101
|
Jackson CM, Mukherjee S, Wilburn AN, Cates C, Lewkowich IP, Deshmukh H, Zacharias WJ, Chougnet CA. Pulmonary Consequences of Prenatal Inflammatory Exposures: Clinical Perspective and Review of Basic Immunological Mechanisms. Front Immunol 2020; 11:1285. [PMID: 32636848 PMCID: PMC7318112 DOI: 10.3389/fimmu.2020.01285] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2020] [Accepted: 05/21/2020] [Indexed: 12/12/2022] Open
Abstract
Chorioamnionitis, a potentially serious inflammatory complication of pregnancy, is associated with the development of an inflammatory milieu within the amniotic fluid surrounding the developing fetus. When chorioamnionitis occurs, the fetal lung finds itself in the unique position of being constantly exposed to the consequent inflammatory meditators and/or microbial products found in the amniotic fluid. This exposure results in significant changes to the fetal lung, such as increased leukocyte infiltration, altered cytokine, and surfactant production, and diminished alveolarization. These alterations can have potentially lasting impacts on lung development and function. However, studies to date have only begun to elucidate the association between such inflammatory exposures and lifelong consequences such as lung dysfunction. In this review, we discuss the pathogenesis of and fetal immune response to chorioamnionitis, detail the consequences of chorioamnionitis exposure on the developing fetal lung, highlighting the various animal models that have contributed to our current understanding and discuss the importance of fetal exposures in regard to the development of chronic respiratory disease. Finally, we focus on the clinical, basic, and therapeutic challenges in fetal inflammatory injury to the lung, and propose next steps and future directions to improve our therapeutic understanding of this important perinatal stress.
Collapse
Affiliation(s)
- Courtney M. Jackson
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Shibabrata Mukherjee
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States
| | - Adrienne N. Wilburn
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States
- Immunology Graduate Program, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Chris Cates
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
| | - Ian P. Lewkowich
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
| | - Hitesh Deshmukh
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neonatology/Pulmonary Biology, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - William J. Zacharias
- Division of Pulmonary and Critical Care Medicine, Department of Internal Medicine, University of Cincinnati, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- Division of Neonatology/Pulmonary Biology, The Perinatal Institute, Cincinnati Children's Hospital Medical Center, University of Cincinnati, Cincinnati, OH, United States
| | - Claire A. Chougnet
- Division of Immunobiology, Cincinnati Children's Hospital Research Foundation, Cincinnati, OH, United States
- Department of Pediatrics, University of Cincinnati College of Medicine, Cincinnati, OH, United States
- *Correspondence: Claire A. Chougnet
| |
Collapse
|
102
|
Peiris HN, Romero R, Vaswani K, Reed S, Gomez-Lopez N, Tarca AL, Gudicha DW, Erez O, Maymon E, Mitchell MD. Preterm labor is characterized by a high abundance of amniotic fluid prostaglandins in patients with intra-amniotic infection or sterile intra-amniotic inflammation. J Matern Fetal Neonatal Med 2019; 34:4009-4024. [PMID: 31885290 DOI: 10.1080/14767058.2019.1702953] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Objective: To distinguish between prostaglandin and prostamide concentrations in the amniotic fluid of women who had an episode of preterm labor with intact membranes through the utilisation of liquid chromatography-tandem mass spectrometry.Study design: Liquid chromatography-tandem mass spectrometry analysis of amniotic fluid of women with preterm labor and (1) subsequent delivery at term (2) preterm delivery without intra-amniotic inflammation; (3) preterm delivery with sterile intra-amniotic inflammation (interleukin (IL)-6>2.6 ng/mL without detectable microorganisms); and (4) preterm delivery with intra-amniotic infection [IL-6>2.6 ng/mL with detectable microorganisms].Results: (1) amniotic fluid concentrations of PGE2, PGF2α, and PGFM were higher in patients with intra-amniotic infection than in those without intra-amniotic inflammation; (2) PGE2 and PGF2α concentrations were also greater in patients with intra-amniotic infection than in those with sterile intra-amniotic inflammation; (3) patients with sterile intra-amniotic inflammation had higher amniotic fluid concentrations of PGE2 and PGFM than those without intra-amniotic inflammation who delivered at term; (4) PGFM concentrations were also greater in women with sterile intra-amniotic inflammation than in those without intra-amniotic inflammation who delivered preterm; (5) amniotic fluid concentrations of prostamides (PGE2-EA and PGF2α-EA) were not different among patients with preterm labor; (6) amniotic fluid concentrations of prostaglandins, but no prostamides, were higher in cases with intra-amniotic inflammation; and (7) the PGE2:PGE2-EA and PGF2α:PGF2α-EA ratios were higher in patients with intra-amniotic infection compared to those without inflammation.Conclusions: Mass spectrometric analysis of amniotic fluid indicated that amniotic fluid concentrations of prostaglandins, but no prostamides, were higher in women with preterm labor and intra-amniotic infection than in other patients with an episode of preterm labor. Yet, women with intra-amniotic infection had greater amniotic fluid concentrations of PGE2 and PGF2α than those with sterile intra-amniotic inflammation, suggesting that these two clinical conditions may be differentiated by using mass spectrometric analysis of amniotic fluid.
Collapse
Affiliation(s)
- Hassendrini N Peiris
- Faculty of Health, Centre for Children's Health Research, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology & Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.,Detroit Medical Center, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Kanchan Vaswani
- Faculty of Health, Centre for Children's Health Research, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| | - Sarah Reed
- UQ Centre for Clinical Research, University of Queensland, Australia
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| | - Dereje W Gudicha
- Perinatology Research Branch, Division of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Obstetrics and Gynecology, Faculty of Health Sciences, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Eli Maymon
- Perinatology Research Branch, Division of Obstetrics and Maternal Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Division of Obstetrics and Gynecology, Faculty of Health Sciences, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev, Be'er Sheva, Israel
| | - Murray D Mitchell
- Faculty of Health, Centre for Children's Health Research, Institute of Health and Biomedical Innovation, Queensland University of Technology, Brisbane, Australia
| |
Collapse
|
103
|
Romero R, Gomez-Lopez N, Winters AD, Jung E, Shaman M, Bieda J, Panaitescu B, Pacora P, Erez O, Greenberg JM, Ahmad MM, Hsu CD, Theis KR. Evidence that intra-amniotic infections are often the result of an ascending invasion - a molecular microbiological study. J Perinat Med 2019; 47:915-931. [PMID: 31693497 PMCID: PMC7147941 DOI: 10.1515/jpm-2019-0297] [Citation(s) in RCA: 119] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2019] [Accepted: 08/18/2019] [Indexed: 12/15/2022]
Abstract
Background Microbial invasion of the amniotic cavity resulting in intra-amniotic infection is associated with obstetrical complications such as preterm labor with intact or ruptured membranes, cervical insufficiency, as well as clinical and histological chorioamnionitis. The most widely accepted pathway for intra-amniotic infection is the ascension of microorganisms from the lower genital tract. However, hematogenous dissemination of microorganisms from the oral cavity or intestine, retrograde seeding from the peritoneal cavity through the fallopian tubes, and introduction through invasive medical procedures have also been suggested as potential pathways for intra-amniotic infection. The primary reason that an ascending pathway is viewed as most common is that the microorganisms most often detected in the amniotic fluid are those that are typical inhabitants of the vagina. However, thus far, no studies have shown that microorganisms in the amniotic cavity are simultaneously present in the vagina of the woman from which they were isolated. The objective of the study was to determine the frequency with which microorganisms isolated from women with intra-amniotic infection are also present in the lower genital tract. Methods This was a cross-sectional study of women with intra-amniotic infection with intact membranes. Intra-amniotic infection was defined as a positive culture and elevated concentrations of interleukin-6 (IL-6) (>2.6 ng/mL) in amniotic fluid and/or acute histologic chorioamnionitis and funisitis. Microorganisms isolated from bacterial cultures of amniotic fluid were taxonomically identified through matrix-assisted laser desorption ionization-time of flight mass spectrometry (MALDI-TOF) and 16S ribosomal RNA (rRNA) gene sequencing. Vaginal swabs were obtained at the time of amniocentesis for the identification of microorganisms in the lower genital tract. The overall bacterial profiles of amniotic fluids and vaginal swabs were characterized through 16S rRNA gene sequencing. The bacterial profiles of vaginal swabs were interrogated for the presence of bacteria cultured from amniotic fluid and for the presence of prominent (>1% average relative abundance) operational taxonomic units (OTUs) within the overall 16S rRNA gene bacterial profiles of amniotic fluid. Results (1) A total of 75% (6/8) of women had bacteria cultured from their amniotic fluid that are typical residents of the vaginal ecosystem. (2) A total of 62.5% (5/8) of women with bacteria cultured from their amniotic fluid also had these bacteria present in their vagina. (3) The microorganisms cultured from amniotic fluid and also detected in the vagina were Ureaplasma urealyticum, Escherichia coli, and Streptococcus agalactiae. (4) 16S rRNA gene sequencing revealed that the amniotic fluid of women with intra-amniotic infection had bacterial profiles dominated by Sneathia, Ureaplasma, Prevotella, Lactobacillus, Escherichia, Gardnerella, Peptostreptococcus, Peptoniphilus, and Streptococcus, many of which had not been cultured from the amniotic fluid samples. (5) Seventy percent (7/10) of the prominent (>1% average relative abundance) OTUs found in amniotic fluid were also prominent in the vagina. Conclusion The majority of women with intra-amniotic infection had bacteria cultured from their amniotic fluid that were typical vaginal commensals, and these bacteria were detected within the vagina at the time of amniocentesis. Molecular microbiological interrogation of amniotic fluid from women with intra-amniotic infection revealed that the bacterial profiles of amniotic fluid were largely consistent with those of the vagina. These findings indicate that ascension from the lower genital tract is the primary pathway for intra-amniotic infection.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
- Detroit Medical Center, Detroit, MI, USA
- Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, USA
| | - Andrew D. Winters
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Majid Shaman
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Janine Bieda
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Maternity Department “D,” Division of Obstetrics and Gynecology, Soroka University Medical Center School of Medicine, Faculty of Health Sciences, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Jonathan M. Greenberg
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Madison M. Ahmad
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Kevin R. Theis
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD, and Detroit, MI, USA
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI, USA
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
104
|
O'Callaghan JL, Turner R, Dekker Nitert M, Barrett HL, Clifton V, Pelzer ES. Re-assessing microbiomes in the low-biomass reproductive niche. BJOG 2019; 127:147-158. [PMID: 31587490 DOI: 10.1111/1471-0528.15974] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/26/2019] [Indexed: 12/21/2022]
Abstract
The female reproductive tract represents a continuum between the vagina and the upper genital tract. New evidence from cultivation-independent studies suggests that the female upper genital tract is not sterile; however, the significance of this for reproductive health and disease remains to be elucidated fully. Further, diagnosis and treatment of infectious reproductive tract pathologies using cultivation-independent technologies represents a largely unchartered area of modern medical science. The challenge now is to design well-controlled experiments to account for the ease of contamination known to confound molecular-based studies of low-biomass niches, including the uterus and placenta. This will support robust assessment of the potential function of microorganisms, microbial metabolites, and cell-free bacterial DNA on reproductive function in health and disease. TWEETABLE ABSTRACT: Molecular microbial studies of low-biomass niches require stringent experimental controls to reveal causal relations in reproductive health and disease.
