101
|
Demontis F, Serra F, Serra G. Antidepressant-induced Dopamine Receptor Dysregulation: A Valid Animal Model of Manic-Depressive Illness. Curr Neuropharmacol 2018; 15:417-423. [PMID: 28503114 PMCID: PMC5405612 DOI: 10.2174/1570159x14666160715165648] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2016] [Revised: 03/05/2016] [Accepted: 05/24/2016] [Indexed: 11/22/2022] Open
Abstract
Background: Mania seems to be associated with an increased dopamine (DA) transmission. Antidepressant treatments can induce mania in humans and potentiated DA transmission in animals, by sensitizing DA D2 receptors in the mesolimbic system. We have suggested that the sensitization of D2 receptors may be responsible of antidepressant-induced mania. This review aims to report the experimental evidence that led to the hypothesis that antidepressant-induced DA receptors dysregulation can be considered an animal model of bipolar disorder. Methods: We reviewed papers reporting preclinical and clinical studies on the role of DA in the mechanism of action of antidepressant treatments and in the patho-physiology of mood disorders. Results: A number of preclinical and clinical evidence suggests that mania could be associated with an increased DA activity, while a reduced function of this neurotransmission might underlie depression. Chronic treatment with imipramine induces a sensitization of DA D2 receptors in the mesolimbic system, followed, after drug discontinuation, by a reduced sensitivity associated with an increased immobility time in forced swimming test of depression (FST). Blockade of glutamate NMDA receptors by memantine administration prevents the imipramine effect on DA receptors sensitivity and on the FST. Conclusion: We suggest that chronic treatment with antidepressants induces a behavioural syndrome that mimics mania (the sensitization of DA receptors), followed by depression (desensitization of DA receptors and increased immobility time in the FST), i.e. an animal model of bipolar disorder. Moreover the observation that memantine prevents the “bipolar-like” behavior, suggests that the drug may have an antimanic and mood stabilizing effect. Preliminary clinical observations support this hypothesis.
Collapse
Affiliation(s)
- Francesca Demontis
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| | - Francesca Serra
- Department of General Psychology, University of Padua, Italy
| | - Gino Serra
- Department of Biomedical Sciences, University of Sassari, 07100 Sassari, Italy
| |
Collapse
|
102
|
Verharen JPH, de Jong JW, Roelofs TJM, Huffels CFM, van Zessen R, Luijendijk MCM, Hamelink R, Willuhn I, den Ouden HEM, van der Plasse G, Adan RAH, Vanderschuren LJMJ. A neuronal mechanism underlying decision-making deficits during hyperdopaminergic states. Nat Commun 2018; 9:731. [PMID: 29467419 PMCID: PMC5821846 DOI: 10.1038/s41467-018-03087-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2017] [Accepted: 01/18/2018] [Indexed: 12/21/2022] Open
Abstract
Hyperdopaminergic states in mental disorders are associated with disruptive deficits in decision making. However, the precise contribution of topographically distinct mesencephalic dopamine pathways to decision-making processes remains elusive. Here we show, using a multidisciplinary approach, how hyperactivity of ascending projections from the ventral tegmental area (VTA) contributes to impaired flexible decision making in rats. Activation of the VTA-nucleus accumbens pathway leads to insensitivity to loss and punishment due to impaired processing of negative reward prediction errors. In contrast, activation of the VTA-prefrontal cortex pathway promotes risky decision making without affecting the ability to choose the economically most beneficial option. Together, these findings show how malfunction of ascending VTA projections affects value-based decision making, suggesting a potential mechanism through which increased forebrain dopamine signaling leads to aberrant behavior, as is seen in substance abuse, mania, and after dopamine replacement therapy in Parkinson's disease.
Collapse
Affiliation(s)
- Jeroen P H Verharen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.,Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands
| | - Johannes W de Jong
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.,Department of Molecular and Cell Biology and Helen Wills Neuroscience Institute, University of California, Berkeley, 132 Barker Hall, Berkeley, CA, 94720, USA
| | - Theresia J M Roelofs
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Christiaan F M Huffels
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Ruud van Zessen
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Mieneke C M Luijendijk
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Ralph Hamelink
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.,Department of Psychiatry, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Ingo Willuhn
- Netherlands Institute for Neuroscience, Institute of the Royal Netherlands Academy of Arts and Sciences, Meibergdreef 47, 1105 BA, Amsterdam, The Netherlands.,Department of Psychiatry, Academic Medical Center, University of Amsterdam, Meibergdreef 9, 1105 AZ, Amsterdam, The Netherlands
| | - Hanneke E M den Ouden
- Donders Institute for Brain, Cognition and Behavior, Radboud University, Montessorilaan 3, 6525 HR, Nijmegen, The Netherlands
| | - Geoffrey van der Plasse
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands
| | - Roger A H Adan
- Department of Translational Neuroscience, Brain Center Rudolf Magnus, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG, Utrecht, The Netherlands.
| | - Louk J M J Vanderschuren
- Department of Animals in Science and Society, Division of Behavioural Neuroscience, Faculty of Veterinary Medicine, Utrecht University, Yalelaan 2, 3584 CM, Utrecht, The Netherlands.
| |
Collapse
|
103
|
Hodes A, Lifschytz T, Rosen H, Cohen Ben-Ami H, Lichtstein D. Reduction in endogenous cardiac steroids protects the brain from oxidative stress in a mouse model of mania induced by amphetamine. Brain Res Bull 2018; 137:356-362. [PMID: 29374602 DOI: 10.1016/j.brainresbull.2018.01.016] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2017] [Revised: 01/10/2018] [Accepted: 01/19/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVES Bipolar disorder (BD) is a severe mental illness characterized by episodes of mania and depression. Numerous studies have implicated the involvement of endogenous cardiac steroids (CS), and their receptor, Na+, K+ -ATPase, in BD. The aim of the present study was to examine the role of brain oxidative stress in the CS-induced behavioral effects in mice. METHODS Amphetamine (AMPH)-induced hyperactivity, assessed in the open-field test, served as a model for manic-like behavior in mice. A reduction in brain CS was obtained by specific and sensitive anti-ouabain antibodies. The level of oxidative stress was tested in the hippocampus and frontal cortex by measuring the activity of antioxidant enzymes superoxide dismutase (SOD), catalase (CAT) and glutathione peroxidase (GPx), as well as the levels of antioxidant non-protein thiols (NPSH) and oxidative damage biomarkers thiobarbituric acid reactive substances (TBARS) and protein carbonyl (PC). RESULTS AMPH administration resulted in a marked hyperactivity and increased oxidative stress, as manifested by increased SOD activity, decreased activities of CAT and GPx, reduced levels of NPSH and increased levels of TBARS and PC. The administration of anti-ouabain antibodies, which reduced the AMPH-induced hyperactivity, protected against the concomitant oxidative stress in the brain. CONCLUSIONS Our results demonstrate that oxidative stress participates in the effects of endogenous CS on manic-like behavior induced by AMPH. These finding support the notion that CS and oxidative stress may be associated with the pathophysiology of mania and BD.
Collapse
Affiliation(s)
- Anastasia Hodes
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Tzuri Lifschytz
- Department of Psychiatry, Hadassah-Hebrew University Medical Center, Jerusalem, Israel
| | - Haim Rosen
- Department of Microbiology and Molecular Genetics, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - Hagit Cohen Ben-Ami
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel
| | - David Lichtstein
- Department of Medical Neurobiology, Institute for Medical Research Israel-Canada, The Hebrew University-Hadassah Medical School, Jerusalem, Israel.
| |
Collapse
|
104
|
Müller HW, Hautzel H, Nikolaus S. Different patterns of dopaminergic and serotonergic dysfunction in manic, depressive and euthymic phases of bipolar disorder. Nuklearmedizin 2018. [DOI: 10.3413/nukmed-0893-17-04] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
SummaryA variety of alterations in brain neurotransmitter systems has been proposed as the cause of bipolar disorder (BD). We conducted a PUBMED search, which provided a total of 45 in vivo investigations with PET and SPECT, in which binding to serotonin transporter (SERT), 5-HT1A receptor (R), 5-HT2AR, dopamine transporter (DAT), vesicular monoamine transporter (VMAT2), D1R, D2R, muscarinic M2R and nicotinic ß2-nAChR as well as dopamine synthesis and/or dopamine release were assessed in BD patients in the manic (6 studies, 39 patients, 77 controls), depressive (15 studies, 248 patients, 488 controls) or eu- thymic condition (18 studies, 265 patients, 293 controls) and in mixed collectives of BD patients (6 studies, 55 patients, 80 controls). The retrospective analysis revealed a complex pattern of dysregulations within and between neurotransmitter systems, which is causally linked to the acute and euthymic states of BD. While increased mesencephalic, limbic and parietotemporoccipital serotonin and increased frontal dopamine underlie mania, the depressive state is characterized by decreased frontal and limbic serotonin, increased frontal and limbic acetylcholine and increased frontal dopamine. Also in euthymia, no normalization of receptor and transporter densities was observed. Alterations of regulation states of bindings sites, however, act together to achieve a normalization of mesencephalic, limbic and cortical serotonin.
Collapse
|
105
|
Pinto JV, Passos IC, Librenza-Garcia D, Marcon G, Schneider MA, Conte JH, Abreu da Silva JP, Lima LP, Quincozes-Santos A, Kauer-Sant’Anna M, Kapczinski F. Neuron-glia Interaction as a Possible Pathophysiological Mechanism of Bipolar Disorder. Curr Neuropharmacol 2018; 16:519-532. [PMID: 28847296 PMCID: PMC5997869 DOI: 10.2174/1570159x15666170828170921] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 07/26/2017] [Accepted: 08/24/2017] [Indexed: 12/15/2022] Open
Abstract
Accumulating evidence has shown the importance of glial cells in the neurobiology of bipolar disorder. Activated microglia and inflammatory cytokines have been pointed out as potential biomarkers of bipolar disorder. Indeed, recent studies have shown that bipolar disorder involves microglial activation in the hippocampus and alterations in peripheral cytokines, suggesting a potential link between neuroinflammation and peripheral toxicity. These abnormalities may also be the biological underpinnings of outcomes related to neuroprogression, such as cognitive impairment and brain changes. Additionally, astrocytes may have a role in the progression of bipolar disorder, as these cells amplify inflammatory response and maintain glutamate homeostasis, preventing excitotoxicity. The present review aims to discuss neuron-glia interactions and their role in the pathophysiology and treatment of bipolar disorder.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Flávio Kapczinski
- Address correspondence to this author at the Department of Psychiatry and Behavioural Neurosciences, McMaster University, Hamilton-ON, Canada; Tel: +55 512 101 8845; E-mails: ,
| |
Collapse
|
106
|
de Queiroz AIG, Chaves Filho AJM, Araújo TDS, Lima CNC, Machado MDJS, Carvalho AF, Vasconcelos SMM, de Lucena DF, Quevedo J, Macedo D. Antimanic activity of minocycline in a GBR12909-induced model of mania in mice: Possible role of antioxidant and neurotrophic mechanisms. J Affect Disord 2018; 225:40-51. [PMID: 28783519 DOI: 10.1016/j.jad.2017.07.053] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 07/27/2017] [Accepted: 07/31/2017] [Indexed: 10/19/2022]
Abstract
BACKGROUND Mania/hypomania is the cardinal feature of bipolar disorder. Recently, single administration of the dopamine transporter (DAT) inhibitor, GBR12909, was related to mania-like alterations. In the present study we aimed at testing behavioral and brain oxidant/neurotrophic alterations induced by the repeated administration of GBR12909 and its prevention/reversal by the mood stabilizing drugs, lithium (Li) and valproate (VAL) as well as by the neuroprotective drug, minocycline (Mino). METHODS Adult Swiss mice were submitted to 14 days protocols namely prevention and reversal. In the reversal protocol mice were given GBR12909 or saline and between days 8 and 14 received Li, VAL, Mino (25 or 50mg/kg) or saline. In the prevention treatment, mice were pretreated with Li, VAL, Mino or saline prior to GBR12909. RESULTS GBR12909 repeated administration induced hyperlocomotion and increased risk taking behavior that were prevented and reversed by the mood stabilizers and both doses of Mino. Li, VAL or Mino were more effective in the reversal of striatal GSH alterations induced by GBR12909. Regarding lipid peroxidation Mino was more effective in the prevention and reversal of lipid peroxidation in the hippocampus whereas Li and VAL prevented this alteration in the striatum and PFC. Li, VAL and Mino25 reversed the decrease in BDNF levels induced by GBR12909. CONCLUSION GBR12909 repeated administration resembles manic phenotype. Similarly to classical mood-stabilizing agents, Mino prevented and reversed GBR12909 manic-like behavior in mice. Thus, our data provide preclinical support to the design of trials investigating Mino's possible antimanic effects.
