101
|
Kappel VD, Zanatta L, Postal BG, Silva FRMB. Rutin potentiates calcium uptake via voltage-dependent calcium channel associated with stimulation of glucose uptake in skeletal muscle. Arch Biochem Biophys 2013; 532:55-60. [PMID: 23395857 DOI: 10.1016/j.abb.2013.01.008] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Revised: 01/19/2013] [Accepted: 01/23/2013] [Indexed: 11/29/2022]
Abstract
Rutin is a flavonoid with several pharmacological properties and it has been demonstrated that rutin can modulate glucose homeostasis. In skeletal muscle, an increase in intracellular calcium concentration may induce glucose transporter-4 (GLUT-4) translocation with consequent glucose uptake. The aim of this study was to investigate the effect of rutin and intracellular pathways on calcium uptake as well as the involvement of calcium in glucose uptake in skeletal muscle. The results show that rutin significantly stimulated calcium uptake through voltage-dependent calcium channels as well as mitogen-activated kinase (MEK) and protein kinase A (PKA) signaling pathways. Also, rutin stimulated glucose uptake in the soleus muscle and this effect was mediated by extracellular calcium and calcium-calmodulin-dependent protein kinase II (CaMKII) activation. In conclusion, rutin significantly stimulates calcium uptake in rat soleus muscles. Furthermore, the increase in intracellular calcium concentration is involved in DNA activation by rutin. Also, rutin-induced glucose uptake via CaMKII may result in GLUT-4 translocation to the plasma membrane, characterizing an insulin-independent pathway. These findings indicate that rutin is a potential drug candidate for diabetes therapy.
Collapse
Affiliation(s)
- Virginia Demarchi Kappel
- Departamento de Bioquímica, Centro de Ciências Biológicas, Universidade Federal de Santa Catarina, Florianópolis-Santa Catarina, Brazil
| | | | | | | |
Collapse
|
102
|
Abstract
The concept of the cytosol as a space that contains discrete zones of metabolites is discussed relative to the contribution of GAPDH. GAPDH is directed to very specific cell compartments. This chapter describes the utilization of GAPDH's enzymatic function for focal demands (i.e. ATP/ADP and NAD(+)/NADH), and offers a speculative role for GAPDH as perhaps moderating local concentrations of inorganic phosphate and hydrogen ions (i.e. co-substrate and co-product of the glycolytic reaction, respectively). Where known, the structural features of the binding between GAPDH and the compartment components are discussed. The nuances, which are associated with the intracellular distribution of GAPDH, appear to be specific to the cell-type, particularly with regards to the various plasma membrane proteins to which GAPDH binds. The chapter includes discussion on the curious observation of GAPDH being localized to the external surface of the plasma membrane in a human cell type. The default perspective has been that GAPDH localization is synonymous with compartmentation of glycolytic energy. The chapter discusses GAPDH translocation to the nucleus and to non-nuclear cellular structures, emphasizing its glycolytic function. Nevertheless, it is becoming clear that alternate functions of GAPDH play a role in compartmentation, particularly in the translocation to the nucleus.
