhimurium can intercept indole signaling from the commensal bacterium E. coli to enhance its antibiotic tolerance in the host intestine.
Collapse
|
104
|
Kidwai AS, Mushamiri I, Niemann GS, Brown RN, Adkins JN, Heffron F. Diverse secreted effectors are required for Salmonella persistence in a mouse infection model. PLoS One 2013; 8:e70753. [PMID: 23950998 PMCID: PMC3741292 DOI: 10.1371/journal.pone.0070753] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2013] [Accepted: 06/26/2013] [Indexed: 01/08/2023] Open
Abstract
Salmonella enterica serovar Typhimurium causes typhoid-like disease in mice and is a model of typhoid fever in humans. One of the hallmarks of typhoid is persistence, the ability of the bacteria to survive in the host weeks after infection. Virulence factors called effectors facilitate this process by direct transfer to the cytoplasm of infected cells thereby subverting cellular processes. Secretion of effectors to the cell cytoplasm takes place through multiple routes, including two separate type III secretion (T3SS) apparati as well as outer membrane vesicles. The two T3SS are encoded on separate pathogenicity islands, SPI-1 and -2, with SPI-1 more strongly associated with the intestinal phase of infection, and SPI-2 with the systemic phase. Both T3SS are required for persistence, but the effectors required have not been systematically evaluated. In this study, mutations in 48 described effectors were tested for persistence. We replaced each effector with a specific DNA barcode sequence by allelic exchange and co-infected with a wild-type reference to calculate the ratio of wild-type parent to mutant at different times after infection. The competitive index (CI) was determined by quantitative PCR in which primers that correspond to the barcode were used for amplification. Mutations in all but seven effectors reduced persistence demonstrating that most effectors were required. One exception was CigR, a recently discovered effector that is widely conserved throughout enteric bacteria. Deletion of cigR increased lethality, suggesting that it may be an anti-virulence factor. The fact that almost all Salmonella effectors are required for persistence argues against redundant functions. This is different from effector repertoires in other intracellular pathogens such as Legionella.
Collapse
Affiliation(s)
- Afshan S. Kidwai
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Ivy Mushamiri
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - George S. Niemann
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| | - Roslyn N. Brown
- Center for Bioproducts and Bioenergy, Washington State University, Richland, Washington, United States of America
| | - Joshua N. Adkins
- Biological Sciences Division, Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Fred Heffron
- Department of Molecular Microbiology and Immunology, Oregon Health & Science University, Portland, Oregon, United States of America
| |
Collapse
|
105
|
Needham BD, Trent MS. Fortifying the barrier: the impact of lipid A remodelling on bacterial pathogenesis. Nat Rev Microbiol 2013; 11:467-81. [PMID: 23748343 PMCID: PMC6913092 DOI: 10.1038/nrmicro3047] [Citation(s) in RCA: 425] [Impact Index Per Article: 35.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Gram-negative bacteria decorate their outermost surface structure, lipopolysaccharide, with elaborate chemical moieties, which effectively disguises them from immune surveillance and protects them from the onslaught of host defences. Many of these changes occur on the lipid A moiety of lipopolysaccharide, a component that is crucial for host recognition of Gram-negative infection. In this Review, we describe the regulatory mechanisms controlling lipid A modification and discuss the impact of modifications on pathogenesis, bacterial physiology and bacterial interactions with the host immune system.
Collapse
Affiliation(s)
- Brittany D Needham
- The Institute of Cellular and Molecular Biology, The University of Texas at Austin, 78712, USA
| | | |
Collapse
|
106
|
Extended-spectrum cephalosporin-resistant Gram-negative organisms in livestock: an emerging problem for human health? Drug Resist Updat 2013; 16:22-45. [PMID: 23395305 DOI: 10.1016/j.drup.2012.12.001] [Citation(s) in RCA: 196] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2012] [Accepted: 12/22/2012] [Indexed: 12/18/2022]
Abstract
Escherichia coli, Salmonella spp. and Acinetobacter spp. are important human pathogens. Serious infections due to these organisms are usually treated with extended-spectrum cephalosporins (ESCs). However, in the past two decades we have faced a rapid increasing of infections and colonization caused by ESC-resistant (ESC-R) isolates due to production of extended-spectrum-β-lactamases (ESBLs), plasmid-mediated AmpCs (pAmpCs) and/or carbapenemase enzymes. This situation limits drastically our therapeutic armamentarium and puts under peril the human health. Animals are considered as potential reservoirs of multidrug-resistant (MDR) Gram-negative organisms. The massive and indiscriminate use of antibiotics in veterinary medicine has contributed to the selection of ESC-R E. coli, ESC-R Salmonella spp. and, to less extent, MDR Acinetobacter spp. among animals, food, and environment. This complex scenario is responsible for the expansion of these MDR organisms which may have life-threatening clinical significance. Nowadays, the prevalence of food-producing animals carrying ESC-R E. coli and ESC-R Salmonella (especially those producing CTX-M-type ESBLs and the CMY-2 pAmpC) has reached worryingly high values. More recently, the appearance of carbapenem-resistant isolates (i.e., VIM-1-producing Enterobacteriaceae and NDM-1 or OXA-23-producing Acinetobacter spp.) in livestock has even drawn greater concerns. In this review, we describe the aspects related to the spread of the above MDR organisms among pigs, cattle, and poultry, focusing on epidemiology, molecular mechanisms of resistance, impact of antibiotic use, and strategies to contain the overall problem. The link and the impact of ESC-R organisms of livestock origin for the human scenario are also discussed.