Collapse
Affiliation(s)
- Ana Isabelle G de Queiroz
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Adriano José Maia Chaves Filho
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Tatiane da Silva Araújo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Camila Nayane Carvalho Lima
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - Michel de Jesus Souza Machado
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - André F Carvalho
- Translational Psychiatry Research Group and the Department of Clinical Medicine, Faculty of Medicine, Fortaleza, CE, Brazil
| | - Silvania Maria Mendes Vasconcelos
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - David Freitas de Lucena
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil
| | - João Quevedo
- Translational Psychiatry Program, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, McGovern Medical School, The University of Texas Health Science Center at Houston (UTHealth), Houston, TX, USA; Neuroscience Graduate Program, The University of Texas Graduate School of Biomedical Sciences at Houston, Houston, TX, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina (UNESC), Criciúma, SC, Brazil
| | - Danielle Macedo
- Neuropharmacology Laboratory, Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Universidade Federal do Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
107
|
Xia Y, Pang H, Dou T, Wang P, Ge G. Interspecies comparison in the COMT-mediated methylation of 3-BTD. RSC Adv 2018; 8:16278-16284. [PMID: 35542223 PMCID: PMC9080226 DOI: 10.1039/c8ra01938j] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 04/18/2018] [Indexed: 12/26/2022] Open
Abstract
Catechol-O-methyltransferase (COMT) is a druggable biological target and COMT modulators have been widely applied in the treatment of various central and peripheral nervous system disorders. The interspecies differences of COMT were carefully investigated using 3-BTD (a newly developed fluorescent probe of COMT) methylation as the probe reaction, and liver S9 from humans and seven experimental animals including monkeys, dogs, mice, rats, minipigs, guinea pigs and New Zealand rabbits as the enzyme source. Metabolite profiling demonstrated that all the tested liver S9 samples from the different animals could catalyse 3-BTD methylation but displayed significant differences in reaction rate. Also, the differential effects of tolcapone (a potent inhibitor against COMT) on 3-BTD methylation among various species were observed. The apparent kinetic parameters and the maximum intrinsic clearances (Clint) for 3-BTD methylation in liver S9 from the different animals were determined, and the order of the Clint values for the formation of 3-BTD was RLS9 > DLS9 ≈ PLS9 > MLS9 > CyLS9 > RaLS9 > GpLS9 > HLS9. These findings are helpful for further exploring COMT-associated biological processes in animal models, as well as for developing therapeutic molecules that target COMT. The methylation behaviour of 3-BTD in liver S9 from eight different species was characterized with respect to the similarities and differences of their metabolic profiles, catalytic efficacy and inhibitory potency by a known chemical inhibitor.![]()
Collapse
Affiliation(s)
- Yangliu Xia
- Laboratory of Pharmacology & Toxicology
- School of Life Science and Medicine
- Dalian University of Technology
- Panjin 124221
- China
| | - Huilin Pang
- Laboratory of Pharmacology & Toxicology
- School of Life Science and Medicine
- Dalian University of Technology
- Panjin 124221
- China
| | - Tongyi Dou
- Laboratory of Pharmacology & Toxicology
- School of Life Science and Medicine
- Dalian University of Technology
- Panjin 124221
- China
| | - Ping Wang
- Shanghai University of Traditional Chinese Medicines
- Shanghai
- China
| | - Guangbo Ge
- Shanghai University of Traditional Chinese Medicines
- Shanghai
- China
| |
Collapse
|
108
|
An Oldie but Goodie: Lithium in the Treatment of Bipolar Disorder through Neuroprotective and Neurotrophic Mechanisms. Int J Mol Sci 2017; 18:ijms18122679. [PMID: 29232923 PMCID: PMC5751281 DOI: 10.3390/ijms18122679] [Citation(s) in RCA: 130] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Revised: 12/04/2017] [Accepted: 12/07/2017] [Indexed: 12/21/2022] Open
Abstract
Lithium has been used for the treatment of bipolar disorder (BD) for the last sixty or more years, and recent studies with more reliable designs and updated guidelines have recommended lithium to be the treatment of choice for acute manic, mixed and depressive episodes of BD, along with long-term prophylaxis. Lithium’s specific mechanism of action in mood regulation is progressively being clarified, such as the direct inhibition on glycogen synthase kinase 3β, and its various effects on neurotrophic factors, neurotransmitters, oxidative metabolism, apoptosis, second messenger systems, and biological systems are also being revealed. Furthermore, lithium has been proposed to exert its treatment effects through mechanisms associated with neuronal plasticity. In this review, we have overviewed the clinical aspects of lithium use for BD, and have focused on the neuroprotective and neurotrophic effects of lithium.
Collapse
|
109
|
Beyer DKE, Freund N. Animal models for bipolar disorder: from bedside to the cage. Int J Bipolar Disord 2017; 5:35. [PMID: 29027157 PMCID: PMC5638767 DOI: 10.1186/s40345-017-0104-6] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 09/11/2017] [Indexed: 12/28/2022] Open
Abstract
Bipolar disorder is characterized by recurrent manic and depressive episodes. Patients suffering from this disorder experience dramatic mood swings with a wide variety of typical behavioral facets, affecting overall activity, energy, sexual behavior, sense of self, self-esteem, circadian rhythm, cognition, and increased risk for suicide. Effective treatment options are limited and diagnosis can be complicated. To overcome these obstacles, a better understanding of the neurobiology underlying bipolar disorder is needed. Animal models can be useful tools in understanding brain mechanisms associated with certain behavior. The following review discusses several pathological aspects of humans suffering from bipolar disorder and compares these findings with insights obtained from several animal models mimicking diverse facets of its symptomatology. Various sections of the review concentrate on specific topics that are relevant in human patients, namely circadian rhythms, neurotransmitters, focusing on the dopaminergic system, stressful environment, and the immune system. We then explain how these areas have been manipulated to create animal models for the disorder. Even though several approaches have been conducted, there is still a lack of adequate animal models for bipolar disorder. Specifically, most animal models mimic only mania or depression and only a few include the cyclical nature of the human condition. Future studies could therefore focus on modeling both episodes in the same animal model to also have the possibility to investigate the switch from mania-like behavior to depressive-like behavior and vice versa. The use of viral tools and a focus on circadian rhythms and the immune system might make the creation of such animal models possible.
Collapse
Affiliation(s)
- Dominik K. E. Beyer
- Experimental and Molecular Psychiatry, LWL University Hospital, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| | - Nadja Freund
- Experimental and Molecular Psychiatry, LWL University Hospital, Ruhr University Bochum, Universitätsstr. 150, 44801 Bochum, Germany
| |
Collapse
|
110
|
Azorin JM, Perret LC, Fakra E, Tassy S, Simon N, Adida M, Belzeaux R. Alcohol use and bipolar disorders: Risk factors associated with their co-occurrence and sequence of onsets. Drug Alcohol Depend 2017; 179:205-212. [PMID: 28802190 DOI: 10.1016/j.drugalcdep.2017.07.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/12/2017] [Revised: 07/05/2017] [Accepted: 07/07/2017] [Indexed: 01/20/2023]
Abstract
BACKGROUND Little is known about the sequence of onsets in patients affected by comorbid alcohol use and bipolar disorder. This study examines the risk factors associated with their co-occurrence and order of onset. METHOD The demographic, clinical, and temperament characteristics as well as the course of illness were analyzed within our sample of 1090 DSM-IV bipolar I manic patients. Our sample was categorized according to the presence of comorbid alcohol use disorder and the sequence of onsets of bipolar and alcohol use disorders i.e., alcohol first (AUD-BD) and bipolar first (BD-AUD). RESULTS Regression analyses revealed that alcohol use disorder (52.5%) was associated with the male gender, additional substance use disorders, as well as an irritable and a hyperthymic temperament. The AUD-BD group (6.6%) was older than the BD-AUD group (45.8%) and showed higher rates of comorbid sedative use, organic, and anxiety disorders with higher levels of irritable temperament, and a bipolar subtype characterized by depressive polarity at onset. The BD-AUD group had high levels of hyperthymic temperament with higher rates of comorbid stimulant use disorder and a manic polarity at onset. CONCLUSIONS In the AUD-BD group, alcohol might have been used to reduce stress and tension caused by the presence of an irritable temperament as well as anxious and organic disorders, leading to first depressive episode. In the BD-AUD group, stimulant use might have triggered the first manic episode, and alcohol abuse result from mania severity.
Collapse
Affiliation(s)
- Jean-Michel Azorin
- Department of Psychiatry, Sainte Marguerite Hospital, Marseille, France.
| | - Léa C Perret
- Department of Psychiatry, McGill University, Montréal, Québec, Canada.
| | - Eric Fakra
- Department of Psychiatry, North Hospital, Saint-Etienne, France.
| | - Sébastien Tassy
- Department of Psychiatry, Sainte Marguerite Hospital, Marseille, France.
| | - Nicolas Simon
- Aix-Marseille University, INSERM, UMR912 (SESSTIM), Marseille, France.
| | - Marc Adida
- Department of Psychiatry, Sainte Marguerite Hospital, Marseille, France.
| | - Raoul Belzeaux
- Department of Psychiatry, Sainte Marguerite Hospital, Marseille, France; Department of Psychiatry, McGill University, Montréal, Québec, Canada.
| |
Collapse
|
111
|
Liu YN, Lu SY, Yao J. Application of induced pluripotent stem cells to understand neurobiological basis of bipolar disorder and schizophrenia. Psychiatry Clin Neurosci 2017; 71:579-599. [PMID: 28393474 DOI: 10.1111/pcn.12528] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 04/04/2017] [Indexed: 12/12/2022]
Abstract
The etiology of neuropsychiatric disorders, such as schizophrenia and bipolar disorder, usually involves complex combinations of genetic defects/variations and environmental impacts, which hindered, for a long time, research efforts based on animal models and patients' non-neuronal cells or post-mortem tissues. However, the development of human induced pluripotent stem cell (iPSC) technology by the Yamanaka group was immediately applied to establish cell research models for neuronal disorders. Since then, techniques to achieve highly efficient differentiation of different types of neural cells following iPSC modeling have made much progress. The fast-growing iPSC and neural differentiation techniques have brought valuable insights into the pathology and neurobiology of neuropsychiatric disorders. In this article, we first review the application of iPSC technology in modeling neuronal disorders and discuss the progress in the accompanying neural differentiation. Then, we summarize the progress in iPSC-based research that has been accomplished so far regarding schizophrenia and bipolar disorder.
Collapse
Affiliation(s)
- Yao-Nan Liu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Si-Yao Lu
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, IDG/McGovern Institute for Brain Research, Tsinghua University, Beijing, China
| |
Collapse
|
112
|
Ricken R, Ulrich S, Schlattmann P, Adli M. Tranylcypromine in mind (Part II): Review of clinical pharmacology and meta-analysis of controlled studies in depression. Eur Neuropsychopharmacol 2017; 27:714-731. [PMID: 28579071 DOI: 10.1016/j.euroneuro.2017.04.003] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 04/13/2017] [Accepted: 04/28/2017] [Indexed: 01/03/2023]
Abstract
It has been over 50 years since a review has focused exclusively on the monoamine oxidase (MAO) inhibitor tranylcypromine (TCP). A new review has therefore been conducted for TCP in two parts which are written to be read preferably in close conjunction: part I - pharmacodynamics, pharmacokinetics, drug interactions, toxicology; and part II - clinical studies with meta-analysis of controlled studies in depression, practice of TCP treatment, place in therapy. The irreversible and nonselective MAO-A/B inhibitor TCP has been confirmed as an efficacious and safe antidepressant drug. For the first time, a meta-analysis of controlled clinical trials in depression demonstrated that TCP is superior to placebo (pooled logOR=0.509, 95%CI=0.026 to 0.993, 4 studies) and equal to other antidepressants (pooled logOR=0.208, 95%CI=-0.128 to 0.544, 10 studies). In treatment resistant depression (TRD) after tricyclic antidepressants (TCAs) and selective serotonin reuptake inhibitors (SSRIs), TCP was superior to placebo (logOR=2.826, 95%CI=1.494 to 4.158, one study) and non-established antidepressants (pooled logOR=1.976, 95%CI=0.907 to 3.045, 4 studies), and was equal to other MAO inhibitors and an antidepressant combination (pooled logOR=-0.366, 95%CI=-0.869 to 0.137, 4 studies). Controlled studies revealed that TCP might provide a special advantage in the treatment of atypical depression, which was supported by a recent PET study of MAO-A activity in brain. However, TCP treatment remains beset with the need for a mandatory tyramine-restricted diet and is therefore limited to use as a third-line antidepressant according to recent treatment algorithms and guidelines for depression treatment. On the other hand, the effort needed to maintain a tyramine-restricted diet may have been overestimated in the perception of both doctors and patients, which may have led to relative underuse of TCP. Interaction with serotonergic drugs bears the risk of severe serotonin toxicity (SST) and combination with indirect sympathomimetic drugs may result in hypertensive crisis which both adds to the risks of TCP. At the same time, TCP has low to no risks of central anticholinergic, sedative, cardiac conduction, body weight, hemostatic effects, or pharmacokinetic drug interactions. Neuroprotection by MAO inhibitors due to reduced oxidative stress is becoming increasingly studied. Taken together, TCP is being increasingly recognized as an important option in systematic treatment approaches for patients suffering from severe courses of depression, such as TRD and atypical depression, by offering a MAO-related pathophysiological rationale.
Collapse
Affiliation(s)
- Roland Ricken
- Department of Psychiatry and Psychotherapy, Charité, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany.
| | - Sven Ulrich
- Aristo Pharma GmbH, Wallenroder Str. 8-10, 13435 Berlin, Germany
| | - Peter Schlattmann
- Institute of Medical Statistics, Computer Sciences and Documentation, Jena University Hospital, Friedrich Schiller University Jena, Bachstraße 18, 07743 Jena, Germany
| | - Mazda Adli
- Department of Psychiatry and Psychotherapy, Charité, Campus Charité Mitte, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
113
|
Nusslock R, Alloy LB. Reward processing and mood-related symptoms: An RDoC and translational neuroscience perspective. J Affect Disord 2017; 216:3-16. [PMID: 28237133 PMCID: PMC6661152 DOI: 10.1016/j.jad.2017.02.001] [Citation(s) in RCA: 208] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 02/03/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Two objectives of the NIMH Research Domain Criteria (RDoC) initiative are to identify (a) mechanisms that are common to multiple psychiatric disorders, and (b) mechanisms that are unique to specific psychiatric symptoms, and that reflect markers of differential risk for these symptoms. With respect to these objectives, a brain-behavior dimension that has received considerable attention and that is directly relevant to the Positive Valence Systems domain of the RDoC initiative involves reward processing. METHODS The present review paper first examines the relationship between reward processing and mood-related symptoms from an RDoC perspective. We then place this work in a larger context by examining the relationship between reward processing abnormalities and psychiatric symptoms defined broadly, including mood-related symptoms, schizophrenia, and addiction. RESULTS Our review suggests that reward hyposensitivity relates to a subtype of anhedonia characterized by motivational deficits in unipolar depression, and reward hypersensitivity relates to a cluster of hypo/manic symptoms characterized by excessive approach motivation in the context of bipolar disorder. Integrating this perspective with research on reward processing abnormalities in schizophrenia and addiction, we further argue that the principles of equifinality and multifinality may be preferable to a transdiagnostic perspective for conceptualizing the relationship between reward processing and psychiatric symptoms defined broadly. CONCLUSION We propose that vulnerability to either motivational anhedonia or approach-related hypo/manic symptoms involve extreme and opposite profiles of reward processing. We further propose that an equifinality and multifinality perspective may serve as a useful framework for future research on reward processing abnormalities and psychiatric symptoms.