Collapse
Affiliation(s)
- J L O'Callaghan
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld, Australia.,Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, Qld, Australia
| | - R Turner
- The Wesley Hospital, Auchenflower, Qld, Australia
| | - M Dekker Nitert
- School of Chemistry and Molecular Biosciences, Faculty of Science, University of Queensland, St Lucia, Qld, Australia
| | - H L Barrett
- Endocrinology, Mater Hospital, South Brisbane, Qld, Australia.,Mater Research, University of Queensland, St Lucia, Qld, Australia
| | - V Clifton
- Mater Research, Pregnancy and Development Group, South Brisbane, Qld, Australia
| | - E S Pelzer
- School of Biomedical Sciences, Faculty of Health, Queensland University of Technology, Brisbane, Qld, Australia.,Institute of Health and Biomedical Innovation, Faculty of Health, Queensland University of Technology, Brisbane, Qld, Australia
| |
Collapse
|
105
|
Frascoli M, Coniglio L, Witt R, Jeanty C, Fleck-Derderian S, Myers DE, Lee TH, Keating S, Busch MP, Norris PJ, Tang Q, Cruz G, Barcellos LF, Gomez-Lopez N, Romero R, MacKenzie TC. Alloreactive fetal T cells promote uterine contractility in preterm labor via IFN-γ and TNF-α. Sci Transl Med 2019; 10:10/438/eaan2263. [PMID: 29695455 DOI: 10.1126/scitranslmed.aan2263] [Citation(s) in RCA: 89] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 12/13/2017] [Accepted: 04/05/2018] [Indexed: 12/15/2022]
Abstract
Healthy pregnancy is the most successful form of graft tolerance, whereas preterm labor (PTL) may represent a breakdown in maternal-fetal tolerance. Although maternal immune responses have been implicated in pregnancy complications, fetal immune responses against maternal antigens are often not considered. To examine the fetal immune system in the relevant clinical setting, we analyzed maternal and cord blood in patients with PTL and healthy term controls. We report here that the cord blood of preterm infants has higher amounts of inflammatory cytokines and a greater activation of dendritic cells. Moreover, preterm cord blood is characterized by the presence of a population of central memory cells with a type 1 T helper phenotype, which is absent in term infants, and an increase in maternal microchimerism. T cells from preterm infants mount a robust proliferative, proinflammatory response to maternal antigens compared to term infants yet fail to respond to third-party antigens. Furthermore, we show that T cells from preterm infants stimulate uterine myometrial contractility through interferon-γ and tumor necrosis factor-α. In parallel, we found that adoptive transfer of activated T cells directly into mouse fetuses resulted in pregnancy loss. Our findings indicate that fetal inflammation and rejection of maternal antigens can contribute to the signaling cascade that promotes uterine contractility and that aberrant fetal immune responses should be considered in the pathogenesis of PTL.
Collapse
Affiliation(s)
- Michela Frascoli
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, CA 94143, USA
| | - Lacy Coniglio
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, CA 94143, USA
| | - Russell Witt
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, CA 94143, USA
| | - Cerine Jeanty
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, CA 94143, USA.,Department of Surgery, University of California, San Francisco, CA 94143, USA
| | | | - Dana E Myers
- Obstetrics and Gynecology, University of California, San Francisco, CA 94143, USA
| | - Tzong-Hae Lee
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Sheila Keating
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Michael P Busch
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Philip J Norris
- Blood Systems Research Institute, San Francisco, CA 94118, USA
| | - Qizhi Tang
- Department of Surgery, University of California, San Francisco, CA 94143, USA
| | - Giovanna Cruz
- Division of Epidemiology, Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Lisa F Barcellos
- Division of Epidemiology, Genetic Epidemiology and Genomics Laboratory, School of Public Health, University of California, Berkeley, CA 94720, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)/National Institutes of Health (NIH)/U.S. Department of Health and Human Services (DHHS), Bethesda, MD 20892, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI 48201, USA.,Department of Microbiology, Immunology, and Biochemistry, Wayne State University School of Medicine, Detroit, MI 48201, USA
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development (NICHD)/National Institutes of Health (NIH)/U.S. Department of Health and Human Services (DHHS), Bethesda, MD 20892, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI 48109, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI 48824, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI 48201, USA
| | - Tippi C MacKenzie
- Eli and Edythe Broad Center of Regeneration Medicine, University of California, San Francisco, CA 94143, USA. .,Department of Surgery, University of California, San Francisco, CA 94143, USA.,Center for Maternal-Fetal Precision Medicine, University of California, San Francisco, CA 94143, USA
| |
Collapse
|
106
|
Gomez-Lopez N, Romero R, Tarca AL, Miller D, Panaitescu B, Schwenkel G, Gudicha DW, Hassan SS, Pacora P, Jung E, Hsu CD. Gasdermin D: Evidence of pyroptosis in spontaneous preterm labor with sterile intra-amniotic inflammation or intra-amniotic infection. Am J Reprod Immunol 2019; 82:e13184. [PMID: 31461796 DOI: 10.1111/aji.13184] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 08/19/2019] [Accepted: 08/22/2019] [Indexed: 12/29/2022] Open
Abstract
PROBLEM Pyroptosis, inflammatory programmed cell death, is initiated through the inflammasome and relies on the pore-forming actions of the effector molecule gasdermin D. Herein, we investigated whether gasdermin D is detectable in women with spontaneous preterm labor and sterile intra-amniotic inflammation or intra-amniotic infection. METHOD OF STUDY Amniotic fluid samples (n = 124) from women with spontaneous preterm labor were subdivided into the following groups: (a) those who delivered at term (n = 32); and those who delivered preterm (b) without intra-amniotic inflammation (n = 41), (c) with sterile intra-amniotic inflammation (n = 32), or (d) with intra-amniotic infection (n = 19), based on amniotic fluid IL-6 concentrations and the microbiological status of amniotic fluid (culture and PCR/ESI-MS). Gasdermin D concentrations were measured using an ELISA kit. Multiplex immunofluorescence staining was also performed to determine the expression of gasdermin D, caspase-1, and interleukin-1β in the chorioamniotic membranes. Flow cytometry was used to detect pyroptosis (active caspase-1) in decidual cells from women with preterm labor and birth. RESULTS (a) Gasdermin D was detected in the amniotic fluid and chorioamniotic membranes from women who underwent spontaneous preterm labor/birth with either sterile intra-amniotic inflammation or intra-amniotic infection, but was rarely detected in those without intra-amniotic inflammation. (b) Amniotic fluid concentrations of gasdermin D were higher in women with intra-amniotic infection than in those with sterile intra-amniotic inflammation, and its expression in the chorioamniotic membranes was associated with caspase-1 and IL-1β (inflammasome mediators). (c) Decidual stromal cells and leukocytes isolated from women with preterm labor and birth are capable of undergoing pyroptosis given their expression of active caspase-1. CONCLUSION Pyroptosis can occur in the context of sterile intra-amniotic inflammation and intra-amniotic infection in patients with spontaneous preterm labor and birth.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, MI, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA.,Detroit Medical Center, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Florida International University, Miami, FL, USA
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - George Schwenkel
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Dereje W Gudicha
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA
| | - Chaur-Dong Hsu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Detroit, MI, USA.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, USA.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, USA
| |
Collapse
|
107
|
Willis KA, Purvis JH, Myers ED, Aziz MM, Karabayir I, Gomes CK, Peters BM, Akbilgic O, Talati AJ, Pierre JF. Fungi form interkingdom microbial communities in the primordial human gut that develop with gestational age. FASEB J 2019; 33:12825-12837. [PMID: 31480903 DOI: 10.1096/fj.201901436rr] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Fungal and bacterial commensal organisms play a complex role in the health of the human host. Expansion of commensal ecology after birth is a critical period in human immune development. However, the initial fungal colonization of the primordial gut remains undescribed. To investigate primordial fungal ecology, we performed amplicon sequencing and culture-based techniques of first-pass meconium, which forms in the intestine prior to birth, from a prospective observational cohort of term and preterm newborns. Here, we describe fungal ecologies in the primordial gut that develop complexity with advancing gestational age at birth. Our findings suggest homeostasis of fungal commensals may represent an important aspect of human biology present even before birth. Unlike bacterial communities that gradually develop complexity, the domination of the fungal communities of some preterm infants by Saccromycetes, specifically Candida, may suggest a pathologic association with preterm birth.-Willis, K. A., Purvis, J. H., Myers, E. D., Aziz, M. M., Karabayir, I., Gomes, C. K., Peters, B. M., Akbilgic, O., Talati, A. J., Pierre, J. F. Fungi form interkingdom microbial communities in the primordial human gut that develop with gestational age.
Collapse
Affiliation(s)
- Kent A Willis
- Division of Neonatology, Department of Pediatrics, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA.,College of Medicine, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - John H Purvis
- Division of Neonatology, Department of Pediatrics, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA.,College of Medicine, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Erin D Myers
- College of Medicine, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Michael M Aziz
- Department of Obstetrics and Gynecology, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Ibrahim Karabayir
- Department of Health Informatics and Data Science, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA.,Faculty of Economics and Administrative Sciences, Department of Econometrics, Kirklareli University, Kirklareli, Turkey
| | - Charles K Gomes
- Department of Pediatrics, Obesity, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Brian M Peters
- Department of Clinical Pharmacy and Translational Science, College of Pharmacy, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Oguz Akbilgic
- Department of Health Informatics and Data Science, Stritch School of Medicine, Loyola University Chicago, Chicago, Illinois, USA.,Center for Health Outcome and Informatics Research, Loyola University Chicago, Chicago, Illinois, USA; and
| | - Ajay J Talati
- Division of Neonatology, Department of Pediatrics, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA.,College of Medicine, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA.,Department of Obstetrics and Gynecology, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| | - Joseph F Pierre
- Department of Pediatrics, Obesity, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA.,Department of Microbiology, Immunology and Biochemistry, The University of Tennessee Health Science Center (UTHSC), Memphis, Tennessee, USA
| |
Collapse
|
108
|
Wu G, Li R, Tong C, He M, Qi Z, Chen H, Deng T, Liu H, Qi H. Non-invasive prenatal testing reveals copy number variations related to pregnancy complications. Mol Cytogenet 2019; 12:38. [PMID: 31485271 PMCID: PMC6716937 DOI: 10.1186/s13039-019-0451-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 08/21/2019] [Indexed: 12/25/2022] Open
Abstract
Background Pregnancy complications could lead to maternal and fetal morbidity and mortality. Early diagnosing and managing complications have been associated with good outcomes. The placenta was an important organ for development of pregnancy complications. Thus, non-invasive prenatal testing technologies could detect genetic variations, such as aneuploidies and sub-chromosomal copy number variations, reflecting defective placenta by maternal plasma cffDNAs. Maternal cffDNAs had been proved to derive from trophoblast cells of placenta. Results In order to find out the relationship between genetic variations and pregnancy complications, we reviewed NIPT results for subchromosomal copy number variations in a cohort of 3890 pregnancies without complications and 441 pregnancies with pregnancy complications including gestational diabetes mellitus (GDM), pregnancy-induced hypertension (PIH), preterm prelabor rupture of membranes (PPROM) and placenta implantation abnormalities (PIA). For GDMs, we identified three CNV regions containing some members of alpha- and beta-defensins, such as DEFA1, DEFA3, DEFB1. For PIHs, we found three duplication and one deletion region including Pcdhα, Pcdhβ, and Pcdhγ, known as protocadherins, which were complicated by hypertensive disorders. For PPROMs and PIAs, we identified one and two CNV regions, respectively. SFTPA2, SFTPD and SFTPA1, belonging to surfactant protein, was considered to moderated the inflammatory activation within the fetal extra-embryonic compartment, associated to duration of preterm prelabor rupture of fetal membranes, while MEF2C and TM6SF1 could be involved in trophoblast invasion and differentiation. Conclusions Our findings gave a clue to correlation between genetic variations of maternal cell-free DNAs and pregnancy complications. Electronic supplementary material The online version of this article (10.1186/s13039-019-0451-3) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Guangping Wu
- 1Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 People's Republic of China.,2State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, 400016 People's Republic of China.,3International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016 People's Republic of China
| | - Rong Li
- 1Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 People's Republic of China.,2State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, 400016 People's Republic of China.,3International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016 People's Republic of China
| | - Chao Tong
- 1Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 People's Republic of China.,2State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, 400016 People's Republic of China.,3International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016 People's Republic of China
| | - Miaonan He
- Beijing CapitalBio Medical Laboratory, Beijing, 101111 China
| | - Zhiwei Qi
- Beijing CapitalBio Medical Laboratory, Beijing, 101111 China
| | - Huijuan Chen
- Beijing CapitalBio Medical Laboratory, Beijing, 101111 China
| | - Tao Deng
- Beijing CapitalBio Medical Laboratory, Beijing, 101111 China
| | - Hailiang Liu
- CapitalBio Technology Inc., Beijing, 101111 China.,6Department of Medical Genetics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, 510515 Guangdong China
| | - Hongbo Qi
