101
|
Soohoo AL, Puthenveedu MA. Divergent modes for cargo-mediated control of clathrin-coated pit dynamics. Mol Biol Cell 2013; 24:1725-34, S1-12. [PMID: 23536704 PMCID: PMC3667725 DOI: 10.1091/mbc.e12-07-0550] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2012] [Revised: 03/19/2013] [Accepted: 03/21/2013] [Indexed: 11/11/2022] Open
Abstract
Clathrin-mediated endocytosis has long been viewed as a process driven by core endocytic proteins, with internalized cargo proteins being passive. In contrast, an emerging view suggests that signaling receptor cargo may actively control its fate by regulating the dynamics of clathrin-coated pits (CCPs) that mediate their internalization. Despite its physiological implications, very little is known about such "cargo-mediated regulation" of CCPs by signaling receptors. Here, using multicolor total internal reflection fluorescence microscopy imaging and quantitative analysis in live cells, we show that the μ-opioid receptor, a physiologically relevant G protein-coupled signaling receptor, delays the dynamics of CCPs in which it is localized. This delay is mediated by the interactions of two critical leucines on the receptor cytoplasmic tail. Unlike the previously known mechanism of cargo-mediated regulation, these residues regulate the lifetimes of dynamin, a key component of CCP scission. These results identify a novel means for selectively controlling the endocytosis of distinct cargo that share common trafficking components and indicate that CCP regulation by signaling receptors can operate via divergent modes.
Collapse
Affiliation(s)
- Amanda L. Soohoo
- Department of Biological Sciences, Carnegie Mellon University, Pittsburgh, PA 15213
| | | |
Collapse
|
102
|
Segura V, Pérez-Aso M, Montó F, Carceller E, Noguera MA, Pediani J, Milligan G, McGrath IC, D’Ocon P. Differences in the signaling pathways of α(1A)- and α(1B)-adrenoceptors are related to different endosomal targeting. PLoS One 2013; 8:e64996. [PMID: 23717684 PMCID: PMC3663791 DOI: 10.1371/journal.pone.0064996] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 04/20/2013] [Indexed: 01/14/2023] Open
Abstract
AIMS To compare the constitutive and agonist-dependent endosomal trafficking of α(1A)- and α(1B)-adrenoceptors (ARs) and to establish if the internalization pattern determines the signaling pathways of each subtype. METHODS Using CypHer5 technology and VSV-G epitope tagged α(1A)- and α(1B)-ARs stably and transiently expressed in HEK 293 cells, we analyzed by confocal microscopy the constitutive and agonist-induced internalization of each subtype, and the temporal relationship between agonist induced internalization and the increase in intracellular calcium (determined by FLUO-3 flouorescence), or the phosphorylation of ERK1/2 and p38 MAP kinases (determined by Western blot). RESULTS AND CONCLUSIONS Constitutive as well as agonist-induced trafficking of α(1A) and α(1B) ARs maintain two different endosomal pools of receptors: one located close to the plasma membrane and the other deeper into the cytosol. Each subtype exhibited specific characteristics of internalization and distribution between these pools that determines their signaling pathways: α(1A)-ARs, when located in the plasma membrane, signal through calcium and ERK1/2 pathways but, when translocated to deeper endosomes, through a mechanism sensitive to β-arrestin and concanavalin A, continue signaling through ERK1/2 and also activate the p38 pathway. α(1B)-ARs signal through calcium and ERK1/2 only when located in the membrane and the signals disappear after endocytosis and by disruption of the membrane lipid rafts by methyl-β-cyclodextrin.
Collapse
Affiliation(s)
- Vanessa Segura
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Valencia, Spain
| | - Miguel Pérez-Aso
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Valencia, Spain
| | - Fermí Montó
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Valencia, Spain
| | - Elena Carceller
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Valencia, Spain
| | - María Antonia Noguera
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Valencia, Spain
| | - John Pediani
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences. University of Glasgow, Glasgow, United Kingdom
- Autonomic Physiology Unit, School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Graeme Milligan
- Molecular Pharmacology Group, Institute of Molecular, Cell and Systems Biology, College of Medical, Veterinary and Life Sciences. University of Glasgow, Glasgow, United Kingdom
| | - Ian Christie McGrath
- Autonomic Physiology Unit, School of Life Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Pilar D’Ocon
- Departamento de Farmacología, Facultad de Farmacia, Universitat de València, Valencia, Spain
| |
Collapse
|
103
|
Hennenberg M, Miersch J, Rutz B, Strittmatter F, Waidelich R, Stief CG, Gratzke C. Noradrenaline induces binding of Clathrin light chain A to α1-adrenoceptors in the human prostate. Prostate 2013; 73:715-23. [PMID: 23460120 DOI: 10.1002/pros.22614] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2012] [Accepted: 10/15/2012] [Indexed: 12/18/2022]
Abstract
BACKGROUND Binding of clathrins or caveolin to G protein-coupled receptors may induce post-translational modifications of receptor function. Receptor regulation by clathrin requires cofactors ADP-ribosylation factor 6 (ARF6) and adaptin, while dynamin is required for clathrin- and caveolin-dependent mechanisms. OBJECTIVE To investigate the expression and α1-adrenoceptor binding of clathrins, caveolin, and their cofactors in the human prostate. METHODS Prostate tissue was obtained from radical prostatectomy. Expression of clathrin heavy chain (HC), clathrin light chain A and B (LCA, LCB), caveolin-1, ARF6, β-adaptin, and dynamin-2 was studied by RT-PCR, Western blot, immunohistochemistry, and fluorescence staining. Interaction of α1A-adrenoceptors with clathrins and caveolin-1 was studied by coimmunoprecipitation. RESULTS mRNA and protein expression of clathrin HC, LCA, LCB, caveolin-1, dynamin-2, and β-adaptin was detected in prostate tissues of each patient. Immunohistochemistry demonstrated the expression of clathrin HC, LCA, LCB, caveolin, dynamin, and β-adaptin in stromal cells. Immunoreactivity for these proteins colocalized with α-smooth muscle actin and α1A-adrenoceptors in double fluorescence staining. Coimmunoprecipitation demonstrated that α1A-adrenoceptors in prostate tissue interact with clathrin HC and LCB under resting conditions, but not with caveolin-1. Stimulation of prostate tissues with noradrenaline (30 µM) in vitro induced binding of clathrin LCA to α1A-adrenoceptors. CONCLUSIONS The prostatic α1-adrenoceptor population is at least partially bound to clathrin HC and LCB. Upon receptor activation, prostate α1A-adrenoceptors bind clathrin LCA. This points to a new concept of post-translational α1-adrenoceptor regulation in the prostate, which includes receptor interaction with accessory binding partners.
Collapse
Affiliation(s)
- Martin Hennenberg
- Department of Urology, Ludwig-Maximilians University, Munich, Germany
| | | | | | | | | | | | | |
Collapse
|
104
|
Patel J, Channon KM, McNeill E. The downstream regulation of chemokine receptor signalling: implications for atherosclerosis. Mediators Inflamm 2013; 2013:459520. [PMID: 23690662 PMCID: PMC3649756 DOI: 10.1155/2013/459520] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2012] [Accepted: 03/12/2013] [Indexed: 12/13/2022] Open
Abstract
Heterotrimeric G-protein-coupled receptors (GPCRs) are key mediators of intracellular signalling, control numerous physiological processes, and are one of the largest class of proteins to be pharmacologically targeted. Chemokine-induced macrophage recruitment into the vascular wall is an early pathological event in the progression of atherosclerosis. Leukocyte activation and chemotaxis during cell recruitment are mediated by chemokine ligation of multiple GPCRs. Regulation of GPCR signalling is critical in limiting vascular inflammation and involves interaction with downstream proteins such as GPCR kinases (GRKs), arrestin proteins and regulator of G-protein signalling (RGS) proteins. These have emerged as new mediators of atherogenesis by functioning in internalisation, desensitisation, and signal termination of chemokine receptors. Targeting chemokine signalling through these proteins may provide new strategies to alter atherosclerotic plaque formation and plaque biology.
Collapse
Affiliation(s)
- Jyoti Patel
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Keith M. Channon
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| | - Eileen McNeill
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, University of Oxford, John Radcliffe Hospital, Oxford OX3 9DU, UK
- Division of Cardiovascular Medicine, Radcliffe Department of Medicine, Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford OX3 7BN, UK
| |
Collapse
|
105
|
Zhang X, Eggert US. Non-traditional roles of G protein-coupled receptors in basic cell biology. MOLECULAR BIOSYSTEMS 2013; 9:586-95. [PMID: 23247090 PMCID: PMC3628546 DOI: 10.1039/c2mb25429h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
G protein-coupled receptors (GPCRs) are key signaling proteins that regulate how cells interact with their environment. Traditional signaling cascades involving GPCRs have been well described and are well established and very important clinical targets. With the development of more recent technologies, hints about the involvement of GPCRs in fundamental cell biological processes are beginning to emerge. In this review, we give a basic introduction to GPCR signaling and highlight some less well described roles of GPCRs, including in cell division and membrane trafficking, which may occur through canonical and non-canonical signaling pathways.
Collapse
Affiliation(s)
- Xin Zhang
- High Magnetic Field Laboratory, Chinese Academy of Sciences, Hefei, P.R. China
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
| | - Ulrike S. Eggert
- Dana-Farber Cancer Institute and Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA, USA
- Department of Chemistry and Randall Division of Cell and Molecular Biophysics, King’s College London, London, UK
| |
Collapse
|
106
|
Beerepoot P, Lam VM, Salahpour A. Measurement of G protein-coupled receptor surface expression. J Recept Signal Transduct Res 2013; 33:162-5. [DOI: 10.3109/10799893.2013.781625] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
107
|
Alonso V, Friedman PA. Minireview: ubiquitination-regulated G protein-coupled receptor signaling and trafficking. Mol Endocrinol 2013; 27:558-72. [PMID: 23471539 DOI: 10.1210/me.2012-1404] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
G protein-coupled receptors (GPCRs) are the largest and most diverse superfamily of membrane proteins and mediate most cellular responses to hormones and neurotransmitters. Posttranslational modifications are considered the main regulators of all GPCRs. In addition to phosphorylation, glycosylation, and palmitoylation, increasing evidence as reviewed here reveals that ubiquitination also regulates the magnitude and temporospatial aspects of GPCR signaling. Posttranslational protein modification by ubiquitin is a key molecular mechanism governing proteins degradation. Ubiquitination mediates the covalent conjugation of ubiquitin, a highly conserved polypeptide of 76 amino acids, to protein substrates. This process is catalyzed by 3 enzymes acting in tandem: an E1, ubiquitin-activating enzyme; an E2, ubiquitin-carrying enzyme; and an E3, ubiquitin ligase. Ubiquitination is counteracted by deubiquitinating enzymes that deconjugate ubiquitin-modified proteins and rescue the substrate from proteasomal degradation. Although ubiquitination is known to target many GPCRs for lysosomal or proteasomal degradation, emerging findings define novel roles for the basal status of ubiquitination and for rapid deubiquitination and transubiquitination controlling cell surface expression and cellular responsiveness of some GPCRs. In this review, we highlight the classical and novel roles of ubiquitin in the regulation of GPCR function, signaling, and trafficking.
