101
|
Serum Albumin and Ca2+ Are Natural Competence Inducers in the Human Pathogen Acinetobacter baumannii. Antimicrob Agents Chemother 2016; 60:4920-9. [PMID: 27270286 DOI: 10.1128/aac.00529-16] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2016] [Accepted: 05/28/2016] [Indexed: 01/07/2023] Open
Abstract
The increasing frequency of bacteria showing antimicrobial resistance (AMR) raises the menace of entering into a postantibiotic era. Horizontal gene transfer (HGT) is one of the prime reasons for AMR acquisition. Acinetobacter baumannii is a nosocomial pathogen with outstanding abilities to survive in the hospital environment and to acquire resistance determinants. Its capacity to incorporate exogenous DNA is a major source of AMR genes; however, few studies have addressed this subject. The transformation machinery as well as the factors that induce natural competence in A. baumannii are unknown. In this study, we demonstrate that naturally competent strain A118 increases its natural transformation frequency upon the addition of Ca(2+)or albumin. We show that comEA and pilQ are involved in this process since their expression levels are increased upon the addition of these compounds. An unspecific protein, like casein, does not reproduce this effect, showing that albumin's effect is specific. Our work describes the first specific inducers of natural competence in A. baumannii Overall, our results suggest that the main protein in blood enhances HGT in A. baumannii, contributing to the increase of AMR in this threatening human pathogen.
Collapse
|
102
|
Silencing of natural transformation by an RNA chaperone and a multitarget small RNA. Proc Natl Acad Sci U S A 2016; 113:8813-8. [PMID: 27432973 DOI: 10.1073/pnas.1601626113] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
A highly conserved DNA uptake system allows many bacteria to actively import and integrate exogenous DNA. This process, called natural transformation, represents a major mechanism of horizontal gene transfer (HGT) involved in the acquisition of virulence and antibiotic resistance determinants. Despite evidence of HGT and the high level of conservation of the genes coding the DNA uptake system, most bacterial species appear non-transformable under laboratory conditions. In naturally transformable species, the DNA uptake system is only expressed when bacteria enter a physiological state called competence, which develops under specific conditions. Here, we investigated the mechanism that controls expression of the DNA uptake system in the human pathogen Legionella pneumophila We found that a repressor of this system displays a conserved ProQ/FinO domain and interacts with a newly characterized trans-acting sRNA, RocR. Together, they target mRNAs of the genes coding the DNA uptake system to control natural transformation. This RNA-based silencing represents a previously unknown regulatory means to control this major mechanism of HGT. Importantly, these findings also show that chromosome-encoded ProQ/FinO domain-containing proteins can assist trans-acting sRNAs and that this class of RNA chaperones could play key roles in post-transcriptional gene regulation throughout bacterial species.
Collapse
|
103
|
Circulation of a Quorum-Sensing-Impaired Variant of Vibrio cholerae Strain C6706 Masks Important Phenotypes. mSphere 2016; 1:mSphere00098-16. [PMID: 27303743 PMCID: PMC4888887 DOI: 10.1128/msphere.00098-16] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2016] [Accepted: 05/04/2016] [Indexed: 01/09/2023] Open
Abstract
Phenotypic diversity between laboratory-domesticated bacterial strains is a common problem and often results in the failed reproduction of published data. However, researchers rarely compare such strains to elucidate the underlying mutation(s). In this study, we tested one of the best-studied V. cholerae isolates, O1 El Tor strain C6706 (a patient isolate from Peru), with respect to two main phenotypes: natural competence for transformation and type VI secretion. We recently demonstrated that the two phenotypes are coregulated and specifically induced upon the growth of pandemic V. cholerae O1 El Tor strains on chitinous surfaces. We provide evidence that of seven C6706 strains collected from different laboratories, four were impaired in the tested phenotypes due to a mutation in a QS gene. Collectively, our data indicate that the circulation of such a mutated wild-type strain of C6706 might have had important consequences for QS-related data. Vibrio cholerae, the causative agent of cholera, is a model organism for studying virulence regulation, biofilm formation, horizontal gene transfer, and the cell-to-cell communication known as quorum sensing (QS). As in any research field, discrepancies between data from diverse laboratories are sometimes observed for V. cholerae. Such discrepancies are often caused by the use of diverse patient or environmental isolates. In this study, we investigated the inability of a few laboratories to reproduce high levels of natural transformation, a mode of horizontal gene transfer that is specifically induced on chitinous surfaces. This irreproducibility was mostly related to one specific isolate of V. cholerae: the O1 El Tor C6706 strain. C6706 was previously described as QS proficient, an important prerequisite for the induction of natural competence for transformation. To elucidate the underlying problem, we collected seven isolates of the same C6706 strain from different research laboratories in North America and Europe and compared their phenotypes. Importantly, we observed a split response with respect to QS-related gene expression, including chitin-induced natural competence and type VI secretion (T6S). While approximately half of the strains behaved as reported for several other O1 El Tor pandemic isolates that are commonly studied in the laboratory, the other half were significantly impaired in QS-related expression patterns. This impairment was caused by a mutation in a QS-related gene (luxO). We conclude that the circulation of such QS-impaired wild-type strains is responsible for masking several important phenotypes of V. cholerae, including natural competence for transformation and T6S. IMPORTANCE Phenotypic diversity between laboratory-domesticated bacterial strains is a common problem and often results in the failed reproduction of published data. However, researchers rarely compare such strains to elucidate the underlying mutation(s). In this study, we tested one of the best-studied V. cholerae isolates, O1 El Tor strain C6706 (a patient isolate from Peru), with respect to two main phenotypes: natural competence for transformation and type VI secretion. We recently demonstrated that the two phenotypes are coregulated and specifically induced upon the growth of pandemic V. cholerae O1 El Tor strains on chitinous surfaces. We provide evidence that of seven C6706 strains collected from different laboratories, four were impaired in the tested phenotypes due to a mutation in a QS gene. Collectively, our data indicate that the circulation of such a mutated wild-type strain of C6706 might have had important consequences for QS-related data.
Collapse
|
104
|
Sternes PR, Borneman AR. Consensus pan-genome assembly of the specialised wine bacterium Oenococcus oeni. BMC Genomics 2016; 17:308. [PMID: 27118061 PMCID: PMC4847254 DOI: 10.1186/s12864-016-2604-7] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2016] [Accepted: 03/28/2016] [Indexed: 11/15/2022] Open
Abstract
Background Oenococcus oeni is a lactic acid bacterium that is specialised for growth in the ecological niche of wine, where it is noted for its ability to perform the secondary, malolactic fermentation that is often required for many types of wine. Expanding the understanding of strain-dependent genetic variations in its small and streamlined genome is important for realising its full potential in industrial fermentation processes. Results Whole genome comparison was performed on 191 strains of O. oeni; from this rich source of genomic information consensus pan-genome assemblies of the invariant (core) and variable (flexible) regions of this organism were established. Genetic variation in amino acid biosynthesis and sugar transport and utilisation was found to be common between strains. Furthermore, we characterised previously-unreported intra-specific genetic variations in the natural competence of this microbe. Conclusion By assembling a consensus pan-genome from a large number of strains, this study provides a tool for researchers to readily compare protein-coding genes across strains and infer functional relationships between genes in conserved syntenic regions. This establishes a foundation for further genetic, and thus phenotypic, research of this industrially-important species. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2604-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Peter R Sternes
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, South Australia, 5064, Australia
| | - Anthony R Borneman
- The Australian Wine Research Institute, PO Box 197, Glen Osmond, South Australia, 5064, Australia.
| |
Collapse
|
105
|
Abstract
Members of the genus Vibrio are known to interact with phyto- and zooplankton in aquatic environments. These interactions have been proven to protect the bacterium from various environmental stresses, serve as a nutrient source, facilitate exchange of DNA, and to serve as vectors of disease transmission. This review highlights the impact of Vibrio-zooplankton interactions at the ecosystem scale and the importance of studies focusing on a wide range of Vibrio-zooplankton interactions. The current knowledge on chitin utilization (i.e., chemotaxis, attachment, and degradation) and the role of these factors in attachment to nonchitinous zooplankton is also presented.
Collapse
|
106
|
Vos M, Hesselman MC, Te Beek TA, van Passel MWJ, Eyre-Walker A. Rates of Lateral Gene Transfer in Prokaryotes: High but Why? Trends Microbiol 2016; 23:598-605. [PMID: 26433693 DOI: 10.1016/j.tim.2015.07.006] [Citation(s) in RCA: 94] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2015] [Revised: 07/01/2015] [Accepted: 07/20/2015] [Indexed: 12/12/2022]
Abstract
Lateral gene transfer is of fundamental importance to the evolution of prokaryote genomes and has important practical consequences, as evidenced by the rapid dissemination of antibiotic resistance and virulence determinants. Relatively little effort has so far been devoted to explicitly quantifying the rate at which accessory genes are taken up and lost, but it is possible that the combined rate of lateral gene transfer and gene loss is higher than that of point mutation. What evolutionary forces underlie the rate of lateral gene transfer are not well understood. We here use theory developed to explain the evolution of mutation rates to address this question and explore its consequences for the study of prokaryote evolution.
Collapse
Affiliation(s)
- Michiel Vos
- European Centre for Environment and Human Health, University of Exeter Medical School, University of Exeter, Penryn, UK.
| | | | - Tim A Te Beek
- Netherlands Bioinformatics Centre, Nijmegen, The Netherlands
| | - Mark W J van Passel
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands; Centre for Zoonoses and Environmental Microbiology, Centre for Infectious Disease Control, National Institute for Public Health and the Environment (RIVM), Bilthoven, The Netherlands
| | | |
Collapse
|
107
|
Abstract
The diversification of prokaryotes is accelerated by their ability to acquire DNA from other genomes. However, the underlying processes also facilitate genome infection by costly mobile genetic elements. The discovery that cells can uptake DNA by natural transformation was instrumental to the birth of molecular biology nearly a century ago. Surprisingly, a new study shows that this mechanism could efficiently cure the genome of mobile elements acquired through previous sexual exchanges. Natural transformation was thought to provide new genetic information to bacteria. Instead, a new study suggests it cures the genome of deleterious mobile elements.