- 1Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016 People's Republic of China.,2State Key Laboratory of Maternal and Fetal Medicine of Chongqing Municipality, Chongqing Medical University, Chongqing, 400016 People's Republic of China.,3International Collaborative Laboratory of Reproduction and Development of Chinese Ministry of Education, Chongqing Medical University, No.1 Youyi Road, Yuzhong District, Chongqing, 400016 People's Republic of China
| |
Collapse
|
109
|
Antibiotic administration can eradicate intra-amniotic infection or intra-amniotic inflammation in a subset of patients with preterm labor and intact membranes. Am J Obstet Gynecol 2019; 221:142.e1-142.e22. [PMID: 30928566 DOI: 10.1016/j.ajog.2019.03.018] [Citation(s) in RCA: 106] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/13/2019] [Accepted: 03/21/2019] [Indexed: 01/21/2023]
Abstract
BACKGROUND Intra-amniotic infection is present in 10% of patients with an episode of preterm labor, and is a risk factor for impending preterm delivery and neonatal morbidity/mortality. Intra-amniotic inflammation is often associated with intra-amniotic infection, but is sometimes present in the absence of detectable microorganisms. Antibiotic treatment of intra-amniotic infection has traditionally been considered to be ineffective. Intra-amniotic inflammation without microorganisms has a prognosis similar to that of intra-amniotic infection. OBJECTIVE To determine whether antibiotics can eradicate intra-amniotic infection or intra-amniotic inflammation in a subset of patients with preterm labor and intact membranes. MATERIALS AND METHODS The study population consisted of women who met the following criteria: 1) singleton gestation between 20 and 34 weeks; 2) preterm labor and intact membranes; 3) transabdominal amniocentesis performed for the evaluation of the microbiologic/inflammatory status of the amniotic cavity; 4) intra-amniotic infection and/or intra-amniotic inflammation; and 5) received antibiotic treatment that consisted of ceftriaxone, clarithromycin, and metronidazole. Follow-up amniocentesis was performed in a subset of patients. Amniotic fluid was cultured for aerobic and anaerobic bacteria and genital mycoplasmas, and polymerase chain reaction was performed for Ureaplasma spp. Intra-amniotic infection was defined as a positive amniotic fluid culture or positive polymerase chain reaction, and intra-amniotic inflammation was suspected when there was an elevated amniotic fluid white blood cell count or a positive result of a rapid test for matrix metalloproteinase-8. For this study, the final diagnosis of intra-amniotic inflammation was made by measuring the interleukin-6 concentration in stored amniotic fluid (>2.6 ng/mL). These results were not available to managing clinicians. Treatment success was defined as eradication of intra-amniotic infection and/or intra-amniotic inflammation or delivery ≥37 weeks. RESULTS Of 62 patients with intra-amniotic infection and/or intra-amniotic inflammation, 50 received the antibiotic regimen. Of those patients, 29 were undelivered for ≥7 days and 19 underwent a follow-up amniocentesis. Microorganisms were identified by culture or polymerase chain reaction of amniotic fluid obtained at admission in 21% of patients (4/19) who had a follow-up amniocentesis, and were eradicated in 3 of the 4 patients. Resolution of intra-amniotic infection/inflammation was confirmed in 79% of patients (15/19), and 1 other patient delivered at term, although resolution of intra-amniotic inflammation could not be confirmed after a follow-up amniocentesis. Thus, resolution of intra-amniotic inflammation/infection or term delivery (treatment success) occurred in 84% of patients (16/19) who had a follow-up amniocentesis. Treatment success occurred in 32% of patients (16/50) with intra-amniotic infection/inflammation who received antibiotics. The median amniocentesis-to-delivery interval was significantly longer among women who received the combination of antibiotics than among those who did not (11.4 days vs 3.1 days: P = .04). CONCLUSION Eradication of intra-amniotic infection/inflammation after treatment with antibiotics was confirmed in 79% of patients with preterm labor, intact membranes, and intra-amniotic infection/inflammation who had a follow-up amniocentesis. Treatment success occurred in 84% of patients who underwent a follow-up amniocentesis and in 32% of women who received the antibiotic regimen.
Collapse
|
110
|
Oh KJ, Romero R, Park JY, Lee J, Conde-Agudelo A, Hong JS, Yoon BH. Evidence that antibiotic administration is effective in the treatment of a subset of patients with intra-amniotic infection/inflammation presenting with cervical insufficiency. Am J Obstet Gynecol 2019; 221:140.e1-140.e18. [PMID: 30928565 DOI: 10.1016/j.ajog.2019.03.017] [Citation(s) in RCA: 99] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2018] [Revised: 03/13/2019] [Accepted: 03/21/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND Cervical insufficiency is a risk factor for spontaneous midtrimester abortion or early preterm birth. Intra-amniotic infection has been reported in 8-52% of such patients and intra-amniotic inflammation in 81%. Some professional organizations have recommended perioperative antibiotic treatment when emergency cervical cerclage is performed. The use of prophylactic antibiotics is predicated largely on the basis that they reduce the rate of complications during the course of vaginal surgery. However, it is possible that antibiotic administration can also eradicate intra-amniotic infection/inflammation and improve pregnancy outcome. OBJECTIVE To describe the outcome of antibiotic treatment in patients with cervical insufficiency and intra-amniotic infection/inflammation. STUDY DESIGN The study population consisted of 22 women who met the following criteria: (1) singleton pregnancy; (2) painless cervical dilatation of >1 cm between 16.0 and 27.9 weeks of gestation; (3) intact membranes and absence of uterine contractions; (4) transabdominal amniocentesis performed for the evaluation of the microbiologic and inflammatory status of the amniotic cavity; (5) presence of intra-amniotic infection/inflammation; and (6) antibiotic treatment (regimen consisted of ceftriaxone, clarithromycin, and metronidazole). Amniotic fluid was cultured for aerobic and anaerobic bacteria and genital mycoplasmas, and polymerase chain reaction for Ureaplasma spp. was performed. Intra-amniotic infection was defined as a positive amniotic fluid culture for microorganisms or a positive polymerase chain reaction for Ureaplasma spp., and intra-amniotic inflammation was suspected when there was an elevated amniotic fluid white blood cell count (≥19 cells/mm3) or a positive rapid test for metalloproteinase-8 (sensitivity 10 ng/mL). For the purpose of this study, the "gold standard" for diagnosis of intra-amniotic inflammation was an elevated interleukin-6 concentration (>2.6 ng/mL) using an enzyme-linked immunosorbent assay. The results of amniotic fluid interleukin-6 were not available to managing clinicians. Follow-up amniocentesis was routinely offered to monitor the microbiologic and inflammatory status of the amniotic cavity and fetal lung maturity. Treatment success was defined as resolution of intra-amniotic infection/inflammation or delivery ≥34 weeks of gestation. RESULTS Of 22 patients with cervical insufficiency and intra-amniotic infection/inflammation, 3 (14%) had microorganisms in the amniotic fluid. Of the 22 patients, 6 (27%) delivered within 1 week of amniocentesis and the remaining 16 (73%) delivered more than 1 week after the diagnostic procedure. Among these, 12 had a repeat amniocentesis to assess the microbial and inflammatory status of the amniotic cavity; in 75% (9/12), there was objective evidence of resolution of intra-amniotic inflammation or intra-amniotic infection demonstrated by analysis of amniotic fluid at the time of the repeat amniocentesis. Of the 4 patients who did not have a follow-up amniocentesis, all delivered ≥34 weeks, 2 of them at term; thus, treatment success occurred in 59% (13/22) of cases. CONCLUSION In patients with cervical insufficiency and intra-amniotic infection/inflammation, administration of antibiotics (ceftriaxone, clarithromycin, and metronidazole) was followed by resolution of the intra-amniotic inflammatory process or intra-amniotic infection in 75% of patients and was associated with treatment success in about 60% of cases.
Collapse
Affiliation(s)
- Kyung Joon Oh
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI
| | - Jee Yoon Park
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - JoonHo Lee
- Department of Obstetrics and Gynecology, Institute of Women's Life Medical Science, Yonsei University College of Medicine, Yonsei University Health System, Seoul, Republic of Korea
| | - Agustin Conde-Agudelo
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Joon-Seok Hong
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Bo Hyun Yoon
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
111
|
Mönckeberg M, Valdés R, Kusanovic JP, Schepeler M, Nien JK, Pertossi E, Silva P, Silva K, Venegas P, Guajardo U, Romero R, Illanes SE. Patients with acute cervical insufficiency without intra-amniotic infection/inflammation treated with cerclage have a good prognosis. J Perinat Med 2019; 47:500-509. [PMID: 30849048 PMCID: PMC6606339 DOI: 10.1515/jpm-2018-0388] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/20/2018] [Accepted: 12/16/2018] [Indexed: 01/30/2023]
Abstract
Background The frequency of intra-amniotic infection/inflammation (IAI/I) in patients with midtrimester cervical insufficiency is up to 50%. Our purpose was to determine the perinatal outcomes of cervical cerclage in patients with acute cervical insufficiency with bulging membranes, and to compare the admission-to-delivery interval and pregnancy outcomes according to the results of amniotic fluid (AF) analysis and cerclage placement. Methods This was a retrospective cohort study including singleton pregnancies with cervical insufficiency between 15 and 26.9 weeks in two tertiary health centers. IAI/I was defined when at least one of the following criteria was present in AF: (a) a white blood cell (WBC) count >50 cells/mm3; (b) glucose concentration <14 mg/dL; and/or (c) a Gram stain positive for bacteria. Three different groups were compared: (1) absence of IAI/I with placement of a cerclage; (2) amniocentesis not performed with placement of a cerclage; and (3) IAI/I with or without a cerclage. Results Seventy patients underwent an amniocentesis to rule out IAI/I. The prevalence of IAI/I was 19%. Forty-seven patients underwent a cerclage. Patients with a cerclage had a longer median admission-to-delivery interval (33 vs. 2 days; P < 0.001) and delivered at a higher median gestational age (27.4 vs. 22.6 weeks; P = 0.001) than those without a cerclage. The neonatal survival rate in the cerclage group was 62% vs. 23% in those without a cerclage (P = 0.01). Patients without IAI/I who underwent a cerclage had a longer median admission-to-delivery interval (43 vs. 1 day; P < 0.001), delivered at a higher median gestational age (28 vs. 22.1 weeks; P = 0.001) and had a higher neonatal survival rate (67% vs. 8%; P < 0.001) than those with IAI/I. Conclusion The pregnancy outcomes of patients with midtrimester cervical insufficiency and bulging membranes are poor as they have a high prevalence of IAI/I. Therefore, a pre-operative amniocentesis is key to identify the best candidates for the subsequent placement of a cerclage.
Collapse
Affiliation(s)
- Max Mönckeberg
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile,Department of Public Health and Epidemiology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Rafael Valdés
- Center for Research and Innovation in Maternal-Fetal Medicine (CIMAF), Hospital Sótero del Río, Santiago, Chile
| | - Juan P. Kusanovic
- Center for Research and Innovation in Maternal-Fetal Medicine (CIMAF), Hospital Sótero del Río, Santiago, Chile,Division of Obstetrics and Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile,Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD and Detroit, MI, USA
| | - Manuel Schepeler
- Department of Obstetrics and Gynecology, Clínica Dávila, Santiago, Chile
| | - Jyh K. Nien
- Department of Obstetrics and Gynecology, Clínica Dávila, Santiago, Chile
| | - Emiliano Pertossi
- Division of Obstetrics and Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Pablo Silva
- Center for Research and Innovation in Maternal-Fetal Medicine (CIMAF), Hospital Sótero del Río, Santiago, Chile,Division of Obstetrics and Gynecology, School of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Karla Silva
- Center for Research and Innovation in Maternal-Fetal Medicine (CIMAF), Hospital Sótero del Río, Santiago, Chile
| | - Pía Venegas
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Ulises Guajardo
- Faculty of Medicine, Universidad de los Andes, Santiago, Chile
| | - Roberto Romero
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, MD and Detroit, MI, USA,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, USA,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, USA,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, USA
| | - Sebastián E. Illanes
- Department of Obstetrics and Gynecology, Faculty of Medicine, Universidad de los Andes, Santiago, Chile,Department of Obstetrics and Gynecology, Clínica Dávila, Santiago, Chile
| |
Collapse
|
112
|
OH KJ, ROMERO R, PARK JY, HONG JS, YOON BH. The earlier the gestational age, the greater the intensity of the intra-amniotic inflammatory response in women with preterm premature rupture of membranes and amniotic fluid infection by Ureaplasma species. J Perinat Med 2019; 47:516-527. [PMID: 31141489 PMCID: PMC6656366 DOI: 10.1515/jpm-2019-0003] [Citation(s) in RCA: 40] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Accepted: 03/21/2019] [Indexed: 01/13/2023]
Abstract
Objectives To determine the relationship between the intensity of the intra-amniotic inflammatory response and the gestational age at the time of diagnosis in cases with preterm premature rupture of membranes (PROM) and intra-amniotic infection caused by Ureaplasma spp. Methods A retrospective cohort study was conducted which included 71 women with preterm PROM and a positive amniotic fluid culture with Ureaplasma spp. Women with mixed intra-amniotic infections were excluded. The study population was classified into three groups according to gestational age: group 1, <26 weeks (extreme preterm PROM, n = 17); group 2, 26.0-33.9 weeks (moderate preterm PROM, n = 39); group 3, 34.0-36.9 weeks (late preterm PROM, n = 15). The intensity of the intra-amniotic and maternal inflammatory response was compared among the three groups. The intensity of the intra-amniotic inflammatory response was assessed by the concentration of amniotic fluid matrix metalloproteinase-8 (MMP-8) and white blood cell (WBC) count. The maternal inflammatory response was assessed by the concentration of C-reactive protein (CRP) and WBC count in maternal blood at the time of amniocentesis. Results (1) The median values of amniotic fluid MMP-8 concentration and WBC count were the highest in the extreme preterm PROM group and the lowest in the late preterm PROM group (P < 0.001 and P = 0.01, respectively); (2) the intensity of the maternal inflammatory response measured by maternal blood WBC count and CRP concentration was not significantly associated with gestational age at the time of diagnosis. Conclusion The earlier the gestational age at the time of PROM, the higher the intensity of the intra-amniotic inflammatory response in women with preterm PROM and intra-amniotic infection caused by Ureaplasma spp.