Collapse
Affiliation(s)
- Verónica Alonso
- Institute of Applied Molecular Medicine, San Pablo-CEU University School of Medicine, Madrid, 28668, Spain
| | | |
Collapse
|
108
|
Okamoto Y, Bernstein JD, Shikano S. Role of C-terminal membrane-proximal basic residues in cell surface trafficking of HIV coreceptor GPR15 protein. J Biol Chem 2013; 288:9189-99. [PMID: 23430259 DOI: 10.1074/jbc.m112.445817] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Cell surface density of G protein-coupled receptors (GPCRs) is controlled by dynamic molecular interactions that often involve recognition of the distinct sequence signals on the cargo receptors. We reported previously that the RXR-type dibasic motif in the distal C-terminal tail of an HIV coreceptor GPR15 negatively regulates the cell surface expression by mediating the coatomer protein I complex-dependent retrograde transport to the endoplasmic reticulum (ER). Here we demonstrate that another pair of basic residues (Arg(310)-Arg(311)) in the membrane-proximal region of the C-terminal tail plays a pivotal role in mediating the anterograde trafficking of GPR15. The Ala mutation of the C-terminal membrane-proximal basic residues (MPBRs) (R310/311A) abolished the O-glycosylation and cell surface expression of GPR15. The subcellular fractionation and immunocytochemistry assays indicated that the R310/311A mutant was more localized in the ER but much less in the trans-Golgi when compared with the wild-type GPR15, suggesting the positive role of Arg(310)-Arg(311) in the ER-to-Golgi transport of GPR15. Sequence analysis on human GPCRs showed that the basic residues are frequent in the membrane-proximal region of the C-terminal tail. Similar to GPR15, mutation of the C-terminal MPBRs resulted in a marked reduction of the cell surface expression in multiple different GPCRs. Our results suggest that the C-terminal MPBRs are critically involved in mediating the anterograde trafficking of a broad range of membrane proteins, including GPCRs.
Collapse
Affiliation(s)
- Yukari Okamoto
- Department of Biochemistry and Molecular Genetics, University of Illinois at Chicago, Chicago, IL 60607, USA
| | | | | |
Collapse
|
109
|
Abrisqueta M, Herraiz C, Pérez Oliva AB, Sanchez-Laorden BL, Olivares C, Jiménez-Cervantes C, García-Borrón JC. Differential and competitive regulation of human melanocortin 1 receptor signaling by β-arrestin isoforms. J Cell Sci 2013; 126:3724-37. [DOI: 10.1242/jcs.128322] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
The melanocortin 1 receptor (MC1R) is a G protein-coupled receptor (GPCR) crucial for the regulation of melanocyte proliferation and differentiation. MC1R activation by melanocortin hormones triggers the cAMP pathway and stimulates the extracellular signal-regulated protein kinases ERK1 and ERK2 to promote synthesis of photoprotective eumelanin pigments among other effects. Signaling from most GPCRs is regulated by the β-arrestin (ARRB) family of cytosolic multifunctional adaptor proteins which mediate signal termination and endocytosis of GPCR-agonist complexes. The ubiquitously expressed non-visual β-arrestin1 (ARRB1) and β-arrestin2 (ARRB2) are highly homologous but not functionally equivalent. Their role in the regulation of MC1R is unknown. Using a combination of co-immunoprecipitation, gel filtration chromatography, confocal microscopy, siRNA-mediated knockdown and functional assays, we demonstrated agonist-independent competitive interactions of ARRB1 and ARRB2 with MC1R, which might also be independent of phosphorylation of MC1R C-terminal Ser/Thr residues. The effects of ARRBs were isoform-specific. ARRB2 inhibited MC1R agonist-dependent cAMP production but not ERK activation, stimulated internalization and showed prolonged co-localization with the receptor in endocytic vesicles. Conversely, ARRB1 had no effect on internalization or functional coupling, but competed with ARRB2 for binding MC1R, which might increase signaling by displacement of inhibitory ARRB2. These data suggest a novel mechanism of MC1R functional regulation based on the relative expression of ARRB isoforms, with possible activatory ARRB1-dependent effects arising from partial relief of inhibitory ARRB2-MC1R interactions. Thus, competitive displacement of inhibitory ARRBs by functionally neutral ARRB isoforms might exert a paradigm-shifting signal-promoting effect to fine-tune signaling downstream of certain GPCRs.
Collapse
|
110
|
Kargl J, Balenga N, Parzmair GP, Brown AJ, Heinemann A, Waldhoer M. The cannabinoid receptor CB1 modulates the signaling properties of the lysophosphatidylinositol receptor GPR55. J Biol Chem 2012; 287:44234-48. [PMID: 23161546 PMCID: PMC3531739 DOI: 10.1074/jbc.m112.364109] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 11/15/2012] [Indexed: 11/06/2022] Open
Abstract
The G protein-coupled receptor (GPCR) 55 (GPR55) and the cannabinoid receptor 1 (CB1R) are co-expressed in many tissues, predominantly in the central nervous system. Seven transmembrane spanning (7TM) receptors/GPCRs can form homo- and heteromers and initiate distinct signaling pathways. Recently, several synthetic CB1 receptor inverse agonists/antagonists, such as SR141716A, AM251, and AM281, were reported to activate GPR55. Of these, SR141716A was marketed as a promising anti-obesity drug, but was withdrawn from the market because of severe side effects. Here, we tested whether GPR55 and CB1 receptors are capable of (i) forming heteromers and (ii) whether such heteromers could exhibit novel signaling patterns. We show that GPR55 and CB1 receptors alter each others signaling properties in human embryonic kidney (HEK293) cells. We demonstrate that the co-expression of FLAG-CB1 receptors in cells stably expressing HA-GPR55 specifically inhibits GPR55-mediated transcription factor activation, such as nuclear factor of activated T-cells and serum response element, as well as extracellular signal-regulated kinases (ERK1/2) activation. GPR55 and CB1 receptors can form heteromers, but the internalization of both receptors is not affected. In addition, we observe that the presence of GPR55 enhances CB1R-mediated ERK1/2 and nuclear factor of activated T-cell activation. Our data provide the first evidence that GPR55 can form heteromers with another 7TM/GPCR and that this interaction with the CB1 receptor has functional consequences in vitro. The GPR55-CB1R heteromer may play an important physiological and/or pathophysiological role in tissues endogenously co-expressing both receptors.
Collapse
MESH Headings
- Cannabinoids/metabolism
- Dimerization
- Extracellular Signal-Regulated MAP Kinases/genetics
- Extracellular Signal-Regulated MAP Kinases/metabolism
- HEK293 Cells
- Humans
- Lysophospholipids/metabolism
- Protein Binding
- Receptor, Cannabinoid, CB1/chemistry
- Receptor, Cannabinoid, CB1/genetics
- Receptor, Cannabinoid, CB1/metabolism
- Receptors, Cannabinoid
- Receptors, G-Protein-Coupled/chemistry
- Receptors, G-Protein-Coupled/genetics
- Receptors, G-Protein-Coupled/metabolism
- Signal Transduction
- Transcriptional Activation
Collapse
Affiliation(s)
- Julia Kargl
- From the Institute for Experimental and Clinical Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Nariman Balenga
- From the Institute for Experimental and Clinical Pharmacology, Medical University of Graz, 8010 Graz, Austria
- the Molecular Signal Transduction Section, Laboratory of Allergic Diseases, NIAID, National Institutes of Health, Bethesda, Maryland 20892-1889
| | - Gerald P. Parzmair
- From the Institute for Experimental and Clinical Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Andrew J. Brown
- the Department of Screening and Compound Profiling, GlaxoSmithKline, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom, and
| | - Akos Heinemann
- From the Institute for Experimental and Clinical Pharmacology, Medical University of Graz, 8010 Graz, Austria
| | - Maria Waldhoer
- From the Institute for Experimental and Clinical Pharmacology, Medical University of Graz, 8010 Graz, Austria
| |
Collapse
|
111
|
von Zastrow M, Williams JT. Modulating neuromodulation by receptor membrane traffic in the endocytic pathway. Neuron 2012; 76:22-32. [PMID: 23040804 DOI: 10.1016/j.neuron.2012.09.022] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Cellular responsiveness to many neuromodulators is controlled by endocytosis of the transmembrane receptors that transduce their effects. Endocytic membrane trafficking of particular neuromodulator receptors exhibits remarkable diversity and specificity, determined largely by molecular sorting operations that guide receptors at trafficking branchpoints after endocytosis. In this Review, we discuss recent progress in elucidating mechanisms mediating the molecular sorting of neuromodulator receptors in the endocytic pathway. There is emerging evidence that endocytic trafficking of neuromodulator receptors, in addition to influencing longer-term cellular responsiveness under conditions of prolonged or repeated activation, may also affect the acute response. Physiological and pathological consequences of defined receptor trafficking events are only now being elucidated, but it is already apparent that endocytosis of neuromodulator receptors has a significant impact on the actions of therapeutic drugs. The present data also suggest, conversely, that mechanisms of receptor endocytosis and molecular sorting may themselves represent promising targets for therapeutic manipulation.