Collapse
Affiliation(s)
- Norbert W Seidler
- Department of Biochemistry, Kansas City University of Medicine and Biosciences, Kansas City, MO, USA
| |
Collapse
|
103
|
|
104
|
Lansey MN, Walker NN, Hargett SR, Stevens JR, Keller SR. Deletion of Rab GAP AS160 modifies glucose uptake and GLUT4 translocation in primary skeletal muscles and adipocytes and impairs glucose homeostasis. Am J Physiol Endocrinol Metab 2012; 303:E1273-86. [PMID: 23011063 PMCID: PMC3517634 DOI: 10.1152/ajpendo.00316.2012] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Tight control of glucose uptake in skeletal muscles and adipocytes is crucial to glucose homeostasis and is mediated by regulating glucose transporter GLUT4 subcellular distribution. In cultured cells, Rab GAP AS160 controls GLUT4 intracellular retention and release to the cell surface and consequently regulates glucose uptake into cells. To determine AS160 function in GLUT4 trafficking in primary skeletal muscles and adipocytes and investigate its role in glucose homeostasis, we characterized AS160 knockout (AS160(-/-)) mice. We observed increased and normal basal glucose uptake in isolated AS160(-/-) adipocytes and soleus, respectively, while insulin-stimulated glucose uptake was impaired and GLUT4 expression decreased in both. No such abnormalities were found in isolated AS160(-/-) extensor digitorum longus muscles. In plasma membranes isolated from AS160(-/-) adipose tissue and gastrocnemius/quadriceps, relative GLUT4 levels were increased under basal conditions and remained the same after insulin treatment. Concomitantly, relative levels of cell surface-exposed GLUT4, determined with a glucose transporter photoaffinity label, were increased in AS160(-/-) adipocytes and normal in AS160(-/-) soleus under basal conditions. Insulin augmented cell surface-exposed GLUT4 in both. These observations suggest that AS160 is essential for GLUT4 intracellular retention and regulation of glucose uptake in adipocytes and skeletal muscles in which it is normally expressed. In vivo studies revealed impaired insulin tolerance in the presence of normal (male) and impaired (female) glucose tolerance. Concurrently, insulin-elicited increases in glucose disposal were abolished in all AS160(-/-) skeletal muscles and liver but not in AS160(-/-) adipose tissues. This suggests AS160 as a target for differential manipulation of glucose homeostasis.
Collapse
Affiliation(s)
- Melissa N Lansey
- Dept. of Medicine/Division of Endocrinology, Univ. of Virginia, Charlottesville, VA 22908, USA.
| | | | | | | | | |
Collapse
|
105
|
Prevention mechanisms of glucose intolerance and obesity by cacao liquor procyanidin extract in high-fat diet-fed C57BL/6 mice. Arch Biochem Biophys 2012; 527:95-104. [DOI: 10.1016/j.abb.2012.03.018] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2011] [Revised: 02/27/2012] [Accepted: 03/15/2012] [Indexed: 12/25/2022]
|
106
|
Langlais P, Dillon JL, Mengos A, Baluch DP, Ardebili R, Miranda DN, Xie X, Heckmann BL, Liu J, Mandarino LJ. Identification of a role for CLASP2 in insulin action. J Biol Chem 2012; 287:39245-53. [PMID: 22992739 DOI: 10.1074/jbc.m112.394148] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Insulin stimulates the mobilization of glucose transporter 4 (GLUT4) storage vesicles to the plasma membrane, resulting in an influx of glucose into target tissues such as muscle and fat. We present evidence that CLIP-associating protein 2 (CLASP2), a protein previously unassociated with insulin action, is responsive to insulin stimulation. Using mass spectrometry-based protein identification combined with phosphoantibody immunoprecipitation in L6 myotubes, we detected a 4.8-fold increase of CLASP2 in the anti-phosphoserine immunoprecipitates upon insulin stimulation. Western blotting of CLASP2 immunoprecipitates with the phosphoantibody confirmed the finding that CLASP2 undergoes insulin-stimulated phosphorylation, and a number of novel phosphorylation sites were identified. Confocal imaging of L6 myotubes revealed that CLASP2 colocalizes with GLUT4 at the plasma membrane within areas of insulin-mediated cortical actin remodeling. CLASP2 is responsible for directing the distal end of microtubules to the cell cortex, and it has been shown that GLUT4 travels along microtubule tracks. In support of the concept that CLASP2 plays a role in the trafficking of GLUT4 at the cell periphery, CLASP2 knockdown by siRNA in L6 myotubes interfered with insulin-stimulated GLUT4 localization to the plasma membrane. Furthermore, siRNA mediated knockdown of CLASP2 in 3T3-L1 adipocytes inhibited insulin-stimulated glucose transport. We therefore propose a new model for CLASP2 in insulin action, where CLASP2 directs the delivery of GLUT4 to cell cortex landing zones important for insulin action.