Collapse
Affiliation(s)
- Kyung Joon OH
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea;,Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Korea
| | - Roberto ROMERO
- Perinatology Research Branch, NICHD/NIH/DHHS, Bethesda, Maryland, USA, and Detroit, Michigan, USA;,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA;,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA;,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Jee Yoon PARK
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea;,Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Korea
| | - Joon-Seok HONG
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea;,Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Korea
| | - Bo Hyun YOON
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| |
Collapse
|
113
|
You YA, Kwon EJ, Choi SJ, Hwang HS, Choi SK, Lee SM, Kim YJ. Vaginal microbiome profiles of pregnant women in Korea using a 16S metagenomics approach. Am J Reprod Immunol 2019; 82:e13124. [PMID: 31134711 DOI: 10.1111/aji.13124] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Revised: 04/03/2019] [Accepted: 04/04/2019] [Indexed: 12/28/2022] Open
Abstract
PROBLEM The stability and dominance of Lactobacillus spp. in vaginal fluid are important for reproductive health. However, the characterization of the vaginal microbiota of women with preterm labor (PTL) or preterm premature rupture of membranes (P-PROM), and its association with preterm birth (PTB) are poorly understood. METHOD OF STUDY We collected vaginal fluid from women at risk of PTB (n = 58) in five university hospitals in Korea. We performed a hierarchical clustering analysis and classification according to the Lactobacillus spp. and Lactobacillus abundance using Illumina MiSeq sequencing of 16S rRNA gene amplicons. RESULTS Women at risk for PTB caused by P-PROM had greater bacterial richness and diversity at the time of admission than those with PTL (P < 0.05). However, they were not significantly different between term and preterm samples. In the classification by Lactobacillus spp., the community commonly dominated by Bacteroides and Lactobacillus crispatus was found for the first time in pregnant women in Korea, and all women with this community delivered preterm. Intriguingly, women with an abundance of Weissella in a Bacteroides-dominant community delivered at term. Moreover, in the classification by Lactobacillus proportion, the abundances of Weissella and Rickettsiales were associated with term deliveries, but the abundances of Bacteroides and Escherichia-Shigella were associated with PTBs (P < 0.05). CONCLUSION This result suggests that Lactobacillus abundance-based classification of vaginal fluid may reveal the microbiome associated with PTB. Further studies are needed to investigate the mechanism underlying the link between the microbiome and PTB.
Collapse
Affiliation(s)
- Young-Ah You
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Eun Jin Kwon
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Seoul, Korea
| | - Suk-Joo Choi
- Department of Obstetrics and Gynecology, Samsung Medical Center, Sungkyunkwan University School of Medicine, Seoul, Korea
| | - Han-Sung Hwang
- Department of Obstetrics and Gynecology, Konkuk University Medical Center, Konkuk University School of Medicine, Seoul, Korea
| | - Sae-Kyung Choi
- Department of Obstetrics and Gynecology, College of Medicine, The Catholic University of Korea, Seoul, Korea
| | - Seung Mi Lee
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Korea
| | - Young Ju Kim
- Department of Obstetrics and Gynecology and Ewha Medical Research Institute, College of Medicine, Ewha Womans University, Seoul, Korea
| |
Collapse
|
114
|
Propofol Suppresses LPS-Induced Inflammation in Amnion Cells via Inhibition of NF-κB Activation. Tissue Eng Regen Med 2019; 16:301-309. [PMID: 31205858 DOI: 10.1007/s13770-019-00194-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2019] [Revised: 04/15/2019] [Accepted: 04/30/2019] [Indexed: 01/22/2023] Open
Abstract
Background Preterm labor is a leading risk factor for neonatal death and long-term impairment and linked closely with inflammation. Non-obstetric surgery is occasionally needed during pregnancy and the anesthetic drugs or surgery itself can give rise to inflammation. Here, we examined the influence of propofol pretreatment on the expression of cyclooxygenase-2 (COX-2) and prostaglandin E2 (PGE2) after lipopolysaccharide (LPS) stimulation. In addition, we evaluated the expression of pro-inflammatory cytokines and nuclear factor kappa B (NF-κB). Methods Human amnion-derived WISH cells were used to investigate the effect of propofol on the LPS-induced expression of inflammatory substances involved in preterm labor. For the experiment, WISH cells were pretreated with various concentrations propofol (0.01-10 μg/ml) for 1 h and then treated with LPS (1 μg/ml) for 24 h. Cytotoxicity was evaluated using MTT assay. PGE2 concentration was assessed by ELISA. Protein expressions of COX-2, PGE2 and NF-κB were analyzed by western blotting analysis. RT-PCR was used for analysis of mRNA expression of COX-2, PGE2, interlukin (IL)-1β and tumor necrosis factor (TNF)-α. Results Propofol showed no cytotoxicity on the WISH cells. LPS-induced PGE2 production and COX-2 and PGE2 expression were decreased after propofol pretreatment. Propofol also attenuated the LPS-induced mRNA expression of IL-1β and TNF-α. Moreover, the activation of NF-κB was inhibited by propofol pretreatment on LPS-stimulated WISH cells. Conclusion We demonstrated that propofol suppresses the expression of inflammatory substances enhanced by LPS stimulation. Furthermore, this inhibitory effect of propofol on the inflammatory substance expression is mediated by suppression of NF-κB activation.
Collapse
|
115
|
Castillo DJ, Rifkin RF, Cowan DA, Potgieter M. The Healthy Human Blood Microbiome: Fact or Fiction? Front Cell Infect Microbiol 2019; 9:148. [PMID: 31139578 PMCID: PMC6519389 DOI: 10.3389/fcimb.2019.00148] [Citation(s) in RCA: 199] [Impact Index Per Article: 33.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 04/23/2019] [Indexed: 12/21/2022] Open
Abstract
The blood that flows perpetually through our veins and arteries performs numerous functions essential to our survival. Besides distributing oxygen, this vast circulatory system facilitates nutrient transport, deters infection and dispenses heat throughout our bodies. Since human blood has traditionally been considered to be an entirely sterile environment, comprising only blood-cells, platelets and plasma, the detection of microbes in blood was consistently interpreted as an indication of infection. However, although a contentious concept, evidence for the existence of a healthy human blood-microbiome is steadily accumulating. While the origins, identities and functions of these unanticipated micro-organisms remain to be elucidated, information on blood-borne microbial phylogeny is gradually increasing. Given recent advances in microbial-hematology, we review current literature concerning the composition and origin of the human blood-microbiome, focusing on bacteria and their role in the configuration of both the diseased and healthy human blood-microbiomes. Specifically, we explore the ways in which dysbiosis in the supposedly innocuous blood-borne bacterial microbiome may stimulate pathogenesis. In addition to exploring the relationship between blood-borne bacteria and the development of complex disorders, we also address the matter of contamination, citing the influence of contaminants on the interpretation of blood-derived microbial datasets and urging the routine analysis of laboratory controls to ascertain the taxonomic and metabolic characteristics of environmentally-derived contaminant-taxa.
Collapse
Affiliation(s)
- Diego J Castillo
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Riaan F Rifkin
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa.,Human Origins and Palaeo Environmental Research Group, Department of Anthropology and Geography, Oxford Brookes University, Oxford, United Kingdom
| | - Don A Cowan
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| | - Marnie Potgieter
- Department of Biochemistry, Genetics and Microbiology, Centre for Microbial Ecology and Genomics, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
116
|
Gomez-Lopez N, Romero R, Maymon E, Kusanovic JP, Panaitescu B, Miller D, Pacora P, Tarca AL, Motomura K, Erez O, Jung E, Hassan SS, Hsu CD. Clinical chorioamnionitis at term IX: in vivo evidence of intra-amniotic inflammasome activation. J Perinat Med 2019; 47:276-287. [PMID: 30412466 PMCID: PMC6445729 DOI: 10.1515/jpm-2018-0271] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/15/2018] [Accepted: 09/06/2018] [Indexed: 12/20/2022]
Abstract
Background The inflammasome has been implicated in the mechanisms that lead to spontaneous labor at term. However, whether the inflammasome is activated in the amniotic cavity of women with clinical chorioamnionitis at term is unknown. Herein, by measuring extracellular ASC [apoptosis-associated speck-like protein containing a C-terminal caspase recruitment domain (CARD)], we investigated whether there is in vivo inflammasome activation in amniotic fluid of patients with clinical chorioamnionitis at term with sterile intra-amniotic inflammation and in those with intra-amniotic infection. Methods This was a retrospective cross-sectional study that included amniotic fluid samples collected from 76 women who delivered after spontaneous term labor with diagnosed clinical chorioamnionitis. Intra-amniotic inflammation was defined as an elevated amniotic fluid interleukin (IL)-6 concentration ≥2.6 ng/mL, and intra-amniotic infection was diagnosed by the presence of microbial invasion of the amniotic cavity (MIAC) accompanied by intra-amniotic inflammation. Patients were classified into the following groups: (1) women without intra-amniotic inflammation or infection (n=16); (2) women with MIAC but without intra-amniotic inflammation (n=5); (3) women with sterile intra-amniotic inflammation (n=15); and (4) women with intra-amniotic infection (n=40). As a readout of in vivo inflammasome activation, extracellular ASC was measured in amniotic fluid by enzyme-linked immunosorbent assay. Acute inflammatory responses in the amniotic fluid and placenta were also evaluated. Results In clinical chorioamnionitis at term: (1) amniotic fluid concentrations of ASC (extracellular ASC is indicative of in vivo inflammasome activation) and IL-6 were greater in women with intra-amniotic infection than in those without intra-amniotic inflammation, regardless of the presence of MIAC; (2) amniotic fluid concentrations of ASC and IL-6 were also higher in women with sterile intra-amniotic inflammation than in those without intra-amniotic inflammation, regardless of the presence of MIAC; (3) amniotic fluid concentrations of IL-6, but not ASC, were more elevated in women with intra-amniotic infection than in those with sterile intra-amniotic inflammation; (4) a positive and significant correlation was observed between amniotic fluid concentrations of ASC and IL-6; (5) no differences were observed in amniotic fluid ASC and IL-6 concentrations between women with and without MIAC in the absence of intra-amniotic inflammation; (6) women with intra-amniotic infection had elevated white blood cell counts and reduced glucose levels in amniotic fluid compared to the other three study groups; and (7) women with intra-amniotic infection presented higher frequencies of acute maternal and fetal inflammatory responses in the placenta than those with sterile intra-amniotic inflammation. Conclusion The intra-amniotic inflammatory response, either induced by alarmins or microbes, is characterized by the activation of the inflammasome - as evidenced by elevated amniotic fluid concentrations of extracellular ASC - in women with clinical chorioamnionitis at term. These findings provide insight into the intra-amniotic inflammatory response in women with clinical chorioamnionitis at term.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Eli Maymon
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Juan-Pedro Kusanovic
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
- Center for Research and Innovation in Maternal-Fetal Medicine (CIMAF), Department of Obstetrics and Gynecology, Sótero del Río Hospital, Santiago, Chile
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Derek Miller
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Adi L. Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Kenichiro Motomura
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Eunjung Jung
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Sonia S. Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| |
Collapse
|
117
|
Sordillo JE, Korrick S, Laranjo N, Carey V, Weinstock GM, Gold DR, O’Connor G, Sandel M, Bacharier LB, Beigelman A, Zeiger R, Litonjua AA, Weiss ST. Association of the Infant Gut Microbiome With Early Childhood Neurodevelopmental Outcomes: An Ancillary Study to the VDAART Randomized Clinical Trial. JAMA Netw Open 2019; 2:e190905. [PMID: 30901046 PMCID: PMC6583279 DOI: 10.1001/jamanetworkopen.2019.0905] [Citation(s) in RCA: 84] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Accepted: 01/20/2019] [Indexed: 12/21/2022] Open
Abstract
Importance In animal models, the early life gut microbiome influences later neurodevelopment. Corresponding data in human populations are lacking. Objective To study associations between the gut microbiome in infants and development at preschool age measured by the Ages and Stages Questionnaire, third edition (ASQ-3). Design, Setting, and Participants This ancillary cohort study of the Vitamin D Antenatal Asthma Reduction Trial (VDAART) used data from 715 participants who had development assessed at 3 years of age by the ASQ-3, which included scores in 5 domains (gross motor skills, fine motor skills, problem solving, communication, and personal and social skills). A total of 309 stool samples were collected from infants aged 3 to 6 months for microbiome analysis using 16S rRNA gene sequencing. Exposures Infant gut microbiome. Main Outcomes and Measures Continuous ASQ-3 scores and typical vs potential delay in the 5 developmental domains. Factor scores for bacterial coabundance groups were used as predictors in regression models of continuous ASQ-3 scores. Logistic regression was used to examine bacterial coabundance scores and odds of scoring below the threshold for typical development. Multivariate analysis examined the abundance of individual taxa and ASQ-3 scores. Results The 309 participants (170 [55.0%] male) with ASQ-3 scores and stool samples were ethnically diverse (136 [44.0%] black, 41 [13.3%] Hispanic, 86 [27.8%] white, and 46 [14.9%] other race/ethnicity); the mean (SD) age at ASQ-3 assessment was 3.0 (0.07) years. Coabundance scores dominated by Clostridiales (Lachnospiraceae genera and other, unclassified Clostridiales taxa) were associated with poorer ASQ-3 communication (β, -1.12; 95% CI, -2.23 to -0.01; P = .05) and personal and social (β, -1.44; 95% CI, -2.47 to -0.40; P = .01) scores and with increased odds of potential delay for communication (odds ratio [OR], 1.69; 95% CI, 1.06 to 2.68) and personal and social skills (OR, 1.96; 95% CI, 1.22 to 3.15) per unit increase in coabundance score. The Bacteroides-dominated coabundance grouping was associated with poorer fine motor scores (β, -2.42; 95% CI, -4.29 to -0.55; P = .01) and with increased odds of potential delay for fine motor skills (OR, 1.52; 95% CI, 1.07 to 2.16) per unit increase in coabundance score. Multivariate analysis detected similar family-level and order-level associations. Conclusions and Relevance These findings suggest an association between infant gut microbiome composition and communication, personal and social, and fine motor skills at age 3 years. The majority of associations were driven by taxa within the order Clostridiales.