Collapse
Affiliation(s)
- Mark von Zastrow
- Department of Psychiatry, University of California at San Francisco, San Francisco, CA 94158, USA.
| | | |
Collapse
|
112
|
Zhang NR, Planer W, Siuda ER, Zhao HC, Stickler L, Chang SD, Baird MA, Cao YQ, Bruchas MR. Serine 363 is required for nociceptin/orphanin FQ opioid receptor (NOPR) desensitization, internalization, and arrestin signaling. J Biol Chem 2012; 287:42019-30. [PMID: 23086955 PMCID: PMC3516748 DOI: 10.1074/jbc.m112.405696] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 10/17/2012] [Indexed: 11/06/2022] Open
Abstract
We determined the role of carboxyl-terminal regulation of NOPR (nociceptin, orphanin FQ receptor) signaling and function. We mutated C-terminal serine and threonine residues and examined their role in NOPR trafficking, homologous desensitization, and arrestin-dependent MAPK signaling. The NOPR agonist, nociceptin, caused robust NOPR-YFP receptor internalization, peaking at 30 min. Mutation of serine 337, 346, and 351, had no effect on NOPR internalization. However, mutation of C-terminal threonine 362, serine 363, and threonine 365 blocked nociceptin-induced internalization of NOPR. Furthermore, point mutation of only Ser-363 was sufficient to block NOPR internalization. Homologous desensitization of NOPR-mediated calcium channel blockade and inhibition of cAMP were also shown to require Ser-363. Additionally, NOPR internalization was absent when GRK3, and Arrestin3 were knocked down using siRNA, but not when GRK2 and Arrestin2 were knocked down. We also found that nociceptin-induced NOPR-mediated JNK but not ERK signaling requires Ser-363, GRK3, and Arrestin3. Dominant-positive Arrestin3 but not Arrestin2 was sufficient to rescue NOPR-S363A internalization and JNK signaling. These findings suggest that NOPR function may be regulated by GRK3 phosphorylation of Ser-363 and Arrestin3 and further demonstrates the complex nature of G-protein-dependent and -independent signaling in opioid receptors.
Collapse
Affiliation(s)
- Nancy R. Zhang
- From the Department of Anesthesiology, Basic Research Division, and
| | - William Planer
- From the Department of Anesthesiology, Basic Research Division, and
| | - Edward R. Siuda
- From the Department of Anesthesiology, Basic Research Division, and
- Division of Biology and Biomedical Sciences, Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Hu-Chen Zhao
- From the Department of Anesthesiology, Basic Research Division, and
| | - Lucy Stickler
- From the Department of Anesthesiology, Basic Research Division, and
| | - Steven D. Chang
- From the Department of Anesthesiology, Basic Research Division, and
| | - Madison A. Baird
- From the Department of Anesthesiology, Basic Research Division, and
| | - Yu-Qing Cao
- From the Department of Anesthesiology, Basic Research Division, and
- Washington University Pain Center
- Division of Biology and Biomedical Sciences, Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| | - Michael R. Bruchas
- From the Department of Anesthesiology, Basic Research Division, and
- Department of Anatomy and Neurobiology
- Washington University Pain Center
- Division of Biology and Biomedical Sciences, Program in Neuroscience, Washington University School of Medicine, St. Louis, Missouri 63110
| |
Collapse
|
113
|
Levayer R. [Regulation of intercellular adhesion during epithelial morphogenesis]. Biol Aujourdhui 2012; 206:219-36. [PMID: 23171844 DOI: 10.1051/jbio/2012021] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2012] [Indexed: 11/14/2022]
Abstract
The epithelium is one of the most abundant tissues in metazoans. It is required to generate stable chemical and mechanical barriers between physiological compartments (fluid matrix/external environment). This function is based on multiple intercellular junctions, which insulate and stabilize cell-cell contacts in the tissue. Despite this apparent robustness, epithelia can be extensively remodeled during wound healing, embryogenesis and tumor progression. The capacity to be remodeled while keeping tissue cohesion requires a perfect balance between stability and plasticity of intercellular junctions. The balance is partially regulated by intercellular adhesion, which is mostly based on adherens junctions and the transmembrane protein E-cadherin. The aim of this review is to report the molecular basis of the balance between plasticity and robustness in the epithelium. We will first present the minimal physical framework used to describe epithelial cell shape. We will then describe the main processes involved in intercellular adhesion regulation and their functions during epithelial morphogenesis. Eventually, we will analyze the relationship and the coupling between adhesive forces and cortical tension.
Collapse
Affiliation(s)
- Romain Levayer
- Institut de Biologie du Developpement de Marseille Luminy, Marseille, France.
| |
Collapse
|
114
|
Juliano RL, Carver K, Cao C, Ming X. Receptors, endocytosis, and trafficking: the biological basis of targeted delivery of antisense and siRNA oligonucleotides. J Drug Target 2012; 21:27-43. [PMID: 23163768 DOI: 10.3109/1061186x.2012.740674] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The problem of targeted delivery of antisense and siRNA oligonucleotides can be resolved into two distinct aspects. The first concerns devising ligand-oligonucleotide or ligand-carrier moieties that bind with high selectivity to receptors on the cell type of interest and that are efficiently internalized by endocytosis. The second concerns releasing oligonucleotides from pharmacologically inert endomembrane compartments so that they can access RNA in the cytosol or nucleus. In this review, we will address both of these aspects. Thus, we present information on three important receptor families, the integrins, the receptor tyrosine kinases, and the G protein-coupled receptors in terms of their suitability for targeted delivery of oligonucleotides. This includes discussion of receptor abundance, internalization and trafficking pathways, and the availability of suitable high affinity ligands. We also consider the process of oligonucleotide uptake and intracellular trafficking and discuss approaches to modulating these processes in a pharmacologically productive manner. Hopefully, the basic information presented in this review will be of value to investigators involved in designing delivery approaches for oligonucleotides.
Collapse
Affiliation(s)
- R L Juliano
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, NC 27599, USA.
| | | | | | | |
Collapse
|
115
|
Huangfu WC, Fuchs SY. Ubiquitination-dependent regulation of signaling receptors in cancer. Genes Cancer 2012; 1:725-34. [PMID: 21127735 DOI: 10.1177/1947601910382901] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Ubiquitination of signaling cell surface receptors is a key mechanism regulating the availability of these receptors to interact with extracellular ligands. Accordingly, this regulation determines the sensitivity of cells to the humoral and locally secreted regulators of cell function, proliferation, and viability. Alterations in receptor ubiquitination and degradation are often encountered in cancers. Malignant cells utilize modified ubiquitination of signaling receptors to augment or attenuate signaling pathways on the basis of whether the outcome of this signaling is conducive or not for tumor growth and survival. These mechanisms as well as their significance for the treatment of human cancers are discussed.
Collapse
Affiliation(s)
- Wei-Chun Huangfu
- Department of Animal Biology and Mari Lowe Center for Comparative Oncology, School of Veterinary Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | | |
Collapse
|
116
|
Hishinuma S, Sato Y, Akatsu C, Shoji M. The affinity of histamine for Gq protein-coupled histamine H(1)-receptors is predominantly regulated by their internalization in human astrocytoma cells. J Pharmacol Sci 2012; 119:233-42. [PMID: 22786583 DOI: 10.1254/jphs.11054fp] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022] Open
Abstract
We examined the regulatory mechanisms of the affinity of Gq protein-coupled histamine H(1)-receptors for histamine after histamine pretreatment in intact human U373 MG astrocytoma cells. In control cells, the displacement curves for histamine against the binding of 5 nM [(3)H]mepyramine, a radioligand for H(1)-receptors, showed the presence of two binding sites for histamine, that is, high and low affinity sites. Pretreatment with 0.1 mM histamine for 30 min at 37°C induced a significant reduction in the percentage of high affinity sites for histamine and a concomitant increase in the percentage of low affinity sites with no change in their pIC(50) values. These histamine-induced changes were insensitive to 30 µM KN-62, an inhibitor of Ca(2+)/calmodulin-dependent protein kinase II, but they were completely inhibited either by 0.4 mM ZnCl(2), an inhibitor of G protein-coupled receptor kinases (GRKs), or under hypertonic conditions, where clathrin-mediated endocytosis is known to be inhibited. These results suggest that histamine-induced conversion of high to low affinity sites for histamine is predominantly regulated by GRK/clathrin-mediated internalization of H(1)-receptors in human astrocytoma cells.
Collapse
Affiliation(s)
- Shigeru Hishinuma
- Department of Pharmacodynamics, Meiji Pharmaceutical University, Tokyo 204-8588, Japan.
| | | | | | | |
Collapse
|
117
|
Hung WS, Huang CL, Fan JT, Huang DY, Yeh CF, Cheng JC, Tseng CP. The endocytic adaptor protein Disabled-2 is required for cellular uptake of fibrinogen. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2012; 1823:1778-88. [PMID: 22705885 DOI: 10.1016/j.bbamcr.2012.06.008] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2011] [Revised: 05/22/2012] [Accepted: 06/07/2012] [Indexed: 10/28/2022]
Abstract
Endocytosis is pivotal for uptake of fibrinogen from plasma into megakaryocytes and platelet α-granules. Due to the complex adaptor and cargo contents in endocytic vehicles, the underlying mechanism of fibrinogen uptake is not yet completely elucidated. In this study, we investigated whether the endocytic adaptor protein Disabled-2 (DAB2) mediates fibrinogen uptake in an adaptor-specific manner. By employing primary megakaryocytes and megakaryocytic differentiating human leukemic K562 cells as the study models, we found that fibrinogen uptake is associated with the expression of integrin αIIbβ3 and DAB2 and is mediated through clathrin-dependent manner. Accordingly, constitutive and inducible knockdown of DAB2 by small interfering RNA reduced fibrinogen uptake for 53.2 ± 9.8% and 59.0 ± 10.7%, respectively. Culturing the cells in hypertonic solution or in the presence of clathrin inhibitor chlorpromazine abrogated clathrin-dependent endocytosis and diminished the uptake of fibrinogen. Consistent with these findings, 72.2 ± 0.2% of cellular DAB2 was colocalized with clathrin, whereas 56.4±4.1% and 54.6 ± 2.0% of the internalized fibrinogen were colocalized with clathrin and DAB2, respectively. To delineate whether DAB2 mediates fibrinogen uptake in an adaptor-specific manner, K562 stable cell lines with knockdown of the adaptor protein-2 (AP-2) or double knockdown of AP-2/DAB2 were established. The AP-2 knockdown cells elicited normal fibrinogen uptake activity but the uptake of collagen was diminished. In addition, collagen uptake was further reduced in DAB2/AP-2 knockdown cells. These findings thereby define an adaptor-specific mechanism in the control of fibrinogen uptake and implicate that DAB2 is the key adaptor in the clathrin-associated endocytic complexes to mediate fibrinogen internalization.