Collapse
Affiliation(s)
- Eduardo P. C. Rocha
- Microbial Evolutionary Genomics, Institut Pasteur, Paris, France
- Centre National de la Recherche Scientifique (CNRS), UMR3525, Paris, France
- * E-mail:
| |
Collapse
|
108
|
Franklin AM, Aga DS, Cytryn E, Durso LM, McLain JE, Pruden A, Roberts MC, Rothrock MJ, Snow DD, Watson JE, Dungan RS. Antibiotics in Agroecosystems: Introduction to the Special Section. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:377-93. [PMID: 27065385 DOI: 10.2134/jeq2016.01.0023] [Citation(s) in RCA: 52] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
The presence of antibiotic drug residues, antibiotic resistant bacteria, and antibiotic resistance genes in agroecosystems has become a significant area of research in recent years and is a growing public health concern. While antibiotics are used in both human medicine and agricultural practices, the majority of their use occurs in animal production where historically they have been used for growth promotion, in addition to the prevention and treatment of disease. The widespread use of antibiotics and the application of animal wastes to agricultural lands play major roles in the introduction of antibiotic-related contamination into the environment. Overt toxicity in organisms directly exposed to antibiotics in agroecosystems is typically not a major concern because environmental concentrations are generally lower than therapeutic doses. However, the impacts of introducing antibiotic contaminants into the environment are unknown, and concerns have been raised about the health of humans, animals, and ecosystems. Despite increased research focused on the occurrence and fate of antibiotics and antibiotic resistance over the past decade, standard methods and practices for analyzing environmental samples are limited and future research needs are becoming evident. To highlight and address these issues in detail, this special collection of papers was developed with a framework of five core review papers that address the (i) overall state of science of antibiotics and antibiotic resistance in agroecosystems using a causal model, (ii) chemical analysis of antibiotics found in the environment, (iii) need for background and baseline data for studies of antibiotic resistance in agroecosystems with a decision-making tool to assist in designing research studies, as well as (iv) culture- and (v) molecular-based methods for analyzing antibiotic resistance in the environment. With a focus on the core review papers, this introduction summarizes the current state of science for analyzing antibiotics and antibiotic resistance in agroecosystems, discusses current knowledge gaps, and develops future research priorities. This introduction also contains a glossary of terms used in the core reivew papers of this special section. The purpose of the glossary is to provide a common terminology that clearly characterizes the concepts shared throughout the narratives of each review paper.
Collapse
|
109
|
Luby E, Ibekwe AM, Zilles J, Pruden A. Molecular Methods for Assessment of Antibiotic Resistance in Agricultural Ecosystems: Prospects and Challenges. JOURNAL OF ENVIRONMENTAL QUALITY 2016; 45:441-453. [PMID: 27065390 DOI: 10.2134/jeq2015.07.0367] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Agricultural ecosystems are of special interest for monitoring the potential for antibiotic resistance to spread through the environment and contribute to human exposure. Molecular methods, which target DNA, RNA, and other molecular components of bacterial cells, present certain advantages for characterizing and quantifying markers of antibiotic resistance and their horizontal gene transfer. These include rapid, unambiguous detection of targets; consistent results; and avoidance of culture bias. However, molecular methods are also subject to limitations that are not always clearly addressed or taken into consideration in the interpretation of scientific data. In particular, DNA-based methods do not directly assess viability or presence within an intact bacterial host, but such information may be inferred based on appropriate experimental design or in concert with complementary methods. The purpose of this review is to provide an overview of existing molecular methods for tracking antibiotic resistance in agricultural ecosystems, to define their strengths and weaknesses, and to recommend a path forward for future applications of molecular methods and standardized reporting in the literature. This will guide research along the farm-to-fork continuum and support comparability of the growing number of studies in the literature in a manner that informs management decisions and policy development.
Collapse
|
110
|
Mao J, Lu T. Population-Dynamic Modeling of Bacterial Horizontal Gene Transfer by Natural Transformation. Biophys J 2016; 110:258-68. [PMID: 26745428 PMCID: PMC4806214 DOI: 10.1016/j.bpj.2015.11.033] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 11/07/2015] [Accepted: 11/24/2015] [Indexed: 11/18/2022] Open
Abstract
Natural transformation is a major mechanism of horizontal gene transfer (HGT) and plays an essential role in bacterial adaptation, evolution, and speciation. Although its molecular underpinnings have been increasingly revealed, natural transformation is not well characterized in terms of its quantitative ecological roles. Here, by using Neisseria gonorrhoeae as an example, we developed a population-dynamic model for natural transformation and analyzed its dynamic characteristics with nonlinear tools and simulations. Our study showed that bacteria capable of natural transformation can display distinct population behaviors ranging from extinction to coexistence and to bistability, depending on their HGT rate and selection coefficient. With the model, we also illustrated the roles of environmental DNA sources-active secretion and passive release-in impacting population dynamics. Additionally, by constructing and utilizing a stochastic version of the model, we examined how noise shapes the steady and dynamic behaviors of the system. Notably, we found that distinct waiting time statistics for HGT events, namely a power-law distribution, an exponential distribution, and a mix of the both, are associated with the dynamics in the regimes of extinction, coexistence, and bistability accordingly. This work offers a quantitative illustration of natural transformation by revealing its complex population dynamics and associated characteristics, therefore advancing our ecological understanding of natural transformation as well as HGT in general.
Collapse
Affiliation(s)
- Junwen Mao
- Department of Physics, Huzhou University, Zhejiang, China; Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois
| | - Ting Lu
- Department of Bioengineering, University of Illinois at Urbana-Champaign, Urbana, Illinois; Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois; Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois.
| |
Collapse
|
111
|
van Dijk B, Hogeweg P. In Silico Gene-Level Evolution Explains Microbial Population Diversity through Differential Gene Mobility. Genome Biol Evol 2015; 8:176-88. [PMID: 26710854 PMCID: PMC4758251 DOI: 10.1093/gbe/evv255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Microbial communities can show astonishing ecological and phylogenetic diversity. What is the role of pervasive horizontal gene transfer (HGT) in shaping this diversity in the presence of clonally expanding “killer strains”? Does HGT of antibiotic production and resistance genes erase phylogenetic structure? To answer these questions, we study a spatial eco-evolutionary model of prokaryotes, inspired by recent findings on antagonistic interactions in Vibrionaceae populations. We find toxin genes evolve to be highly mobile, whereas resistance genes minimize mobility. This differential gene mobility is a requirement to maintain a diverse and dynamic ecosystem. The resistance gene repertoire acts as a core genome that corresponds to the phylogeny of cells, whereas toxin genes do not follow this phylogeny and have a patchy distribution. We also show that interstrain HGT makes the emergent phylogenetic structure robust to selective sweeps. Finally, in this evolved ecosystem we observe antagonistic interactions between, rather than within, spatially structure subpopulations, as has been previously observed for prokaryotes in soils and oceans. In contrast to ascribing the diversification and evolution of microbial communities to clonal dynamics, we show that multilevel evolution can elegantly explain the observed phylogenetic structure and ecosystem diversity.
Collapse
Affiliation(s)
- Bram van Dijk
- Department of Theoretical Biology and Bioinformatics, Utrecht University, The Netherlands
| | - Paulien Hogeweg
- Department of Theoretical Biology and Bioinformatics, Utrecht University, The Netherlands
| |
Collapse
|
112
|
Microbial Surface Colonization and Biofilm Development in Marine Environments. Microbiol Mol Biol Rev 2015; 80:91-138. [PMID: 26700108 DOI: 10.1128/mmbr.00037-15] [Citation(s) in RCA: 539] [Impact Index Per Article: 53.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Biotic and abiotic surfaces in marine waters are rapidly colonized by microorganisms. Surface colonization and subsequent biofilm formation and development provide numerous advantages to these organisms and support critical ecological and biogeochemical functions in the changing marine environment. Microbial surface association also contributes to deleterious effects such as biofouling, biocorrosion, and the persistence and transmission of harmful or pathogenic microorganisms and their genetic determinants. The processes and mechanisms of colonization as well as key players among the surface-associated microbiota have been studied for several decades. Accumulating evidence indicates that specific cell-surface, cell-cell, and interpopulation interactions shape the composition, structure, spatiotemporal dynamics, and functions of surface-associated microbial communities. Several key microbial processes and mechanisms, including (i) surface, population, and community sensing and signaling, (ii) intraspecies and interspecies communication and interaction, and (iii) the regulatory balance between cooperation and competition, have been identified as critical for the microbial surface association lifestyle. In this review, recent progress in the study of marine microbial surface colonization and biofilm development is synthesized and discussed. Major gaps in our knowledge remain. We pose questions for targeted investigation of surface-specific community-level microbial features, answers to which would advance our understanding of surface-associated microbial community ecology and the biogeochemical functions of these communities at levels from molecular mechanistic details through systems biological integration.