Collapse
Affiliation(s)
- Paul Langlais
- Center for Metabolic and Vascular Biology, Arizona State University, Tempe, Arizona 85287, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Costa R, Morrison A, Wang J, Manithody C, Li J, Rezaie AR. Activated protein C modulates cardiac metabolism and augments autophagy in the ischemic heart. J Thromb Haemost 2012; 10:1736-44. [PMID: 22738025 PMCID: PMC3433592 DOI: 10.1111/j.1538-7836.2012.04833.x] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
BACKGROUND Modulation of energy substrate metabolism may constitute a novel therapeutic intervention against ischemia/reperfusion (I/R) injury. AMP-activated protein kinase (AMPK) has emerged as a key regulator of favorable metabolic signaling pathways in response to myocardial ischemia. Recently, we demonstrated that activated protein C (APC) is cardioprotective against ischemia/reperfusion (I/R) injury by augmenting AMPK signaling. OBJECTIVES The objective of this study was to determine whether the APC modulation of substrate metabolism contributes to its cardioprotective effect against I/R injury. METHODS An ex vivo working mouse heart perfusion system was used to characterize the effect of wild-type APC and its signaling-proficient mutant, APC-2Cys (which has dramatically reduced anticoagulant activity), on glucose transport in the ischemic heart. RESULTS Both APC and APC-2Cys (0.2 μg g(-1)) augment the ischemic stress-induced translocation of the glucose transporter (GLUT4) to the myocardial cell membrane, leading to increased glucose uptake and glucose oxidation in the ischemic heart (P < 0.05 vs. vehicle). Both APC derivatives increased the autophagic flux in the heart following I/R. The activity of APC-2Cys in modulating these metabolic pathways was significantly higher than APC during I/R (P < 0.05). Intriguingly, APC-2Cys, but not wild-type APC, attenuated the I/R-initiated fatty acid oxidation by 80% (P < 0.01 vs. vehicle). CONCLUSIONS APC exerts a cardioprotective effect against I/R injury by preferentially enhancing the oxidation of glucose over fatty acids as energy substrates in the ischemic heart. Given its significantly higher beneficial metabolic modulatory effect, APC-2Cys may be developed as a potential therapeutic drug for treating ischemic heart disease without risk of bleeding.
Collapse
Affiliation(s)
- Robert Costa
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo-SUNY, Buffalo, NY
| | - Alex Morrison
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo-SUNY, Buffalo, NY
| | - Jingying Wang
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo-SUNY, Buffalo, NY
| | - Chandrashekhara Manithody
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO
| | - Ji Li
- Department of Pharmacology and Toxicology, School of Medicine and Biomedical Sciences, University at Buffalo-SUNY, Buffalo, NY
| | - Alireza R Rezaie
- Department of Biochemistry and Molecular Biology, Saint Louis University School of Medicine, Saint Louis, MO
| |
Collapse
|
108
|
Hoxhaj G, Najafov A, Toth R, Campbell DG, Prescott AR, MacKintosh C. ZNRF2 is released from membranes by growth factors and, together with ZNRF1, regulates the Na+/K+ATPase. J Cell Sci 2012; 125:4662-75. [PMID: 22797923 DOI: 10.1242/jcs.110296] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Here, we describe a phosphorylation-based reverse myristoyl switch for mammalian ZNRF2, and show that this E3 ubiquitin ligase and its sister protein ZNRF1 regulate the Na(+)/K(+) pump (Na(+)/K(+)ATPase). N-myristoylation localizes ZNRF1 and ZNRF2 to intracellular membranes and enhances their activity. However, when ZNRF2 is phosphorylated in response to agonists including insulin and growth factors, it binds to 14-3-3 and is released into the cytosol. On membranes, ZNRF1 and ZNRF2 interact with the Na(+)/K(+)ATPase α1 subunit via their UBZ domains, while their RING domains interact with E2 proteins, predominantly Ubc13 that, together with Uev1a, mediates formation of Lys63-ubiquitin linkages. ZNRF1 and ZNRF2 can ubiquitylate the cytoplasmic loop encompassing the nucleotide-binding and phosphorylation regions of the Na(+)/K(+)ATPase α1 subunit. Ouabain, a Na(+)/K(+)ATPase inhibitor and therapeutic cardiac glycoside, decreases ZNRF1 protein levels, whereas knockdown of ZNRF2 inhibits the ouabain-induced decrease of cell surface and total Na(+)/K(+)ATPase α1 levels. Thus, ZNRF1 and ZNRF2 are new players in regulation of the ubiquitous Na(+)/K(+)ATPase that is tuned to changing demands in many physiological contexts.