Collapse
Affiliation(s)
- Wei-Shan Hung
- Graduate Institute of Biomedical Sciences, College of Medicine, Chang Gung University, Taoyuan, Taiwan, ROC
| | | | | | | | | | | | | |
Collapse
|
118
|
Ferreira F, Foley M, Cooke A, Cunningham M, Smith G, Woolley R, Henderson G, Kelly E, Mundell S, Smythe E. Endocytosis of G protein-coupled receptors is regulated by clathrin light chain phosphorylation. Curr Biol 2012; 22:1361-70. [PMID: 22704991 DOI: 10.1016/j.cub.2012.05.034] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Revised: 03/16/2012] [Accepted: 05/16/2012] [Indexed: 11/15/2022]
Abstract
BACKGROUND Signaling by transmembrane receptors such as G protein-coupled receptors (GPCRs) occurs at the cell surface and throughout the endocytic pathway, and signaling from the cell surface may differ in magnitude and downstream output from intracellular signaling. As a result, the rate at which signaling molecules traverse the endocytic pathway makes a significant contribution to downstream output. Modulation of the core endocytic machinery facilitates differential uptake of individual cargoes. Clathrin-coated pits are a major entry portal where assembled clathrin forms a lattice around invaginating buds that have captured endocytic cargo. Clathrin assembles into triskelia composed of three clathrin heavy chains and associated clathrin light chains (CLCs). Despite the identification of clathrin-coated pits at the cell surface over 30 years ago, the functions of CLCs in endocytosis have been elusive. RESULTS In this work, we identify a novel role for CLCs in the regulated endocytosis of specific cargoes. Small interfering RNA-mediated knockdown of either CLCa or CLCb inhibits the uptake of GPCRs. Moreover, we demonstrate that phosphorylation of Ser204 in CLCb is required for efficient endocytosis of a subset of GPCRs and identify G protein-coupled receptor kinase 2 (GRK2) as a kinase that can phosphorylate CLCb on Ser204. Overexpression of CLCb(S204A) specifically inhibits the endocytosis of those GPCRs whose endocytosis is GRK2-dependent. CONCLUSIONS Together, these results indicate that CLCb phosphorylation acts as a discriminator for the endocytosis of specific GPCRs.
Collapse
Affiliation(s)
- Filipe Ferreira
- Department of Biomedical Science, Centre for Membrane Interactions and Dynamics, University of Sheffield, Sheffield S10 2TN, UK
| | | | | | | | | | | | | | | | | | | |
Collapse
|
119
|
Smani Y, Docobo-Pérez F, López-Rojas R, Domínguez-Herrera J, Ibáñez-Martínez J, Pachón J. Platelet-activating factor receptor initiates contact of Acinetobacter baumannii expressing phosphorylcholine with host cells. J Biol Chem 2012; 287:26901-10. [PMID: 22689572 DOI: 10.1074/jbc.m112.344556] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Adhesion is an initial and important step in Acinetobacter baumannii causing infections. However, the exact molecular mechanism of such a step between A. baumannii and the host cells remains unclear. Here, we demonstrated that the phosphorylcholine (ChoP)-containing outer membrane protein of A. baumannii binds to A549 cells through platelet-activating factor receptor (PAFR), resulting in activation of G protein and intracellular calcium. Upon A. baumannii expressing ChoP binding to PAFR, clathrin and β-arrestins, proteins involved in the direction of the vacuolar movement, are activated during invasion of A. baumannii. PAFR antagonism restricts the dissemination of A. baumannii in the pneumonia model. These results define a role for PAFR in A. baumannii interaction with host cells and suggest a mechanism for the entry of A. baumannii into the cytoplasm of host cells.
Collapse
Affiliation(s)
- Younes Smani
- Clinic Unit of Infectious Diseases, Microbiology and Preventive Medicine, Institute of Biomedicine of Seville (IBiS), University Hospital Virgen del Rocío/CSIC/University of Seville, 41013 Seville, Spain.
| | | | | | | | | | | |
Collapse
|
120
|
Nisar SP, Cunningham M, Saxena K, Pope RJ, Kelly E, Mundell SJ. Arrestin scaffolds NHERF1 to the P2Y12 receptor to regulate receptor internalization. J Biol Chem 2012; 287:24505-15. [PMID: 22610101 DOI: 10.1074/jbc.m112.347104] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
We have recently shown in a patient with mild bleeding that the PDZ-binding motif of the platelet G protein-coupled P2Y(12) receptor (P2Y(12)R) is required for effective receptor traffic in human platelets. In this study we show for the first time that the PDZ motif-binding protein NHERF1 exerts a major role in potentiating G protein-coupled receptor (GPCR) internalization. NHERF1 interacts with the C-tail of the P2Y(12)R and unlike many other GPCRs, NHERF1 interaction is required for effective P2Y(12)R internalization. In vitro and prior to agonist stimulation P2Y(12)R/NHERF1 interaction requires the intact PDZ binding motif of this receptor. Interestingly on receptor stimulation NHERF1 no longer interacts directly with the receptor but instead binds to the receptor via the endocytic scaffolding protein arrestin. These findings suggest a novel model by which arrestin can serve as an adaptor to promote NHERF1 interaction with a GPCR to facilitate effective NHERF1-dependent receptor internalization.
Collapse
Affiliation(s)
- Shaista P Nisar
- School of Physiology and Pharmacology, Medical Sciences Building, University of Bristol, Briston BS8 1TD, United Kingdom
| | | | | | | | | | | |
Collapse
|
121
|
LGR5 interacts and cointernalizes with Wnt receptors to modulate Wnt/β-catenin signaling. Mol Cell Biol 2012; 32:2054-64. [PMID: 22473993 DOI: 10.1128/mcb.00272-12] [Citation(s) in RCA: 147] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
LGR5, a seven-transmembrane domain receptor of the rhodopsin family, is a Wnt target gene and a bona fide marker of adult stem cells in the gastrointestinal tract and hair follicle bulge. Recently, we and others demonstrated that LGR5 and its homologues function as receptors of the R-spondin family of stem cell factors to potentiate Wnt/β-catenin signaling. However, the mechanism of how LGR5 enhances the signaling output remains unclear. Here we report that following costimulation with the ligands R-spondin1 and Wnt3a, LGR5 interacts and forms a supercomplex with the Wnt coreceptors LRP6 and Fzd5 which is rapidly internalized and then degraded. Internalization of LGR5 is mediated through a dynamin- and clathrin-dependent pathway. Inhibition of this endocytic process has no effect on LGR5 signaling. Deletion of the C-terminal tail of LGR5 maintains its ability to interact with LRP6, yet this LGR5 mutant exhibits increased signaling activity and a decreased rate of endocytosis in response to R-spondin1 compared to the wild-type receptor. This study provides direct evidence that LGR5 becomes part of the Wnt signaling complex at the membrane level to enhance Wnt/β-catenin signaling. However, internalization of LGR5 does not appear to be essential for potentiating the canonical Wnt signaling pathway.
Collapse
|
122
|
Canals M, Scholten DJ, de Munnik S, Han MKL, Smit MJ, Leurs R. Ubiquitination of CXCR7 controls receptor trafficking. PLoS One 2012; 7:e34192. [PMID: 22457824 PMCID: PMC3311620 DOI: 10.1371/journal.pone.0034192] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2011] [Accepted: 02/28/2012] [Indexed: 12/21/2022] Open
Abstract
The chemokine receptor CXCR7 binds CXCL11 and CXCL12 with high affinity, chemokines that were previously thought to bind exclusively to CXCR4 and CXCR3, respectively. Expression of CXCR7 has been associated with cardiac development as well as with tumor growth and progression. Despite having all the canonical features of G protein-coupled receptors (GPCRs), the signalling pathways following CXCR7 activation remain controversial, since unlike typical chemokine receptors, CXCR7 fails to activate Gαi-proteins. CXCR7 has recently been shown to interact with β-arrestins and such interaction has been suggested to be responsible for G protein-independent signals through ERK-1/2 phosphorylation. Signal transduction by CXCR7 is controlled at the membrane by the process of GPCR trafficking. In the present study we investigated the regulatory processes triggered by CXCR7 activation as well as the molecular interactions that participate in such processes. We show that, CXCR7 internalizes and recycles back to the cell surface after agonist exposure, and that internalization is not only β-arrestin-mediated but also dependent on the Serine/Threonine residues at the C-terminus of the receptor. Furthermore we describe, for the first time, the constitutive ubiquitination of CXCR7. Such ubiquitination is a key modification responsible for the correct trafficking of CXCR7 from and to the plasma membrane. Moreover, we found that CXCR7 is reversibly de-ubiquitinated upon treatment with CXCL12. Finally, we have also identified the Lysine residues at the C-terminus of CXCR7 to be essential for receptor cell surface delivery. Together these data demonstrate the differential regulation of CXCR7 compared to the related CXCR3 and CXCR4 receptors, and highlight the importance of understanding the molecular determinants responsible for this process.
Collapse
Affiliation(s)
- Meritxell Canals
- Leiden/Amsterdam Center for Drug Research, Division of Medicinal Chemistry, Faculty of Science, VU University Amsterdam, Amsterdam, The Netherlands.
| | | | | | | | | | | |
Collapse
|
123
|
Cunningham MR, McIntosh KA, Pediani JD, Robben J, Cooke AE, Nilsson M, Gould GW, Mundell S, Milligan G, Plevin R. Novel role for proteinase-activated receptor 2 (PAR2) in membrane trafficking of proteinase-activated receptor 4 (PAR4). J Biol Chem 2012; 287:16656-69. [PMID: 22411985 PMCID: PMC3351358 DOI: 10.1074/jbc.m111.315911] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
Proteinase-activated receptors 4 (PAR4) is a class A G protein-coupled receptor (GPCR) recognized through the ability of serine proteases such as thrombin and trypsin to mediate receptor activation. Due to the irreversible nature of activation, a fresh supply of receptor is required to be mobilized to the cell surface for responsiveness to agonist to be sustained. Unlike other PAR subtypes, the mechanisms regulating receptor trafficking of PAR4 remain unknown. Here, we report novel features of the intracellular trafficking of PAR4 to the plasma membrane. PAR4 was poorly expressed at the plasma membrane and largely retained in the endoplasmic reticulum (ER) in a complex with the COPI protein subunit β-COP1. Analysis of the PAR4 protein sequence identified an arginine-based (RXR) ER retention sequence located within intracellular loop-2 (R183AR → A183AA), mutation of which allowed efficient membrane delivery of PAR4. Interestingly, co-expression with PAR2 facilitated plasma membrane delivery of PAR4, an effect produced through disruption of β-COP1 binding and facilitation of interaction with the chaperone protein 14-3-3ζ. Intermolecular FRET studies confirmed heterodimerization between PAR2 and PAR4. PAR2 also enhanced glycosylation of PAR4 and activation of PAR4 signaling. Our results identify a novel regulatory role for PAR2 in the anterograde traffic of PAR4. PAR2 was shown to both facilitate and abrogate protein interactions with PAR4, impacting upon receptor localization and cell signal transduction. This work is likely to impact markedly upon the understanding of the receptor pharmacology of PAR4 in normal physiology and disease.