Collapse
|
113
|
Haustenne L, Bastin G, Hols P, Fontaine L. Modeling of the ComRS Signaling Pathway Reveals the Limiting Factors Controlling Competence in Streptococcus thermophilus. Front Microbiol 2015; 6:1413. [PMID: 26733960 PMCID: PMC4686606 DOI: 10.3389/fmicb.2015.01413] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Accepted: 11/27/2015] [Indexed: 12/25/2022] Open
Abstract
In streptococci, entry in competence is dictated by ComX abundance. In Streptococcus thermophilus, production of ComX is transient and tightly regulated during growth: it is positively regulated by the cell-cell communication system ComRS during the activation phase and negatively regulated during the shut-off phase by unidentified late competence gene(s). Interestingly, most S. thermophilus strains are not or weakly transformable in permissive growth conditions (i.e., chemically defined medium, CDM), suggesting that some players of the ComRS regulatory pathway are limiting. Here, we combined mathematical modeling and experimental approaches to identify the components of the ComRS system which are critical for both dynamics and amplitude of ComX production in S. thermophilus. We built a deterministic, population-scaled model of the time-course regulation of specific ComX production in CDM growth conditions. Strains LMD-9 and LMG18311 were respectively selected as representative of highly and weakly transformable strains. Results from in silico simulations and in vivo luciferase activities show that ComR concentration is the main limiting factor for the level of comX expression and controls the kinetics of spontaneous competence induction in strain LMD-9. In addition, the model predicts that the poor transformability of strain LMG18311 results from a 10-fold lower comR expression level compared to strain LMD-9. In agreement, comR overexpression in both strains was shown to induce higher competence levels with deregulated kinetics patterns during growth. In conclusion, we propose that the level of ComR production is one important factor that could explain competence heterogeneity among S. thermophilus strains.
Collapse
Affiliation(s)
- Laurie Haustenne
- Biochimie, Biophysique et Génétique des Microorganismes, Institut des Sciences de la Vie, Université catholique de Louvain Louvain-la-Neuve, Belgium
| | - Georges Bastin
- Center for Systems Engineering and Applied Mechanics, ICTEAM, Université catholique de Louvain Louvain-la-Neuve, Belgium
| | - Pascal Hols
- Biochimie, Biophysique et Génétique des Microorganismes, Institut des Sciences de la Vie, Université catholique de Louvain Louvain-la-Neuve, Belgium
| | - Laetitia Fontaine
- Biochimie, Biophysique et Génétique des Microorganismes, Institut des Sciences de la Vie, Université catholique de Louvain Louvain-la-Neuve, Belgium
| |
Collapse
|
114
|
Koskella B, Vos M. Adaptation in Natural Microbial Populations. ANNUAL REVIEW OF ECOLOGY EVOLUTION AND SYSTEMATICS 2015. [DOI: 10.1146/annurev-ecolsys-112414-054458] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Britt Koskella
- Department of Integrative Biology, University of California, Berkeley, California 94720;
- Department of Biosciences, University of Exeter, Penryn Campus, Cornwall TR10 9FE, United Kingdom
| | - Michiel Vos
- European Centre for Environment and Human Health, University of Exeter Medical School, Penryn Campus, Cornwall TR10 9FE, United Kingdom;
| |
Collapse
|
115
|
Metzger LC, Blokesch M. Regulation of competence-mediated horizontal gene transfer in the natural habitat of Vibrio cholerae. Curr Opin Microbiol 2015; 30:1-7. [PMID: 26615332 DOI: 10.1016/j.mib.2015.10.007] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 10/28/2015] [Accepted: 10/30/2015] [Indexed: 10/22/2022]
Abstract
The human pathogen Vibrio cholerae is an autochthonous inhabitant of aquatic environments where it often interacts with zooplankton and their chitinous molts. Chitin induces natural competence for transformation in V. cholerae, a key mode of horizontal gene transfer (HGT). Recent comparative genomic analyses were indicative of extensive HGT in this species. However, we can still expand our understanding of the complex regulatory network that drives competence in V. cholerae. Here, we present recent advances, including the elucidation of bipartite competence regulation mediated by QstR, the inclusion of the type VI secretion system in the competence regulon of pandemic O1 El Tor strains, and the identification of TfoS as a transcriptional regulator that links chitin to competence induction in V. cholerae.
Collapse
Affiliation(s)
- Lisa C Metzger
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
116
|
Matthey N, Blokesch M. The DNA-Uptake Process of Naturally Competent Vibrio cholerae. Trends Microbiol 2015; 24:98-110. [PMID: 26614677 DOI: 10.1016/j.tim.2015.10.008] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Revised: 10/05/2015] [Accepted: 10/22/2015] [Indexed: 10/22/2022]
Abstract
The sophisticated DNA-uptake machinery used during natural transformation is still poorly characterized, especially in Gram-negative bacteria where the transforming DNA has to cross two membranes as well as the peptidoglycan layer before entering the cytoplasm. The DNA-uptake machinery was hypothesized to take the form of a pseudopilus, which, upon repeated cycles of extension and retraction, would pull external DNA towards the cell surface or into the periplasmic space, followed by translocation across the cytoplasmic membrane. In this review, we summarize recent advances on the DNA-uptake machinery of V. cholerae, highlighting the presence of an extended competence-induced pilus and the contribution of a conserved DNA-binding protein that acts as a ratchet and reels DNA into the periplasm.
Collapse
Affiliation(s)
- Noémie Matthey
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), CH-1015 Lausanne, Switzerland.
| |
Collapse
|
117
|
Markov EY, Kulikalova ES, Urbanovich LY, Vishnyakov VS, Balakhonov SV. Chitin and Products of Its Hydrolysis in Vibrio cholerae Ecology. BIOCHEMISTRY (MOSCOW) 2015; 80:1109-16. [PMID: 26555464 DOI: 10.1134/s0006297915090023] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
The role of chitin and its hydrolysis products generated by Vibrio cholerae chitinases in mechanisms of its adaptation in water environments, metabolism, preservation, acquisition of pathogenic potential, and its epidemiological value are reviewed. Chitin utilization by V. cholerae as a source of energy, carbon, and nitrogen is described. Chitin association promotes biofilm formation on natural chitinous surfaces, increasing V. cholerae resistance to adverse factors in ecological niches: the human body and water environments with its inhabitants. Hydrolytic enzymes regulated by the corresponding genes result in complete chitin biodegradation by a chitinolytic catabolic cascade. Consequences of V. cholerae cell and chitin interaction at different hierarchical levels include metabolic and physiological cell reactions such as chemotaxis, cell division, biofilm formation, induction of genetic competence, and commensalic and symbiotic mutual relations with higher organisms, nutrient cycle, pathogenicity for humans, and water organisms that is an example of successful interrelation of bacteria and substratum in the ecology of the microorganism.
Collapse
Affiliation(s)
- E Yu Markov
- Irkutsk Antiplague Research Institute of Rospotrebnadzor, Irkutsk, 664002, Russia.
| | | | | | | | | |
Collapse
|
118
|
Juan PA, Attaiech L, Charpentier X. Natural transformation occurs independently of the essential actin-like MreB cytoskeleton in Legionella pneumophila. Sci Rep 2015; 5:16033. [PMID: 26526572 PMCID: PMC4630621 DOI: 10.1038/srep16033] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2015] [Accepted: 10/08/2015] [Indexed: 11/10/2022] Open
Abstract
Natural transformation is the process by which bacteria can actively take up and integrate exogenous DNA thereby providing a source of genetic diversity. Under specific growth conditions the coordinated expression of several genes – a situation referred to as “competence” – allows bacteria to assemble a highly processive and dedicated system that can import high molecular weight DNA. Within the cell these large imported DNA molecules are protected from degradation and brought to the chromosome for recombination. Here, we report elevated expression of mreB during competence in the Gram-negative pathogen Legionella pneumophila. Interestingly a similar observation had previously been reported in the distantly-related Gram-positive organism Bacillus subtilis. MreB is often viewed as the bacterial actin homolog contributing to bacterial morphogenesis by coordinating peptidoglycan-synthesising complexes. In addition MreB is increasingly found to be involved in a growing number of processes including chromosome segregation and motor-driven motility. Using genetic and pharmacological approaches, we examined the possible role of MreB during natural transformation in L. pneumophila. Our data show that natural transformation does not require MreB dynamics and exclude a direct role of MreB filaments in the transport of foreign DNA and its recombination in the chromosome.
Collapse
Affiliation(s)
- Pierre-Alexandre Juan
- CNRS UMR5240 MAP, Villeurbanne, France.,Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Laetitia Attaiech
- CNRS UMR5240 MAP, Villeurbanne, France.,Université Claude Bernard Lyon 1, Villeurbanne, France
| | - Xavier Charpentier
- CNRS UMR5240 MAP, Villeurbanne, France.,Université Claude Bernard Lyon 1, Villeurbanne, France
| |
Collapse
|
119
|
Van der Henst C, Scrignari T, Maclachlan C, Blokesch M. An intracellular replication niche for Vibrio cholerae in the amoeba Acanthamoeba castellanii. ISME JOURNAL 2015; 10:897-910. [PMID: 26394005 PMCID: PMC4705440 DOI: 10.1038/ismej.2015.165] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 08/02/2015] [Accepted: 08/10/2015] [Indexed: 12/25/2022]
Abstract
Vibrio cholerae is a human pathogen and the causative agent of cholera. The persistence of this bacterium in aquatic environments is a key epidemiological concern, as cholera is transmitted through contaminated water. Predatory protists, such as amoebae, are major regulators of bacterial populations in such environments. Therefore, we investigated the interaction between V. cholerae and the amoeba Acanthamoeba castellanii at the single-cell level. We observed that V. cholerae can resist intracellular killing. The non-digested bacteria were either released or, alternatively, established a replication niche within the contractile vacuole of A. castellanii. V. cholerae was maintained within this compartment even upon encystment. The pathogen ultimately returned to its aquatic habitat through lysis of A. castellanii, a process that was dependent on the production of extracellular polysaccharide by the pathogen. This study reinforces the concept that V. cholerae is a facultative intracellular bacterium and describes a new host–pathogen interaction.