Collapse
Affiliation(s)
- Gerta Hoxhaj
- MRC Protein Phosphorylation Unit, James Black Centre, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK.
| | | | | | | | | | | |
Collapse
|
109
|
Abstract
GLUT4 is an insulin-regulated glucose transporter that is responsible for insulin-regulated glucose uptake into fat and muscle cells. In the absence of insulin, GLUT4 is mainly found in intracellular vesicles referred to as GLUT4 storage vesicles (GSVs). Here, we summarise evidence for the existence of these specific vesicles, how they are sequestered inside the cell and how they undergo exocytosis in the presence of insulin. In response to insulin stimulation, GSVs fuse with the plasma membrane in a rapid burst and in the continued presence of insulin GLUT4 molecules are internalised and recycled back to the plasma membrane in vesicles that are distinct from GSVs and probably of endosomal origin. In this Commentary we discuss evidence that this delivery process is tightly regulated and involves numerous molecules. Key components include the actin cytoskeleton, myosin motors, several Rab GTPases, the exocyst, SNARE proteins and SNARE regulators. Each step in this process is carefully orchestrated in a sequential and coupled manner and we are beginning to dissect key nodes within this network that determine vesicle-membrane fusion in response to insulin. This regulatory process clearly involves the Ser/Thr kinase AKT and the exquisite manner in which this single metabolic process is regulated makes it a likely target for lesions that might contribute to metabolic disease.
Collapse
Affiliation(s)
- Jacqueline Stöckli
- Diabetes and Obesity Program, Garvan Institute of Medical Research, Sydney, New South Wales 2010, Australia
| | | | | |
Collapse
|
110
|
Sejima H, Mori K, Ariumi Y, Ikeda M, Kato N. Identification of host genes showing differential expression profiles with cell-based long-term replication of hepatitis C virus RNA. Virus Res 2012; 167:74-85. [DOI: 10.1016/j.virusres.2012.04.008] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2012] [Revised: 04/18/2012] [Accepted: 04/19/2012] [Indexed: 02/01/2023]
|
111
|
Cacao liquor procyanidin extract improves glucose tolerance by enhancing GLUT4 translocation and glucose uptake in skeletal muscle. J Nutr Sci 2012; 1:e2. [PMID: 25191549 PMCID: PMC4153039 DOI: 10.1017/jns.2012.2] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2012] [Accepted: 03/15/2012] [Indexed: 01/20/2023] Open
Abstract
Hyperglycaemia and insulin resistance are associated with the increased risk of the metabolic syndrome and other severe health problems. The insulin-sensitive GLUT4 regulates glucose homoeostasis in skeletal muscle and adipose tissue. In this study, we investigated whether cacao liquor procyanidin (CLPr) extract, which contains epicatechin, catechin and other procyanidins, improves glucose tolerance by promoting GLUT4 translocation and enhances glucose uptake in muscle cells. Our results demonstrated that CLPr increased glucose uptake in a dose-dependent manner and promoted GLUT4 translocation to the plasma membrane of L6 myotubes. Oral administration of a single dose of CLPr suppressed the hyperglycaemic response after carbohydrate ingestion, which was accompanied by enhanced GLUT4 translocation in ICR mice. These effects of CLPr were independent of α-glucosidase inhibition in the small intestine. CLPr also promoted GLUT4 translocation in skeletal muscle of C57BL/6 mice fed a CLPr-supplemented diet for 7 d. These results indicate that CLPr is a beneficial food material for improvement of glucose tolerance by promoting GLUT4 translocation to the plasma membrane of skeletal muscle.
Collapse
|
112
|
Li J, Malaby AW, Famulok M, Sabe H, Lambright DG, Hsu VW. Grp1 plays a key role in linking insulin signaling to glut4 recycling. Dev Cell 2012; 22:1286-98. [PMID: 22609160 DOI: 10.1016/j.devcel.2012.03.004] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 01/31/2012] [Accepted: 03/13/2012] [Indexed: 11/29/2022]
Abstract
The glucose transporter type 4 (glut4) is critical for metabolic homeostasis. Insulin regulates glut4 by modulating its expression on the cell surface. This regulation is mainly achieved by targeting the endocytic recycling of glut4. We identify general receptor for 3-phosphoinositides 1 (Grp1) as a guanine nucleotide exchange factor for ADP-ribosylation factor 6 (ARF6) that promotes glut4 vesicle formation. Grp1 also promotes the later steps of glut4 recycling through ARF6. Insulin signaling regulates Grp1 through phosphorylation by Akt. We also find that mutations that mimic constitutive phosphorylation of Grp1 can bypass upstream insulin signaling to induce glut4 recycling. Thus, we have uncovered a major mechanism by which insulin regulates glut4 recycling. Our findings also reveal the complexity by which a single small GTPase in vesicular transport can coordinate its multiple steps to accomplish a round of transport.