Collapse
Affiliation(s)
- Margaret R Cunningham
- Department of Physiology and Pharmacology, Strathclyde Institute for Biomedical Sciences, Univesity of Strathclyde, 27 Taylor Street, Glasgow G4 0NR, Scotland, United Kingdom.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
124
|
Kleyer J, Nicolussi S, Taylor P, Simonelli D, Furger E, Anderle P, Gertsch J. Cannabinoid receptor trafficking in peripheral cells is dynamically regulated by a binary biochemical switch. Biochem Pharmacol 2012; 83:1393-412. [PMID: 22387618 DOI: 10.1016/j.bcp.2012.02.014] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2012] [Revised: 02/16/2012] [Accepted: 02/17/2012] [Indexed: 12/20/2022]
Abstract
The cannabinoid G protein-coupled receptors (GPCRs) CB₁ and CB₂ are expressed in different peripheral cells. Localization of GPCRs in the cell membrane determines signaling via G protein pathways. Here we show that unlike in transfected cells, CB receptors in cell lines and primary human cells are not internalized upon agonist interaction, but move between cytoplasm and cell membranes by ligand-independent trafficking mechanisms. Even though CB receptors are expressed in many cells of peripheral origin they are not always localized in the cell membrane and in most cancer cell lines the ratios between CB₁ and CB₂ receptor gene and surface expression vary significantly. In contrast, CB receptor cell surface expression in HL60 cells is subject to significant oscillations and CB₂ receptors form oligomers and heterodimers with CB₁ receptors, showing synchronized surface expression, localization and trafficking. We show that hydrogen peroxide and other nonspecific protein tyrosine phosphatase inhibitors (TPIs) such as phenylarsine oxide trigger both CB₂ receptor internalization and externalization, depending on receptor localization. Phorbol ester-mediated internalization of CB receptors can be inhibited via this switch. In primary human immune cells hydrogen peroxide and other TPIs lead to a robust internalization of CB receptors in monocytes and an externalization in T cells. This study describes, for the first time, the dynamic nature of CB receptor trafficking in the context of a biochemical switch, which may have implications for studies on the cell-type specific effects of cannabinoids and our understanding of the regulation of CB receptor cell surface expression.
Collapse
Affiliation(s)
- Jonas Kleyer
- Institute of Biochemistry and Molecular Medicine, Swiss National Centre of Competence in Research NCCR TransCure, University of Bern, Bühlstrasse 28, CH-3012 Bern, Switzerland
| | | | | | | | | | | | | |
Collapse
|
125
|
Takeda Y, Yano Y, Matsuzaki K. High-throughput analysis of ligand-induced internalization of β2-adrenoceptors using the coiled-coil tag-probe method. Anal Chem 2012; 84:1754-9. [PMID: 22243418 DOI: 10.1021/ac203231n] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Receptor internalization is a useful indicator of the activity of ligands. The N-terminus of the β(2)-adrenergic receptor expressed on the cell surface was labeled with fluorophores using a novel coiled-coil labeling system. Endocytosis of the receptors was automatically detected using a fluorescence image analyzer by evaluating (1) translocation of the receptor from cell-surface to intracellular regions and (2) acidification in endosomes. Both parameters increased upon agonist stimulation in a dose-dependent manner. The extent of endocytosis was significantly dependent on the agonist used, indicating the presence of a biased signaling for endocytosis. The receptor antagonists can also be screened by competitive inhibition of agonist-induced endocytosis. The image analysis approach has proven to be useful for high-throughput characterization and screening of GPCR ligands.
Collapse
Affiliation(s)
- Yuki Takeda
- Graduate School of Pharmaceutical Sciences, Kyoto University, Kyoto 606-8501, Japan
| | | | | |
Collapse
|
126
|
Yano Y, Kawano K, Omae K, Matsuzaki K. Coiled-coil tag-probe labeling methods for live-cell imaging of membrane receptors. Methods Enzymol 2012; 504:355-70. [PMID: 22264544 DOI: 10.1016/b978-0-12-391857-4.00018-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/25/2023]
Abstract
Tag-probe labeling methods have advantages over conventional fusion with fluorescent proteins in terms of smaller labels, surface specificity, availability of pulse labeling, and ease of multicolor labeling. With this method, the gene of the target protein is fused with a short tag sequence, expressed in cells, and the protein is labeled with exogenous fluorescent probes that specifically bind to the tag. Various labeling principles, such as protein-ligand interaction, peptide-peptide interaction, peptide-metal interaction, and enzymatic reactions, have been applied to the tag-probe labeling of membrane receptors. We describe our coiled-coil tag-probe method in detail, including the design and synthesis of the tag and probe, labeling procedures, and observations by confocal microscopy. Applications to the analysis of receptor internalization and oligomerization are also introduced.
Collapse
Affiliation(s)
- Yoshiaki Yano
- Graduate School of Pharmaceutical Sciences, Kyoto University, Sakyo-ku, Kyoto, Japan
| | | | | | | |
Collapse
|
127
|
Alonso V, Magyar CE, Wang B, Bisello A, Friedman PA. Ubiquitination-deubiquitination balance dictates ligand-stimulated PTHR sorting. J Bone Miner Res 2011; 26:2923-34. [PMID: 21898592 PMCID: PMC3222777 DOI: 10.1002/jbmr.494] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Parathyroid hormone receptors (PTHR) are promptly internalized upon stimulation by activating (PTH[1-84], PTH[1-34]) and non-activating (PTH[7-84], PTH[7-34]) ligands. Here, we characterized the mechanism regulating the sorting of internalized receptors between recycling and degradative pathways. PTHR recycles faster after challenge with PTH(1-34) than with PTH(7-34). PTHR recycling is complete by 2 h after PTH(1-34) stimulation, but incomplete at this time in cells treated with PTH(7-34). The slower and incomplete recycling induced by PTH(7-34) is due to proteasomal degradation. Both PTH(1-34) and PTH(7-34) induced PTHR polyubiquitination. Ubiquitination by PTH(1-34) was transient, whereas receptor ubiquitination after PTH(7-34) was sustained. PTH(1-34), but not PTH(7-34), induced expression of the PTHR-specific deubiquitinating enzyme USP2. Overexpression of USP2 prevented PTH(7-34)-induced PTHR degradation. We conclude that PTH(1-34) promotes coupled PTHR ubiquitination and deubiquitination, whereas PTH(7-34) activates only ubiquitination, thereby leading to PTHR downregulation. These findings may explain PTH resistance in diseases associated with elevated PTH(7-84) levels.
Collapse
Affiliation(s)
- Verónica Alonso
- Laboratory for G Protein-Coupled Receptor Biology, Department of Pharmacology & Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, USA
| | | | | | | | | |
Collapse
|
128
|
Jin M, Hwang SM, Davies AJ, Shin Y, Bae JS, Lee JH, Lee EB, Song YW, Park K. Autoantibodies in primary Sjögren's syndrome patients induce internalization of muscarinic type 3 receptors. Biochim Biophys Acta Mol Basis Dis 2011; 1822:161-7. [PMID: 22137887 DOI: 10.1016/j.bbadis.2011.11.012] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2011] [Revised: 11/10/2011] [Accepted: 11/14/2011] [Indexed: 11/29/2022]
Abstract
OBJECTIVES Primary Sjögren's syndrome (pSS) is a systemic autoimmune disease characterized by lymphocyte infiltration into the salivary and lachrymal glands, leading to dry mouth and eyes. The presence of functional autoantibodies against muscarinic type 3 receptor (M3R) has been reported in pSS patients. However, the pathological role of anti-M3R autoantibodies in pSS salivary dysfunction remains controversial. METHODS Purified IgGs were obtained from normal (control) and primary SS patients' sera (pSS IgG). Internalization of M3R and clathrin was analyzed by biochemical assay and immunofluorescence confocal microscopy using human submandibular gland (hSMG) cells. Cytoplasmic free Ca(2+) concentration ([Ca(2+)](i)) was measured by microspectrofluorimetry. RESULTS Incubation of hSMG cells with pSS IgG (1mg/ml) significantly decreased M3R expression levels at the membrane. Carbachol-induced [Ca(2+)](i) transients (CICTs) in these cells were also inhibited by pSS IgG. In contrast to pSS IgG, control IgG had no effect on both the M3R expression level and CICTs. We found that binding of pSS IgG to M3R induces phosphorylation of the receptor, and that the pSS IgG-induced M3R internalization is prevented by the lysosomal inhibitor, chloroquine. In addition, pSS IgG decreased membrane clathrin expression, which was inhibited by atropine. Our immunofluorescence study further confirmed that pSS IgG induces a co-localization of M3R with clathrin and subsequent internalization of M3R. CONCLUSION pSS IgG induces internalization of M3R partly through a clathrin-mediated pathway. The results suggest M3R internalization as a potential mechanism to explain the exocrinopathy seen in pSS patients.