Collapse
Affiliation(s)
- Charles Van der Henst
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Tiziana Scrignari
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Catherine Maclachlan
- Bioelectron Microscopy Core Facility (BioEM), School of Life Sciences, Station 19, EPFL-SV-PTBIOEM, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| |
Collapse
|
120
|
Blokesch M. Competence-induced type VI secretion might foster intestinal colonization by Vibrio cholerae: Intestinal interbacterial killing by competence-induced V. cholerae. Bioessays 2015; 37:1163-8. [PMID: 26445388 DOI: 10.1002/bies.201500101] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The human pathogen Vibrio cholerae exhibits two distinct lifestyles: one in the aquatic environment where it often associates with chitinous surfaces and the other as the causative agent of the disease cholera. While much of the research on V. cholerae has focused on the host-pathogen interaction, knowledge about the environmental lifestyle of the pathogen remains limited. We recently showed that the polymer chitin, which is extremely abundant in aquatic environments, induces natural competence as a mode of horizontal gene transfer and that this competence regulon also includes the type VI secretion system (T6SS), a molecular killing device. Here, I discuss the putative consequences that chitin-induced T6SS activation could have on intestinal colonization and how the transmission route might influence disease outcome. Moreover, I propose that common infant animal models for cholera might not sufficiently take into account T6SS-mediated interbacterial warfare between V. cholerae and the intestinal microbiota.
Collapse
Affiliation(s)
- Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne, EPFL, Lausanne, Switzerland
| |
Collapse
|
121
|
Phenotypic Heterogeneity, a Phenomenon That May Explain Why Quorum Sensing Does Not Always Result in Truly Homogenous Cell Behavior. Appl Environ Microbiol 2015. [PMID: 26025903 DOI: 10.1128/aem.00900-15/format/epub] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023] Open
Abstract
Phenotypic heterogeneity describes the occurrence of "nonconformist" cells within an isogenic population. The nonconformists show an expression profile partially different from that of the remainder of the population. Phenotypic heterogeneity affects many aspects of the different bacterial lifestyles, and it is assumed that it increases bacterial fitness and the chances for survival of the whole population or smaller subpopulations in unfavorable environments. Well-known examples for phenotypic heterogeneity have been associated with antibiotic resistance and frequently occurring persister cells. Other examples include heterogeneous behavior within biofilms, DNA uptake and bacterial competence, motility (i.e., the synthesis of additional flagella), onset of spore formation, lysis of phages within a small subpopulation, and others. Interestingly, phenotypic heterogeneity was recently also observed with respect to quorum-sensing (QS)-dependent processes, and the expression of autoinducer (AI) synthase genes and other QS-dependent genes was found to be highly heterogeneous at a single-cell level. This phenomenon was observed in several Gram-negative bacteria affiliated with the genera Vibrio, Dinoroseobacter, Pseudomonas, Sinorhizobium, and Mesorhizobium. A similar observation was made for the Gram-positive bacterium Listeria monocytogenes. Since AI molecules have historically been thought to be the keys to homogeneous behavior within isogenic populations, the observation of heterogeneous expression is quite intriguing and adds a new level of complexity to the QS-dependent regulatory networks. All together, the many examples of phenotypic heterogeneity imply that we may have to partially revise the concept of homogeneous and coordinated gene expression in isogenic bacterial populations.
Collapse
|
122
|
Le Roux F, Wegner KM, Baker-Austin C, Vezzulli L, Osorio CR, Amaro C, Ritchie JM, Defoirdt T, Destoumieux-Garzón D, Blokesch M, Mazel D, Jacq A, Cava F, Gram L, Wendling CC, Strauch E, Kirschner A, Huehn S. The emergence of Vibrio pathogens in Europe: ecology, evolution, and pathogenesis (Paris, 11-12th March 2015). Front Microbiol 2015; 6:830. [PMID: 26322036 PMCID: PMC4534830 DOI: 10.3389/fmicb.2015.00830] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2015] [Accepted: 07/28/2015] [Indexed: 02/02/2023] Open
Abstract
Global change has caused a worldwide increase in reports of Vibrio-associated diseases with ecosystem-wide impacts on humans and marine animals. In Europe, higher prevalence of human infections followed regional climatic trends with outbreaks occurring during episodes of unusually warm weather. Similar patterns were also observed in Vibrio-associated diseases affecting marine organisms such as fish, bivalves and corals. Basic knowledge is still lacking on the ecology and evolutionary biology of these bacteria as well as on their virulence mechanisms. Current limitations in experimental systems to study infection and the lack of diagnostic tools still prevent a better understanding of Vibrio emergence. A major challenge is to foster cooperation between fundamental and applied research in order to investigate the consequences of pathogen emergence in natural Vibrio populations and answer federative questions that meet societal needs. Here we report the proceedings of the first European workshop dedicated to these specific goals of the Vibrio research community by connecting current knowledge to societal issues related to ocean health and food security.
Collapse
Affiliation(s)
- Frédérique Le Roux
- Unié Physiologie Fonctionnelle des Organismes Marins, Ifremer , Plouzané, France ; CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, Sorbonne Universités, UPMC Paris 06 , Roscoff cedex, France
| | - K Mathias Wegner
- Coastal Ecology, Alfred Wegener Institute Helmholtz Centre for Polar and Marine Research , List, Germany
| | | | - Luigi Vezzulli
- Department of Earth, Environmental and Life Sciences, University of Genoa , Genoa, Italy
| | - Carlos R Osorio
- Departamento de Microbioloxía e Parasitoloxía, Instituto de Acuicultura, Universidade de Santiago de Compostela , Santiago de Compostela, Spain
| | - Carmen Amaro
- Estructura de Investigación Interdisciplinar en Biotecnología y Biomedicina, Department of Microbiology and Ecology, University of Valencia , Valencia, Spain
| | - Jennifer M Ritchie
- Faculty of Health and Medical Sciences, University of Surrey , Guildford, UK
| | - Tom Defoirdt
- UGent Aquaculture R&D Consortium, Ghent University , Ghent, Belgium
| | - Delphine Destoumieux-Garzón
- Interactions Hôtes-Pathogènes-Environnements, UMR 5244, CNRS, Ifremer, Université de Perpignan Via Domita, Université de Montpellier , Montpellier, France
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne , Lausanne, Switzerland
| | - Didier Mazel
- Département Génomes et Génétique, CNRS UMR3525, Unité Plasticité du Génome Bactérien, Institut Pasteur , Paris, France
| | - Annick Jacq
- Institute for Integrative Biology of the Cell, CEA, CNRS, Université Paris-Sud , Orsay, France
| | - Felipe Cava
- Laboratory for Molecular Infection Medicine Sweden, Department of Molecular Biology, Umeå Centre for Microbial Research, Umeå University , Umeå, Sweden
| | - Lone Gram
- Department of Systems Biology, Technical University of Denmark , Kongens Lyngby, Denmark
| | | | - Eckhard Strauch
- Federal Institute for Risk Assessment, National Reference Laboratory for Monitoring Bacteriological Contamination of Bivalve Molluscs , Berlin, Germany
| | - Alexander Kirschner
- Institute for Hygiene and Applied Immunology, Medical University of Vienna , Vienna, Austria
| | - Stephan Huehn
- Institute of Food Hygiene, Free University Berlin , Berlin, Germany
| |
Collapse
|
123
|
Positive Effect of Carbon Sources on Natural Transformation in Escherichia coli: Role of Low-Level Cyclic AMP (cAMP)-cAMP Receptor Protein in the Derepression of rpoS. J Bacteriol 2015; 197:3317-28. [PMID: 26260461 DOI: 10.1128/jb.00291-15] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2015] [Accepted: 08/05/2015] [Indexed: 12/28/2022] Open
Abstract
UNLABELLED Natural plasmid transformation of Escherichia coli is a complex process that occurs strictly on agar plates and requires the global stress response factor σ(S). Here, we showed that additional carbon sources could significantly enhance the transformability of E. coli. Inactivation of phosphotransferase system genes (ptsH, ptsG, and crr) caused an increase in the transformation frequency, and the addition of cyclic AMP (cAMP) neutralized the promotional effect of carbon sources. This implies a negative role of cAMP in natural transformation. Further study showed that crp and cyaA mutations conferred a higher transformation frequency, suggesting that the cAMP-cAMP receptor protein (CRP) complex has an inhibitory effect on transformation. Moreover, we observed that rpoS is negatively regulated by cAMP-CRP in early log phase and that both crp and cyaA mutants show no transformation superiority when rpoS is knocked out. Therefore, it can be concluded that both the crp and cyaA mutations derepress rpoS expression in early log phase, whereby they aid in the promotion of natural transformation ability. We also showed that the accumulation of RpoS during early log phase can account for the enhanced transformation aroused by additional carbon sources. Our results thus demonstrated that the presence of additional carbon sources promotes competence development and natural transformation by reducing cAMP-CRP and, thus, derepressing rpoS expression during log phase. This finding could contribute to a better understanding of the relationship between nutrition state and competence, as well as the mechanism of natural plasmid transformation in E. coli. IMPORTANCE Escherichia coli, which is not usually considered to be naturally transformable, was found to spontaneously take up plasmid DNA on agar plates. Researching the mechanism of natural transformation is important for understanding the role of transformation in evolution, as well as in the transfer of pathogenicity and antibiotic resistance genes. In this work, we found that carbon sources significantly improve transformation by decreasing cAMP. Then, the low level of cAMP-CRP derepresses the general stress response regulator RpoS via a biphasic regulatory pattern, thereby contributing to transformation. Thus, we demonstrate the mechanism by which carbon sources affect natural transformation, which is important for revealing information about the interplay between nutrition state and competence development in E. coli.