Collapse
Affiliation(s)
- Jian Li
- Division of Rheumatology, Immunology, and Allergy, Brigham and Women's Hospital, and Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | | | | | | | | | | |
Collapse
|
113
|
Ducommun S, Wang HY, Sakamoto K, MacKintosh C, Chen S. Thr649Ala-AS160 knock-in mutation does not impair contraction/AICAR-induced glucose transport in mouse muscle. Am J Physiol Endocrinol Metab 2012; 302:E1036-43. [PMID: 22318952 PMCID: PMC3361978 DOI: 10.1152/ajpendo.00379.2011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
AS160 and its closely related protein TBC1D1 have emerged as key mediators for both insulin- and contraction-stimulated muscle glucose uptake through regulating GLUT4 trafficking. Insulin increases AS160 phosphorylation at multiple Akt/PKB consensus sites, including Thr(649), and promotes its binding to 14-3-3 proteins through phospho-Thr(649). We recently provided genetic evidence that AS160-Thr(649) phosphorylation/14-3-3 binding plays a key role in mediating insulin-stimulated glucose uptake in muscle. Contraction has also been proposed to increase phosphorylation of AS160 and TBC1D1 via AMPK, which could be detected by a generic phospho-Akt substrate (PAS) antibody. Here, analysis of AS160 immunoprecipitates from muscle extracts with site-specific phospho-antibodies revealed that contraction and AICAR caused no increase but rather a slight decrease in phosphorylation of the major PAS recognition site AS160-Thr(649). In line with this, contraction failed to enhance 14-3-3 binding to AS160. Consistent with previous reports, we also observed that in situ contraction stimulated the signal intensity of PAS antibody immunoreactive protein of ∼150-160 kDa in muscle extracts. Using a TBC1D1 deletion mutant mouse, we showed that TBC1D1 protein accounted for the majority of the PAS antibody immunoreactive signals of ∼150-160 kDa in extracts of contracted muscles. Consistent with the proposed role of AS160-Thr(649) phosphorylation/14-3-3 binding in mediating glucose uptake, AS160-Thr(649)Ala knock-in mice displayed normal glucose uptake upon contraction and AICAR in isolated muscles. We conclude that the previously reported PAS antibody immunoreactive band ∼150-160 kDa, which were increased upon contraction, does not represent AS160 but TBC1D1, and that AS160-Thr(649)Ala substitution impairs insulin- but neither contraction- nor AICAR-stimulated glucose uptake in mouse skeletal muscle.
Collapse
Affiliation(s)
- Serge Ducommun
- Medical Rersearch Council Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Scotland, United Kingdom
| | | | | | | | | |
Collapse
|
114
|
Raychaudhuri S. MicroRNAs overexpressed in growth-restricted rat skeletal muscles regulate the glucose transport in cell culture targeting central TGF-β factor SMAD4. PLoS One 2012; 7:e34596. [PMID: 22506032 PMCID: PMC3323545 DOI: 10.1371/journal.pone.0034596] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2011] [Accepted: 03/07/2012] [Indexed: 12/27/2022] Open
Abstract
The micro-array profiling of micro-RNA has been performed in rat skeletal muscle tissues, isolated from male adult offspring of intrauterine plus postnatal growth restricted model (IPGR). Apparently, the GLUT4 mRNA expression in male sk. muscle was found to be unaltered in contrast to females. The over-expression of miR-29a and miR-23a in the experimental group of SMSP (Starved Mother Starved Pups) have been found to regulate the glucose transport activity with respect to their control counterparts CMCP (Control Mother Control Pups) as confirmed in rat L6 myoblast-myocyte cell culture system. The ex-vivo experimentation demonstrates an aberration in insulin signaling pathway in male sk. muscle that leads to the localization of the membrane-bound Glut4 protein. We have identified through a series of experiments one important protein factor SMAD4, a co-SMAD critical to the TGF-beta signaling pathway. This factor is targeted by miR-29a, as identified in an in vitro reporter-assay system in cell-culture experiment. The other micro-RNA, miR-23a, targets SMAD4 indirectly that seems to be critical in regulating insulin-dependent glucose transport activity. MicroRNA mimics, inhibitors and siRNA studies indicate the role of SMAD4 as inhibitory for glucose transport activities in normal physiological condition. The data demonstrate for the first time a critical function of microRNAs in fine-tuning the regulation of glucose transport in skeletal muscle. Chronic starved conditions (IPGR) in sk. muscle up-regulates microRNA changing the target protein expression patterns, such as SMAD4, to alter the glucose transport pathways for the survival. The innovative outcome of this paper identifies a critical pathway (TGF-beta) that may act negatively for the mammalian glucose transport machinery.