Collapse
Affiliation(s)
- Joanne E. Sordillo
- Department of Population Medicine, Harvard Medical School, Harvard Pilgrim Health Care Institute, Boston, Massachusetts
| | - Susan Korrick
- Department of Environmental Health, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
- Channing Division of Network Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Nancy Laranjo
- Channing Division of Network Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts
| | - Vincent Carey
- Channing Division of Network Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts
| | | | - Diane R. Gold
- Channing Division of Network Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts
| | - George O’Connor
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Megan Sandel
- Department of Medicine, Boston University School of Medicine, Boston, Massachusetts
| | - Leonard B. Bacharier
- Division of Allergy, Immunology, and Pulmonary Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Avraham Beigelman
- Division of Allergy, Immunology, and Pulmonary Medicine, Washington University School of Medicine in St Louis, St Louis, Missouri
| | - Robert Zeiger
- Department of Allergy and Research and Evaluation, Kaiser Permanente Southern California Region, San Diego and Pasadena
| | | | - Scott T. Weiss
- Channing Division of Network Medicine, Harvard Medical School, Brigham and Women’s Hospital, Boston, Massachusetts
| |
Collapse
|
118
|
Theis KR, Romero R, Winters AD, Greenberg JM, Gomez-Lopez N, Alhousseini A, Bieda J, Maymon E, Pacora P, Fettweis JM, Buck GA, Jefferson KK, Strauss JF, Erez O, Hassan SS. Does the human placenta delivered at term have a microbiota? Results of cultivation, quantitative real-time PCR, 16S rRNA gene sequencing, and metagenomics. Am J Obstet Gynecol 2019; 220:267.e1-267.e39. [PMID: 30832984 PMCID: PMC6733039 DOI: 10.1016/j.ajog.2018.10.018] [Citation(s) in RCA: 174] [Impact Index Per Article: 29.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Revised: 10/10/2018] [Accepted: 10/11/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND The human placenta has been traditionally viewed as sterile, and microbial invasion of this organ has been associated with adverse pregnancy outcomes. Yet, recent studies that utilized sequencing techniques reported that the human placenta at term contains a unique microbiota. These conclusions are largely based on the results derived from the sequencing of placental samples. However, such an approach carries the risk of capturing background-contaminating DNA (from DNA extraction kits, polymerase chain reaction reagents, and laboratory environments) when low microbial biomass samples are studied. OBJECTIVE To determine whether the human placenta delivered at term in patients without labor who undergo cesarean delivery harbors a resident microbiota ("the assemblage of microorganisms present in a defined niche or environment"). STUDY DESIGN This cross-sectional study included placentas from 29 women who had a cesarean delivery without labor at term. The study also included technical controls to account for potential background-contaminating DNA, inclusive in DNA extraction kits, polymerase chain reaction reagents, and laboratory environments. Bacterial profiles of placental tissues and background technical controls were characterized and compared with the use of bacterial culture, quantitative real-time polymerase chain reaction, 16S ribosomal RNA gene sequencing, and metagenomic surveys. RESULTS (1) Twenty-eight of 29 placental tissues had a negative culture for microorganisms. The microorganisms retrieved by culture from the remaining sample were likely contaminants because corresponding 16S ribosomal RNA genes were not detected in the same sample. (2) Quantitative real-time polymerase chain reaction did not indicate greater abundances of bacterial 16S ribosomal RNA genes in placental tissues than in technical controls. Therefore, there was no evidence of the presence of microorganisms above background contamination from reagents in the placentas. (3) 16S ribosomal RNA gene sequencing did not reveal consistent differences in the composition or structure of bacterial profiles between placental samples and background technical controls. (4) Most of the bacterial sequences obtained from metagenomic surveys of placental tissues were from cyanobacteria, aquatic bacteria, or plant pathogens, which are microbes unlikely to populate the human placenta. Coprobacillus, which constituted 30.5% of the bacterial sequences obtained through metagenomic sequencing of placental samples, was not identified in any of the 16S ribosomal RNA gene surveys of these samples. These observations cast doubt as to whether this organism is really present in the placenta of patients at term not in labor. CONCLUSION With the use of multiple modes of microbiologic inquiry, a resident microbiota could not be identified in human placentas delivered at term from women without labor. A consistently significant difference in the abundance and/or presence of a microbiota between placental tissue and background technical controls could not be found. All cultures of placental tissue, except 1, did not yield bacteria. Incorporating technical controls for potential sources of background-contaminating DNA for studies of low microbial biomass samples, such as the placenta, is necessary to derive reliable conclusions.
Collapse
Affiliation(s)
- Kevin R Theis
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI; Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI.
| | - Roberto Romero
- Center for Molecular Medicine and Genetics, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI.
| | - Andrew D Winters
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI; Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI
| | - Jonathan M Greenberg
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI; Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI
| | - Nardhy Gomez-Lopez
- Department of Biochemistry, Microbiology and Immunology, Wayne State University School of Medicine, Detroit, MI; Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| | - Ali Alhousseini
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Physiology, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| | - Janine Bieda
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| | - Eli Maymon
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Soroka University Medical Center, School of Medicine, Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer-Sheva, Israel
| | - Percy Pacora
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| | - Jennifer M Fettweis
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA; Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA
| | - Gregory A Buck
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA; Center for Microbiome Engineering and Data Analysis, Virginia Commonwealth University, Richmond, VA
| | - Kimberly K Jefferson
- Department of Microbiology and Immunology, Virginia Commonwealth University, Richmond, VA
| | - Jerome F Strauss
- Department of Obstetrics and Gynecology, Virginia Commonwealth University, Richmond, VA
| | - Offer Erez
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Maternity Department "D" and Obstetrical Day Care Center, Division of Obstetrics and Gynecology, Soroka University Medical Center, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Sonia S Hassan
- Perinatal Research Initiative in Maternal, Perinatal and Child Health, Wayne State University School of Medicine, Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Physiology, Wayne State University School of Medicine, Detroit, MI; Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, US Department of Health and Human Services, Bethesda, MD, and Detroit, MI
| |
Collapse
|
119
|
Yu JC, Khodadadi H, Baban B. Innate immunity and oral microbiome: a personalized, predictive, and preventive approach to the management of oral diseases. EPMA J 2019; 10:43-50. [PMID: 30984313 DOI: 10.1007/s13167-019-00163-4] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2018] [Accepted: 02/14/2019] [Indexed: 12/12/2022]
Abstract
Three recent advances in immunology, genetics, and microbiology have ushered in a new era in the continued efforts to better understand and treat oral diseases, moving ever closer to the three Ps of modern healthcare: personalized, predictive, and preventive medicine (PPPM). The discovery of now 15 subtypes of innate lymphoid cells, the refinement of DNA sequencing, and culture-independent characterization of the entire microbial community begin to reveal this complex adaptive network. All these advances warrant a systematic review as they have changed and will continue to change dental medicine. We will update dental professionals on these advances as related to oral diseases and associated pathologies in other organ systems such as premature labor, arthrosclerosis, and cancer. The five objectives are:Introduce the concept of microbiota and microbiomeExplain how we study microbiota and microbiomeDescribe the types and functions of innate lymphoid cellsInventory the unique demands of the oral cavityProvide a heuristic model to integrate the aboveConclusions and expert recommendations.
Collapse
Affiliation(s)
- Jack C Yu
- 1Children's Hospital of Georgia, Medical College of Georgia, Augusta University, Augusta, GA 30912-1128 USA
| | - Hesam Khodadadi
- 2Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912-1128 USA
| | - Babak Baban
- 2Department of Oral Biology and Diagnostic Sciences, Dental College of Georgia, Augusta University, Augusta, GA 30912-1128 USA
| |
Collapse
|
120
|
Moreno I, Simon C. Deciphering the effect of reproductive tract microbiota on human reproduction. Reprod Med Biol 2019; 18:40-50. [PMID: 30655720 PMCID: PMC6332752 DOI: 10.1002/rmb2.12249] [Citation(s) in RCA: 74] [Impact Index Per Article: 12.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 09/18/2018] [Accepted: 09/25/2018] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND The female reproductive tract contains an active microbiome comprising mainly bacteria from the Lactobacillus genus, which is associated with a healthy microbiome state. However, spatio-temporal fluctuations of this microbiome that occur in response to internal and external factors may impact the physiology of the reproductive tract organs and even lead to pathological states. METHODS Current literature covering the reproductive tract microbiome is summarized and contextualized in this review. MAIN FINDINGS This review presents the current knowledge about the bacterial composition of the lower and upper reproductive tract as well as the impact of the microbiota on women's health and reproduction. We place special focus on the impact of the endometrial microbiome in infertility and assisted reproductive technologies. CONCLUSION The assessment of the reproductive tract microbiome adds a new microbiological perspective to human reproduction, pregnancy, and onset of new life, highlighting the importance of considering the evaluation of microbial communities to improve personalized care in reproductive medicine and women's health.