Collapse
|
124
|
DNA Processing Proteins Involved in the UV-Induced Stress Response of Sulfolobales. J Bacteriol 2015; 197:2941-51. [PMID: 26148716 DOI: 10.1128/jb.00344-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/23/2015] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED The ups operon of Sulfolobus species is highly induced upon UV stress. Previous studies showed that the pili encoded by this operon are involved in cellular aggregation, which is essential for subsequent DNA exchange between cells, resulting in homologous recombination. The presence of this pilus system increases the fitness of Sulfolobus cells under UV light-induced stress conditions, as the transfer of DNA takes place in order to repair UV-induced DNA lesions via homologous recombination. Four conserved genes (saci_1497 to saci_1500) which encode proteins with putative DNA processing functions are present downstream of the ups operon. In this study, we show that after UV treatment the cellular aggregation of strains with saci_1497, saci_1498, and saci_1500 deletions is similar to that of wild-type strains; their survival rates, however, were reduced and similar to or lower than those of the pilus deletion strains, which could not aggregate anymore. DNA recombination assays indicated that saci_1498, encoding a ParB-like protein, plays an important role in DNA transfer. Moreover, biochemical analysis showed that the endonuclease III encoded by saci_1497 nicks UV-damaged DNA. In addition, RecQ-like helicase Saci_1500 is able to unwind homologous recombination intermediates, such as Holliday junctions. Interestingly, a saci_1500 deletion mutant was more sensitive to UV light but not to the replication-stalling agents hydroxyurea and methyl methanesulfonate, suggesting that Saci_1500 functions specifically in the UV damage pathway. Together these results suggest a role of Saci_1497 to Saci_1500 in the repair or transfer of DNA that takes place after UV-induced damage to the genomic DNA of Sulfolobus acidocaldarius. IMPORTANCE Sulfolobales species increase their fitness after UV stress by a UV-inducible pilus system that enables high rates of DNA exchange between cells. Downstream of the pilus operon, three genes that seem to play a role in the repair or transfer of the DNA between Sulfolobus cells were identified, and their possible functions are discussed. Next to the previously described role of UV-inducible pili in the exchange of DNA, we have thereby increased our knowledge of DNA transfer at the level of DNA processing. This paper therefore contributes to the overall understanding of the DNA exchange mechanism among Sulfolobales cells.
Collapse
|
125
|
Fontaine L, Wahl A, Fléchard M, Mignolet J, Hols P. Regulation of competence for natural transformation in streptococci. INFECTION GENETICS AND EVOLUTION 2015; 33:343-60. [DOI: 10.1016/j.meegid.2014.09.010] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 08/28/2014] [Accepted: 09/07/2014] [Indexed: 02/02/2023]
|
126
|
Abstract
ABSTRACT
Many Gram-positive and Gram-negative bacteria can become naturally competent to take up extracellular DNA from the environment via a dedicated uptake apparatus. The genetic material that is acquired can (i) be used for nutrients, (ii) aid in genome repair, and (iii) promote horizontal gene transfer when incorporated onto the genome by homologous recombination, the process of “transformation.” Recent studies have identified multiple environmental cues sufficient to induce natural transformation in
Vibrio cholerae
and several other
Vibrio
species. In
V. cholerae
, nutrient limitation activates the cAMP receptor protein regulator, quorum-sensing signals promote synthesis of HapR-controlled QstR, chitin stimulates production of TfoX, and low extracellular nucleosides allow CytR to serve as an additional positive regulator. The network of signaling systems that trigger expression of each of these required regulators is well described, but the mechanisms by which each in turn controls competence apparatus genes is poorly understood. Recent work has defined a minimal set of genes that encode apparatus components and begun to characterize the architecture of the machinery by fluorescence microscopy. While studies with a small set of
V. cholerae
reference isolates have identified regulatory and competence genes required for DNA uptake, future studies may identify additional genes and regulatory connections, as well as revealing how common natural competence is among diverse
V. cholerae
isolates and other
Vibrio
species.
Collapse
|
127
|
Phenotypic Heterogeneity, a Phenomenon That May Explain Why Quorum Sensing Does Not Always Result in Truly Homogenous Cell Behavior. Appl Environ Microbiol 2015; 81:5280-9. [PMID: 26025903 DOI: 10.1128/aem.00900-15] [Citation(s) in RCA: 65] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Phenotypic heterogeneity describes the occurrence of "nonconformist" cells within an isogenic population. The nonconformists show an expression profile partially different from that of the remainder of the population. Phenotypic heterogeneity affects many aspects of the different bacterial lifestyles, and it is assumed that it increases bacterial fitness and the chances for survival of the whole population or smaller subpopulations in unfavorable environments. Well-known examples for phenotypic heterogeneity have been associated with antibiotic resistance and frequently occurring persister cells. Other examples include heterogeneous behavior within biofilms, DNA uptake and bacterial competence, motility (i.e., the synthesis of additional flagella), onset of spore formation, lysis of phages within a small subpopulation, and others. Interestingly, phenotypic heterogeneity was recently also observed with respect to quorum-sensing (QS)-dependent processes, and the expression of autoinducer (AI) synthase genes and other QS-dependent genes was found to be highly heterogeneous at a single-cell level. This phenomenon was observed in several Gram-negative bacteria affiliated with the genera Vibrio, Dinoroseobacter, Pseudomonas, Sinorhizobium, and Mesorhizobium. A similar observation was made for the Gram-positive bacterium Listeria monocytogenes. Since AI molecules have historically been thought to be the keys to homogeneous behavior within isogenic populations, the observation of heterogeneous expression is quite intriguing and adds a new level of complexity to the QS-dependent regulatory networks. All together, the many examples of phenotypic heterogeneity imply that we may have to partially revise the concept of homogeneous and coordinated gene expression in isogenic bacterial populations.
Collapse
|
128
|
Jung J, Park W. Acinetobacter species as model microorganisms in environmental microbiology: current state and perspectives. Appl Microbiol Biotechnol 2015; 99:2533-48. [PMID: 25693672 DOI: 10.1007/s00253-015-6439-y] [Citation(s) in RCA: 132] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2014] [Revised: 01/23/2015] [Accepted: 01/26/2015] [Indexed: 01/11/2023]
Abstract
Acinetobacter occupies an important position in nature because of its ubiquitous presence in diverse environments such as soils, fresh water, oceans, sediments, and contaminated sites. Versatile metabolic characteristics allow species of this genus to catabolize a wide range of natural compounds, implying active participation in the nutrient cycle in the ecosystem. On the other hand, multi-drug-resistant Acinetobacter baumannii causing nosocomial infections with high mortality has been raising serious concerns in medicine. Due to the ecological and clinical importance of the genus, Acinetobacter was proposed as a model microorganism for environmental microbiological studies, pathogenicity tests, and industrial production of chemicals. For these reasons, Acinetobacter has attracted significant attention in scientific and biotechnological fields, but only limited research areas such as natural transformation and aromatic compound degradation have been intensively investigated, while important physiological characteristics including quorum sensing, motility, and stress response have been neglected. The aim of this review is to summarize the recent achievements in Acinetobacter research with a special focus on strain DR1 and to compare the similarities and differences between species or other genera. Research areas that require more attention in future research are also suggested.
Collapse
Affiliation(s)
- Jaejoon Jung
- Laboratory of Molecular Environmental Microbiology, Department of Environmental Science and Ecological Engineering, Korea University, Seoul, 136-713, Republic of Korea
| | | |
Collapse
|
129
|
Borgeaud S, Metzger LC, Scrignari T, Blokesch M. The type VI secretion system of Vibrio cholerae fosters horizontal gene transfer. Science 2015; 347:63-7. [PMID: 25554784 DOI: 10.1126/science.1260064] [Citation(s) in RCA: 270] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Natural competence for transformation is a common mode of horizontal gene transfer and contributes to bacterial evolution. Transformation occurs through the uptake of external DNA and its integration into the genome. Here we show that the type VI secretion system (T6SS), which serves as a predatory killing device, is part of the competence regulon in the naturally transformable pathogen Vibrio cholerae. The T6SS-encoding gene cluster is under the positive control of the competence regulators TfoX and QstR and is induced by growth on chitinous surfaces. Live-cell imaging revealed that deliberate killing of nonimmune cells via competence-mediated induction of T6SS releases DNA and makes it accessible for horizontal gene transfer in V. cholerae.
Collapse
Affiliation(s)
- Sandrine Borgeaud
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Lisa C Metzger
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Tiziana Scrignari
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland.
| |
Collapse
|
130
|
Lo Scrudato M, Borgeaud S, Blokesch M. Regulatory elements involved in the expression of competence genes in naturally transformable Vibrio cholerae. BMC Microbiol 2014; 14:327. [PMID: 25539806 PMCID: PMC4299799 DOI: 10.1186/s12866-014-0327-y] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2014] [Accepted: 12/16/2014] [Indexed: 11/19/2022] Open
Abstract
Background The human pathogen Vibrio cholerae normally enters the developmental program of natural competence for transformation after colonizing chitinous surfaces. Natural competence is regulated by at least three pathways in this organism: chitin sensing/degradation, quorum sensing and carbon catabolite repression (CCR). The cyclic adenosine monophosphate (cAMP) receptor protein CRP, which is the global regulator of CCR, binds to regulatory DNA elements called CRP sites when in complex with cAMP. Previous studies in Haemophilus influenzae suggested that the CRP protein binds competence-specific CRP-S sites under competence-inducing conditions, most likely in concert with the master regulator of transformation Sxy/TfoX. Results In this study, we investigated the regulation of the competence genes qstR and comEA as an example of the complex process that controls competence gene activation in V. cholerae. We identified previously unrecognized putative CRP-S sites upstream of both genes. Deletion of these motifs significantly impaired natural transformability. Moreover, site-directed mutagenesis of these sites resulted in altered gene expression. This altered gene expression also correlated directly with protein levels, bacterial capacity for DNA uptake, and natural transformability. Conclusions Based on the data provided in this study we suggest that the identified sites are important for the expression of the competence genes qstR and comEA and therefore for natural transformability of V. cholerae even though the motifs might not reflect bona fide CRP-S sites.