Collapse
|
114
|
Arjmand S, Behzadi M, Stephens GJ, Ezzatabadipour S, Seifaddini R, Arjmand S, Shabani M. A Brain on a Roller Coaster: Can the Dopamine Reward System Act as a Protagonist to Subdue the Ups and Downs of Bipolar Disorder? Neuroscientist 2017; 24:423-439. [DOI: 10.1177/1073858417714226] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
One of the most interesting but tenebrous parts of the bipolar disorder (BD) story is the switch between (hypo)mania and depression, which can give bipolar patients a thrilling, but somewhat perilous, ‘ride’. Numerous studies have pointed out that there are some recognizable differences (either state-dependent or state-independent) in several brain regions of people with BD, including components of the brain’s reward system. Understanding the underpinning mechanisms of high and low mood statuses in BD has potential, not only for the development of highly specific and selective pharmaceutical agents, but also for better treatment approaches and psychological interventions to manage BD and, thus, give patients a safer ride. Herein, we review evidence that supports involvement of the reward system in the pathophysiology of mood swings, with the main focus on the mesocorticolimbic dopaminergic neural circuitry. Principally using findings from neuroimaging studies, we aim to signpost readers as to how mood alterations may affect different areas of the reward system and how antipsychotic drugs can influence the activity of these brain areas. Finally, we critically evaluate the hypothesis that the mesocorticolimbic dopamine reward system may act as a functional rheostat for different mood states.
Collapse
Affiliation(s)
- Shokouh Arjmand
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Mina Behzadi
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Gary J. Stephens
- School of Pharmacy, Reading University, Whiteknights, Reading, UK
| | - Sara Ezzatabadipour
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| | - Rostam Seifaddini
- Neurology Research Center, Kerman University of Medical Sciences, Kerman, Iran
| | - Shahrad Arjmand
- Department of Psychology, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Mohammad Shabani
- Kerman Neuroscience Research Center, Neuropharmacology Institute, Kerman University of Medical Sciences, Kerman, Iran
| |
Collapse
|
115
|
Szmulewicz AG, Angriman F, Samamé C, Ferraris A, Vigo D, Strejilevich SA. Dopaminergic agents in the treatment of bipolar depression: a systematic review and meta-analysis. Acta Psychiatr Scand 2017; 135:527-538. [PMID: 28256707 DOI: 10.1111/acps.12712] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 01/24/2017] [Indexed: 01/03/2023]
Abstract
OBJECTIVE To systematically examine the effects of dopaminergic agents (modafinil, armodafinil, pramipexole, methylphenidate, and amphetamines) on bipolar depression outcomes. METHODS Meta-analysis of randomized controlled trials was performed to assess the efficacy and safety of treatment with dopaminergic agents in bipolar depression. In a secondary analysis, findings from both randomized controlled trials and high-quality observational studies were pooled by means of meta-analytic procedures to explore dopaminergic treatment-related new mania. RESULTS Nine studies (1716 patients) were included in our meta-analysis of randomized controlled trials. Treatment with dopaminergic agents for bipolar depression was associated with an increase in both response (1671 individuals, RR 1.25, 95% CI 1.05 to 1.50) and remission rates (1671 individuals, RR 1.40, 95% CI 1.14, 1.71). There was no evidence of an increased risk of mood switch associated with this treatment (1646 individuals, RR 0.96, 95% CI 0.49, 1.89). Our secondary analysis (1231 individuals) yielded a cumulative incidence of mood switch of 3% (95% CI 1.0, 5.0) during a mean follow-up period of 7.5 months. CONCLUSIONS Preliminary findings suggest that dopaminergic agents may represent a useful alternative for the treatment of bipolar depression, with no evidence for a related increase in the risk of mood destabilization during short-term follow-up.
Collapse
Affiliation(s)
- A G Szmulewicz
- Hospital de Emergencias Psiquiátricas Torcuato de Alvear, Buenos Aires, Argentina.,Bipolar Disorder Program, Neuroscience Institute, Favaloro University, Buenos Aires, Argentina.,Pharmacology Department, University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - F Angriman
- Pharmacology Department, University of Buenos Aires School of Medicine, Buenos Aires, Argentina.,Internal Medicine Department, Hospital Italiano de Buenos Aires, Buenos Aires, Argentina
| | - C Samamé
- Bipolar Disorder Program, Neuroscience Institute, Favaloro University, Buenos Aires, Argentina.,National Scientific and Technical Research Council (CONICET), Buenos Aires, Argentina
| | - A Ferraris
- Pharmacology Department, University of Buenos Aires School of Medicine, Buenos Aires, Argentina
| | - D Vigo
- Global Health Systems Cluster, Harvard TH Chan School of Public Health, Boston, MA, USA.,International Consortium for Bipolar Disorder Research, Mc Lean Hospital, Belmont, MA, USA.,Center for Applied Research in Mental Health and Addictions, Simon Fraser University, Vancouver, Canada
| | - S A Strejilevich
- Bipolar Disorder Program, Neuroscience Institute, Favaloro University, Buenos Aires, Argentina.,Institute of Cognitive Neurology (INECO), Buenos Aires, Argentina
| |
Collapse
|
116
|
ter Meulen WG, van Zaane J, Draisma S, Beekman AT, Kupka RW. Does the number of previous mood episodes moderate the relationship between alcohol use, smoking and mood in bipolar outpatients? BMC Psychiatry 2017; 17:185. [PMID: 28506220 PMCID: PMC5432990 DOI: 10.1186/s12888-017-1341-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Accepted: 04/30/2017] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Evidence suggests that alcohol use and smoking are negatively associated with mood in bipolar disorders (BD). It is unknown if this relationship is moderated by the number of previous mood episodes. Therefore, this paper aims to examine whether the number of previous mood episodes moderates the relationship between alcohol use and smoking, and mood. METHOD This study assessed the outcomes of 108 outpatients with BD I and II in a prospective observational cohort study. For 1 year, subjects daily registered mood symptoms and substance use with the prospective Life Chart Method. The relationship between the average daily consumption of alcohol and tobacco units in the whole year and mood were examined by multiple linear regression analyses. Number of previous mood episodes, grouped into its quartiles, was added as effect moderator. Outcome was the number of depressive, hypomanic and manic days in that year. RESULTS The number of depressive days in a year increased by 4% (adjusted β per unit tobacco = 1.040; 95% CI 1.003-1.079; p = 0.033) per unit increase in average daily tobacco consumption in that same year. Interaction analyses showed that in those subjects with less than 7 previous mood episodes, the number of manic and hypomanic days increased by 100.3% per unit increase in alcohol consumption (adjusted β per unit alcohol = 2.003; 95% CI 1.225-3.274; p = 0.006). In those with 7 to 13 previous mood episodes, the number of manic and hypomanic days decreased by 28.7% per unit increase in alcohol consumption (adjusted β per unit alcohol = 0.713; 95% CI 0.539-0.944; p = 0.019); and in subjects with 14 to 44 previous mood episodes, the number of manic and hypomanic days decreased by 7.2% per unit increase in tobacco consumption (adjusted β per unit tobacco = 0.928; 95% CI 0.871-0.989; p = 0.021). CONCLUSIONS The number of previous mood episodes moderates the relationship between alcohol use and smoking and mood; and smoking is adversely associated with the number of depressive days.
Collapse
Affiliation(s)
- Wendela G. ter Meulen
- 0000 0004 0435 165Xgrid.16872.3aGGZ inGeest and Department of Psychiatry, Amsterdam Public Health research institute, VU University Medical Center, A.J. Ernststraat 1187, 1081 HL Amsterdam, The Netherlands
| | - Jan van Zaane
- 0000 0004 0435 165Xgrid.16872.3aGGZ inGeest and Department of Psychiatry, Amsterdam Public Health research institute, VU University Medical Center, A.J. Ernststraat 1187, 1081 HL Amsterdam, The Netherlands
| | - Stasja Draisma
- 0000 0004 0435 165Xgrid.16872.3aGGZ inGeest and Department of Psychiatry, Amsterdam Public Health research institute, VU University Medical Center, A.J. Ernststraat 1187, 1081 HL Amsterdam, The Netherlands
| | - Aartjan T.F. Beekman
- 0000 0004 0435 165Xgrid.16872.3aGGZ inGeest and Department of Psychiatry, Amsterdam Public Health research institute, VU University Medical Center, A.J. Ernststraat 1187, 1081 HL Amsterdam, The Netherlands
| | - Ralph W. Kupka
- 0000 0004 0435 165Xgrid.16872.3aGGZ inGeest and Department of Psychiatry, Amsterdam Public Health research institute, VU University Medical Center, A.J. Ernststraat 1187, 1081 HL Amsterdam, The Netherlands
| |
Collapse
|
117
|
The dopamine hypothesis of bipolar affective disorder: the state of the art and implications for treatment. Mol Psychiatry 2017; 22:666-679. [PMID: 28289283 PMCID: PMC5401767 DOI: 10.1038/mp.2017.16] [Citation(s) in RCA: 292] [Impact Index Per Article: 36.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2016] [Revised: 12/10/2016] [Accepted: 01/09/2017] [Indexed: 12/25/2022]
Abstract
Bipolar affective disorder is a common neuropsychiatric disorder. Although its neurobiological underpinnings are incompletely understood, the dopamine hypothesis has been a key theory of the pathophysiology of both manic and depressive phases of the illness for over four decades. The increased use of antidopaminergics in the treatment of this disorder and new in vivo neuroimaging and post-mortem studies makes it timely to review this theory. To do this, we conducted a systematic search for post-mortem, pharmacological, functional magnetic resonance and molecular imaging studies of dopamine function in bipolar disorder. Converging findings from pharmacological and imaging studies support the hypothesis that a state of hyperdopaminergia, specifically elevations in D2/3 receptor availability and a hyperactive reward processing network, underlies mania. In bipolar depression imaging studies show increased dopamine transporter levels, but changes in other aspects of dopaminergic function are inconsistent. Puzzlingly, pharmacological evidence shows that both dopamine agonists and antidopaminergics can improve bipolar depressive symptoms and perhaps actions at other receptors may reconcile these findings. Tentatively, this evidence suggests a model where an elevation in striatal D2/3 receptor availability would lead to increased dopaminergic neurotransmission and mania, whilst increased striatal dopamine transporter (DAT) levels would lead to reduced dopaminergic function and depression. Thus, it can be speculated that a failure of dopamine receptor and transporter homoeostasis might underlie the pathophysiology of this disorder. The limitations of this model include its reliance on pharmacological evidence, as these studies could potentially affect other monoamines, and the scarcity of imaging evidence on dopaminergic function. This model, if confirmed, has implications for developing new treatment strategies such as reducing the dopamine synthesis and/or release in mania and DAT blockade in bipolar depression.
Collapse
|
118
|
Miskowiak KW, Kjaerstad HL, Støttrup MM, Svendsen AM, Demant KM, Hoeffding LK, Werge TM, Burdick KE, Domschke K, Carvalho AF, Vieta E, Vinberg M, Kessing LV, Siebner HR, Macoveanu J. The catechol-O-methyltransferase (COMT) Val158Met genotype modulates working memory-related dorsolateral prefrontal response and performance in bipolar disorder. Bipolar Disord 2017; 19:214-224. [PMID: 28544426 DOI: 10.1111/bdi.12497] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Revised: 03/24/2017] [Accepted: 04/01/2017] [Indexed: 12/13/2022]
Abstract
OBJECTIVES Cognitive dysfunction affects a substantial proportion of patients with bipolar disorder (BD), and genetic-imaging paradigms may aid in the elucidation of mechanisms implicated in this symptomatic domain. The Val allele of the functional Val158Met polymorphism of the catechol-O-methyltransferase (COMT) gene is associated with reduced prefrontal cortex dopamine and exaggerated working memory-related prefrontal activity. This functional magnetic resonance imaging (fMRI) study investigated for the first time whether the COMT Val158Met genotype modulates prefrontal activity during spatial working memory in BD. METHODS Sixty-four outpatients with BD in full or partial remission were stratified according to COMT Val158Met genotype (ValVal [n=13], ValMet [n=34], and MetMet [n=17]). The patients completed a spatial n-back working memory task during fMRI and the Cambridge Neuropsychological Test Automated Battery (CANTAB) Spatial Working Memory test outside the scanner. RESULTS During high working memory load (2-back vs 1-back), Val homozygotes displayed decreased activity relative to ValMet individuals, with Met homozygotes displaying intermediate levels of activity in the right dorsolateral prefrontal cortex (dlPFC) (P=.016). Exploratory whole-brain analysis revealed a bilateral decrease in working memory-related dlPFC activity in the ValVal group vs the ValMet group which was not associated with differences in working memory performance during fMRI. Outside the MRI scanner, Val carriers performed worse in the CANTAB Spatial Working Memory task than Met homozygotes (P≤.006), with deficits being most pronounced in Val homozygotes. CONCLUSIONS The association between Val allelic load, dlPFC activity and WM impairment points to a putative role of aberrant PFC dopamine tonus in the cognitive impairments in BD.