Collapse
Affiliation(s)
- Santanu Raychaudhuri
- Department of Pediatrics, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, California, United States of America.
| |
Collapse
|
115
|
Holness MJ, Sugden PH, Silvestre MF, Sugden MC. Actions and interactions of AMPK with insulin, the peroxisomal-proliferator activated receptors and sirtuins. Expert Rev Endocrinol Metab 2012; 7:191-208. [PMID: 30764011 DOI: 10.1586/eem.12.9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
AMP-activated protein kinase (AMPK) activity responds to a requirement to increase cellular ATP production and/or to conserve available ATP. AMPK is therefore central to the mechanisms of adjustment to fluctuating energy demand or metabolic substrate supply. AMPK has important actions in several insulin-responsive tissues, as well as in the pancreatic β cell, through which it can modulate glycemic control, insulin action and metabolic substrate selection and disposal. We review recent novel findings elucidating the mechanisms by which AMPK activation can correct impaired insulin action. However, we also emphasize not only the similarities, but also the differences in the actions of insulin and AMPK. We focus on metabolic interfaces between AMPK, peroxisomal proliferator-activated receptors, sirtuins and mTORC.
Collapse
Affiliation(s)
- Mark J Holness
- a Centre for Diabetes, Blizard Institute, Barts and the London School of Medicine and Dentistry, 4 Newark Street, Whitechapel, London, E1 2AT, UK.
| | - Peter H Sugden
- b Institute for Cardiovascular and Metabolic Research, School of Biological Sciences, University of Reading, RG6 6BX, UK
| | - Marta Fp Silvestre
- a Centre for Diabetes, Blizard Institute, Barts and the London School of Medicine and Dentistry, 4 Newark Street, Whitechapel, London, E1 2AT, UK.
| | - Mary C Sugden
- a Centre for Diabetes, Blizard Institute, Barts and the London School of Medicine and Dentistry, 4 Newark Street, Whitechapel, London, E1 2AT, UK.
| |
Collapse
|
116
|
Increased activity of cell surface peptidases in HeLa cells undergoing UV-induced apoptosis is not mediated by caspase 3. Int J Mol Sci 2012; 13:2650-2675. [PMID: 22489116 PMCID: PMC3317679 DOI: 10.3390/ijms13032650] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2011] [Revised: 02/14/2012] [Accepted: 02/22/2012] [Indexed: 11/16/2022] Open
Abstract
We have previously shown that in HeLa cells treated with a variety of agents there is an increase in cell surface peptidase (CSP) activity in those cells undergoing apoptosis. The increase in CSP activity observed in UVB-irradiated cells undergoing apoptosis was unaffected when the cultures were treated with the aminopeptidase inhibitor bestatin, and matrix metalloprotease inhibitor BB3103, but greatly enhanced when treated with the caspase 3 inhibitor-DEVD, and reduced in the presence of the poly(ADP-ribose) polymerase (PARP) inhibitor-3-aminobenzamide (3AB). Neither 3AB nor DEVD had an effect on the gross morphology of the apoptotic cells observed under electron microscopy, nor did they have an effect on phosphatidylserine eversion on the cell membrane, or that of PARP cleavage. All the agents except for DEVD had no effect on the level of caspase 3 activity in the cells. The results suggest that other caspases may cleave PARP in these cells. Both 3AB and DEVD treatment reduced the level of actin cleavage seen in the apoptotic cells. The increase in CSP activity observed in cells undergoing UVB-induced apoptosis appears to involve PARP but not caspase 3.