Collapse
|
131
|
Ardissone S, Fumeaux C, Bergé M, Beaussart A, Théraulaz L, Radhakrishnan SK, Dufrêne YF, Viollier PH. Cell cycle constraints on capsulation and bacteriophage susceptibility. eLife 2014; 3. [PMID: 25421297 PMCID: PMC4241560 DOI: 10.7554/elife.03587] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2014] [Accepted: 10/21/2014] [Indexed: 12/28/2022] Open
Abstract
Despite the crucial role of bacterial capsules in pathogenesis, it is still unknown if systemic cues such as the cell cycle can control capsule biogenesis. In this study, we show that the capsule of the synchronizable model bacterium Caulobacter crescentus is cell cycle regulated and we unearth a bacterial transglutaminase homolog, HvyA, as restriction factor that prevents capsulation in G1-phase cells. This capsule protects cells from infection by a generalized transducing Caulobacter phage (φCr30), and the loss of HvyA confers insensitivity towards φCr30. Control of capsulation during the cell cycle could serve as a simple means to prevent steric hindrance of flagellar motility or to ensure that phage-mediated genetic exchange happens before the onset of DNA replication. Moreover, the multi-layered regulatory circuitry directing HvyA expression to G1-phase is conserved during evolution, and HvyA orthologues from related Sinorhizobia can prevent capsulation in Caulobacter, indicating that alpha-proteobacteria have retained HvyA activity.
Collapse
Affiliation(s)
- Silvia Ardissone
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Coralie Fumeaux
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Matthieu Bergé
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Audrey Beaussart
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Laurence Théraulaz
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Sunish Kumar Radhakrishnan
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| | - Yves F Dufrêne
- Institute of Life Sciences, Université catholique de Louvain, Louvain-la-Neuve, Belgium
| | - Patrick H Viollier
- Department of Microbiology and Molecular Medicine, Institute of Genetics and Genomics in Geneva, University of Geneva, Geneva, Switzerland
| |
Collapse
|
132
|
Blokesch M. A quorum sensing-mediated switch contributes to natural transformation of Vibrio cholerae. Mob Genet Elements 2014; 2:224-227. [PMID: 23446800 PMCID: PMC3575429 DOI: 10.4161/mge.22284] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
There is a fundamental gap in our understanding of how horizontal gene transfer contributes to the enormous range of genetic variations that are observed among bacteria. The objective of our study was to better understand how the acquisition of genetic material by natural transformation is regulated within a population of Vibrio cholerae cells. V. cholerae is an aquatic bacterium and a facultative human pathogen. It acquires natural competence for transformation in response to changing environmental signals, such as the presence of chitinous surfaces, the absence of monomeric sugars and quorum sensing-linked autoinducers. The latter play a distinctive role in V. cholerae as they fine-tune a switch from the degradation of extracellular DNA toward the uptake of intact DNA strands in competence-induced cells. The link between quorum sensing and natural competence for transformation will be discussed. Furthermore, we speculate on the overrepresentation of transformation-negative strains of V. cholerae in patient-derived culture collections, which might be the result of a biased sampling strategy as virulence and natural transformation are contrarily regulated by the quorum sensing network.
Collapse
Affiliation(s)
- Melanie Blokesch
- Global Health Institute; School of Life Sciences; Ecole Polytechnique Fédérale de Lausanne (EPFL); Lausanne, Switzerland
| |
Collapse
|
133
|
Karuppiah V, Thistlethwaite A, Dajani R, Warwicker J, Derrick JP. Structure and mechanism of the bifunctional CinA enzyme from Thermus thermophilus. J Biol Chem 2014; 289:33187-97. [PMID: 25313401 PMCID: PMC4246079 DOI: 10.1074/jbc.m114.608448] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
CinA is a widely distributed protein in Gram-positive and Gram-negative bacteria. It is associated with natural competence and is proposed to have a function as an enzyme participating in the pyridine nucleotide cycle, which recycles products formed by non-redox uses of NAD. Here we report the determination of the crystal structure of CinA from Thermus thermophilus, in complex with several ligands. CinA was shown to have both nicotinamide mononucleotide deamidase and ADP-ribose pyrophosphatase activities. The crystal structure shows an unusual asymmetric dimer, with three domains for each chain; the C-terminal domain harbors the nicotinamide mononucleotide deamidase activity, and the structure of a complex with the product nicotinate mononucleotide suggests a mechanism for deamidation. The N-terminal domain belongs to the COG1058 family and is associated with the ADP-ribose pyrophosphatase activity. The asymmetry in the CinA dimer arises from two alternative orientations of the COG1058 domains, only one of which forms a contact with the KH-type domain from the other chain, effectively closing the active site into, we propose, a catalytically competent state. Structures of complexes with Mg2+/ADP-ribose, Mg2+/ATP, and Mg2+/AMP suggest a mechanism for the ADP-ribose pyrophosphatase reaction that involves a rotation of the COG1058 domain dimer as part of the reaction cycle, so that each active site oscillates between open and closed forms, thus promoting catalysis.
Collapse
Affiliation(s)
- Vijaykumar Karuppiah
- From the Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Angela Thistlethwaite
- From the Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Rana Dajani
- From the Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Jim Warwicker
- From the Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| | - Jeremy P Derrick
- From the Faculty of Life Sciences, University of Manchester, Michael Smith Building, Oxford Road, Manchester M13 9PT, United Kingdom
| |
Collapse
|
134
|
Enhanced transmission of antibiotic resistance in Campylobacter jejuni biofilms by natural transformation. Antimicrob Agents Chemother 2014; 58:7573-5. [PMID: 25267685 DOI: 10.1128/aac.04066-14] [Citation(s) in RCA: 56] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Campylobacter jejuni is a leading food-borne pathogen, and its antibiotic resistance is of serious concern to public health worldwide. C. jejuni is naturally competent for DNA transformation and freely takes up foreign DNA harboring genetic information responsible for antibiotic resistance. In this study, we demonstrate that C. jejuni transfers antibiotic resistance genes more frequently in biofilms than in planktonic cells by natural transformation.
Collapse
|
135
|
DNA transport across the outer and inner membranes of naturally transformable Vibrio cholerae is spatially but not temporally coupled. mBio 2014; 5:mBio.01409-14. [PMID: 25139903 PMCID: PMC4147865 DOI: 10.1128/mbio.01409-14] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The physiological state of natural competence for transformation allows certain bacteria to take up free DNA from the environment and to recombine such newly acquired DNA into their chromosomes. However, even though conserved components that are required to undergo natural transformation have been identified in several naturally competent bacteria, our knowledge of the underlying mechanisms of the DNA uptake process remains very limited. To better understand these mechanisms, we investigated the competence-mediated DNA transport in the naturally transformable pathogen Vibrio cholerae. Previously, we used a cell biology-based approach to experimentally address an existing hypothesis, which suggested the competence protein ComEA plays a role in the DNA uptake process across the outer membrane of Gram-negative bacteria. Here, we extended this knowledge by investigating the dynamics of DNA translocation across both membranes. More precisely, we indirectly visualized the transfer of the external DNA from outside the cell into the periplasm followed by the shuttling of the DNA into the cytoplasm. Based on these data, we conclude that for V. cholerae, the DNA translocation across the outer and inner membranes is spatially but not temporally coupled. As a mode of horizontal gene transfer, natural competence for transformation has contributed substantially to the plasticity of genomes and to bacterial evolution. Natural competence is often a tightly regulated process and is induced by diverse environmental cues. This is in contrast to the mechanistic aspects of the DNA translocation event, which are most likely conserved among naturally transformable bacteria. However, the DNA uptake process is still not well understood. We therefore investigated how external DNA reaches the cytosol of the naturally transformable bacterium V. cholerae. More specifically, we provide evidence that the DNA translocation across the membranes is spatially but not temporally coupled. We hypothesize that this model also applies to other competent Gram-negative bacteria and that our study contributes to the general understanding of this important biological process.
Collapse
|
136
|
Brimacombe CA, Ding H, Beatty JT. Rhodobacter capsulatus DprA is essential for RecA-mediated gene transfer agent (RcGTA) recipient capability regulated by quorum-sensing and the CtrA response regulator. Mol Microbiol 2014; 92:1260-78. [DOI: 10.1111/mmi.12628] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/24/2014] [Indexed: 01/18/2023]
Affiliation(s)
- Cedric A. Brimacombe
- Department of Microbiology and Immunology; The University of British Columbia; 2350 Health Sciences Mall Vancouver BC Canada V6T 1Z3
| | - Hao Ding
- Department of Microbiology and Immunology; The University of British Columbia; 2350 Health Sciences Mall Vancouver BC Canada V6T 1Z3
| | - J. Thomas Beatty
- Department of Microbiology and Immunology; The University of British Columbia; 2350 Health Sciences Mall Vancouver BC Canada V6T 1Z3
| |
Collapse
|
137
|
Johnston C, Martin B, Fichant G, Polard P, Claverys JP. Bacterial transformation: distribution, shared mechanisms and divergent control. Nat Rev Microbiol 2014; 12:181-96. [DOI: 10.1038/nrmicro3199] [Citation(s) in RCA: 402] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
138
|
Metzger LC, Blokesch M. Composition of the DNA-uptake complex of Vibrio cholerae.. Mob Genet Elements 2014; 4:e28142. [PMID: 24558639 PMCID: PMC3919817 DOI: 10.4161/mge.28142] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Revised: 02/05/2014] [Accepted: 02/06/2014] [Indexed: 12/20/2022] Open
Abstract
Natural competence for transformation is a developmental program that allows certain bacteria to take up free extracellular DNA from the environment and integrate this DNA into their genome. Thereby, natural transformation acts as mode of horizontal gene transfer and impacts bacterial evolution. The number of genes induced upon competence induction varies significantly between organisms. However, all of the naturally competent bacteria possess competence genes that encode so-called DNA-uptake machineries. Some components of these multi-protein complexes resemble subunits of type IV pili and type II secretion systems. However, knowledge on the mechanistic aspects of such DNA-uptake complexes is still very limited. Here, we discuss some new findings regarding the DNA-uptake machinery of the naturally transformable human pathogen Vibrio cholerae. The potential of this organism to initiate the competence program was discovered less than a decade ago. However, recent studies have provided new insight into both the regulatory pathways of competence induction and into the DNA uptake dynamics.