Collapse
Affiliation(s)
- K W Miskowiak
- Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| | - H L Kjaerstad
- Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - M M Støttrup
- Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - A M Svendsen
- Mental Health Centre Copenhagen, Capital Region of Denmark, Copenhagen, Denmark
| | - K M Demant
- Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - L K Hoeffding
- Institute of Biological Psychiatry, MHC Sct. Hans, Mental Health Services, Copenhagen, Denmark.,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.,Department of Clinical Immunology, University Hospital of Copenhagen Rigshospitalet, Copenhagen, Denmark
| | - T M Werge
- Institute of Biological Psychiatry, MHC Sct. Hans, Mental Health Services, Copenhagen, Denmark.,The Lundbeck Foundation Initiative for Integrative Psychiatric Research, iPSYCH, Aarhus, Denmark.,Department of Clinical Medicine, University of Copenhagen, Copenhagen, Denmark
| | - K E Burdick
- Brigham and Women's Hospital, Harvard Medical School, Boston, MA, NY, USA
| | - K Domschke
- Department of Psychiatry, University of Freiburg, Freiburg, Germany
| | - A F Carvalho
- Translational Psychiatry Research Group and Department of Clinical Medicine, Federal University of Ceará, Fortaleza, Brazil
| | - E Vieta
- Clinical Institute of Neuroscience, Hospital Clinic, University of Barcelona, IDIBAPS, CIBERSAM, Barcelona, Catalonia, Spain
| | - M Vinberg
- Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - L V Kessing
- Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark
| | - H R Siebner
- Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark.,Department of Neurology, Copenhagen University Hospital, Bispebjerg, Denmark
| | - J Macoveanu
- Copenhagen Affective Disorder Research Centre, Psychiatric Centre Copenhagen, Copenhagen University Hospital, Rigshospitalet, Denmark.,Danish Research Centre for Magnetic Resonance, Centre for Functional and Diagnostic Imaging and Research, Hvidovre Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
119
|
Hosang GM, Fisher HL, Cohen-Woods S, McGuffin P, Farmer AE. Stressful life events and catechol-O-methyl-transferase (COMT) gene in bipolar disorder. Depress Anxiety 2017; 34:419-426. [PMID: 28102561 DOI: 10.1002/da.22606] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/17/2016] [Revised: 12/19/2016] [Accepted: 12/21/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND A small body of research suggests that gene-environment interactions play an important role in the development of bipolar disorder. The aim of the present study is to contribute to this work by exploring the relationship between stressful life events and the catechol-O-methyl-transferase (COMT) Val158 Met polymorphism in bipolar disorder. METHODS Four hundred eighty-two bipolar cases and 205 psychiatrically healthy controls completed the List of Threatening Experiences Questionnaire. Bipolar cases reported the events experienced 6 months before their worst depressive and manic episodes; controls reported those events experienced 6 months prior to their interview. The genotypic information for the COMT Val158 Met variant (rs4680) was extracted from GWAS analysis of the sample. RESULTS The impact of stressful life events was moderated by the COMT genotype for the worst depressive episode using a Val dominant model (adjusted risk difference = 0.09, 95% confidence intervals = 0.003-0.18, P = .04). For the worst manic episodes no significant interactions between COMT and stressful life events were detected. CONCLUSIONS This is the first study to explore the relationship between stressful life events and the COMT Val158 Met polymorphism focusing solely on bipolar disorder. The results of this study highlight the importance of the interplay between genetic and environmental factors for bipolar depression.
Collapse
Affiliation(s)
- Georgina M Hosang
- Department of Psychology, Goldsmiths, University of London, London, UK
| | - Helen L Fisher
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | | | - Peter McGuffin
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| | - Anne E Farmer
- MRC Social, Genetic and Developmental Psychiatry Centre, Institute of Psychiatry, Psychology & Neuroscience, King's College London, London, UK
| |
Collapse
|
120
|
da Silva VC, de Oliveira AC, D’Almeida V. Homocysteine and Psychiatric Disorders. JOURNAL OF INBORN ERRORS OF METABOLISM AND SCREENING 2017. [DOI: 10.1177/2326409817701471] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Affiliation(s)
| | | | - Vânia D’Almeida
- Department of Psychobiology, Universidade Federal de São Paulo, São Paulo, Brazil
| |
Collapse
|
121
|
Morris G, Walder K, McGee SL, Dean OM, Tye SJ, Maes M, Berk M. A model of the mitochondrial basis of bipolar disorder. Neurosci Biobehav Rev 2017; 74:1-20. [PMID: 28093238 DOI: 10.1016/j.neubiorev.2017.01.014] [Citation(s) in RCA: 120] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 01/08/2017] [Accepted: 01/10/2017] [Indexed: 12/11/2022]
|
122
|
Sigitova E, Fišar Z, Hroudová J, Cikánková T, Raboch J. Biological hypotheses and biomarkers of bipolar disorder. Psychiatry Clin Neurosci 2017; 71:77-103. [PMID: 27800654 DOI: 10.1111/pcn.12476] [Citation(s) in RCA: 152] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/19/2016] [Revised: 10/04/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023]
Abstract
The most common mood disorders are major depressive disorders and bipolar disorders (BD). The pathophysiology of BD is complex, multifactorial, and not fully understood. Creation of new hypotheses in the field gives impetus for studies and for finding new biomarkers for BD. Conversely, new biomarkers facilitate not only diagnosis of a disorder and monitoring of biological effects of treatment, but also formulation of new hypotheses about the causes and pathophysiology of the BD. BD is characterized by multiple associations between disturbed brain development, neuroplasticity, and chronobiology, caused by: genetic and environmental factors; defects in apoptotic, immune-inflammatory, neurotransmitter, neurotrophin, and calcium-signaling pathways; oxidative and nitrosative stress; cellular bioenergetics; and membrane or vesicular transport. Current biological hypotheses of BD are summarized, including related pathophysiological processes and key biomarkers, which have been associated with changes in genetics, systems of neurotransmitter and neurotrophic factors, neuroinflammation, autoimmunity, cytokines, stress axis activity, chronobiology, oxidative stress, and mitochondrial dysfunctions. Here we also discuss the therapeutic hypotheses and mechanisms of the switch between depressive and manic state.
Collapse
Affiliation(s)
- Ekaterina Sigitova
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jana Hroudová
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Tereza Cikánková
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| | - Jiří Raboch
- Department of Psychiatry, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic
| |
Collapse
|
123
|
Davis MT, Holmes SE, Pietrzak RH, Esterlis I. Neurobiology of Chronic Stress-Related Psychiatric Disorders: Evidence from Molecular Imaging Studies. CHRONIC STRESS (THOUSAND OAKS, CALIF.) 2017; 1:2470547017710916. [PMID: 29862379 PMCID: PMC5976254 DOI: 10.1177/2470547017710916] [Citation(s) in RCA: 70] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 04/30/2017] [Accepted: 05/01/2017] [Indexed: 01/12/2023]
Abstract
Chronic stress accounts for billions of dollars of economic loss annually in the United States alone, and is recognized as a major source of disability and mortality worldwide. Robust evidence suggests that chronic stress plays a significant role in the onset of severe and impairing psychiatric conditions, including major depressive disorder, bipolar disorder, and posttraumatic stress disorder. Application of molecular imaging techniques such as positron emission tomography and single photon emission computed tomography in recent years has begun to provide insight into the molecular mechanisms by which chronic stress confers risk for these disorders. The present paper provides a comprehensive review and synthesis of all positron emission tomography and single photon emission computed tomography imaging publications focused on the examination of molecular targets in individuals with major depressive disorder, posttraumatic stress disorder, or bipolar disorder to date. Critical discussion of discrepant findings and broad strengths and weaknesses of the current body of literature is provided. Recommended future directions for the field of molecular imaging to further elucidate the neurobiological substrates of chronic stress-related disorders are also discussed. This article is part of the inaugural issue for the journal focused on various aspects of chronic stress.
Collapse
Affiliation(s)
- Margaret T. Davis
- Department of Psychiatry, Yale School of
Medicine, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical
Imaging, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Sophie E. Holmes
- Department of Psychiatry, Yale School of
Medicine, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical
Imaging, Yale School of Medicine, Yale University, New Haven, CT, USA
| | - Robert H. Pietrzak
- Department of Psychiatry, Yale School of
Medicine, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical
Imaging, Yale School of Medicine, Yale University, New Haven, CT, USA
- US Department of Veterans Affairs National
Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, CT,
USA
| | - Irina Esterlis
- Department of Psychiatry, Yale School of
Medicine, Yale University, New Haven, CT, USA
- Department of Radiology and Biomedical
Imaging, Yale School of Medicine, Yale University, New Haven, CT, USA
- US Department of Veterans Affairs National
Center for Posttraumatic Stress Disorder, VA Connecticut Healthcare System, West Haven, CT,
USA
| |
Collapse
|
124
|
Yates NJ, Robertson D, Rodger J, Martin-Iverson MT. Effects of Neonatal Dexamethasone Exposure on Adult Neuropsychiatric Traits in Rats. PLoS One 2016; 11:e0167220. [PMID: 27936175 PMCID: PMC5147874 DOI: 10.1371/journal.pone.0167220] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 11/10/2016] [Indexed: 11/18/2022] Open
Abstract
The effects of early life stress in utero or in neonates has long-term consequences on hypothalamic-pituitary-adrenal (HPA) stress axis function and neurodevelopment. These effects extend into adulthood and may underpin a variety of mental illnesses and be related to various developmental and cognitive changes. We examined the potential role of neonatal HPA axis activation on adult psychopathology and dopamine sensitivity in the mature rat using neonatal exposure to the synthetic glucocorticoid receptor agonist and stress hormone, dexamethasone. We utilized a comprehensive battery of assessments for behaviour, brain function and gene expression to determine if elevated early life HPA activation is associated with adult-onset neuropsychiatric traits. Dexamethasone exposure increased startle reactivity under all conditions tested, but decreased sensitivity of sensorimotor gating to dopaminergic disruption–contrasting with what is observed in several neuropsychiatric diseases. Under certain conditions there also appeared to be mild long-term changes in stress and anxiety-related behaviours with neonatal dexamethasone exposure. Electrophysiology revealed that there were no consistent neuropsychiatric abnormalities in auditory processing or resting state brain function with dexamethasone exposure. However, neonatal dexamethasone altered auditory cortex glucocorticoid activation, and auditory cortex synchronization. Our results indicate that neonatal HPA axis activation by dexamethasone alters several aspects of adult brain function and behaviour and may induce long-term changes in emotional stress-reactivity. However, neonatal dexamethasone exposure is not specifically related to any particular neuropsychiatric disease.
Collapse
Affiliation(s)
- Nathanael J. Yates
- School of Animal Biology, Faculty of Science, The University of Western Australia, Crawley, Western Australia, Australia
- * E-mail:
| | - Donald Robertson
- School of Anatomy, Physiology, and Human Biology, Faculty of Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Jennifer Rodger
- School of Animal Biology, Faculty of Science, The University of Western Australia, Crawley, Western Australia, Australia
| | - Mathew T. Martin-Iverson
- School of Medicine and Pharmacology, Faculty of Medicine, Dentistry and Health Sciences, The University of Western Australia, Crawley, Western Australia, Australia
| |
Collapse
|
125
|
Circadian preferences, oxidative stress and inflammatory cytokines in bipolar disorder: A community study. J Neuroimmunol 2016; 301:23-29. [PMID: 27836181 DOI: 10.1016/j.jneuroim.2016.10.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 09/15/2016] [Accepted: 10/31/2016] [Indexed: 12/16/2022]
Abstract
OBJECTIVE To assess circadian preference among a community sample of people with bipolar disorder, major depression and without any mood disorders. Secondly, we investigated the association of circadian preference with cytokines interleukin-6 (IL-6), interleukin-10 (IL-10) and, tumor necrosis factor alpha (TNF-α) and oxidative stress assessed by thiobarbituric acid reactive substances (TBARS), uric acid and Protein Carbonyl Content (PCC). METHOD A cross-sectional study nested in a population-based sample. Caseness was confirmed with the Structured Clinical Interview for DSM-IV. A sample of 215 participants, in whom we measured circadian preferences, IL-6, IL-10, TNF-α, TBARS, uric acid, PCC. Biological rhythms were evaluated using the Biological Interview of Assessment in Neuropsychiatry. RESULTS Bipolar group presented a higher alteration in biological rhythms (40.40±9.78) when compared with the major depression group (36.35±9.18) and control group (27.61±6.89) p<0.001. Subjects with bipolar disorder who were active at night and had a day/night cycle reverse showed decreased levels of IL-6 (t, 44=2.096; p=0.042), (t, 44=2.213; p=0.032), respectively. In the bipolar disorder group subjects who presented day/night cycle reverse had lower TBARS levels (t, 41=2.612; p=0.013). TNF-α were decreased in subjects more active at night with bipolar disorder. CONCLUSION Lower serum levels of IL-6, TNF-α and TBARS were associated with evening preference in bipolar disorder group. These findings suggest that chronotype may alter the levels of interleukins and oxidative stress levels in bipolar and healthy subjects. A better understanding of the role of circadian preferences in levels of interleukins and oxidative stress are needed.