Collapse
|
117
|
Siddle K. Molecular basis of signaling specificity of insulin and IGF receptors: neglected corners and recent advances. Front Endocrinol (Lausanne) 2012; 3:34. [PMID: 22649417 PMCID: PMC3355962 DOI: 10.3389/fendo.2012.00034] [Citation(s) in RCA: 111] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2011] [Accepted: 02/13/2012] [Indexed: 12/15/2022] Open
Abstract
Insulin and insulin-like growth factor (IGF) receptors utilize common phosphoinositide 3-kinase/Akt and Ras/extracellular signal-regulated kinase signaling pathways to mediate a broad spectrum of "metabolic" and "mitogenic" responses. Specificity of insulin and IGF action in vivo must in part reflect expression of receptors and responsive pathways in different tissues but it is widely assumed that it is also determined by the ligand binding and signaling mechanisms of the receptors. This review focuses on receptor-proximal events in insulin/IGF signaling and examines their contribution to specificity of downstream responses. Insulin and IGF receptors may differ subtly in the efficiency with which they recruit their major substrates (IRS-1 and IRS-2 and Shc) and this could influence effectiveness of signaling to "metabolic" and "mitogenic" responses. Other substrates (Grb2-associated binder, downstream of kinases, SH2Bs, Crk), scaffolds (RACK1, β-arrestins, cytohesins), and pathways (non-receptor tyrosine kinases, phosphoinositide kinases, reactive oxygen species) have been less widely studied. Some of these components appear to be specifically involved in "metabolic" or "mitogenic" signaling but it has not been shown that this reflects receptor-preferential interaction. Very few receptor-specific interactions have been characterized, and their roles in signaling are unclear. Signaling specificity might also be imparted by differences in intracellular trafficking or feedback regulation of receptors, but few studies have directly addressed this possibility. Although published data are not wholly conclusive, no evidence has yet emerged for signaling mechanisms that are specifically engaged by insulin receptors but not IGF receptors or vice versa, and there is only limited evidence for differential activation of signaling mechanisms that are common to both receptors. Cellular context, rather than intrinsic receptor activity, therefore appears to be the major determinant of whether responses to insulin and IGFs are perceived as "metabolic" or "mitogenic."
Collapse
Affiliation(s)
- Kenneth Siddle
- University of Cambridge Metabolic Research Laboratories and Department of Clinical Biochemistry, Institute of Metabolic Science, Addenbrooke's Hospital Cambridge, UK.
| |
Collapse
|
118
|
Abstract
Phosphoinositides play an essential role in insulin signaling, serving as a localization signal for a variety of proteins that participate in the regulation of cellular growth and metabolism. This chapter will examine the regulation and localization of phosphoinositide species, and will explore the roles of these lipids in insulin action. We will also discuss the changes in phosphoinositide metabolism that occur in various pathophysiological states such as insulin resistance and diabetes.
Collapse
Affiliation(s)
- Dave Bridges
- Life Sciences Institute, University of Michigan, Ann Arbor, MI 48109, USA
| | | |
Collapse
|
119
|
Chen S, Synowsky S, Tinti M, MacKintosh C. The capture of phosphoproteins by 14-3-3 proteins mediates actions of insulin. Trends Endocrinol Metab 2011; 22:429-36. [PMID: 21871813 DOI: 10.1016/j.tem.2011.07.005] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/21/2010] [Revised: 06/26/2011] [Accepted: 07/25/2011] [Indexed: 10/17/2022]
Abstract
How does signalling via PI3K-PKB (AKT)-mTORC1-p70S6K and ERK-p90RSK mediate wide-ranging physiological responses to insulin? Quantitative proteomics and biochemical experiments are revealing that these signalling pathways induce the phosphorylation of large and overlapping sets of proteins, which are then captured by phosphoprotein-binding proteins named 14-3-3s. The 14-3-3s are dimers that dock onto dual-phosphorylated sites in a configuration with special signalling and mechanical properties. They interact with the Rab GTPase-activating proteins AS160 and TBC1D1 to regulate glucose uptake into target tissues in response to insulin and energy stress. Dynamic patterns in the 14-3-3-binding phosphoproteome are providing new insights into how insulin triggers coherent shifts in metabolism that are integrated with other cellular response systems.