Collapse
Affiliation(s)
- Lisa C Metzger
- Global Health Institute; School of Life Sciences; Swiss Federal Institute of Technology Lausanne (Ecole Polytechnique Fédérale de Lausanne, EPFL); Lausanne, Switzerland
| | - Melanie Blokesch
- Global Health Institute; School of Life Sciences; Swiss Federal Institute of Technology Lausanne (Ecole Polytechnique Fédérale de Lausanne, EPFL); Lausanne, Switzerland
| |
Collapse
|
139
|
Hisano K, Fujise O, Miura M, Hamachi T, Matsuzaki E, Nishimura F. The pga gene cluster in Aggregatibacter actinomycetemcomitans is necessary for the development of natural competence in Ca(2+) -promoted biofilms. Mol Oral Microbiol 2014; 29:79-89. [PMID: 24450419 DOI: 10.1111/omi.12046] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/06/2014] [Indexed: 01/31/2023]
Abstract
Natural competence is the ability of bacteria to incorporate extracellular DNA into their genomes. This competence is affected by a number of factors, including Ca(2+) utilization and biofilm formation. As bacteria can form thick biofilms in the presence of extracellular Ca(2+) , the additive effects of Ca(2+) -promoted biofilm formation on natural competence should be examined. We evaluated natural competence in Aggregatibacter actinomycetemcomitans, an important periodontal pathogen, in the context of Ca(2+) -promoted biofilms, and examined whether the pga gene cluster, required for bacterial cell aggregation, is necessary for competence development. The A. actinomycetemcomitans cells grown in the presence of 1 mm CaCl2 exhibited enhanced cell aggregation and increased levels of cell-associated Ca(2+) . Biofilm-derived cells grown in the presence of Ca(2+) exhibited the highest levels of natural transformation frequency and enhanced expression of the competence regulator gene, tfoX. Natural competence was enhanced by the additive effects of Ca(2+) -promoted biofilms, in which high levels of pga gene expression were also detected. Mutation of the pga gene cluster disrupted biofilm formation and competence development, suggesting that these genes play a critical role in the ability of A. actinomycetemcomitans to adapt to its natural environment. The Ca(2+) -promoted biofilms may enhance the ability of bacteria to acquire extracellular DNA.
Collapse
Affiliation(s)
- K Hisano
- Division of Oral Rehabilitation, Department of Periodontology, Faculty of Dental Science, Kyushu University, Fukuoka, Japan
| | | | | | | | | | | |
Collapse
|
140
|
|
141
|
Johnston C, Campo N, Bergé MJ, Polard P, Claverys JP. Streptococcus pneumoniae, le transformiste. Trends Microbiol 2014; 22:113-9. [PMID: 24508048 DOI: 10.1016/j.tim.2014.01.002] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2013] [Revised: 01/09/2014] [Accepted: 01/09/2014] [Indexed: 10/25/2022]
Abstract
Streptococcus pneumoniae (the pneumococcus) is an important human pathogen. Natural genetic transformation, which was discovered in this species, involves internalization of exogenous single-stranded DNA and its incorporation into the chromosome. It allows acquisition of pathogenicity islands and antibiotic resistance and promotes vaccine escape via capsule switching. This opinion article discusses how recent advances regarding several facets of pneumococcal transformation support the view that the process has evolved to maximize plasticity potential in this species, making the pneumococcus le transformiste of the bacterial kingdom and providing an advantage in the constant struggle between this pathogen and its host.
Collapse
Affiliation(s)
- Calum Johnston
- Centre National de la Recherche Scientifique, LMGM-UMR5100, F-31000 Toulouse, France; Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, F-31000 Toulouse, France
| | - Nathalie Campo
- Centre National de la Recherche Scientifique, LMGM-UMR5100, F-31000 Toulouse, France; Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, F-31000 Toulouse, France
| | - Matthieu J Bergé
- Centre National de la Recherche Scientifique, LMGM-UMR5100, F-31000 Toulouse, France; Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, F-31000 Toulouse, France
| | - Patrice Polard
- Centre National de la Recherche Scientifique, LMGM-UMR5100, F-31000 Toulouse, France; Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, F-31000 Toulouse, France
| | - Jean-Pierre Claverys
- Centre National de la Recherche Scientifique, LMGM-UMR5100, F-31000 Toulouse, France; Université de Toulouse, UPS, Laboratoire de Microbiologie et Génétique Moléculaires, F-31000 Toulouse, France.
| |
Collapse
|
142
|
Abstract
Many bacteria are naturally competent, able to actively transport environmental DNA fragments across their cell envelope and into their cytoplasm. Because incoming DNA fragments can recombine with and replace homologous segments of the chromosome, competence provides cells with a potent mechanism of horizontal gene transfer as well as access to the nutrients in extracellular DNA. This review starts with an introductory overview of competence and continues with a detailed consideration of the DNA uptake specificity of competent proteobacteria in the Pasteurellaceae and Neisseriaceae. Species in these distantly related families exhibit strong preferences for genomic DNA from close relatives, a self-specificity arising from the combined effects of biases in the uptake machinery and genomic overrepresentation of the sequences this machinery prefers. Other competent species tested lack obvious uptake bias or uptake sequences, suggesting that strong convergent evolutionary forces have acted on these two families. Recent results show that uptake sequences have multiple "dialects," with clades within each family preferring distinct sequence variants and having corresponding variants enriched in their genomes. Although the genomic consensus uptake sequences are 12 and 29 to 34 bp, uptake assays have found that only central cores of 3 to 4 bp, conserved across dialects, are crucial for uptake. The other bases, which differ between dialects, make weaker individual contributions but have important cooperative interactions. Together, these results make predictions about the mechanism of DNA uptake across the outer membrane, supporting a model for the evolutionary accumulation and stability of uptake sequences and suggesting that uptake biases may be more widespread than currently thought.
Collapse
|
143
|
Nielsen KM, Bøhn T, Townsend JP. Detecting rare gene transfer events in bacterial populations. Front Microbiol 2014; 4:415. [PMID: 24432015 PMCID: PMC3882822 DOI: 10.3389/fmicb.2013.00415] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Accepted: 12/16/2013] [Indexed: 11/23/2022] Open
Abstract
Horizontal gene transfer (HGT) enables bacteria to access, share, and recombine genetic variation, resulting in genetic diversity that cannot be obtained through mutational processes alone. In most cases, the observation of evolutionary successful HGT events relies on the outcome of initially rare events that lead to novel functions in the new host, and that exhibit a positive effect on host fitness. Conversely, the large majority of HGT events occurring in bacterial populations will go undetected due to lack of replication success of transformants. Moreover, other HGT events that would be highly beneficial to new hosts can fail to ensue due to lack of physical proximity to the donor organism, lack of a suitable gene transfer mechanism, genetic compatibility, and stochasticity in tempo-spatial occurrence. Experimental attempts to detect HGT events in bacterial populations have typically focused on the transformed cells or their immediate offspring. However, rare HGT events occurring in large and structured populations are unlikely to reach relative population sizes that will allow their immediate identification; the exception being the unusually strong positive selection conferred by antibiotics. Most HGT events are not expected to alter the likelihood of host survival to such an extreme extent, and will confer only minor changes in host fitness. Due to the large population sizes of bacteria and the time scales involved, the process and outcome of HGT are often not amenable to experimental investigation. Population genetic modeling of the growth dynamics of bacteria with differing HGT rates and resulting fitness changes is therefore necessary to guide sampling design and predict realistic time frames for detection of HGT, as it occurs in laboratory or natural settings. Here we review the key population genetic parameters, consider their complexity and highlight knowledge gaps for further research.
Collapse
Affiliation(s)
- Kaare M Nielsen
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø Tromsø, Norway ; GenØk-Centre for Biosafety, The Science Park Tromsø, Norway
| | - Thomas Bøhn
- Department of Pharmacy, Faculty of Health Sciences, University of Tromsø Tromsø, Norway ; GenØk-Centre for Biosafety, The Science Park Tromsø, Norway
| | - Jeffrey P Townsend
- Department of Biostatistics, Yale University New Haven, CT, USA ; Program in Computational Biology and Bioinformatics, Yale University New Haven, CT, USA ; Program in Microbiology, Yale University New Haven, CT, USA
| |
Collapse
|
144
|
Seitz P, Pezeshgi Modarres H, Borgeaud S, Bulushev RD, Steinbock LJ, Radenovic A, Dal Peraro M, Blokesch M. ComEA is essential for the transfer of external DNA into the periplasm in naturally transformable Vibrio cholerae cells. PLoS Genet 2014; 10:e1004066. [PMID: 24391524 PMCID: PMC3879209 DOI: 10.1371/journal.pgen.1004066] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Accepted: 11/12/2013] [Indexed: 11/18/2022] Open
Abstract
The DNA uptake of naturally competent bacteria has been attributed to the action of DNA uptake machineries resembling type IV pilus complexes. However, the protein(s) for pulling the DNA across the outer membrane of Gram-negative bacteria remain speculative. Here we show that the competence protein ComEA binds incoming DNA in the periplasm of naturally competent Vibrio cholerae cells thereby promoting DNA uptake, possibly through ratcheting and entropic forces associated with ComEA binding. Using comparative modeling and molecular simulations, we projected the 3D structure and DNA-binding site of ComEA. These in silico predictions, combined with in vivo and in vitro validations of wild-type and site-directed modified variants of ComEA, suggested that ComEA is not solely a DNA receptor protein but plays a direct role in the DNA uptake process. Furthermore, we uncovered that ComEA homologs of other bacteria (both Gram-positive and Gram-negative) efficiently compensated for the absence of ComEA in V. cholerae, suggesting that the contribution of ComEA in the DNA uptake process might be conserved among naturally competent bacteria. Horizontal gene transfer (HGT) plays a key role in transferring genetic information from one organism to another. Natural competence for transformation is one of three modes of HGT used by bacteria to promote the uptake of free DNA from the surrounding. The human pathogen Vibrio cholerae enters such a competence state upon growth on chitinous surfaces, which represent its natural niche in the aquatic environment. Whereas we have gained a reasonable understanding on how the competence phenotype is regulated in V. cholerae we are only at the beginning of deciphering the mechanistic aspects of the DNA uptake process. In this study, we characterize the competence protein ComEA. We show that ComEA is transported into the periplasm of V. cholerae and that it is required for the uptake of DNA across the outer membrane. We demonstrate that ComEA aggregates around incoming DNA in vivo and that the binding of DNA is dependent on specific residues within a conserved helix-hairpin-helix motif. We propose a model indicating that the DNA uptake process across the outer membrane might be driven through ratcheting and entropic forces associated with ComEA binding.