Collapse
Affiliation(s)
- Meihong Jin
- Department of Physiology, College of Medicine, Seoul National University and Dental Research Institute, Seoul 110-749, Republic of Korea
| | | | | | | | | | | | | | | | | |
Collapse
|
129
|
Juliano RL, Ming X, Nakagawa O. Cellular uptake and intracellular trafficking of antisense and siRNA oligonucleotides. Bioconjug Chem 2011; 23:147-57. [PMID: 21992697 DOI: 10.1021/bc200377d] [Citation(s) in RCA: 149] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Significant progress is being made concerning the development of oligonucleotides as therapeutic agents. Studies with antisense, siRNA, and other forms of oligonucleotides have shown promise in cellular and animal models and in some clinical studies. Nonetheless, our understanding of how oligonucleotides function in cells and tissues is really quite limited. One major issue concerns the modes of uptake and intracellular trafficking of oligonucleotides, whether as "free" molecules or linked to various delivery moieties such as nanoparticles or targeting ligands. In this review, we examine the recent literature on oligonucleotide internalization and subcellular trafficking in the context of current insights into the basic machinery for endocytosis and intracellular vesicular traffic.
Collapse
Affiliation(s)
- Rudolph L Juliano
- Division of Molecular Pharmaceutics, UNC Eshelman School of Pharmacy, University of North Carolina, Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
130
|
Klein BY, Tamir H, Welch MG. PI3K/Akt responses to oxytocin stimulation in Caco2BB gut cells. J Cell Biochem 2011; 112:3216-26. [DOI: 10.1002/jcb.23243] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
131
|
Chen B, Dores MR, Grimsey N, Canto I, Barker BL, Trejo J. Adaptor protein complex-2 (AP-2) and epsin-1 mediate protease-activated receptor-1 internalization via phosphorylation- and ubiquitination-dependent sorting signals. J Biol Chem 2011; 286:40760-70. [PMID: 21965661 DOI: 10.1074/jbc.m111.299776] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Signaling by protease-activated receptor-1 (PAR1), a G protein-coupled receptor (GPCR) for thrombin, is regulated by desensitization and internalization. PAR1 desensitization is mediated by β-arrestins, like most classic GPCRs. In contrast, internalization of PAR1 occurs through a clathrin- and dynamin-dependent pathway independent of β-arrestins. PAR1 displays two modes of internalization. Constitutive internalization of unactivated PAR1 is mediated by the clathrin adaptor protein complex-2 (AP-2), where the μ2-adaptin subunit binds directly to a tyrosine-based motif localized within the receptor C-tail domain. However, AP-2 depletion only partially inhibits agonist-induced internalization of PAR1, suggesting a function for other clathrin adaptors in this process. Here, we now report that AP-2 and epsin-1 are both critical mediators of agonist-stimulated PAR1 internalization. We show that ubiquitination of PAR1 and the ubiquitin-interacting motifs of epsin-1 are required for epsin-1-dependent internalization of activated PAR1. In addition, activation of PAR1 promotes epsin-1 de-ubiquitination, which may increase its endocytic adaptor activity to facilitate receptor internalization. AP-2 also regulates activated PAR1 internalization via recognition of distal C-tail phosphorylation sites rather than the canonical tyrosine-based motif. Thus, AP-2 and epsin-1 are both required to promote efficient internalization of activated PAR1 and recognize discrete receptor sorting signals. This study defines a new pathway for internalization of mammalian GPCRs.
Collapse
Affiliation(s)
- Buxin Chen
- Department of Pharmacology, School of Medicine, University of California, San Diego, La Jolla, California 92093, USA
| | | | | | | | | | | |
Collapse
|
132
|
An intact PDZ motif is essential for correct P2Y12 purinoceptor traffic in human platelets. Blood 2011; 118:5641-51. [PMID: 21937696 DOI: 10.1182/blood-2011-02-336826] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The platelet P2Y(12) purinoceptor (P2Y(12)R), which plays a crucial role in hemostasis, undergoes internalization and subsequent recycling to maintain receptor responsiveness, processes that are essential for normal platelet function. Here, we observe that P2Y(12)R function is compromised after deletion or mutation of the 4 amino acids at the extreme C-terminus of this receptor (ETPM), a putative postsynaptic density 95/disc large/zonula occludens-1 (PDZ)-binding motif. In cell line models, removal of this sequence or mutation of one of its core residues (P341A), attenuates receptor internalization and receptor recycling back to the membrane, thereby blocking receptor resensitization. The physiologic significance of these findings in the regulation of platelet function is shown by identification of a patient with a heterozygous mutation in the PDZ binding sequence of their P2Y(12)R (P341A) that is associated with reduced expression of the P2Y(12)R on the cell surface. Importantly, platelets from this subject showed significantly compromised P2Y(12)R recycling, emphasizing the importance of the extreme C-terminus of this receptor to ensure correct receptor traffic.
Collapse
|
133
|
Kelly BT, Owen DJ. Endocytic sorting of transmembrane protein cargo. Curr Opin Cell Biol 2011; 23:404-12. [DOI: 10.1016/j.ceb.2011.03.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 03/03/2011] [Indexed: 01/26/2023]
|
134
|
Interaction between the HTLV-1 envelope and cellular proteins: impact on virus infection and restriction. Future Med Chem 2011; 2:1651-68. [PMID: 21428837 DOI: 10.4155/fmc.10.255] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The first human retrovirus, human T-lymphotropic virus 1 (HTLV-1), was discovered 30 years ago. Despite intensive study, the cell surface molecules involved in virus entry have only been identified over the past few years. Three molecules form the receptor complex for HTLV-1: glucose transporter 1, neuropilin 1 and heparan sulfate proteoglycans. Another molecule on the surface of dendritic cells, DC-SIGN, may play a role in dendritic cell-mediated infection of cells. In addition to the cell surface molecules used for entry, the HTLV-1 envelope interacts with cellular proteins, enabling the virus to traffic by exploiting cellular delivery pathways. To facilitate both these steps, HTLV-1 encodes motifs that mimic cellular binding partners for the trafficking system and ligands for the receptors. Here we review the interactions between the HTLV-1 envelope and cellular proteins.
Collapse
|
135
|
Hannan S, Wilkins ME, Dehghani-Tafti E, Thomas P, Baddeley SM, Smart TG. Gamma-aminobutyric acid type B (GABA(B)) receptor internalization is regulated by the R2 subunit. J Biol Chem 2011; 286:24324-35. [PMID: 21724853 PMCID: PMC3129212 DOI: 10.1074/jbc.m110.220814] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2011] [Revised: 04/20/2011] [Indexed: 01/04/2023] Open
Abstract
γ-Aminobutyric acid type B (GABA(B)) receptors are important for slow synaptic inhibition in the CNS. The efficacy of inhibition is directly related to the stability of cell surface receptors. For GABA(B) receptors, heterodimerization between R1 and R2 subunits is critical for cell surface expression and signaling, but how this determines the rate and extent of receptor internalization is unknown. Here, we insert a high affinity α-bungarotoxin binding site into the N terminus of the R2 subunit and reveal its dominant role in regulating the internalization of GABA(B) receptors in live cells. To simultaneously study R1a and R2 trafficking, a new α-bungarotoxin binding site-labeling technique was used, allowing α-bungarotoxin conjugated to different fluorophores to selectively label R1a and R2 subunits. This approach demonstrated that R1a and R2 are internalized as dimers. In heterologous expression systems and neurons, the rates and extents of internalization for R1aR2 heteromers and R2 homomers are similar, suggesting a regulatory role for R2 in determining cell surface receptor stability. The fast internalization rate of R1a, which has been engineered to exit the endoplasmic reticulum, was slowed to that of R2 by truncating the R1a C-terminal tail or by removing a dileucine motif in its coiled-coil domain. Slowing the rate of internalization by co-assembly with R2 represents a novel role for GPCR heterodimerization whereby R2 subunits, via their C terminus coiled-coil domain, mask a dileucine motif on R1a subunits to determine the surface stability of the GABA(B) receptor.
Collapse
Affiliation(s)
- Saad Hannan
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom and
- GlaxoSmithKline R&D, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Megan E. Wilkins
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Ebrahim Dehghani-Tafti
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Philip Thomas
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| | - Stuart M. Baddeley
- GlaxoSmithKline R&D, Medicines Research Centre, Gunnels Wood Road, Stevenage SG1 2NY, United Kingdom
| | - Trevor G. Smart
- From the Department of Neuroscience, Physiology and Pharmacology, University College London, Gower Street, London WC1E 6BT, United Kingdom and
| |
Collapse
|
136
|
Hannan S, Wilkins ME, Dehghani-Tafti E, Thomas P, Baddeley SM, Smart TG. γ-Aminobutyric Acid Type B (GABAB) Receptor Internalization Is Regulated by the R2 Subunit. J Biol Chem 2011. [DOI: 10.1074/jbc.m111.220814] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
|
137
|
Li HD, Liu WX, Michalak M. Enhanced clathrin-dependent endocytosis in the absence of calnexin. PLoS One 2011; 6:e21678. [PMID: 21747946 PMCID: PMC3128601 DOI: 10.1371/journal.pone.0021678] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2010] [Accepted: 06/08/2011] [Indexed: 12/24/2022] Open
Abstract
Background Calnexin, together with calreticulin, constitute the calnexin/calreticulin cycle. Calnexin is a type I endoplasmic reticulum integral membrane protein and molecular chaperone responsible for the folding and quality control of newly-synthesized (glyco)proteins. The endoplasmic reticulum luminal domain of calnexin is responsible for lectin-like activity and interaction with nascent polypeptide chains. The role of the C-terminal, cytoplasmic portion of calnexin is not clear. Methodology/Principal Findings Using yeast two hybrid screen and immunoprecipitation techniques, we showed that the Src homology 3-domain growth factor receptor-bound 2-like (Endophilin) interacting protein 1 (SGIP1), a neuronal specific regulator of endocytosis, forms complexes with the C-terminal cytoplasmic domain of calnexin. The calnexin cytoplasmic C-tail interacts with SGIP1 C-terminal domains containing the adaptor complexes medium subunit (Adap-Comp-Sub) region. Calnexin-deficient cells have enhanced clathrin-dependent endocytosis in neuronal cells and mouse neuronal system. This is reversed by expression of full length calnexin or calnexin C-tail. Conclusions/Significance We show that the effects of SGIP1 and calnexin C-tail on clathrin-dependent endocytosis are due to modulation of the internalization of the receptor-ligand complexes. Enhanced clathrin-dependent endocytosis in the absence of calnexin may contribute to the neurological phenotype of calnexin-deficient mice.