Collapse
|
126
|
Tremblay M, Winstanley CA. Anticonvulsant medications attenuate amphetamine-induced deficits in behavioral inhibition but not decision making under risk on a rat gambling task. Behav Brain Res 2016; 314:143-51. [DOI: 10.1016/j.bbr.2016.08.016] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2016] [Revised: 08/05/2016] [Accepted: 08/07/2016] [Indexed: 01/24/2023]
|
127
|
Ouk K, Aungier J, Morton AJ. Progressive gene dose-dependent disruption of the methamphetamine-sensitive circadian oscillator-driven rhythms in a knock-in mouse model of Huntington's disease. Exp Neurol 2016; 286:69-82. [PMID: 27646506 DOI: 10.1016/j.expneurol.2016.09.007] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2016] [Revised: 08/29/2016] [Accepted: 09/14/2016] [Indexed: 01/07/2023]
Abstract
Huntington's disease (HD) is a progressive genetic neurodegenerative disorder characterised by motor and cognitive deficits, as well as sleep and circadian abnormalities. In the R6/2 mouse, a fragment model of HD, rest-activity rhythms controlled by the suprachiasmatic nucleus disintegrate completely by 4months of age. Rhythms driven by a second circadian oscillator, the methamphetamine-sensitive circadian oscillator (MASCO), are disrupted even earlier, and cannot be induced after 2months of age. Here, we studied the effect of the HD mutation on the expression of MASCO-driven rhythms in a more slowly developing, genetically relevant mouse model of HD, the Q175 'knock-in' mouse. We induced expression of MASCO output by administering low dose methamphetamine (0.005%) chronically via the drinking water. We measured locomotor activity in constant darkness in wild-type and Q175 mice at 2 (presymptomatic), 6 (early symptomatic), and 12 (symptomatic) months of age. At 2months, all mice expressed MASCO-driven rhythms, regardless of genotype. At older ages, however, there was a progressive gene dose-dependent deficit in MASCO output in Q175 mice. At 6months of age, these rhythms could be observed in only 45% of heterozygous and 15% of homozygous mice. By 1year of age, 90% of homozygous mice had an impaired MASCO output. There was also an age-dependent disruption of MASCO output seen in wild-type mice. The fact that the progressive deficit in MASCO-driven rhythms in Q175 mice is HD gene dose-dependent suggests that, whatever its role in humans, abnormalities in MASCO output may contribute to the HD circadian phenotype.
Collapse
Affiliation(s)
- Koliane Ouk
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, Downing Street, CB2 3DY, United Kingdom.
| | - Juliet Aungier
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, Downing Street, CB2 3DY, United Kingdom.
| | - A Jennifer Morton
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, Downing Street, CB2 3DY, United Kingdom.
| |
Collapse
|
128
|
Kanazawa LKS, Vecchia DD, Wendler EM, Hocayen PDAS, Dos Reis Lívero FA, Stipp MC, Barcaro IMR, Acco A, Andreatini R. Quercetin reduces manic-like behavior and brain oxidative stress induced by paradoxical sleep deprivation in mice. Free Radic Biol Med 2016; 99:79-86. [PMID: 27475725 DOI: 10.1016/j.freeradbiomed.2016.07.027] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/09/2016] [Revised: 07/24/2016] [Accepted: 07/27/2016] [Indexed: 12/31/2022]
Abstract
Quercetin is a known antioxidant and protein kinase C (PKC) inhibitor. Previous studies have shown that mania involves oxidative stress and an increase in PKC activity. We hypothesized that quercetin affects manic symptoms. In the present study, manic-like behavior (hyperlocomotion) and oxidative stress were induced by 24h paradoxical sleep deprivation (PSD) in male Swiss mice. Both 10 and 40mg/kg quercetin prevented PSD-induced hyperlocomotion. Quercetin reversed the PSD-induced decrease in glutathione (GSH) levels in the prefrontal cortex (PFC) and striatum. Quercetin also reversed the PSD-induced increase in lipid peroxidation (LPO) in the PFC, hippocampus, and striatum. Pearson's correlation analysis revealed a negative correlation between locomotor activity and GSH in the PFC in sleep-deprived mice and a positive correlation between locomotor activity and LPO in the PFC and striatum in sleep-deprived mice. These results suggest that quercetin exerts an antimanic-like effect at doses that do not impair spontaneous locomotor activity, and the antioxidant action of quercetin might contribute to its antimanic-like effects.
Collapse
Affiliation(s)
- Luiz K S Kanazawa
- Laboratory of Physiology and Pharmacology of the Central Nervous System, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990 Curitiba, PR, Brazil
| | - Débora D Vecchia
- Laboratory of Physiology and Pharmacology of the Central Nervous System, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990 Curitiba, PR, Brazil
| | - Etiéli M Wendler
- Laboratory of Physiology and Pharmacology of the Central Nervous System, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990 Curitiba, PR, Brazil
| | - Palloma de A S Hocayen
- Laboratory of Physiology and Pharmacology of the Central Nervous System, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990 Curitiba, PR, Brazil
| | - Francislaine A Dos Reis Lívero
- Laboratory of Pharmacology and Metabolism, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990 Curitiba, PR, Brazil
| | - Maria Carolina Stipp
- Laboratory of Pharmacology and Metabolism, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990 Curitiba, PR, Brazil
| | - Inara M R Barcaro
- Laboratory of Physiology and Pharmacology of the Central Nervous System, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990 Curitiba, PR, Brazil
| | - Alexandra Acco
- Laboratory of Pharmacology and Metabolism, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990 Curitiba, PR, Brazil
| | - Roberto Andreatini
- Laboratory of Physiology and Pharmacology of the Central Nervous System, Department of Pharmacology, Federal University of Paraná, Centro Politécnico, 81540-990 Curitiba, PR, Brazil.
| |
Collapse
|
129
|
Abstract
Parkinson's disease is a neurodegenerative disorder predominantly resulting from dopamine depletion in the substantia nigra pars compacta. Some psychiatric disorders may have dopaminergic dysfunction as their substrate. We describe a well-documented case of Parkinson's disease associated with Bipolar Disorder. Although there is some knowledge about the association between these diseases, little is known about its pathophysiology and correlation. We believe that among various hypotheses, many neurotransmitters are linked to this pathophysiology.
Collapse
Affiliation(s)
| | - Nathália Novaretti
- MD. Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, USP, SP, Brazil
| | - Vitor Tumas
- MD PhD. Department of Neuroscience and Behavior, Faculty of Medicine of Ribeirão Preto, USP, SP, Brazil
| |
Collapse
|
130
|
Oxidative Stress Implications in the Affective Disorders: Main Biomarkers, Animal Models Relevance, Genetic Perspectives, and Antioxidant Approaches. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:3975101. [PMID: 27563374 PMCID: PMC4983669 DOI: 10.1155/2016/3975101] [Citation(s) in RCA: 60] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2016] [Revised: 06/30/2016] [Accepted: 07/05/2016] [Indexed: 01/12/2023]
Abstract
The correlation between the affective disorders and the almost ubiquitous pathological oxidative stress can be described in a multifactorial way, as an important mechanism of central nervous system impairment. Whether the obvious changes which occur in oxidative balance of the affective disorders are a part of the constitutive mechanism or a collateral effect yet remains as an interesting question. However it is now clear that oxidative stress is a component of these disorders, being characterized by different aspects in a disease-dependent manner. Still, there are a lot of controversies regarding the relevance of the oxidative stress status in most of the affective disorders and despite the fact that most of the studies are showing that the affective disorders development can be correlated to increased oxidative levels, there are various studies stating that oxidative stress is not linked with the mood changing tendencies. Thus, in this minireview we decided to describe the way in which oxidative stress is involved in the affective disorders development, by focusing on the main oxidative stress markers that could be used mechanistically and therapeutically in these deficiencies, the genetic perspectives, some antioxidant approaches, and the relevance of some animal models studies in this context.
Collapse
|
131
|
Elsheikha HM, Büsselberg D, Zhu XQ. The known and missing links between Toxoplasma gondii and schizophrenia. Metab Brain Dis 2016; 31:749-59. [PMID: 27041387 DOI: 10.1007/s11011-016-9822-1] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2015] [Accepted: 03/20/2016] [Indexed: 12/14/2022]
Abstract
Toxoplasma gondii, an intracellular protozoan parasite, has a striking predilection for infecting the Central Nervous System and has been linked to an increased incidence of a number of psychiatric diseases. Several in vitro and in vivo studies have shown that T. gondii infection can affect the structure, bioenergetics and function of brain cells, and alters several host cell processes, including dopaminergic, tryptophan-kynurenine, GABAergic, AKT1, Jak/STAT, and vasopressinergic pathways. These mechanisms underlying the neuropathology of latent toxoplasmosis seem to operate also in schizophrenia, supporting the link between the two disorders. Better understanding of the intricate parasite-neuroglial communications holds the key to unlocking the mystery of T. gondii-mediated schizophrenia and offers substantial prospects for the development of disease-modifying therapies.
Collapse
Affiliation(s)
- Hany M Elsheikha
- Faculty of Medicine and Health Sciences, School of Veterinary Medicine and Science, University of Nottingham, Sutton Bonington, Leicestershire, LE12 5RD, UK.
| | - Dietrich Büsselberg
- Weill Cornell Medical College in Qatar, Qatar Foundation - Education City, P.O. Box: 24144, Doha, Qatar
| | - Xing-Quan Zhu
- State Key Laboratory of Veterinary Etiological Biology, Key Laboratory of Veterinary Parasitology of Gansu Province, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou, Gansu Province, 730046, People's Republic of China
| |
Collapse
|
132
|
Fišar Z. Drugs related to monoamine oxidase activity. Prog Neuropsychopharmacol Biol Psychiatry 2016; 69:112-24. [PMID: 26944656 DOI: 10.1016/j.pnpbp.2016.02.012] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/02/2015] [Revised: 02/25/2016] [Accepted: 02/26/2016] [Indexed: 02/07/2023]
Abstract
Progress in understanding the role of monoamine neurotransmission in pathophysiology of neuropsychiatric disorders was made after the discovery of the mechanisms of action of psychoactive drugs, including monoamine oxidase (MAO) inhibitors. The increase in monoamine neurotransmitter availability, decrease in hydrogen peroxide production, and neuroprotective effects evoked by MAO inhibitors represent an important approach in the development of new drugs for the treatment of mental disorders and neurodegenerative diseases. New drugs are synthesized by acting as multitarget-directed ligands, with MAO, acetylcholinesterase, and iron chelation as targets. Basic information is summarized in this paper about the drug-induced regulation of monoaminergic systems in the brain, with a focus on MAO inhibition. Desirable effects of MAO inhibition include increased availability of monoamine neurotransmitters, decreased oxidative stress, decreased formation of neurotoxins, induction of pro-survival genes and antiapoptotic factors, and improved mitochondrial functions.
Collapse
Affiliation(s)
- Zdeněk Fišar
- Department of Psychiatry, First Faculty of Medicine, Charles University in Prague and General University Hospital in Prague, Ke Karlovu 11, 120 00 Prague 2, Czech Republic.
| |
Collapse
|
133
|
Dodd S, Fernandes BS, Dean OM. Future Directions for Pharmacotherapies for Treatment-resistant Bipolar Disorder. Curr Neuropharmacol 2016; 13:656-62. [PMID: 26467413 PMCID: PMC4761635 DOI: 10.2174/1570159x13666150630175841] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2014] [Revised: 10/10/2014] [Accepted: 10/15/2014] [Indexed: 01/29/2023] Open
Abstract
Current pharmacological treatments for bipolar disorder (BD) are limited and efficacy has historically been discovered through serendipity. There is now scope for new drug development, focused on the underlying biology of BD that is not targeted by current therapies. The need for novel treatments is urgent when considering treatment resistant BD, where current therapies have failed. While established drugs targeting the monoamine systems continue to be worthwhile, new biological targets including inflammatory and oxidative an nitrosative pathways, apoptotic and neurotrophic pathways, mitochondrial pathways, the N-methyl-Daspartate (NMDA)-receptor complex, the purinergic system, neuropeptide system, cholinergic system and melatonin pathways are all being identified as potential anchors for the discovery of new agents. Many agents are experimental and efficacy data is limited, however further investigation may provide a new line for drug discovery, previously stalled by lack of corporate interest.
Collapse
Affiliation(s)
| | | | - Olivia M Dean
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Victoria, Australia
| |
Collapse
|
134
|
Henriksen TEG, Skrede S, Fasmer OB, Schoeyen H, Leskauskaite I, Bjørke‐Bertheussen J, Assmus J, Hamre B, Grønli J, Lund A. Blue-blocking glasses as additive treatment for mania: a randomized placebo-controlled trial. Bipolar Disord 2016; 18:221-32. [PMID: 27226262 PMCID: PMC5089565 DOI: 10.1111/bdi.12390] [Citation(s) in RCA: 84] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 03/19/2016] [Accepted: 04/08/2016] [Indexed: 12/24/2022]
Abstract
OBJECTIVES The discovery of the blue lightsensitive retinal photoreceptor responsible for signaling daytime to the brain suggested that light to the circadian system could be inhibited by using blue-blocking orange tinted glasses. Blue-blocking (BB) glasses are a potential treatment option for bipolar mania. We examined the effectiveness of BB glasses in hospitalized patients with bipolar disorder in a manic state. METHODS In a single-blinded, randomized, placebo-controlled trial (RCT), eligible patients (with bipolar mania; age 18-70 years) were recruited from five clinics in Norway. Patients were assigned to BB glasses or placebo (clear glasses) from 6 p.m. to 8 a.m. for 7 days, in addition to treatment as usual. Symptoms were assessed daily by use of the Young Mania Rating Scale (YMRS). Motor activity was assessed by actigraphy, and compared to data from a healthy control group. Wearing glasses for one evening/night qualified for inclusion in the intention-to-treat analysis. RESULTS From February 2012 to February 2015, 32 patients were enrolled. Eight patients dropped out and one was excluded, resulting in 12 patients in the BB group and 11 patients in the placebo group. The mean decline in YMRS score was 14.1 [95% confidence interval (CI): 9.7-18.5] in the BB group, and 1.7 (95% CI: -4.0 to 7.4) in the placebo group, yielding an effect size of 1.86 (Cohen's d). In the BB group, one patient reported headache and two patients experienced easily reversible depressive symptoms. CONCLUSIONS This RCT shows that BB glasses are effective and feasible as add-on treatment for bipolar mania.