Collapse
Affiliation(s)
- Inmaculada Moreno
- Igenomix FoundationParque Tecnologico de PaternaValenciaSpain
- Igenomix S.L.ValenciaSpain
| | - Carlos Simon
- Igenomix FoundationParque Tecnologico de PaternaValenciaSpain
- Igenomix S.L.ValenciaSpain
- Department of Pediatrics, Obstetrics and GynecologyUniversidad de ValenciaValenciaSpain
- Instituto de Investigacion Sanitaria Hospital Clínico de Valencia INCLIVAValenciaSpain
- Department of Obstetrics & GynecologyStanford UniversityStanfordCalifornia
| |
Collapse
|
121
|
Shaping Microbiota During the First 1000 Days of Life. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2019; 1125:3-24. [PMID: 30680645 DOI: 10.1007/5584_2018_312] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The data obtained in prior studies suggest that early microbial exposition begins prior to conception and gestation. Given that the host-microbe interaction is shaped by the immune system response, it is important to understand the key immune system-microbiota relationship during the period from conception to the first years of life. The present work summarizes the available evidence concerning early microbiota exposure within the male and the female reproductive tracts at the point of conception and during gestation, focusing on the potential impact on infant development during the first 1000 days of life. Furthermore, we conclude that some dietary strategies including specific probiotics could become potentially valuable tools to modulate the gut microbiota during this early critical window of opportunity for targeted health outcomes throughout the entire lifespan.
Collapse
|
122
|
Hornychova H, Kacerovsky M, Musilova I, Pliskova L, Zemlickova H, Matejkova A, Vosmikova H, Rozkosova K, Cermakova P, Bolehovska R, Halada P, Jacobsson B, Laco J. Cervical human papillomavirus infection in women with preterm prelabor rupture of membranes. PLoS One 2018; 13:e0207896. [PMID: 30462728 PMCID: PMC6249007 DOI: 10.1371/journal.pone.0207896] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2018] [Accepted: 11/07/2018] [Indexed: 12/22/2022] Open
Abstract
OBJECTIVE To evaluate the association between cervical human papillomavirus (HPV) infection at the time of admission and the presence of microbial invasion of the amniotic cavity (MIAC) and intra-amniotic inflammation (IAI) in women with preterm prelabor rupture of membranes (PPROM) and to determine the association between cervical HPV infection and short-term neonatal morbidity. METHODS One hundred women with singleton pregnancies complicated by PPROM between the gestational ages of 24+0 and 36+6 weeks were included in the study. The presence of HPV DNA was evaluated in scraped cervical cells using polymerase chain reaction (PCR). Amniotic fluid samples were obtained by transabdominal amniocentesis. RESULTS The rate of cervical HPV infection in women with PPROM was 24%. The rates of MIAC and IAI were not different between women with cervical HPV infection and those without cervical HPV infection [MIAC: with HPV: 21% (5/24) vs. without HPV: 22% (17/76), p = 1.00; IAI: with HPV: 21% (5/24) vs. without HPV: 18% (14/76), p = 0.77]. There were no differences in the selected aspects of short-term neonatal morbidity between women with and without cervical HPV infection. CONCLUSIONS In women with PPROM, the presence of cervical HPV infection at the time of admission is not related to a higher risk of intra-amniotic infection-related and inflammatory complications or worse short-term neonatal outcomes.
Collapse
Affiliation(s)
- Helena Hornychova
- The Fingerland Department of Pathology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ivana Musilova
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Lenka Pliskova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Helena Zemlickova
- Department of Microbiology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Adela Matejkova
- The Fingerland Department of Pathology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Hana Vosmikova
- The Fingerland Department of Pathology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Katerina Rozkosova
- The Fingerland Department of Pathology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Petra Cermakova
- The Fingerland Department of Pathology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Radka Bolehovska
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Petr Halada
- Department of Obstetrics and Gynecology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Department of Genetics and Bioinformatics, Domain of Health Data and Digitalisation, Institute of Public Health, Oslo, Norway
| | - Jan Laco
- The Fingerland Department of Pathology, University Hospital Hradec Kralove, Charles University, Faculty of Medicine in Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
123
|
Gomez-Lopez N, Romero R, Panaitescu B, Leng Y, Xu Y, Tarca AL, Faro J, Pacora P, Hassan SS, Hsu CD. Inflammasome activation during spontaneous preterm labor with intra-amniotic infection or sterile intra-amniotic inflammation. Am J Reprod Immunol 2018; 80:e13049. [PMID: 30225853 DOI: 10.1111/aji.13049] [Citation(s) in RCA: 55] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 02/07/2023] Open
Abstract
PROBLEM The inflammasome is implicated in the mechanisms that lead to spontaneous preterm labor (PTL). However, whether there is inflammasome activation in the amniotic cavity of women with PTL and intra-amniotic infection (IAI) or sterile intra-amniotic inflammation (SIAI) is unknown. METHOD OF STUDY Amniotic fluid samples were collected from women with PTL who delivered at term (n = 31) or preterm without IAI or SIAI (n = 35), with SIAI (n = 27), or with IAI (n = 17). As a readout of inflammasome activation, extracellular ASC (apoptosis-associated speck-like protein containing a CARD) was measured in amniotic fluid by ELISA and the expression of ASC, caspase-1, and interleukin (IL)-1β was detected in the chorioamniotic membranes by multiplex immunofluorescence. Acute inflammatory responses in amniotic fluid and the placenta were also evaluated. RESULTS (a) Amniotic fluid concentrations of ASC and IL-6 were higher in women with PTL and IAI or SIAI than in those who delivered preterm or at term without intra-amniotic inflammation; (b) amniotic fluid concentrations of ASC and IL-6 were lower in women with PTL and SIAI than in those with IAI; (c) there was a significant nonlinear correlation between ASC and IL-6 amniotic fluid concentrations; (d) the expression of inflammasome-related proteins (ASC, caspase-1, and IL-1β) in the chorioamniotic membranes was increased in women with PTL and IAI or SIAI than in those who delivered preterm or at term without intra-amniotic inflammation; (e) inflammasome activation in the chorioamniotic membranes was weaker in women with PTL and SIAI than in those with IAI; (f) women with PTL and IAI had elevated amniotic fluid white blood cell counts compared to those without this clinical condition; and (g) severe acute placental inflammatory lesions were observed in women with PTL and IAI and in a subset of women with PTL and SIAI. CONCLUSION Inflammasome activation occurs in the settings of intra-amniotic infection and sterile intra-amniotic inflammation during spontaneous preterm labor.
Collapse
Affiliation(s)
- Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan
| | - Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland and Detroit, Michigan.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Yaozhu Leng
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Yi Xu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Adi L Tarca
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Jonathan Faro
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| | - Sonia S Hassan
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland and Detroit, Michigan.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan.,Department of Physiology, Wayne State University School of Medicine, Detroit, Michigan
| | - Chaur-Dong Hsu
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan
| |
Collapse
|
124
|
Zhu L, Luo F, Hu W, Han Y, Wang Y, Zheng H, Guo X, Qin J. Bacterial Communities in the Womb During Healthy Pregnancy. Front Microbiol 2018; 9:2163. [PMID: 30237795 PMCID: PMC6135892 DOI: 10.3389/fmicb.2018.02163] [Citation(s) in RCA: 38] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 08/23/2018] [Indexed: 01/12/2023] Open
Abstract
The idea that healthy uterine cavity is sterile is challenged nowadays. It is still debatable whether the bacteria present in the uterine cavity during pregnancy are residents or invaders. To reveal microbiome composition and its characteristics in the womb of pregnant women, 41 decidual tissue samples and 64 amniotic fluid samples were taken from pregnant Chinese women. DNA extraction was followed by pyrosequencing of the hypervariable V4 region of the 16S rDNA gene to characterize womb microbiome. Both types of samples had low diversity microbiome with Enterobacteriaceae being the dominant phylotypes at family level. To characterize the nature of colonization during pregnancy, the presence of endogenous biomass was confirmed by cultivation. Surprisingly, all of the 50 amniotic fluid samples studied were culture-negative, whereas 379 out of 1,832 placenta samples were culture-positive. Our results suggested that womb contained microbiome with low diversity. Culture-based investigation of amniotic fluid and placenta samples confirmed the presence of cultivable microorganisms in the placenta but not in amniotic fluid. Thus it suggests that bacterial colonization does occur during healthy pregnancy.
Collapse
Affiliation(s)
- Lihong Zhu
- Department of Gynecology, Huadong Hospital, Fudan University, Shanghai, China
| | - Fei Luo
- Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wenjing Hu
- Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Han
- Department of Microbiology, Guizhou Medical University, Guiyang, China
| | - Yuezhu Wang
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Huajun Zheng
- Shanghai-MOST Key Laboratory of Health and Disease Genomics, Chinese National Human Genome Center at Shanghai, Shanghai, China
| | - Xiaokui Guo
- Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinhong Qin
- Department of Microbiology and Immunology, Institutes of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
125
|
Tchirikov M, Schlabritz-Loutsevitch N, Maher J, Buchmann J, Naberezhnev Y, Winarno AS, Seliger G. Mid-trimester preterm premature rupture of membranes (PPROM): etiology, diagnosis, classification, international recommendations of treatment options and outcome. J Perinat Med 2018; 46:465-488. [PMID: 28710882 DOI: 10.1515/jpm-2017-0027] [Citation(s) in RCA: 129] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 05/19/2017] [Indexed: 12/12/2022]
Abstract
Mid-trimester preterm premature rupture of membranes (PPROM), defined as rupture of fetal membranes prior to 28 weeks of gestation, complicates approximately 0.4%-0.7% of all pregnancies. This condition is associated with a very high neonatal mortality rate as well as an increased risk of long- and short-term severe neonatal morbidity. The causes of the mid-trimester PPROM are multifactorial. Altered membrane morphology including marked swelling and disruption of the collagen network which is seen with PPROM can be triggered by bacterial products or/and pro-inflammatory cytokines. Activation of matrix metalloproteinases (MMP) have been implicated in the mechanism of PPROM. The propagation of bacteria is an important contributing factor not only in PPROM, but also in adverse neonatal and maternal outcomes after PPROM. Inflammatory mediators likely play a causative role in both disruption of fetal membrane integrity and activation of uterine contraction. The "classic PPROM" with oligo/an-hydramnion is associated with a short latency period and worse neonatal outcome compared to similar gestational aged neonates delivered without antecedent PPROM. The "high PPROM" syndrome is defined as a defect of the chorio-amniotic membranes, which is not located over the internal cervical os. It may be associated with either a normal or reduced amount of amniotic fluid. It may explain why sensitive biochemical tests such as the Amniosure (PAMG-1) or IGFBP-1/alpha fetoprotein test can have a positive result without other signs of overt ROM such as fluid leakage with Valsalva. The membrane defect following fetoscopy also fulfils the criteria for "high PPROM" syndrome. In some cases, the rupture of only one membrane - either the chorionic or amniotic membrane, resulting in "pre-PPROM" could precede "classic PPROM" or "high PPROM". The diagnosis of PPROM is classically established by identification of nitrazine positive, fern positive watery leakage from the cervical canal observed during in specula investigation. Other more recent diagnostic tests include the vaginal swab assay for placental alpha macroglobulin-1 test or AFP and IGFBP1. In some rare cases amniocentesis and infusion of indigo carmine has been used to confirm the diagnosis of PPROM. The management of the PPROM requires balancing the potential neonatal benefits from prolongation of the pregnancy with the risk of intra-amniotic infection and its consequences for the mother and infant. Close monitoring for signs of chorioamnionitis (e.g. body temperature, CTG, CRP, leucocytes, IL-6, procalcitonine, amniotic fluid examinations) is necessary to minimize the risk of neonatal and maternal complications. In addition to delayed delivery, broad spectrum antibiotics of penicillin or cephalosporin group and/or macrolide and corticosteroids have been show to improve neonatal outcome [reducing risk of chorioamnionitis (average risk ratio (RR)=0.66), neonatal infections (RR=0.67) and abnormal ultrasound scan of neonatal brain (RR=0.67)]. The positive effect of continuous amnioinfusion through the subcutaneously implanted perinatal port system with amniotic fluid like hypo-osmotic solution in "classic PPROM" less than 28/0 weeks' gestation shows promise but must be proved in future prospective randomized studies. Systemic antibiotics administration in "pre-PPROM" without infection and hospitalization are also of questionable benefit and needs to be further evaluated in well-designed randomized prospective studies to evaluate if it is associated with any neonatal benefit as well as the relationship to possible adverse effect of antibiotics on to fetal development and neurological outcome.