Collapse
|
107
|
Bhaskaran SS, Stebbins CE. Structure of the catalytic domain of the Salmonella virulence factor SseI. ACTA CRYSTALLOGRAPHICA. SECTION D, BIOLOGICAL CRYSTALLOGRAPHY 2012; 68:1613-21. [PMID: 23151626 PMCID: PMC3498931 DOI: 10.1107/s0907444912039042] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 09/12/2012] [Indexed: 11/15/2022]
Abstract
SseI is secreted into host cells by Salmonella and contributes to the establishment of systemic infections. The crystal structure of the C-terminal domain of SseI has been solved to 1.70 Å resolution, revealing it to be a member of the cysteine protease superfamily with a catalytic triad consisting of Cys178, His216 and Asp231 that is critical to its virulence activities. Structure-based analysis revealed that SseI is likely to possess either acyl hydrolase or acyltransferase activity, placing this virulence factor in the rapidly growing class of enzymes of this family utilized by bacterial pathogens inside eukaryotic cells.
Collapse
Affiliation(s)
- Shyam S. Bhaskaran
- Laboratory of Structural Microbiology, The Rockefeller University, New York, NY 10065, USA
| | - C. Erec Stebbins
- Laboratory of Structural Microbiology, The Rockefeller University, New York, NY 10065, USA
| |
Collapse
|
108
|
Maciel BM, Sriranganathan N, Romano CC, Santos TFD, Dias JCT, Gross E, Rezende RP. Infection cycle of Salmonella enterica serovar Enteritidis in latent carrier mice 1The work was carried out at the Microbial Biotechnology Laboratory of Universidade Estadual de Santa Cruz, Ilhéus, Bahia State, Brazil. Can J Microbiol 2012; 58:1389-95. [DOI: 10.1139/cjm-2012-0375] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
This work reports the distribution of an oral dose of Salmonella enterica serovar Enteritidis (SE) in C57Bl/6-Bcgr mice, to study its pathogenesis in a latent carrier animal. Mice orally inoculated with a high dose of SE developed a latent infection characterized by the absence of clinical symptoms in which the cecum is functioning as a “strategic site” of SE proliferation, releasing bacteria into feces intermittently over the 4-week study. A sequence of disruptions occurred in the small intestine at 1 day postinculation (PI). The microvilli exhibited different degrees of degeneration, which were reversible as the cells became vacuolated. From 2 days PI, SE was detected in the mononuclear phagocytic system, and an exponential growth of the remaining bacteria in tissues was observed until 4 days PI. The production of interferon gamma from 3 days PI is restricting the SE growth, and a plateau phase was observed from 4 to 15 days PI. A recurrence of the bacterial growth in tissue occurred from 15 to 28 days PI, especially in the cecum. Increasing our knowledge about the host–pathogen interaction of adapted pathogens with the ability to develop latency is essential for the development of an efficient strategy for Salmonella control.