Collapse
Affiliation(s)
- Tone EG Henriksen
- Section for PsychiatryDepartment of Clinical MedicineFaculty of Medicine and DentistryUniversity of BergenBergenNorway,Division of Mental Health CareValen HospitalFonna Local Health AuthorityValenNorway,Moodnet Research GroupDivision of PsychiatryHaukeland University HospitalBergenNorway
| | - Silje Skrede
- Dr. Einar Martens Research Group for Biological PsychiatryCenter for Medical Genetics and Molecular MedicineHaukeland University HospitalBergenNorway,The Norwegian Centre for Mental Disorder Research (Norment)The KG Jebsen Centre for Psychosis ResearchDepartment of Clinical ScienceUniversity of BergenBergenNorway
| | - Ole B Fasmer
- Section for PsychiatryDepartment of Clinical MedicineFaculty of Medicine and DentistryUniversity of BergenBergenNorway,Moodnet Research GroupDivision of PsychiatryHaukeland University HospitalBergenNorway,The KG Jebsen Centre for Research on Neuropsychiatric DisordersDepartment of Clinical ScienceUniversity of BergenBergenNorway
| | - Helle Schoeyen
- Section for PsychiatryDepartment of Clinical MedicineFaculty of Medicine and DentistryUniversity of BergenBergenNorway,Moodnet Research GroupDivision of PsychiatryHaukeland University HospitalBergenNorway,Division of PsychiatryStavanger University HospitalStavangerNorway
| | - Ieva Leskauskaite
- Division of Mental Health CareHaugesund HospitalFonna Local Health AuthorityValenNorway
| | | | - Jörg Assmus
- Centre for Clinical ResearchHaukeland University HospitalBergenNorway
| | - Børge Hamre
- Department of Physics and TechnologyUniversity of BergenBergenNorway
| | - Janne Grønli
- Department of Biological and Medical PsychologyFaculty of PsychologyUniversity of BergenBergenNorway,Sleep and Performance Research CenterWashington State UniversitySpokaneWashingtonUSA
| | - Anders Lund
- Section for PsychiatryDepartment of Clinical MedicineFaculty of Medicine and DentistryUniversity of BergenBergenNorway,Moodnet Research GroupDivision of PsychiatryHaukeland University HospitalBergenNorway
| |
Collapse
|
135
|
Sato C, Hane M, Kitajima K. Relationship between ST8SIA2, polysialic acid and its binding molecules, and psychiatric disorders. Biochim Biophys Acta Gen Subj 2016; 1860:1739-52. [PMID: 27105834 DOI: 10.1016/j.bbagen.2016.04.015] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2015] [Revised: 04/15/2016] [Accepted: 04/16/2016] [Indexed: 12/21/2022]
Abstract
Polysialic acid (polySia, PSA) is a unique and functionally important glycan, particularly in vertebrate brains. It is involved in higher brain functions such as learning, memory, and social behaviors. Recently, an association between several genetic variations and single nucleotide polymorphisms (SNPs) of ST8SIA2/STX, one of two polysialyltransferase genes in vertebrates, and psychiatric disorders, such as schizophrenia (SZ), bipolar disorder (BD), and autism spectrum disorder (ASD), was reported based on candidate gene approaches and genome-wide studies among normal and mental disorder patients. It is of critical importance to determine if the reported mutations and SNPs in ST8SIA2 lead to impairments of the structure and function of polySia, which is the final product of ST8SIA2. To date, however, only a few such forward-directed studies have been conducted. In addition, the molecular mechanisms underlying polySia-involved brain functions remain unknown, although polySia was shown to have an anti-adhesive effect. In this report, we review the relationships between psychiatric disorders and polySia and/or ST8SIA2, and describe a new function of polySia as a regulator of neurologically active molecules, such as brain-derived neurotrophic factor (BDNF) and dopamine, which are deeply involved in psychiatric disorders. This article is part of a Special Issue entitled "Glycans in personalised medicine" Guest Editor: Professor Gordan Lauc.
Collapse
Affiliation(s)
- Chihiro Sato
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan.
| | - Masaya Hane
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| | - Ken Kitajima
- Bioscience and Biotechnology Center, Nagoya University, Chikusa, Nagoya 464-8601, Japan
| |
Collapse
|
136
|
Sharma AN, Fries GR, Galvez JF, Valvassori SS, Soares JC, Carvalho AF, Quevedo J. Modeling mania in preclinical settings: A comprehensive review. Prog Neuropsychopharmacol Biol Psychiatry 2016; 66:22-34. [PMID: 26545487 PMCID: PMC4728043 DOI: 10.1016/j.pnpbp.2015.11.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Revised: 09/29/2015] [Accepted: 11/03/2015] [Indexed: 12/17/2022]
Abstract
The current pathophysiological understanding of mechanisms leading to onset and progression of bipolar manic episodes remains limited. At the same time, available animal models for mania have limited face, construct, and predictive validities. Additionally, these models fail to encompass recent pathophysiological frameworks of bipolar disorder (BD), e.g. neuroprogression. Therefore, there is a need to search for novel preclinical models for mania that could comprehensively address these limitations. Herein we review the history, validity, and caveats of currently available animal models for mania. We also review new genetic models for mania, namely knockout mice for genes involved in neurotransmission, synapse formation, and intracellular signaling pathways. Furthermore, we review recent trends in preclinical models for mania that may aid in the comprehension of mechanisms underlying the neuroprogressive and recurring nature of BD. In conclusion, the validity of animal models for mania remains limited. Nevertheless, novel (e.g. genetic) animal models as well as adaptation of existing paradigms hold promise.
Collapse
Affiliation(s)
- Ajaykumar N Sharma
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Gabriel R Fries
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - Juan F Galvez
- Department of Psychiatry, Pontificia Universidad Javeriana School of Medicine, Bogotá, Colombia
| | - Samira S Valvassori
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - Jair C Soares
- Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA
| | - André F Carvalho
- Department of Clinical Medicine and Translational Psychiatry Research Group, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Joao Quevedo
- Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Center of Excellence on Mood Disorders, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX 77054, USA; Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil.
| |
Collapse
|
137
|
Flowers SA, Ryan KA, Lai Z, McInnis MG, Ellingrod VL. Interaction between COMT rs5993883 and second generation antipsychotics is linked to decreases in verbal cognition and cognitive control in bipolar disorder. BMC Psychol 2016; 4:14. [PMID: 27039372 PMCID: PMC4818866 DOI: 10.1186/s40359-016-0118-3] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2015] [Accepted: 03/24/2016] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Second generation antipsychotics (SGAs) are increasingly utilized in Bipolar Disorder (BD) but are potentially associated with cognitive side effects. Also linked to cognitive deficits associated with SGA-treatment are catechol-O-methyltransferase (COMT) gene variants. In this study, we examine the relationship between cognition in SGA use and COMT rs5993883 in cohort sample of subjects with BD. METHODS Interactions between SGA-treatment and COMT rs5993883 genotype on cognition was tested using a battery of neuropsychological tests performed in cross-sectional study of 246 bipolar subjects. RESULTS The mean age of our sample was 40.15 years and was comprised of 70 % female subjects. Significant demographic differences included gender, hospitalizations, benzodiazepine/antidepressant use and BD-type diagnosis. Linear regressions showed that the COMT rs5993883 GG genotype predicted lower verbal learning (p = 0.0006) and memory (p = 0.0026) scores, and lower scores on a cognitive control task (p = 0.004) in SGA-treated subjects. Interestingly, COMT GT- or TT-variants showed no intergroup cognitive differences. Further analysis revealed an interaction between SGA-COMT GG-genotype for verbal learning (p = 0.028), verbal memory (p = 0.026) and cognitive control (p = 0.0005). CONCLUSIONS This investigation contributes to previous work demonstrating links between cognition, SGA-treatment and COMT rs5993883 in BD subjects. Our analysis shows significant associations between cognitive domains such as verbal-cognition and cognitive control in SGA-treated subjects carrying the COMT rs5993883 GG-genotype. Prospective studies are needed to evaluate the clinical significance of these findings.
Collapse
Affiliation(s)
- Stephanie A Flowers
- Clinical Pharmacy Department, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI, 48109-106, USA
| | - Kelly A Ryan
- Department of Psychiatry, School of Medicine, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI, 48109, USA
| | - Zongshan Lai
- Department of Psychiatry, School of Medicine, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI, 48109, USA.,Center for Clinical Management Research (CCMR) Veterans Affairs, Ann Arbor, USA
| | - Melvin G McInnis
- Department of Psychiatry, School of Medicine, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI, 48109, USA
| | - Vicki L Ellingrod
- Clinical Pharmacy Department, College of Pharmacy, University of Michigan, 428 Church St, Ann Arbor, MI, 48109-106, USA. .,Department of Psychiatry, School of Medicine, University of Michigan, 4250 Plymouth Rd, Ann Arbor, MI, 48109, USA.
| |
Collapse
|
138
|
Freund N, Thompson BS, Sonntag K, Meda S, Andersen SL. When the party is over: depressive-like states in rats following termination of cortical D1 receptor overexpression. Psychopharmacology (Berl) 2016; 233:1191-1201. [PMID: 26762379 PMCID: PMC4915915 DOI: 10.1007/s00213-015-4200-y] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/14/2015] [Accepted: 12/29/2015] [Indexed: 11/29/2022]
Abstract
RATIONALE Increased activity of prefrontal D1 dopamine receptors (D1R) is involved in reward-related behavior found in bipolar disorder and drug addiction. While the effects of elevated D1R are known, depressive-like behaviors also occur in these disorders after reward-seeking ends. OBJECTIVES The goal is to characterize how termination of D1R overexpression influences depressive-like behaviors. METHODS An inducible (Tet.On), lentiviral vector was used to manipulate the expression of the DRD1 gene in glutamate neurons within the prefrontal cortex in male, adult rats. Sexual activity and sucrose preference were studied in both D1R elevated ON and relatively reduced OFF states. Following termination of the D1R ON state, depressive-like behavior was determined in the OFF state. Expression of the transcriptional regulator, cyclic AMP-responsive element-binding protein (CREB), was used as an indication of downstream effects in the nucleus accumbens (NA). RESULTS ON D1R expression increased sexual activity that returned to baseline in the OFF state. Sucrose preferences increased ~6 % in ON state but fell 11 % below control levels when OFF. Consistent with a depressive-like phenotype, D1R OFF decreased activity by 40 %, impaired the ability to control (43 %) and motivation to escape shock (27 % more impaired) relative to dsRed OFF. CREB increased 29 % in the NA in the D1R OFF state relative to the ON state. CONCLUSIONS This novel approach demonstrates that elevated D1R expression increased hedonic behavior, whereas the termination of D1R overexpression often resulted in depressive-like behavior. These observations support a role for D1R expression cycling in bipolar-associated behaviors and addiction.
Collapse
Affiliation(s)
- Nadja Freund
- Laboratory for Developmental Neuropharmacology, McLean Hospital and Harvard Medical School, Belmont, MA, 02478, USA.
- Klinik für Psychiatrie und Psychotherapie, Calwerstr. 14, 72076, Tübingen, Germany.
| | - Britta S Thompson
- Laboratory for Developmental Neuropharmacology, McLean Hospital and Harvard Medical School, Belmont, MA, 02478, USA
| | - Kai Sonntag
- Laboratory for Developmental Neuropharmacology, McLean Hospital and Harvard Medical School, Belmont, MA, 02478, USA
| | - Shirisha Meda
- Laboratory for Developmental Neuropharmacology, McLean Hospital and Harvard Medical School, Belmont, MA, 02478, USA
| | - Susan L Andersen
- Laboratory for Developmental Neuropharmacology, McLean Hospital and Harvard Medical School, Belmont, MA, 02478, USA
| |
Collapse
|
139
|
Arunagiri P, Balamurugan E. Omega-3 fatty acids combined with aripiprazole and lithium modulates activity of mitochondrial enzymes and acetylcholinesterase in methylphenidate-induced animal model of mania. PHARMANUTRITION 2016. [DOI: 10.1016/j.phanu.2016.03.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
140
|
|
141
|
Regulators of mitochondrial complex I activity: A review of literature and evaluation in postmortem prefrontal cortex from patients with bipolar disorder. Psychiatry Res 2016; 236:148-157. [PMID: 26723136 DOI: 10.1016/j.psychres.2015.12.015] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Revised: 12/10/2015] [Accepted: 12/12/2015] [Indexed: 12/28/2022]
Abstract
Phenomenologically, bipolar disorder (BD) is characterized by biphasic increases and decreases in energy. As this is a state-related phenomenon, identifying regulators responsible for this phasic dysregulation has the potential to uncover key elements in the pathophysiology of BD. Given the evidence suggesting mitochondrial complex I dysfunction in BD, we aimed to identify the main regulators of complex I in BD by reviewing the literature and using the published microarray data to examine their gene expression profiles. We also validated protein expression levels of the main complex I regulators by immunohistochemistry. Upon reviewing the literature, we found PARK-7, STAT-3, SIRT-3 and IMP-2 play an important role in regulating complex I activity. Published microarray studies however revealed no significant direction of regulation of STAT-3, SIRT-3, and IMP-2, but a trend towards downregulation of PARK-7 was observed in BD. Immunocontent of DJ-1 (PARK-7-encoded protein) were not elevated in post mortem prefrontal cortex from patients with BD. We also found a trend towards upregulation of DJ-1 expression with age. Our results suggest that DJ-1 is not significantly altered in BD subjects, however further studies are needed to examine DJ-1 expression levels in a cohort of older patients with BD.