Collapse
Affiliation(s)
- Michael Tchirikov
- Department of Obstetrics and Prenatal Medicine, Center of Fetal Surgery, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Natalia Schlabritz-Loutsevitch
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine at the Permian Basin, Odessa, TX, USA
| | - James Maher
- Department of Obstetrics and Gynecology, Texas Tech University Health Sciences Center (TTUHSC), School of Medicine at the Permian Basin, Odessa, TX, USA
| | - Jörg Buchmann
- Department of Pathology, Martha-Maria Hospital, Halle-Dölau, Halle, Germany
| | - Yuri Naberezhnev
- Department of Obstetrics and Prenatal Medicine, Center of Fetal Surgery, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Andreas S Winarno
- Department of Obstetrics and Prenatal Medicine, Center of Fetal Surgery, Martin Luther University of Halle-Wittenberg, Halle, Germany
| | - Gregor Seliger
- Department of Obstetrics and Prenatal Medicine, Center of Fetal Surgery, Martin Luther University of Halle-Wittenberg, Halle, Germany
| |
Collapse
|
126
|
Subramaniam A, Van Der Pol WJ, Ptacek T, Lobashevsky E, Neely C, Biggio JR, Lefkowitz EJ, Morrow CD, Edwards RK. Midtrimester microbial DNA variations in maternal serum of women who experience spontaneous preterm birth. J Matern Fetal Neonatal Med 2018; 33:359-367. [PMID: 29909752 DOI: 10.1080/14767058.2018.1490721] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Abstract
Objectives: To evaluate if midtrimester maternal serum contains microbial DNA and whether it differs between women with spontaneous preterm birth (SPTB) and those delivering at term.Study design: In this retrospective case-control study, we identified 20 healthy nulliparas with SPTB at 24-33 weeks of a nonanomalous singleton in 2014. Each case was matched by race/ethnicity to a control delivering at 39-40 weeks. Serum samples, collected at 15-20 weeks and stored at -80 C, were thawed and DNA extracted. PCR with primers targeting the 16S rDNA V4 region were used to prepare an amplicon library, sequenced using Illumina MiSeq, and analyzed using quantitative insight into microbial ecology (QIIME). Taxonomy was assigned using Ribosomal Database program (RDP) Classifier (threshold 0.8) against a modified Greengenes database. Differences in number of observed species, microbial alpha-diversity and beta-diversity, and taxa level analyses were undertaken.Results: All 40 samples were included. Women with SPTB had more unique observed species (p = .046) and higher mean alpha-diversity by Shannon index (but not Chao1 or Simpson) (p = .024). Microbial composition was different between groups by Bray-Curtis clustering (p = .03) but not by weighted (p = .13) or unweighted Unifrac (p = .11). Numerous taxa in the Firmicutes, Proteobacteria, and Actinobacteria phyla differed between groups (p < .05).Conclusions: SPTB is associated with distinct microbial DNA changes detected in midtrimester maternal serum.
Collapse
Affiliation(s)
- Akila Subramaniam
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Center for Women's Reproductive Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - William J Van Der Pol
- Biomedical Informatics, Center for Clinical and Translational Sciences, University of Oklahoma College of Medicine, Oklahoma City, OK, USA.,Department of Microbiology, University of Oklahoma College of Medicine, Oklahoma City, OK, USA
| | - Travis Ptacek
- Biomedical Informatics, Center for Clinical and Translational Sciences, University of Oklahoma College of Medicine, Oklahoma City, OK, USA.,Department of Microbiology, University of Oklahoma College of Medicine, Oklahoma City, OK, USA
| | - Elena Lobashevsky
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Center for Women's Reproductive Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Cherry Neely
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Center for Women's Reproductive Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Joseph R Biggio
- Division of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, Center for Women's Reproductive Health, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Elliot J Lefkowitz
- Biomedical Informatics, Center for Clinical and Translational Sciences, University of Oklahoma College of Medicine, Oklahoma City, OK, USA.,Department of Microbiology, University of Oklahoma College of Medicine, Oklahoma City, OK, USA
| | - Casey D Morrow
- Department of Cell, Developmental and Integrative Biology, University of Oklahoma College of Medicine, Oklahoma City, OK, USA
| | - Rodney K Edwards
- Section of Maternal-Fetal Medicine, Department of Obstetrics and Gynecology, University of Oklahoma College of Medicine, Oklahoma City, OK, USA
| |
Collapse
|
127
|
Feng L, Allen TK, Marinello WP, Murtha AP. Infection-induced thrombin production: a potential novel mechanism for preterm premature rupture of membranes (PPROM). Am J Obstet Gynecol 2018; 219:101.e1-101.e12. [PMID: 29660299 DOI: 10.1016/j.ajog.2018.04.014] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2017] [Revised: 04/03/2018] [Accepted: 04/09/2018] [Indexed: 12/30/2022]
Abstract
BACKGROUND Preterm premature rupture of membranes is a leading contributor to maternal and neonatal morbidity and death. Epidemiologic and experimental studies have demonstrated that thrombin causes fetal membrane weakening and subsequently preterm premature rupture of membranes. Although blood is suspected to be the likely source of thrombin in fetal membranes and amniotic fluid of patients with preterm premature rupture of membranes, this has not been proved. Ureaplasma parvum is emerging as a pathogen involved in prematurity, which includes preterm premature rupture of membranes; however, until now, prothrombin production that has been induced directly by bacteria in fetal membranes has not been described. OBJECTIVE This study was designed to investigate whether Ureaplasma parvum exposure can induce prothrombin production in fetal membranes cells. STUDY DESIGN Primary fetal membrane cells (amnion epithelial, chorion trophoblast, and decidua stromal) or full-thickness fetal membrane tissue explants from elective, term, uncomplicated cesarean deliveries were harvested. Cells or tissue explants were infected with live Ureaplasma parvum (1×105, 1×106 or 1×107 colony-forming units per milliliter) or lipopolysaccharide (Escherichia coli J5, L-5014; Sigma Chemical Company, St. Louis, MO; 100 ng/mL or 1000 ng/mL) for 24 hours. Tissue explants were fixed for immunohistochemistry staining of thrombin/prothrombin. Fetal membrane cells were fixed for confocal immunofluorescent staining of the biomarkers of fetal membrane cell types and thrombin/prothrombin. Protein and messenger RNA were harvested from the cells and tissue explants for Western blot or quantitative reverse transcription polymerase chain reaction to quantify thrombin/prothrombin protein or messenger RNA production, respectively. Data are presented as mean values ± standard errors of mean. Data were analyzed using 1-way analysis of variance with post hoc Dunnett's test. RESULTS Prothrombin production and localization were confirmed by Western blot and immunostainings in all primary fetal membrane cells and tissue explants. Immunofluorescence observations revealed a perinuclear localization of prothrombin in amnion epithelial cells. Localization of prothrombin in chorion and decidua cells was perinuclear and cytoplasmic. Prothrombin messenger RNA and protein expression in fetal membranes were increased significantly by Ureaplasma parvum, but not lipopolysaccharide, treatments in a dose-dependent manner. Specifically, Ureaplasma parvum at a dose of 1×107 colony-forming units/mL significantly increased both prothrombin messenger RNA (fold changes in amnion: 4.1±1.9; chorion: 5.7±4.2; decidua: 10.0±5.4; fetal membrane: 9.2±3.0) and protein expression (fold changes in amnion: 138.0±44.0; chorion: 139.6±15.1; decidua: 56.9±29.1; fetal membrane: 133.1±40.0) compared with untreated control subjects. Ureaplasma parvum at a dose of 1×106 colony-forming units/mL significantly up-regulated prothrombin protein expression in chorion cells (fold change: 54.9±5.3) and prothrombin messenger RNA expression in decidua cells (fold change: 4.4±1.9). CONCLUSION Our results demonstrate that prothrombin can be produced directly by fetal membrane amnion, chorion, and decidua cells. Further, prothrombin production can be stimulated by Ureaplasma parvum exposure in fetal membranes. These findings represent a potential novel underlying mechanism of Ureaplasma parvum-induced rupture of fetal membranes.
Collapse
|
128
|
Romero R, Gomez-Lopez N, Kusanovic JP, Pacora P, Panaitescu B, Erez O, Yoon BH. Clinical Chorioamnionitis at Term: New Insights into the Etiology, Microbiology, and the Fetal, Maternal and Amniotic Cavity Inflammatory Responses. NOGYOGYASZATI ES SZULESZETI TOVABBKEPZO SZEMLE 2018; 20:103-112. [PMID: 30320312 PMCID: PMC6177213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Clinical chorioamnionitis is the most common infection related diagnosis made in labor and delivery units worldwide. It is traditionally believed to be due to microbial invasion of the amniotic cavity, which elicits a maternal inflammatory response characterized by maternal fever, uterine tenderness, maternal tachycardia and leukocytosis. The condition is often associated with fetal tachycardia and a foul smelling amniotic fluid. Recent studies in which amniocentesis has been used to characterize the microbiologic state of the amniotic cavity and the inflammatory response show that only 60% of patients with the diagnosis of clinical chorioamnionitis have proven infection using culture or molecular microbiologic techniques. The remainder of the patients have intra-amniotic inflammation without demonstrable microorganisms or a maternal systemic inflammatory response (fever) in the absence of intra-amniotic inflammation. The latter cases often represent a systemic inflammatory response after epidural anesthesia/analgesia has been administered. The most common microorganisms are Ureaplasma species and Gardnerella vaginalis. In the presence of ruptured membranes, the frequency of infection is 70%, which is substantially higher than patients who have intact membranes (25%). The amniotic fluid inflammatory response is characterized by an infiltration of neutrophils and monocytes. Both cell types are activated in the presence of infection and can produce inflammatory cytokines. The white blood cells in the amniotic fluid can be of fetal or maternal origin. The maternal inflammatory response is characterized by an elevation in the concentration of pyrogenic cytokines. The cytokine plasma concentrations in the fetal circulation are elevated even if there is no evidence of an intra-amniotic inflammatory response suggesting that maternal plasma cytokines may cross the placental barrier and induce a mild fetal inflammatory response. Placental pathology is of limited value in the diagnosis of proven intra-amniotic infection. The clinical criteria traditionally used in clinical medicine have accuracy around 50% and therefore, they cannot distinguish between patients with a proven intra-amniotic infection and those with intra-amniotic inflammation alone. Analysis of amniotic fluid with a bedside test for MMP-8 can allow the rapid identification of the patient at risk for infection and may decrease the need for antibiotic administration to neonates. An important consideration is whether antibiotics effective against Ureaplasma species should be administered to patients with clinical chorioamnionitis, given that these genital mycoplasmas are the most common organisms found in the amniotic fluid. The emergent picture is that clinical chorioamnionitis is a heterogeneous syndrome, which requires further study to optimize maternal and neonatal outcomes.
Collapse
Affiliation(s)
- Roberto Romero
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, Michigan, USA
- Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, Michigan, USA
- Center for Molecular Medicine and Genetics, Wayne State University, Detroit, Michigan, USA
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
- Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Juan Pedro Kusanovic
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Center for Research and Innovation in Maternal-Fetal Medicine (CIMAF), Department of Obstetrics and Gynecology, Sótero del Río Hospital, Santiago, Chile
- Division of Obstetrics and Gynecology, Faculty of Medicine, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Percy Pacora
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bogdan Panaitescu
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Offer Erez
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, Michigan, USA
| | - Bo Hyun Yoon
- Perinatology Research Branch, Division of Obstetrics and Maternal-Fetal Medicine, Division of Intramural Research, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U. S. Department of Health and Human Services, Bethesda, Maryland, and Detroit, Michigan, USA
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
129
|
Lim ES, Rodriguez C, Holtz LR. Amniotic fluid from healthy term pregnancies does not harbor a detectable microbial community. MICROBIOME 2018; 6:87. [PMID: 29751830 PMCID: PMC5946436 DOI: 10.1186/s40168-018-0475-7] [Citation(s) in RCA: 93] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2018] [Accepted: 05/06/2018] [Indexed: 05/29/2023]
Abstract
Recent studies have conflicting data regarding the presence of intra-amniotic microbiota. Viral communities are increasingly recognized as important although overlooked components of the human microbiota. It is unknown if the developing fetus is exposed to a community of viruses (virome). Given the debate over the existence of an intra-amniotic microbial community and the importance of understanding how the infant gut is populated, we characterized the virome and bacterial microbiota of amniotic fluid from 24 uncomplicated term pregnancies using next-generation sequencing methods. Contrary to expectations, the bacterial microbiota of amniotic fluid was indistinguishable from contamination controls. Viral reads were sparse in the amniotic fluid, and we found no evidence of a core viral community across samples.