Collapse
Affiliation(s)
- Patrick Seitz
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Hassan Pezeshgi Modarres
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Sandrine Borgeaud
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Roman D. Bulushev
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Lorenz J. Steinbock
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Aleksandra Radenovic
- Laboratory of Nanoscale Biology, Institute of Bioengineering, School of Engineering, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - Matteo Dal Peraro
- Laboratory for Biomolecular Modeling, Institute of Bioengineering, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- Swiss Institute of Bioinformatics (SIB), Lausanne, Switzerland
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
- * E-mail:
| |
Collapse
|
145
|
Yamamoto S, Mitobe J, Ishikawa T, Wai SN, Ohnishi M, Watanabe H, Izumiya H. Regulation of natural competence by the orphan two-component system sensor kinase ChiS involves a non-canonical transmembrane regulator in Vibrio cholerae. Mol Microbiol 2013; 91:326-47. [PMID: 24236404 DOI: 10.1111/mmi.12462] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/13/2013] [Indexed: 11/27/2022]
Abstract
In Vibrio cholerae, 41 chitin-inducible genes, including the genes involved in natural competence for DNA uptake, are governed by the orphan two-component system (TCS) sensor kinase ChiS. However, the mechanism by which ChiS controls the expression of these genes is currently unknown. Here, we report the involvement of a novel transcription factor termed 'TfoS' in this process. TfoS is a transmembrane protein that contains a large periplasmic domain and a cytoplasmic AraC-type DNA-binding domain, but lacks TCS signature domains. Inactivation of tfoS abolished natural competence as well as transcription of the tfoR gene encoding a chitin-induced small RNA essential for competence gene expression. A TfoS fragment containing the DNA-binding domain specifically bound to and activated transcription from the tfoR promoter. Intracellular TfoS levels were unaffected by disruption of chiS and coexpression of TfoS and ChiS in Escherichia coli recovered transcription of the chromosomally integrated tfoR::lacZ gene, suggesting that TfoS is post-translationally modulated by ChiS during transcriptional activation; however, this regulation persisted when the canonical phosphorelay residues of ChiS were mutated. The results presented here suggest that ChiS operates a chitin-induced non-canonical signal transduction cascade through TfoS, leading to transcriptional activation of tfoR.
Collapse
Affiliation(s)
- Shouji Yamamoto
- Department of Bacteriology I, National Institute of Infectious Diseases, Toyama 1-23-1, Shinjuku-ku, Tokyo, 162-8640, Japan
| | | | | | | | | | | | | |
Collapse
|
146
|
Abstract
Natural competence for transformation is a mode of horizontal gene transfer that is commonly used by bacteria to take up DNA from their environment. As part of this developmental program, so-called competence genes, which encode the components of a DNA-uptake machinery, are expressed. Several models have been proposed for the DNA-uptake complexes of competent bacteria, and most include a type IV (pseudo)pilus as a core component. However, cell-biology-based approaches to visualizing competence proteins have so far been restricted to Gram-positive bacteria. Here, we report the visualization of a competence-induced pilus in the Gram-negative bacterium Vibrio cholerae. We show that piliated cells mostly contain a single pilus that is not biased toward a polar localization and that this pilus colocalizes with the outer membrane secretin PilQ. PilQ, on the other hand, forms several foci around the cell and occasionally colocalizes with the dynamic cytoplasmic-traffic ATPase PilB, which is required for pilus extension. We also determined the minimum competence regulon of V. cholerae, which includes at least 19 genes. Bacteria with mutations in those genes were characterized with respect to the presence of surface-exposed pili, DNA uptake, and natural transformability. Based on these phenotypes, we propose that DNA uptake in naturally competent V. cholerae cells occurs in at least two steps: a pilus-dependent translocation of the incoming DNA across the outer membrane and a pilus-independent shuttling of the DNA through the periplasm and into the cytoplasm.
Collapse
|
147
|
Postreplication targeting of transformants by bacterial immune systems? Trends Microbiol 2013; 21:516-21. [PMID: 24021553 DOI: 10.1016/j.tim.2013.08.002] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2013] [Revised: 08/14/2013] [Accepted: 08/15/2013] [Indexed: 12/26/2022]
Abstract
Bacteria are constantly challenged by foreign genetic elements such as bacteriophages and plasmids. Several defense systems provide immunity against such attackers, including restriction-modification (R-M) systems and clustered, regularly interspaced short palindromic repeats (CRISPRs). These systems target attacking DNA and thus antagonize natural transformation, which relies on uptake of exogenous DNA to promote acquisition of new genetic traits. It is unclear how this antagonization occurs, because transforming DNA is single stranded, and thus resistant to these immune systems. Here, we propose a simple model whereby these systems limit transformation by attack of transformed chromosomes once double strandedness is restored by chromosomal replication.
Collapse
|
148
|
Sun Y, Bernardy EE, Hammer BK, Miyashiro T. Competence and natural transformation in vibrios. Mol Microbiol 2013; 89:583-95. [PMID: 23803158 DOI: 10.1111/mmi.12307] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/21/2013] [Indexed: 01/01/2023]
Abstract
Natural transformation is a major mechanism of horizontal gene transfer in bacteria. By incorporating exogenous DNA elements into chromosomes, bacteria are able to acquire new traits that can enhance their fitness in different environments. Within the past decade, numerous studies have revealed that natural transformation is prevalent among members of the Vibrionaceae, including the pathogen Vibrio cholerae. Four environmental factors: (i) nutrient limitation, (ii) availability of extracellular nucleosides, (iii) high cell density and (iv) the presence of chitin, promote genetic competence and natural transformation in Vibrio cholerae by co-ordinating expression of the regulators CRP, CytR, HapR and TfoX respectively. Studies of other Vibrionaceae members highlight the general importance of natural transformation within this bacterial family.
Collapse
Affiliation(s)
- Yan Sun
- Department of Biochemistry and Molecular Biology Eberly College of Science The Pennsylvania State University 219 Wartik Lab University Park, PA 16802, USA
| | - Eryn E Bernardy
- School of Biology Georgia Institute of Technology 310 Ferst Drive, Atlanta, GA 30332-0230
| | - Brian K Hammer
- School of Biology Georgia Institute of Technology 310 Ferst Drive, Atlanta, GA 30332-0230
| | - Tim Miyashiro
- Department of Biochemistry and Molecular Biology Eberly College of Science The Pennsylvania State University 219 Wartik Lab University Park, PA 16802, USA
| |
Collapse
|
149
|
Johnston C, Polard P, Claverys JP. The DpnI/DpnII pneumococcal system, defense against foreign attack without compromising genetic exchange. Mob Genet Elements 2013; 3:e25582. [PMID: 24195011 PMCID: PMC3812788 DOI: 10.4161/mge.25582] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2013] [Revised: 06/28/2013] [Accepted: 06/28/2013] [Indexed: 01/13/2023] Open
Abstract
Natural genetic transformation and restriction-modification (R–M) systems play potentially antagonistic roles in bacteria. R–M systems, degrading foreign DNA to protect the cell from bacteriophage, can interfere with transformation, which relies on foreign DNA to promote genetic diversity. Here we describe how the human pathogen Streptococcus pneumoniae, which is naturally transformable, yet possesses either of two R–M systems, DpnI or DpnII, accommodates these conflicting processes. In addition to the classic restrictase and double-stranded DNA methylase, the DpnII system possesses an unusual single-stranded (ss) DNA methylase, DpnA, which is specifically induced during competence for genetic transformation. We provide further insight into our recent discovery that DpnA, which protects transforming foreign ssDNA from restriction, is crucial for acquisition of pathogenicity islands.
Collapse
Affiliation(s)
- Calum Johnston
- Centre National de la Recherche Scientifique; LMGM-UMR5100; Toulouse, France ; Laboratoire de Microbiologie et Génétique Moléculaires; Université de Toulouse; UPS; Toulouse, France
| | | | | |
Collapse
|
150
|
Antimicrobial resistance in the food chain: a review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2013; 10:2643-69. [PMID: 23812024 PMCID: PMC3734448 DOI: 10.3390/ijerph10072643] [Citation(s) in RCA: 345] [Impact Index Per Article: 28.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/24/2013] [Revised: 06/14/2013] [Accepted: 06/17/2013] [Indexed: 11/17/2022]
Abstract
Antimicrobial resistant zoonotic pathogens present on food constitute a direct risk to public health. Antimicrobial resistance genes in commensal or pathogenic strains form an indirect risk to public health, as they increase the gene pool from which pathogenic bacteria can pick up resistance traits. Food can be contaminated with antimicrobial resistant bacteria and/or antimicrobial resistance genes in several ways. A first way is the presence of antibiotic resistant bacteria on food selected by the use of antibiotics during agricultural production. A second route is the possible presence of resistance genes in bacteria that are intentionally added during the processing of food (starter cultures, probiotics, bioconserving microorganisms and bacteriophages). A last way is through cross-contamination with antimicrobial resistant bacteria during food processing. Raw food products can be consumed without having undergone prior processing or preservation and therefore hold a substantial risk for transfer of antimicrobial resistance to humans, as the eventually present resistant bacteria are not killed. As a consequence, transfer of antimicrobial resistance genes between bacteria after ingestion by humans may occur. Under minimal processing or preservation treatment conditions, sublethally damaged or stressed cells can be maintained in the food, inducing antimicrobial resistance build-up and enhancing the risk of resistance transfer. Food processes that kill bacteria in food products, decrease the risk of transmission of antimicrobial resistance.
Collapse
|