Collapse
|
142
|
Wang LJ, Shyu YC, Yuan SS, Yang CJ, Yang KC, Lee TL, Lee SY. Attention-deficit hyperactivity disorder, its pharmacotherapy, and the risk of developing bipolar disorder: A nationwide population-based study in Taiwan. J Psychiatr Res 2016; 72:6-14. [PMID: 26519764 DOI: 10.1016/j.jpsychires.2015.10.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 08/19/2015] [Accepted: 10/16/2015] [Indexed: 10/22/2022]
Abstract
UNLABELLED In this study, we aimed to evaluate the relationship between attention-deficit/hyperactivity disorder (ADHD) during childhood and subsequent diagnoses of bipolar disorder (BD), as well as to determine whether the pharmacotherapy for ADHD (methylphenidate and atomoxetine) influence the risks of developing BD. A nationwide cohort of patients newly diagnosed with ADHD (n = 144,920) and age- and gender-matching controls (n = 144,920) were found in Taiwan's National Health Insurance database from January 2000 to December 2011. Both patients and controls were observed until December 31, 2011. To determine the effect that the duration of methylphenidate and atomoxetine exposure had on BD, the difference in the risk of developing BD was compared among non-users, short-term users (≤ 365 days), and long-term users (>365 days). In comparison to the control group, the ADHD group showed a significantly increased risk of developing BD (ADHD: 2.1% vs. CONTROLS 0.4%; aHR: 7.85, 95% CI: 7.09-8.70), and had a younger mean age at the time of first diagnosis (ADHD: 12.0 years vs. CONTROLS 18.8 years). Compared to ADHD patients that had never taken methylphenidate, patients with long-term use of methylphenidate were less likely to be diagnosed with BD (aOR: 0.72, 95% CI: 0.65-0.80). However, the duration of exposure to atomoxetine did not have a significant relationship to a BD diagnosis. The results suggested that a previous diagnosis of ADHD was a powerful indicator of BD, particularly juvenile-onset BD. Nevertheless, the exact mechanisms of the relationships among ADHD, its pharmacotherapy, and BD require further clarification in the future.
Collapse
Affiliation(s)
- Liang-Jen Wang
- Department of Child and Adolescent Psychiatry, Kaohsiung Chang Gung Memorial Hospital and Chang Gung University College of Medicine, Kaohsiung, Taiwan
| | - Yu-Chiau Shyu
- Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan; Institute of Molecular Biology, Academia Sinica, Nankang, Taipei, Taiwan
| | - Shin-Sheng Yuan
- Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Chun-Ju Yang
- Institute of Biopharmaceutical Sciences, National Yang-Ming University, Taipei, Taiwan; Community Medicine Research Center, Keelung Chang Gung Memorial Hospital, Keelung, Taiwan
| | - Kang-Chung Yang
- Genome and Systems Biology Degree Program, National Taiwan University, Taipei, Taiwan; Institute of Statistical Science, Academia Sinica, Taipei, Taiwan
| | - Tung-Liang Lee
- Department of Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Sheng-Yu Lee
- Department of Psychiatry, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan; Department of Psychiatry, College of Medicine and Hospital, National Cheng Kung University, Tainan, Taiwan.
| |
Collapse
|
143
|
Nod-like receptor pyrin containing 3 (NLRP3) in the post-mortem frontal cortex from patients with bipolar disorder: A potential mediator between mitochondria and immune-activation. J Psychiatr Res 2016; 72:43-50. [PMID: 26540403 DOI: 10.1016/j.jpsychires.2015.10.015] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/04/2015] [Revised: 10/08/2015] [Accepted: 10/22/2015] [Indexed: 12/22/2022]
Abstract
Mitochondrial complex I dysfunction, oxidative stress and immune-activation are consistently reported in bipolar disorder (BD). Mitochondrial production of reactive oxygen species was recently linked to activation of an inflammatory redox sensor, the nod-like receptor family pyrin domain-containing 3 (NLRP3). Upon its activation, NLRP3 recruits apoptosis-associated speck-like protein (ASC) and caspase-1 to form the NLRP3-inflammasome, activating IL-1β. This study aimed to examine if immune-activation may be a downstream target of complex I dysfunction through the NLRP3-inflammasome in BD. Post-mortem frontal cortex from patients with BD (N = 9), schizophrenia (N = 10), and non-psychiatric controls (N = 9) were donated from the Harvard Brain Tissue Resource Center. Levels of NLRP3, ASC and caspase-1 were measured by western blotting, ELISA and Luminex. While we found no effects of age, sex or post-mortem delay, lower levels of complex I (F2,25 = 3.46, p < 0.05) and NDUFS7, a subunit of complex I (F2,25 = 4.13, p < 0.05), were found in patients with BD. Mitochondrial NLRP3 (F2,25 = 3.86, p < 0.05) and ASC (F2,25 = 4.61, p < 0.05) levels were higher in patients with BD. However, levels of caspase 1 (F2,25 = 4.13, p < 0.05 for both), IL-1β (F2,25 = 7.05, p < 0.01), IL-6 (F2,25 = 5.48, p < 0.05), TNFα (F2,25 = 7.14, p < 0.01) and IL-10 (F2,25 = 5.02, p < 0.05) were increased in both BD and schizophrenia. These findings suggest that immune-activation in the frontal cortex may occur both in patients with BD and schizophrenia, while complex I dysfunction and NLRP3-inflammasome activation may be more specific to BD.
Collapse
|
144
|
Rajendran B, Janakarajan VN. Circadian clock gene aryl hydrocarbon receptor nuclear translocator-like polymorphisms are associated with seasonal affective disorder: An Indian family study. Indian J Psychiatry 2016; 58:57-60. [PMID: 26985106 PMCID: PMC4776583 DOI: 10.4103/0019-5545.174374] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND AIM Polymorphisms in aryl hydrocarbon receptor nuclear translocator-like (ARNTL) gene, the key component of circadian clock manifests circadian rhythm abnormalities. As seasonal affective disorder (SAD) is associated with disrupted circadian rhythms, the main objective of this study was to screen an Indian family with SAD for ARNTL gene polymorphisms. MATERIALS AND METHODS In this study, 30 members of close-knit family with SAD, 30 age- and sex-matched controls of the same caste with no prior history of psychiatric illness and 30 age- and sex-matched controls belonging to 17 different castes with no prior history of psychiatric illness were genotyped for five different single nucleotide polymorphisms (SNPs) in ARNTL gene by TaqMan allele-specific genotyping assay. STATISTICAL ANALYSIS Statistical significance was assessed by more powerful quasi-likelihood score test-XM. RESULTS Most of the family members carried the risk alleles and we observed a highly significant SNP rs2279287 (A/G) in ARNTL gene with an allelic frequency of 0.75. CONCLUSIONS Polymorphisms in ARNTL gene disrupt circadian rhythms causing SAD and genetic predisposition becomes more deleterious in the presence of adverse environment.
Collapse
Affiliation(s)
- Bhagya Rajendran
- Research and Development Centre, Bharathiar University, Coimbatore, Tamil Nadu, India
| | | |
Collapse
|
145
|
Mertens J, Wang QW, Kim Y, Yu DX, Pham S, Yang B, Zheng Y, Diffenderfer KE, Zhang J, Soltani S, Eames T, Schafer ST, Boyer L, Marchetto MC, Nurnberger JI, Calabrese JR, Ødegaard KJ, McCarthy MJ, Zandi PP, Alda M, Alba M, Nievergelt CM, Mi S, Brennand KJ, Kelsoe JR, Gage FH, Yao J. Differential responses to lithium in hyperexcitable neurons from patients with bipolar disorder. Nature 2015; 527:95-9. [PMID: 26524527 PMCID: PMC4742055 DOI: 10.1038/nature15526] [Citation(s) in RCA: 399] [Impact Index Per Article: 39.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2014] [Accepted: 08/26/2015] [Indexed: 12/22/2022]
Abstract
Bipolar disorder is a complex neuropsychiatric disorder that is characterized by intermittent episodes of mania and depression; without treatment, 15% of patients commit suicide. Hence, it has been ranked by the World Health Organization as a top disorder of morbidity and lost productivity. Previous neuropathological studies have revealed a series of alterations in the brains of patients with bipolar disorder or animal models, such as reduced glial cell number in the prefrontal cortex of patients, upregulated activities of the protein kinase A and C pathways and changes in neurotransmission. However, the roles and causation of these changes in bipolar disorder have been too complex to exactly determine the pathology of the disease. Furthermore, although some patients show remarkable improvement with lithium treatment for yet unknown reasons, others are refractory to lithium treatment. Therefore, developing an accurate and powerful biological model for bipolar disorder has been a challenge. The introduction of induced pluripotent stem-cell (iPSC) technology has provided a new approach. Here we have developed an iPSC model for human bipolar disorder and investigated the cellular phenotypes of hippocampal dentate gyrus-like neurons derived from iPSCs of patients with bipolar disorder. Guided by RNA sequencing expression profiling, we have detected mitochondrial abnormalities in young neurons from patients with bipolar disorder by using mitochondrial assays; in addition, using both patch-clamp recording and somatic Ca(2+) imaging, we have observed hyperactive action-potential firing. This hyperexcitability phenotype of young neurons in bipolar disorder was selectively reversed by lithium treatment only in neurons derived from patients who also responded to lithium treatment. Therefore, hyperexcitability is one early endophenotype of bipolar disorder, and our model of iPSCs in this disease might be useful in developing new therapies and drugs aimed at its clinical treatment.
Collapse
Affiliation(s)
- Jerome Mertens
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037, USA
| | - Qiu-Wen Wang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yongsung Kim
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037, USA
| | - Diana X Yu
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037, USA
| | - Son Pham
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037, USA
| | - Bo Yang
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Yi Zheng
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Kenneth E Diffenderfer
- The Salk Institute for Biological Studies, Stem Cell Core, La Jolla, California 92037, USA
| | - Jian Zhang
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Sheila Soltani
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037, USA
| | - Tameji Eames
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037, USA
| | - Simon T Schafer
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037, USA
| | - Leah Boyer
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037, USA
| | - Maria C Marchetto
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037, USA
| | - John I Nurnberger
- Department of Psychiatry, Indiana University, Indianapolis, Indiana 46202, USA
| | - Joseph R Calabrese
- Department of Psychiatry, Case Western Reserve University, Cleveland, Ohio 44106, USA
| | - Ketil J Ødegaard
- Department of Psychiatry, University of Bergen, Bergen 5020, Norway
| | - Michael J McCarthy
- Department of Psychiatry, VA San Diego Healthcare System, La Jolla, California 92151, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, 92093, USA
| | - Peter P Zandi
- Department of Psychiatry, Johns Hopkins University, Baltimore, Maryland 21218, USA
| | - Martin Alda
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, B3H2E2, Canada
| | - Martin Alba
- Department of Psychiatry, Dalhousie University, Halifax, Nova Scotia, B3H2E2, Canada
| | - Caroline M Nievergelt
- Department of Psychiatry, University of California San Diego, La Jolla, California, 92093, USA
| | - Shuangli Mi
- Key Laboratory of Genomic and Precision Medicine, Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing 100101, China
| | - Kristen J Brennand
- Department of Psychiatry, Mount Sinai School of Medicine, New York, New York 10029, USA
| | - John R Kelsoe
- Department of Psychiatry, VA San Diego Healthcare System, La Jolla, California 92151, USA
- Department of Psychiatry, University of California San Diego, La Jolla, California, 92093, USA
| | - Fred H Gage
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037, USA
| | - Jun Yao
- State Key Laboratory of Membrane Biology, Tsinghua-Peking Joint Center for Life Sciences, McGovern Institute for Brain Research, School of Life Sciences, Tsinghua University, Beijing 100084, China
- The Salk Institute for Biological Studies, Laboratory of Genetics, La Jolla, California 92037, USA
- Jiangsu Collaborative Innovation Center for Language Ability, Jiangsu Normal University, Xuzhou 221009, China
| |
Collapse
|
146
|
de Souza Gomes JA, de Souza GC, Berk M, Cavalcante LM, de Sousa FCF, Budni J, de Lucena DF, Quevedo J, Carvalho AF, Macêdo D. Antimanic-like activity of candesartan in mice: Possible involvement of antioxidant, anti-inflammatory and neurotrophic mechanisms. Eur Neuropsychopharmacol 2015; 25:2086-97. [PMID: 26321203 DOI: 10.1016/j.euroneuro.2015.08.005] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Revised: 04/13/2015] [Accepted: 08/07/2015] [Indexed: 01/27/2023]
Abstract
Activation of the brain angiotensin II type 1 receptor (AT1R) triggers pro-oxidant and pro-inflammatory mechanisms which are involved in the neurobiology of bipolar disorder (BD). Candesartan (CDS) is an AT1 receptor antagonist with potential neuroprotective properties. Herein we investigated CDS effects against oxidative, neurotrophic inflammatory and cognitive effects of amphetamine (AMPH)-induced mania. In the reversal protocol adult mice were given AMPH 2 mg/kg i.p. or saline and between days 8 and 14 received CDS 0.1, 0.3 or 1 mg/kg orally, lithium (Li) 47.5 mg/kg i.p., or saline. In the prevention treatment, mice were pretreated with CDS, Li or saline prior to AMPH. Locomotor activity and working memory performance were assessed. Glutathione (GSH), thiobarbituric acid-reactive substance (TBARS) and TNF-α levels were evaluated in the hippocampus (HC) and cerebellar vermis (CV). Brain-derived neurotrophic factor (BDNF) and glycogen synthase kinase 3-beta (GSK-3beta) levels were measured in the HC. CDS and Li prevented and reversed the AMPH-induced increases in locomotor activity. Only CDS prevented and reversed AMPH-induced working memory deficits. CDS prevented AMPH-induced alterations in GSH (HC and CV), TBARS (HC and CV), TNF-α (HC and CV) and BDNF (HC) levels. Li prevented alterations in BDNF and phospho-Ser9-GSK3beta. CDS reversed AMPH-induced alterations in GSH (HC and CV), TBARS (HC), TNF-α (CV) and BDNF levels. Li reversed AMPH-induced alterations in TNF-α (HC and CV) and BDNF (HC) levels. CDS is effective in reversing and preventing AMPH-induced behavioral and biochemical alterations, providing a rationale for the design of clinical trials investigating CDS׳s possible therapeutic effects.