Collapse
Affiliation(s)
- Hao-Dong Li
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Wen-Xin Liu
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
| | - Marek Michalak
- Department of Biochemistry, University of Alberta, Edmonton, Alberta, Canada
- * E-mail:
| |
Collapse
|
138
|
Robinett KS, Deshpande DA, Malone MM, Liggett SB. Agonist-promoted homologous desensitization of human airway smooth muscle bitter taste receptors. Am J Respir Cell Mol Biol 2011; 45:1069-74. [PMID: 21642585 DOI: 10.1165/rcmb.2011-0061oc] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Bitter taste receptors (TAS2Rs) were shown to be expressed in human airway smooth muscle (ASM). They couple to specialized [Ca(2+)](i) release, leading to membrane hyperpolarization, the relaxation of ASM, and marked bronchodilation. TAS2Rs are G-protein-coupled receptors, known to undergo rapid agonist-promoted desensitization that can limit therapeutic efficacy. Because TAS2Rs represent a new drug target for treating obstructive lung disease, we investigated their capacity for rapid desensitization, and assessed their potential mechanisms. The pretreatment of human ASM cells with the prototypic TAS2R agonist quinine resulted in a 31% ± 5.1% desensitization of the [Ca(2+)](i) response from a subsequent exposure to quinine. No significant change in the endothelin-stimulated [Ca(2+)](i) response was attributed to the short-term use of quinine, indicating a homologous form of desensitization. The TAS2R agonist saccharin also evoked desensitization, and cross-compound desensitization with quinine was evident. Desensitization of the [Ca(2+)](i) response was attenuated by a dynamin inhibitor, suggesting that receptor internalization (a G-protein coupled receptor kinase [GRK]-mediated, β-arrestin-mediated process) plays an integral role in the desensitization of TAS2R. Desensitization was insensitive to antagonists of the second messenger kinases protein kinase A and protein kinase C. Using intact airways, short-term, agonist-promoted TAS2R desensitization of the relaxation response was also observed. Thus these receptors, which represent a potential novel target for direct bronchodilators, undergo a modest degree of agonist-promoted desensitization that may affect clinical efficacy. Collectively, the results of these mechanistic studies, along with the multiple serines and threonines in intracellular loop 3 and the cytoplasmic tail of TAS2Rs, suggest a GRK-mediated mode of desensitization.
Collapse
Affiliation(s)
- Kathryn S Robinett
- Cardiopulmonary Genomics Program, Department of Medicine, University of Maryland School of Medicine, Baltimore, 21201, USA
| | | | | | | |
Collapse
|
139
|
Stallaert W, Christopoulos A, Bouvier M. Ligand functional selectivity and quantitative pharmacology at G protein-coupled receptors. Expert Opin Drug Discov 2011; 6:811-25. [DOI: 10.1517/17460441.2011.586691] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
140
|
IGF1R signaling in Ewing sarcoma is shaped by clathrin-/caveolin-dependent endocytosis. PLoS One 2011; 6:e19846. [PMID: 21611203 PMCID: PMC3096649 DOI: 10.1371/journal.pone.0019846] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2011] [Accepted: 04/05/2011] [Indexed: 11/19/2022] Open
Abstract
Receptor endocytosis is critical for cell signaling. IGF1R mediates an autocrine loop that is de-regulated in Ewing Sarcoma (ES) cells. Here we study the impact of IGF1R internalization, mediated by clathrin and caveolin-1 (CAV1), in ES signaling. We used clathrin and CAV1-siRNA to interfere in clathrin- and caveolin-dependent endocytosis. Chlorpromazine (CPMZ) and methyl-beta-cyclo-dextrin (MCD) were also used in order to inhibit clathrin- and caveolin-dependent endocytosis, respectively. We analyzed IGF1R internalization and co-localization with clathrin and CAV1 upon ligand binding, as well as the status of the IGF1R pathway, cellular proliferation, and the apoptosis of interfered and inhibited ES cells. We performed a high-throughput tyrosine kinase phosphorylation assay to analyze the effects of combining the IGF1R tyrosine kinase inhibitor AEW541 (AEW) with CPMZ or MCD on the intracellular phospho-proteome. We observed that IGF1R is internalized upon ligand binding in ES cells and that this process is dependent on clathrin or CAV1. The blockage of receptor internalization inhibited AKT and MAPK phosphorylation, reducing the proliferative rate of ES cells and increasing the levels of apoptosis. Combination of AEW with CPMZ or MCD largely enhanced these effects. CAV1 and clathrin endocytosis controls IGF1R internalization and signaling and has a profound impact on ES IGF1R-promoted survival signaling. We propose the combination of tyrosine-kinase inhibitors with endocytosis inhibitors as a new therapeutic approach to achieve a stronger degree of receptor inhibition in this, or other neoplasms dependent on IGF1R signaling.
Collapse
|
141
|
Quack I, Woznowski M, Potthoff SA, Palmer R, Königshausen E, Sivritas S, Schiffer M, Stegbauer J, Vonend O, Rump LC, Sellin L. PKC alpha mediates beta-arrestin2-dependent nephrin endocytosis in hyperglycemia. J Biol Chem 2011; 286:12959-70. [PMID: 21321125 PMCID: PMC3075643 DOI: 10.1074/jbc.m110.204024] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2010] [Revised: 02/10/2011] [Indexed: 11/06/2022] Open
Abstract
Nephrin, the key molecule of the glomerular slit diaphragm, is expressed on the surface of podocytes and is critical in preventing albuminuria. In diabetes, hyperglycemia leads to the loss of surface expression of nephrin and causes albuminuria. Here, we report a mechanism that can explain this phenomenon: hyperglycemia directly enhances the rate of nephrin endocytosis via regulation of the β-arrestin2-nephrin interaction by PKCα. We identified PKCα and protein interacting with c kinase-1 (PICK1) as nephrin-binding proteins. Hyperglycemia induced up-regulation of PKCα and led to the formation of a complex of nephrin, PKCα, PICK1, and β-arrestin2 in vitro and in vivo. Binding of β-arrestin2 to the nephrin intracellular domain depended on phosphorylation of nephrin threonine residues 1120 and 1125 by PKCα. Further, cellular knockdown of PKCα and/or PICK1 attenuated the nephrin-β-arrestin2 interaction and abrogated the amplifying effect of high blood glucose on nephrin endocytosis. In C57BL/6 mice, hyperglycemia over 24 h caused a significant increase in urinary albumin excretion, supporting the concept of the rapid impact of hyperglycemia on glomerular permselectivity. In summary, we have provided a molecular model of hyperglycemia-induced nephrin endocytosis and subsequent proteinuria and highlighted PKCα and PICK1 as promising therapeutic targets for diabetic nephropathy.
Collapse
Affiliation(s)
- Ivo Quack
- Department of Nephrology, Heinrich Heine University, 40225 Duesseldorf, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
142
|
Hoff M, Balfanz S, Ehling P, Gensch T, Baumann A. A single amino acid residue controls Ca2+ signaling by an octopamine receptor from Drosophila melanogaster. FASEB J 2011; 25:2484-91. [PMID: 21478261 DOI: 10.1096/fj.11-180703] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
Rhythmic activity of cells and cellular networks plays an important role in physiology. In the nervous system oscillations of electrical activity and/or second messenger concentrations are important to synchronize neuronal activity. At the molecular level, rhythmic activity can be initiated by different routes. We have recently shown that an octopamine-activated G-protein-coupled receptor (GPCR; DmOctα1Rb, CG3856) from Drosophila initiates Ca(2+) oscillations. Here, we have unraveled the molecular basis of cellular Ca(2+) signaling controlled by the DmOctα1Rb receptor using a combination of pharmacological intervention, site-directed mutagenesis, and functional cellular Ca(2+) imaging on heterologously expressed receptors. Phosphorylation of a single amino acid residue in the third intracellular loop of the GPCR by PKC is necessary and sufficient to desensitize the receptor. From its desensitized state, DmOctα1Rb is resensitized by dephosphorylation, and a new Ca(2+) signal occurs on octopamine stimulation. Our findings show that transient changes of the receptor's surface profile have a strong effect on its physiological signaling properties. We expect that the detailed knowledge of DmOctα1Rb-dependent signal transduction fosters the identification of specific drugs that can be used for GPCR-mediated pest control, since octopamine serves important physiological and behavioral functions in arthropods.
Collapse
Affiliation(s)
- Max Hoff
- Institute of Complex Systems, Zellulaere Biophysik (ICS-4), Forschungszentrum Juelich, 52425 Juelich, Germany
| | | | | | | | | |
Collapse
|
143
|
Grimsey N, Soto AG, Trejo J. Regulation of protease-activated receptor signaling by post-translational modifications. IUBMB Life 2011; 63:403-11. [PMID: 21438117 DOI: 10.1002/iub.442] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2011] [Accepted: 02/09/2011] [Indexed: 01/20/2023]
Abstract
Protease-activated receptors (PARs) are a unique family of G-protein-coupled receptors (GPCRs) that are irreversibly activated following proteolytic cleavage of their extracellular N-terminus. PARs play critical functions in hemostasis, thrombosis, inflammation, embryonic development, and cancer progression. Because of the irreversible proteolytic nature of PAR activation, signaling by the receptors is tightly regulated. Three distinct processes including desensitization, internalization, and lysosomal degradation, regulate the temporal and spatial aspects of activated PAR signaling. Post-translational modifications play a critical role in regulating each of these processes and here we review the nature of PAR post-translational modifications and their importance in signal regulation. The PARs are activated by numerous proteases, and some can elicit distinct cellular responses, how this biased agonism is determined is unknown. Further study of the function of post-translational modifications of the PARs will lead to a greater understanding of the physiological regulation of baised agonism and how PAR signaling is precisely controlled in different cellular contexts.