Collapse
Affiliation(s)
- Shuai Chen
- MRC Protein Phosphorylation Unit, College of Life Sciences, University of Dundee, Dundee DD1 5EH, UK
| | | | | | | |
Collapse
|
120
|
Prior MJ, Larance M, Lawrence RT, Soul J, Humphrey S, Burchfield J, Kistler C, Davey JR, La-Borde PJ, Buckley M, Kanazawa H, Parton RG, Guilhaus M, James DE. Quantitative proteomic analysis of the adipocyte plasma membrane. J Proteome Res 2011; 10:4970-82. [PMID: 21928809 DOI: 10.1021/pr200446r] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The adipocyte is a key regulator of mammalian metabolism. To advance our understanding of this important cell, we have used quantitative proteomics to define the protein composition of the adipocyte plasma membrane (PM) in the presence and absence of insulin. Using this approach, we have identified a high confidence list of 486 PM proteins, 52 of which potentially represent novel cell surface proteins, including a member of the adiponectin receptor family and an unusually high number of hydrolases with no known function. Several novel insulin-responsive proteins including the sodium/hydrogen exchanger, NHE6 and the collagens III and VI were also identified, and we provide evidence of PM-ER association suggestive of a unique functional association between these two organelles in the adipocyte. Together these studies provide a wealth of potential therapeutic targets for the manipulation of adipocyte function and a valuable resource for metabolic research and PM biology.
Collapse
Affiliation(s)
- Matthew J Prior
- Diabetes and Obesity Program, Garvan Institute of Medical Research , Sydney, NSW 2010, Australia
| | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
121
|
Balamatsias D, Kong AM, Waters JE, Sriratana A, Gurung R, Bailey CG, Rasko JEJ, Tiganis T, Macaulay SL, Mitchell CA. Identification of P-Rex1 as a novel Rac1-guanine nucleotide exchange factor (GEF) that promotes actin remodeling and GLUT4 protein trafficking in adipocytes. J Biol Chem 2011; 286:43229-40. [PMID: 22002247 DOI: 10.1074/jbc.m111.306621] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Phosphoinositide 3-kinase (PI3K) signaling promotes the translocation of the glucose transporter, GLUT4, to the plasma membrane in insulin-sensitive tissues to facilitate glucose uptake. In adipocytes, insulin-stimulated reorganization of the actin cytoskeleton has been proposed to play a role in promoting GLUT4 translocation and glucose uptake, in a PI3K-dependent manner. However, the PI3K effectors that promote GLUT4 translocation via regulation of the actin cytoskeleton in adipocytes remain to be fully elucidated. Here we demonstrate that the PI3K-dependent Rac exchange factor, P-Rex1, enhances membrane ruffling in 3T3-L1 adipocytes and promotes GLUT4 trafficking to the plasma membrane at submaximal insulin concentrations. P-Rex1-facilitated GLUT4 trafficking requires a functional actin network and membrane ruffle formation and occurs in a PI3K- and Rac1-dependent manner. In contrast, expression of other Rho GTPases, such as Cdc42 or Rho, did not affect insulin-stimulated P-Rex1-mediated GLUT4 trafficking. P-Rex1 siRNA knockdown or expression of a P-Rex1 dominant negative mutant reduced but did not completely inhibit glucose uptake in response to insulin. Collectively, these studies identify a novel RacGEF in adipocytes as P-Rex1 that, at physiological insulin concentrations, functions as an insulin-dependent regulator of the actin cytoskeleton that contributes to GLUT4 trafficking to the plasma membrane.
Collapse
Affiliation(s)
- Demis Balamatsias
- Department of Biochemistry and Molecular Biology, Monash University, Clayton, Victoria 3800, Australia
| | | | | | | | | | | | | | | | | | | |
Collapse
|