Collapse
Affiliation(s)
- Júlia Ariana de Souza Gomes
- Neuropharmacology Laboratory, Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Greicy Coelho de Souza
- Neuropharmacology Laboratory, Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Michael Berk
- IMPACT Strategic Research Centre, School of Medicine, Deakin University, Geelong, Vic., Australia; Florey Institute of Neuroscience and Mental Health, Australia; Orygen Youth Health Research Centre, University of Melbourne, Parkville, Vic., Australia
| | - Lígia Menezes Cavalcante
- Neuropharmacology Laboratory, Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Francisca Cléa F de Sousa
- Neuropharmacology Laboratory, Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Josiane Budni
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil
| | - David Freitas de Lucena
- Neuropharmacology Laboratory, Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, CE, Brazil
| | - João Quevedo
- Laboratory of Neurosciences, Graduate Program in Health Sciences, Health Sciences Unit, University of Southern Santa Catarina, Criciúma, SC, Brazil; Center for Experimental Models in Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Medical School at Houston, Houston, TX, USA
| | - André F Carvalho
- Translational Psychiatry Research Group, Department of Clinical Medicine, Faculty of Medicine, Federal University of Ceara, Fortaleza, CE, Brazil
| | - Danielle Macêdo
- Neuropharmacology Laboratory, Department of Physiology and Pharmacology, Federal University of Ceara, Fortaleza, CE, Brazil.
| |
Collapse
|
147
|
Queiroz AIG, de Araújo MM, da Silva Araújo T, de Souza GC, Cavalcante LM, de Jesus Souza Machado M, de Lucena DF, Quevedo J, Macêdo D. GBR 12909 administration as an animal model of bipolar mania: time course of behavioral, brain oxidative alterations and effect of mood stabilizing drugs. Metab Brain Dis 2015; 30:1207-15. [PMID: 26073232 DOI: 10.1007/s11011-015-9697-6] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/05/2015] [Accepted: 06/04/2015] [Indexed: 01/09/2023]
Abstract
Polymorphisms in the human dopamine transporter (DAT) are associated with bipolar endophenotype. Based on this, the acute inhibition of DAT using GBR12909 causes behavioral alterations that are prevented by valproate (VAL), being related to a mania-like model. Herein our first aim was to analyze behavioral and brain oxidative alterations during a 24 h period post-GBR12909 to better characterize this model. Our second aim was to determine the preventive effects of lithium (Li) or VAL 2 h post-GBR12909. For this, adult male mice received GBR12909 or saline being evaluated at 2, 4, 8, 12 or 24 h post-administration. Hyperlocomotion, levels of reduced glutathione (GSH) and lipid peroxidation in brain areas were assessed at all these time-points. GBR12909 caused hyperlocomotion at 2 and 24 h. Rearing behavior increased only at 2 h. GSH levels decreased in the hippocampus and striatum at the time points of 2, 4, 8 and 12 h. Increased lipid peroxidation was detected at the time-points of 2 and 12 h in all brain areas studied. At the time-point of 2 h post-GBR12909 Li prevented the hyperlocomotion and rearing alterations, while VAL prevented only rearing alterations. Both drugs prevented pro-oxidative changes. In conclusion, we observed that the main behavioral and oxidative alterations took place at the time-period of 2 h post-GBR12909, what points to this time-period as the best for the assessment of alterations in this model. Furthermore, the present study expands the predictive validity of the model by the determination of the preventive effects of Li.
Collapse
Affiliation(s)
- Ana Isabelle G Queiroz
- Neuropharmacology Laboratory, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | | | | | | | | | | | | | | |
Collapse
|
148
|
Fries GR, Valvassori SS, Bock H, Stertz L, Magalhães PVDS, Mariot E, Varela RB, Kauer-Sant'Anna M, Quevedo J, Kapczinski F, Saraiva-Pereira ML. Memory and brain-derived neurotrophic factor after subchronic or chronic amphetamine treatment in an animal model of mania. J Psychiatr Res 2015; 68:329-36. [PMID: 26026487 DOI: 10.1016/j.jpsychires.2015.05.006] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/29/2014] [Revised: 05/01/2015] [Accepted: 05/07/2015] [Indexed: 11/26/2022]
Abstract
Progression of bipolar disorder (BD) has been associated with cognitive impairment and changes in neuroplasticity, including a decrease in serum brain-derived neurotrophic factor (BDNF). However, no study could examine BDNF levels directly in different brain regions after repeated mood episodes to date. The proposed animal model was designed to mimic several manic episodes and evaluate whether the performance in memory tasks and BDNF levels in hippocampus, prefrontal cortex, and amygdala would change after repeated amphetamine (AMPH) exposure. Adult male Wistar rats were divided into subchronic (AMPH for 7 days) and chronic groups (35 days), mimicking manic episodes at early and late stages of BD, respectively. After open field habituation or inhibitory avoidance test, rats were killed, brain regions were isolated, and BDNF mRNA and protein levels were measured by quantitative real-time PCR and ELISA, respectively. AMPH impaired habituation memory in both subchronic and chronic groups, and the impairment was worse in the chronic group. This was accompanied by increased Bdnf mRNA levels in the prefrontal cortex and amygdala region, as well as reduced BDNF protein in the hippocampus. In the inhibitory avoidance, AMPH significantly decreased the change from training to test when compared to saline. No difference was observed between subchronic and chronic groups, although chronically AMPH-treated rats presented increased Bdnf mRNA levels and decreased protein levels in hippocampus when compared to the subchronic group. Our results suggest that the cognitive impairment related to BD neuroprogression may be associated with BDNF alterations in hippocampus, prefrontal cortex, and amygdala.
Collapse
Affiliation(s)
- Gabriel R Fries
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Laboratory of Genetic Identification and Medical Genetic Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Samira S Valvassori
- INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Laboratory of Neurosciences, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, 88806-000, Criciúma, Santa Catarina, Brazil.
| | - Hugo Bock
- Laboratory of Genetic Identification and Medical Genetic Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-903, Rio Grande do Sul, Brazil.
| | - Laura Stertz
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA.
| | - Pedro Vieira da Silva Magalhães
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Department of Psychiatry, Universidade Federal Rio Grande do Sul, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil.
| | - Edimilson Mariot
- INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Laboratory of Neurosciences, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, 88806-000, Criciúma, Santa Catarina, Brazil.
| | - Roger B Varela
- INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Laboratory of Neurosciences, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, 88806-000, Criciúma, Santa Catarina, Brazil.
| | - Marcia Kauer-Sant'Anna
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-903, Rio Grande do Sul, Brazil; Department of Psychiatry, Universidade Federal Rio Grande do Sul, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil.
| | - João Quevedo
- INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA; Laboratory of Neurosciences, Universidade do Extremo Sul Catarinense, Av. Universitária, 1105, 88806-000, Criciúma, Santa Catarina, Brazil.
| | - Flávio Kapczinski
- Bipolar Disorder Program, Laboratory of Molecular Psychiatry, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; INCT of Translational Medicine, Hospital de Clinicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Center for Translational Psychiatry, Department of Psychiatry and Behavioral Sciences, The University of Texas Health Science Center at Houston, Houston, TX, USA; Department of Psychiatry, Universidade Federal Rio Grande do Sul, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil.
| | - Maria Luiza Saraiva-Pereira
- Laboratory of Genetic Identification and Medical Genetic Service, Hospital de Clínicas de Porto Alegre, Rua Ramiro Barcelos, 2350, 90035-903, Rio Grande do Sul, Brazil; Department of Biochemistry, Universidade Federal do Rio Grande do Sul, Rua Ramiro Barcelos, 2600, 90035-903, Rio Grande do Sul, Brazil.
| |
Collapse
|
149
|
Sutterland AL, Fond G, Kuin A, Koeter MWJ, Lutter R, van Gool T, Yolken R, Szoke A, Leboyer M, de Haan L. Beyond the association. Toxoplasma gondii in schizophrenia, bipolar disorder, and addiction: systematic review and meta-analysis. Acta Psychiatr Scand 2015; 132:161-79. [PMID: 25877655 DOI: 10.1111/acps.12423] [Citation(s) in RCA: 308] [Impact Index Per Article: 30.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 03/17/2015] [Indexed: 12/11/2022]
Abstract
OBJECTIVE To perform a meta-analysis on studies reporting prevalence of Toxoplasma gondii (T. gondii) infection in any psychiatric disorder compared with healthy controls. Our secondary objective was to analyze factors possibly moderating heterogeneity. METHOD A systematic search was performed to identify studies into T. gondii infection for all major psychiatric disorders versus healthy controls. Methodological quality, publication bias, and possible moderators were assessed. RESULTS A total of 2866 citations were retrieved and 50 studies finally included. Significant odds ratios (ORs) with IgG antibodies were found in schizophrenia (OR 1.81, P < 0.00001), bipolar disorder (OR 1.52, P = 0.02), obsessive-compulsive disorder (OR 3.4, P < 0.001), and addiction (OR 1.91, P < 0.00001), but not for major depression (OR 1.21, P = 0.28). Exploration of the association between T. gondii and schizophrenia yielded a significant effect of seropositivity before onset and serointensity, but not IgM antibodies or gender. The amplitude of the OR was influenced by region and general seroprevalence. Moderators together accounted for 56% of the observed variance in study effects. After controlling for publication bias, the adjusted OR (1.43) in schizophrenia remained significant. CONCLUSION These findings suggest that T. gondii infection is associated with several psychiatric disorders and that in schizophrenia reactivation of latent T. gondii infection may occur.
Collapse
Affiliation(s)
- A L Sutterland
- Department of Psychiatry, Academic Medical Centre (AMC), Amsterdam, the Netherlands
| | - G Fond
- AP-HP, DHU Pe-PSY, Pôle de Psychiatrie et d'addictologie des Hôpitaux Universitaires H Mondor, INSERM U955, Eq 15 Psychiatrie Translationnelle, Université Paris Est-Créteil, Créteil, France.,Fondation Fondamental, Créteil, France
| | - A Kuin
- Department of Psychiatry, Academic Medical Centre (AMC), Amsterdam, the Netherlands
| | - M W J Koeter
- Department of Psychiatry, Academic Medical Centre (AMC), Amsterdam, the Netherlands
| | - R Lutter
- Departments of Experimental Immunology and Respiratory Medicine, Academic Medical Centre (AMC), Amsterdam, the Netherlands
| | - T van Gool
- Department of Parasitology, Academic Medical Centre (AMC), Amsterdam, the Netherlands
| | - R Yolken
- Stanley Neurovirology Laboratory, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - A Szoke
- AP-HP, DHU Pe-PSY, Pôle de Psychiatrie et d'addictologie des Hôpitaux Universitaires H Mondor, INSERM U955, Eq 15 Psychiatrie Translationnelle, Université Paris Est-Créteil, Créteil, France.,Fondation Fondamental, Créteil, France
| | - M Leboyer
- AP-HP, DHU Pe-PSY, Pôle de Psychiatrie et d'addictologie des Hôpitaux Universitaires H Mondor, INSERM U955, Eq 15 Psychiatrie Translationnelle, Université Paris Est-Créteil, Créteil, France.,Fondation Fondamental, Créteil, France
| | - L de Haan
- Department of Psychiatry, Academic Medical Centre (AMC), Amsterdam, the Netherlands
| |
Collapse
|
150
|
van Enkhuizen J, Geyer MA, Minassian A, Perry W, Henry BL, Young JW. Investigating the underlying mechanisms of aberrant behaviors in bipolar disorder from patients to models: Rodent and human studies. Neurosci Biobehav Rev 2015; 58:4-18. [PMID: 26297513 DOI: 10.1016/j.neubiorev.2015.08.008] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2015] [Revised: 08/03/2015] [Accepted: 08/16/2015] [Indexed: 11/18/2022]
Abstract
Psychiatric patients with bipolar disorder suffer from states of depression and mania, during which a variety of symptoms are present. Current treatments are limited and neurocognitive deficits in particular often remain untreated. Targeted therapies based on the biological mechanisms of bipolar disorder could fill this gap and benefit patients and their families. Developing targeted therapies would benefit from appropriate animal models which are challenging to establish, but remain a vital tool. In this review, we summarize approaches to create a valid model relevant to bipolar disorder. We focus on studies that use translational tests of multivariate exploratory behavior, sensorimotor gating, decision-making under risk, and attentional functioning to discover profiles that are consistent between patients and rodent models. Using this battery of translational tests, similar behavior profiles in bipolar mania patients and mice with reduced dopamine transporter activity have been identified. Future investigations should combine other animal models that are biologically relevant to the neuropsychiatric disorder with translational behavioral assessment as outlined here. This methodology can be utilized to develop novel targeted therapies that relieve symptoms for more patients without common side effects caused by current treatments.
Collapse
Affiliation(s)
- Jordy van Enkhuizen
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States; Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Utrecht University, Universiteitsweg 99, 3584 CG Utrecht, The Netherlands
| | - Mark A Geyer
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States.
| | - Arpi Minassian
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States
| | - William Perry
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States
| | - Brook L Henry
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States
| | - Jared W Young
- Department of Psychiatry, University of California San Diego, 9500 Gilman Drive MC 0804, La Jolla, CA 92093-0804, United States; Research Service, VA San Diego Healthcare System, San Diego, CA, United States
| |
Collapse
|