Collapse
Affiliation(s)
- Neil Grimsey
- Department of Pharmacology, School of Medicine, University of California, San Diego, CA 92093-0636, USA
| | | | | |
Collapse
|
144
|
Thibault D, Albert PR, Pineyro G, Trudeau LÉ. Neurotensin triggers dopamine D2 receptor desensitization through a protein kinase C and beta-arrestin1-dependent mechanism. J Biol Chem 2011; 286:9174-84. [PMID: 21233215 PMCID: PMC3059057 DOI: 10.1074/jbc.m110.166454] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 01/12/2011] [Indexed: 11/06/2022] Open
Abstract
The peptide neurotensin (NT) is known to exert a potent excitatory effect on the dopaminergic system by inhibiting D2 dopamine (DA) receptor (D2R) function. This regulation is dependent on activation of PKC, a well known effector of the type 1 NT receptor (NTR1). Because PKC phosphorylation of the D2R has recently been shown to induce its internalization, we hypothesized that NT acts to reduce D2R function through heterologous desensitization of the D2R. In the present study, we first used HEK-293 cells to demonstrate that NT induces PKC-dependent D2R internalization. Furthermore, internalization displayed faster kinetics in cells expressing the D2R short isoform, known to act as an autoreceptor in DA neurons, than in cells expressing the long isoform, known to act as a postsynaptic D2R. In patch clamp experiments on cultured DA neurons, overexpression of a mutant D2S lacking three key PKC phosphorylation sites abrogated the ability of NT to reduce D2R-mediated cell firing inhibition. Short interfering RNA-mediated inhibition of β-arrestin1 and dynamin2, proteins important for receptor desensitization, reduced agonist-induced desensitization of D2R function, but only the inhibition of β-arrestin1 reduced the effect of NT on D2R function. Taken together, our data suggest that NT acutely regulates D2 autoreceptor function and DA neuron excitability through PKC-mediated phosphorylation of the D2R, leading to heterologous receptor desensitization.
Collapse
Affiliation(s)
- Dominic Thibault
- From the Department of Pharmacology
- Department of Physiology
- the Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Québec H3C 3J7, Canada
| | - Paul R. Albert
- the Ottawa Hospital Research Institute, University of Ottawa, Ottawa K1H 8M5, Canada
| | - Graciela Pineyro
- From the Department of Pharmacology
- Department of Psychiatry, Faculty of Medicine, and
- the Centre de Recherche du Centre Hospitalier Universitaire Sainte Justine, Université de Montréal, Quebec H3T 1C5, Canada, and
| | - Louis-Éric Trudeau
- From the Department of Pharmacology
- Department of Physiology
- Department of Psychiatry, Faculty of Medicine, and
- the Groupe de Recherche sur le Système Nerveux Central, Université de Montréal, Québec H3C 3J7, Canada
| |
Collapse
|
145
|
Lowther KM, Nikolaev VO, Mehlmann LM. Endocytosis in the mouse oocyte and its contribution to cAMP signaling during meiotic arrest. Reproduction 2011; 141:737-47. [PMID: 21411693 DOI: 10.1530/rep-10-0461] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Mammalian oocytes are arrested at prophase I of meiosis until a preovulatory surge of LH stimulates them to resume meiosis. Prior to the LH surge, high levels of cAMP within the oocyte maintain meiotic arrest; this cAMP is generated in the oocyte through the activity of the constitutively active, G(s)-coupled receptor, G-protein-coupled receptor 3 (GPR3) or GPR12. Activated GPRs are typically targeted for desensitization through receptor-mediated endocytosis, but a continuously high level of cAMP is needed for meiotic arrest. The aim of this study was to examine whether receptor-mediated endocytosis occurs in the mouse oocyte and whether this could affect the maintenance of meiotic arrest. We found that constitutive endocytosis occurs in the mouse oocyte. Inhibitors of receptor-mediated endocytosis, monodansylcadaverine and dynasore, inhibited the formation of early endosomes and completely inhibited spontaneous meiotic resumption. A red fluorescent protein-tagged GPR3 localized in the plasma membrane and within early endosomes in the oocyte, demonstrating that GPR3 is endocytosed. However, overexpression of G-protein receptor kinase 2 and β-arrestin-2 had only a modest effect on stimulating meiotic resumption, suggesting that these proteins do not play a major role in GPR3 endocytosis. Inhibition of endocytosis elevated cAMP levels within oocytes, suggesting that there is an accumulation of GPR3 at the plasma membrane. These results show that endocytosis occurs in the oocyte, leading to a decrease in cAMP production, and suggest that there is a balance between cAMP production and degradation in the arrested oocyte that maintains cAMP levels at an appropriate level during the maintenance of meiotic arrest.
Collapse
Affiliation(s)
- Katie M Lowther
- Department of Cell Biology, University of Connecticut Health Center, Farmington, Connecticut 06030, USA
| | | | | |
Collapse
|
146
|
Endocytosis of cationized ferritin in marginal cells of the stria vascularis is regulated by protein kinase, protein phosphatase, and MEK/ERK and PI3-K signaling pathways. Otol Neurotol 2011; 32:856-62. [PMID: 21358558 DOI: 10.1097/mao.0b013e318210b8ad] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
HYPOTHESIS The endocytosis of cationized ferritin (CF) via a clathrin-mediated pathway is regulated by a signaling network. BACKGROUND Marginal cells showed the active endocytosis of CF via a clathrin-mediated pathway. The internalization of receptors through the clathrin-mediated pathway is an important regulatory event in signal transduction. Numerous kinases are involved in endocytosis, and each endocytic route is subjected to high-order regulation by cellular signaling mechanisms. METHODS CF was infused into the cochlear duct with phorbol 12-myristate 13 acetate, okadaic acid, staurosporin, phenylarsine oxide, PD98059, SB20580 and wortmannin. Endocytic activity was measured at 30 minutes post-infusion by transmission electron microscopy. RESULTS The endocytosis of CF was stimulated by a protein kinase C activator (phorbol 12-myristate 13 acetate) and a protein kinase A activator (8-bromoadenosine-3', 5'-cyclic monophosphate). It was inhibited by protein phosphatase inhibitors (okadaic acid and phenylarsine oxide), mitogen-activated protein kinase/extracellular signal-related kinase inhibitors (PD98059 and SB20580), and a phosphatidylinositol 3-kinase inhibitor (wortmannin). CONCLUSION Our previous study showed the endocytosis of microperoxidase to be strongly dependent on protein kinase C, protein phosphatase, extracellular signal-related kinase, and phosphatidylinositol 3-kinase signaling networks but not on protein kinase A and mitogen-activated protein kinase signaling networks. The present study indicated that the signaling cascade regulating CF's internalization differed from the cascade for microperoxidase's endocytosis.
Collapse
|
147
|
Abstract
In recent years, nanoparticulate-mediated drug delivery research has examined a full spectrum of nanoparticles that can be used in diagnostic and therapeutic cancer applications. A key aspect of this technology is in the potential to specifically target the nanoparticles to diseased cells using a range of molecules, in particular antibodies. Antibody–nanoparticle conjugates have the potential to elicit effective targeting and release of therapeutic targets at the disease site, while minimizing off-target side effects caused by dosing of normal tissues. This article provides an overview of various antibody-conjugated nanoparticle strategies, focusing on the rationale of cell-surface receptors targeted and their potential clinical application.
Collapse
Affiliation(s)
- Francois Fay
- School of Pharmacy, Queen’s University Belfast, Medical Biology Centre, 97 Lisburn Road, Belfast, BT9 7BL, UK
| | | |
Collapse
|
148
|
Abstract
The critical involvement of GPCRs (G-protein-coupled receptors) in nearly all physiological processes, and the presence of these receptors at the interface between the extracellular and the intracellular milieu, has positioned these receptors as pivotal therapeutic targets. Although a large number of drugs targeting GPCRs are currently available, significant efforts have been directed towards understanding receptor properties, with the goal of identifying and designing improved receptor ligands. Recent advances in GPCR pharmacology have demonstrated that different ligands binding to the same receptor can activate discrete sets of downstream effectors, a phenomenon known as 'ligand-directed signal specificity', which is currently being explored for drug development due to its potential therapeutic advantage. Emerging studies suggest that GPCR responses can also be modulated by contextual factors, such as interactions with other GPCRs. Association between different GPCR types leads to the formation of complexes, or GPCR heteromers, with distinct and unique signalling properties. Some of these heteromers activate discrete sets of signalling effectors upon activation by the same ligand, a phenomenon termed 'heteromer-directed signalling specificity'. This has been shown to be involved in the physiological role of receptors and, in some cases, in disease-specific dysregulation of a receptor effect. Hence targeting GPCR heteromers constitutes an emerging strategy to select receptor-specific responses and is likely to be useful in achieving specific beneficial therapeutic effects.
Collapse
|
149
|
Welling PA, Weisz OA. Sorting it out in endosomes: an emerging concept in renal epithelial cell transport regulation. Physiology (Bethesda) 2011; 25:280-92. [PMID: 20940433 DOI: 10.1152/physiol.00022.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
Ion and water transport by the kidney is continually adjusted in response to physiological cues. Selective endocytosis and endosomal trafficking of ion transporters are increasingly appreciated as mechanisms to acutely modulate renal function. Here, we discuss emerging paradigms in this new area of investigation.
Collapse
Affiliation(s)
- Paul A Welling
- Department of Physiology, University of Maryland School of Medicine, Baltimore, MD, USA
| | | |
Collapse
|
150
|
Chen CXJ, Soto I, Guo YL, Liu Y. Control of secondary granule release in neutrophils by Ral GTPase. J Biol Chem 2011; 286:11724-33. [PMID: 21282111 DOI: 10.1074/jbc.m110.154203] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Neutrophil (polymorphonuclear leukocyte; PMN) inflammatory functions, including cell adhesion, diapedesis, and phagocytosis, are dependent on the mobilization and release of various intracellular granules/vesicles. In this study, we found that treating PMN with damnacanthal, a Ras family GTPase inhibitor, resulted in a specific release of secondary granules but not primary or tertiary granules and caused dysregulation of PMN chemotactic transmigration and cell surface protein interactions. Analysis of the activities of Ras members identified Ral GTPase as a key regulator during PMN activation and degranulation. In particular, Ral was active in freshly isolated PMN, whereas chemoattractant stimulation induced a quick deactivation of Ral that correlated with PMN degranulation. Overexpression of a constitutively active Ral (Ral23V) in PMN inhibited chemoattractant-induced secondary granule release. By subcellular fractionation, we found that Ral, which was associated with the plasma membrane under the resting condition, was redistributed to secondary granules after chemoattractant stimulation. Blockage of cell endocytosis appeared to inhibit Ral translocation intracellularly. In conclusion, these results demonstrate that Ral is a critical regulator in PMN that specifically controls secondary granule release during PMN response to chemoattractant stimulation.
Collapse
Affiliation(s)
- Celia X-J Chen
- Department of Biology, Georgia State University, Atlanta, Georgia 30303, USA
| | | | | | | |
Collapse
|