Collapse
Affiliation(s)
- Bianca Mendes Maciel
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, BR 415, Rod. Ilhéus-Itabuna, Km 16 – Salobrinho, Ilhéus, Bahia 456662-900, Brazil
| | - Nammalwar Sriranganathan
- Department of Biomedical Sciences & Pathobiology, Virginia-Maryland Regional College of Veterinary Medicine, Center for Molecular Medicine and Infectious Diseases, 1410 Prices Fork Road (0342) Blacksburg, VA 24061, USA
| | - Carla Cristina Romano
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, BR 415, Rod. Ilhéus-Itabuna, Km 16 – Salobrinho, Ilhéus, Bahia 456662-900, Brazil
| | - Thalis Ferreira dos Santos
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, BR 415, Rod. Ilhéus-Itabuna, Km 16 – Salobrinho, Ilhéus, Bahia 456662-900, Brazil
| | - João Carlos Teixeira Dias
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, BR 415, Rod. Ilhéus-Itabuna, Km 16 – Salobrinho, Ilhéus, Bahia 456662-900, Brazil
| | - Eduardo Gross
- Departamento de Ciências Agrárias e Ambientais, Universidade Estadual de Santa Cruz, BR 415, Rod. Ilhéus-Itabuna, Km 16 – Salobrinho, Ilhéus, Bahia 45662-900, Brazil
| | - Rachel Passos Rezende
- Departamento de Ciências Biológicas, Universidade Estadual de Santa Cruz, BR 415, Rod. Ilhéus-Itabuna, Km 16 – Salobrinho, Ilhéus, Bahia 456662-900, Brazil
| |
Collapse
|
109
|
Genome expression analysis of nonproliferating intracellular Salmonella enterica serovar Typhimurium unravels an acid pH-dependent PhoP-PhoQ response essential for dormancy. Infect Immun 2012; 81:154-65. [PMID: 23090959 DOI: 10.1128/iai.01080-12] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023] Open
Abstract
Genome-wide expression analyses have provided clues on how Salmonella proliferates inside cultured macrophages and epithelial cells. However, in vivo studies show that Salmonella does not replicate massively within host cells, leaving the underlying mechanisms of such growth control largely undefined. In vitro infection models based on fibroblasts or dendritic cells reveal limited proliferation of the pathogen, but it is presently unknown whether these phenomena reflect events occurring in vivo. Fibroblasts are distinctive, since they represent a nonphagocytic cell type in which S. enterica serovar Typhimurium actively attenuates intracellular growth. Here, we show in the mouse model that S. Typhimurium restrains intracellular growth within nonphagocytic cells positioned in the intestinal lamina propria. This response requires a functional PhoP-PhoQ system and is reproduced in primary fibroblasts isolated from the mouse intestine. The fibroblast infection model was exploited to generate transcriptome data, which revealed that ∼2% (98 genes) of the S. Typhimurium genome is differentially expressed in nongrowing intracellular bacteria. Changes include metabolic reprogramming to microaerophilic conditions, induction of virulence plasmid genes, upregulation of the pathogenicity islands SPI-1 and SPI-2, and shutdown of flagella production and chemotaxis. Comparison of relative protein levels of several PhoP-PhoQ-regulated functions (PagN, PagP, and VirK) in nongrowing intracellular bacteria and extracellular bacteria exposed to diverse PhoP-PhoQ-inducing signals denoted a regulation responding to acidic pH. These data demonstrate that S. Typhimurium restrains intracellular growth in vivo and support a model in which dormant intracellular bacteria could sense vacuolar acidification to stimulate the PhoP-PhoQ system for preventing intracellular overgrowth.
Collapse
|
110
|
Stein MP, Müller MP, Wandinger-Ness A. Bacterial pathogens commandeer Rab GTPases to establish intracellular niches. Traffic 2012; 13:1565-88. [PMID: 22901006 DOI: 10.1111/tra.12000] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Revised: 08/13/2012] [Indexed: 12/11/2022]
Abstract
Intracellular bacterial pathogens deploy virulence factors termed effectors to inhibit degradation by host cells and to establish intracellular niches where growth and differentiation take place. Here, we describe mechanisms by which human bacterial pathogens (including Chlamydiae; Coxiella burnetii; Helicobacter pylori; Legionella pneumophila; Listeria monocytogenes; Mycobacteria; Pseudomonas aeruginosa, Salmonella enterica) modulate endocytic and exocytic Rab GTPases in order to thrive in host cells. Host cell Rab GTPases are critical for intracellular transport following pathogen phagocytosis or endocytosis. At the molecular level bacterial effectors hijack Rab protein function to: evade degradation, direct transport to particular intracellular locations and monopolize host vesicles carrying molecules that are needed for a stable niche and/or bacterial growth and differentiation. Bacterial effectors may serve as specific receptors for Rab GTPases or as enzymes that post-translationally modify Rab proteins or endosomal membrane lipids required for Rab function. Emerging data indicate that bacterial effector expression is temporally and spatially regulated and multiple virulence factors may act concertedly to usurp Rab GTPase function, alter signaling and ensure niche establishment and intracellular bacterial growth, making this field an exciting area for further study.
Collapse
Affiliation(s)
- Mary-Pat Stein
- Department of Biology, California State University, Northridge, Northridge, CA, USA.
| | | | | |
Collapse
|