Collapse
Affiliation(s)
- Efrem S. Lim
- School of Life Sciences, Arizona State University, Tempe, AZ 85287 USA
- Center for Fundamental and Applied Microbiomics, The Biodesign Institute, Tempe, AZ 85287 USA
| | - Cynthia Rodriguez
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8208, St. Louis, MO 63110 USA
| | - Lori R. Holtz
- Department of Pediatrics, Washington University School of Medicine, 660 S. Euclid Ave., Campus Box 8208, St. Louis, MO 63110 USA
| |
Collapse
|
130
|
Musilova I, Andrys C, Drahosova M, Zednikova B, Hornychova H, Pliskova L, Zemlickova H, Jacobsson B, Kacerovsky M. Late preterm prelabor rupture of fetal membranes: fetal inflammatory response and neonatal outcome. Pediatr Res 2018; 83:630-637. [PMID: 29186106 DOI: 10.1038/pr.2017.300] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/29/2017] [Accepted: 10/14/2017] [Indexed: 12/29/2022]
Abstract
BackgroundTo characterize the influence of microbial invasion of the amniotic cavity (MIAC) and/or intra-amniotic inflammation (IAI) on the intensity of the fetal inflammatory response and the association between the presence of the fetal inflammatory response syndrome (FIRS) and short-term neonatal morbidity in the preterm prelabor rupture of membranes (PPROM) between the gestational ages of 34 and 37 weeks.MethodsOne hundred and fifty-nine women were included in the study. The umbilical cord blood interleukin (IL)-6 concentrations were determined using enzyme-linked immunosorbent assay kits. FIRS was defined based on the umbilical cord blood IL-6 concentration and the presence of funisitis and/or chorionic plate vasculitis.ResultsWomen with both MIAC and IAI had the highest median umbilical cord blood IL-6 concentrations and highest rates of FIRS. Women with FIRS had the higher rates of early-onset sepsis and intraventricular hemorrhage grades I and II when FIRS was characterized based on the umbilical cord blood IL-6 concentrations and the histopathological findings.ConclusionThe presence of both MIAC and IAI was associated with a higher fetal inflammatory response and a higher rate of FIRS. Different aspects of short-term neonatal morbidity were related to FIRS when defined by umbilical cord blood IL-6 concentrations and the histopathology of the placenta.
Collapse
Affiliation(s)
- Ivana Musilova
- Department of Clinical Immunology and Allergy, University Hospital in Hradec Kralove, Charles University, Faculty of Medicine Hradec Kralove, Hradec Kralove, Czech Republic
| | - Ctirad Andrys
- Department of Clinical Immunology and Allergy, University Hospital in Hradec Kralove, Charles University, Faculty of Medicine Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marcela Drahosova
- Department of Clinical Immunology and Allergy, University Hospital in Hradec Kralove, Charles University, Faculty of Medicine Hradec Kralove, Hradec Kralove, Czech Republic
| | - Barbora Zednikova
- Department of Clinical Immunology and Allergy, University Hospital in Hradec Kralove, Charles University, Faculty of Medicine Hradec Kralove, Hradec Kralove, Czech Republic
| | - Helena Hornychova
- Fingerland's Department of Pathology, University Hospital in Hradec Kralove, Charles University, Faculty of Medicine Hradec Kralove, Hradec Kralove, Czech Republic
| | - Lenka Pliskova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital in Hradec Kralove, Charles University, Faculty of Medicine Hradec Kralove, Hradec Kralove, Czech Republic
| | - Helena Zemlickova
- Institute of Clinical Microbiology, University Hospital in Hradec Kralove, Charles University, Faculty of Medicine Hradec Kralove, Hradec Kralove, Czech Republic
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, University Hospital in Hradec Kralove, Charles University, Faculty of Medicine Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
131
|
Dannapaneni N, Oleti T, Surapaneni T, Sharma D, Murki S. Immediate neonatal outcomes of preterm infants born to mothers with preterm pre-labour rupture of membranes. Indian J Med Res 2018; 146:476-482. [PMID: 29434061 PMCID: PMC5819029 DOI: 10.4103/ijmr.ijmr_219_15] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Background & objectives: With the use of early and appropriate use of antibiotics, outcomes have improved in the mother-infant dyads exposed to preterm pre-labour rupture of membranes (PPROM). This study was undertaken to evaluate immediate neonatal outcomes in infants born before 33 completed weeks of gestation to mothers with PPROM versus without PPROM. Methods: During the study period from January 2013 to December 2013, a total of 182 mother-infant dyads were prospectively included in the study. Among the enrolled, 69 were in the PPROM group and 113 in the control group (no PPROM). Mother-infant dyads in PPROM group were covered with antibiotics. The primary outcome was the combined adverse neonatal outcome consisting of sepsis, necrotizing enterocolitis >Stage II or pneumonia or oxygen at day 28 or cystic periventricular leucomalacia or mortality before discharge. Results: Baseline maternal and neonatal variables were comparable across the two groups, except for higher incidence of singletons, maternal pregnancy-induced hypertension (PIH) in the control group and higher proportion of males, complete steroid coverage and oligohydramnios in the PPROM group. The proportion of infants with combined adverse neonatal outcome was similar between the two groups [odds ratio (OR): 1.43; 95% confidence interval (CI): 0.77-2.6]. Both the groups were comparable for most other neonatal morbidities and outcomes, except screen-positive sepsis (OR: 3.7; 95% CI: 1.17-11.5) which was higher in PPROM group. Interpretation & conclusions: Mothers with PPROM and their newborns when treated with timely and appropriate antibiotics had neonatal outcomes similar to those not exposed to PPROM.
Collapse
Affiliation(s)
| | | | | | - Deepak Sharma
- Department of Neonatology, Fernandez Hospital, Hyderabad, India
| | - Srinivas Murki
- Department of Neonatology, Fernandez Hospital, Hyderabad, India
| |
Collapse
|
132
|
Rittenschober-Böhm J, Waldhoer T, Schulz SM, Stihsen B, Pimpel B, Goeral K, Hafner E, Sliutz G, Kasper DC, Witt A, Berger A. First Trimester Vaginal Ureaplasma Biovar Colonization and Preterm Birth: Results of a Prospective Multicenter Study. Neonatology 2018; 113:1-6. [PMID: 28934751 DOI: 10.1159/000480065] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/12/2017] [Accepted: 08/07/2017] [Indexed: 12/13/2022]
Abstract
BACKGROUND While there is a proven association of upper genital tract Ureaplasma infection during pregnancy with adverse pregnancy outcome, the effect of vaginal Ureaplasma colonization on preterm delivery has been controversially debated. OBJECTIVES We hypothesized that women with isolation of vaginal U. parvum but not U. urealyticum are at increased risk for spontaneous preterm birth (SPB) compared to women with negative results. METHODS A vaginal swab taken between 12 and 14 weeks of gestation was analyzed for the presence of Ureaplasma biovars by PCR in 4,330 pregnant women. RESULTS Of the study cohort, 37% were positive for U. parvum, 5.9% for U. urealyticum, and 3.1% for both. The rates of SPB were 10.4% (OR 1.7, 95% CI 1.3, 2.2, p < 0.001) and 8.9% (OR 1.4, 95% CI 0.9, 2.3, p = 0.193) in the groups with isolation of U. parvum and U. urealyticum, respectively, compared to 6.4% in the group with negative PCR results. Multiple logistic regression and interaction analyses showed that vaginal colonization with U. parvum but not U. urealyticum was a statistically significant risk factor for SPB (adjusted OR 1.6, 95% CI 1.2, 2.1, p < 0.001), independent of other risk factors such as bacterial vaginosis and history of SPB. CONCLUSION Our study demonstrates a statistically significant and independent association between first-trimester vaginal colonization with U. parvum and subsequent SPB.
Collapse
Affiliation(s)
- Judith Rittenschober-Böhm
- Division of Neonatology, Pediatric Intensive Care and Neuropediatrics, Medical University of Vienna, Vienna, Austria
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
133
|
Musilova I, Pliskova L, Gerychova R, Janku P, Simetka O, Matlak P, Jacobsson B, Kacerovsky M. Maternal white blood cell count cannot identify the presence of microbial invasion of the amniotic cavity or intra-amniotic inflammation in women with preterm prelabor rupture of membranes. PLoS One 2017; 12:e0189394. [PMID: 29232399 PMCID: PMC5726631 DOI: 10.1371/journal.pone.0189394] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2017] [Accepted: 11/26/2017] [Indexed: 02/07/2023] Open
Abstract
Objective The main aim of this study was to determine the relationship between the maternal white blood cell (WBC) count at the time of hospital admission in pregnancies complicated by preterm prelabor rupture of membranes (PPROM) and the presence of microbial invasion of the amniotic cavity (MIAC) and/or intra-amniotic inflammation (IAI). The second aim was to test WBC diagnostic indices with respect to the presence of MIAC and/or IAI. Methods Four hundred and seventy-nine women with singleton pregnancies complicated by PPROM, between February 2012 and June 2017, were included in this study. Maternal blood and amniotic fluid samples were collected at the time of admission. Maternal WBC count was assessed. Amniotic fluid interleukin-6 (IL-6) concentration was measured using a point-of-care test, and IAI was characterized by an IL-6 concentration of ≥ 745 pg/mL. MIAC was diagnosed based on a positive polymerase chain reaction result for the Ureaplasma species, Mycoplasma hominis, and/or Chlamydia trachomatis and/or for the 16S rRNA gene. Results Women with MIAC or IAI had higher WBC counts than those without (with MIAC: median, 12.8 × 109/L vs. without MIAC: median, 11.9 × 109/L; p = 0.0006; with IAI: median, 13.7 × 109/L vs. without IAI: median, 11.9 × 109/L; p < 0.0001). When the women were divided into four subgroups based on the presence of MIAC and/or IAI, the women with both MIAC and IAI had a higher WBC count than those with either IAI or MIAC alone, and those without MIAC and IAI [both MIAC and IAI: median, 14.0 × 109/L; IAI alone: 12.1 × 109/L (p = 0.03); MIAC alone: 12.1 × 109/L (p = 0.0001); and without MIAC and IAI: median, 11.8 × 109/L (p < 0.0001)]. No differences in the WBC counts were found among the women with IAI alone, MIAC alone, and without MIAC and IAI. Conclusion The women with both MIAC and IAI had a higher maternal WBC count at the time of hospital admission than the remaining women with PPROM. The maternal WBC count at the time of admission showed poor diagnostic indices for the identification of the presence of both MIAC and IAI. Maternal WBC count at the time of admission cannot serve as a non-invasive screening tool for identifying these complications in women with PPROM.
Collapse
Affiliation(s)
- Ivana Musilova
- Department of Obstetrics and Gynecology, Charles University Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Lenka Pliskova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Romana Gerychova
- Department of Obstetrics and Gynecology, University Hospital Brno, Faculty of Medicine Masaryk University, Brno, Czech Republic
| | - Petr Janku
- Department of Obstetrics and Gynecology, University Hospital Brno, Faculty of Medicine Masaryk University, Brno, Czech Republic
| | - Ondrej Simetka
- Department of Gynecology and Obstetrics, University Hospital Ostrava, Ostrava, Czech Republic
| | - Petr Matlak
- Department of Gynecology and Obstetrics, University Hospital Ostrava, Ostrava, Czech Republic
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden.,Domain of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, Charles University Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic.,Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| |
Collapse
|
134
|
Abstract
The gut microbiome is a critical component of an individual's metabolism and overall health. The prenatal period is marked by unique inflammatory and immune changes that alter maternal gut function and bacterial composition as the pregnancy advances. The composition of the maternal gut microbiome contributes to obstetric outcomes with long-term health sequelae for mother and child. Estrogen and progesterone also have an impact on gut function, especially during the prenatal period. These physiologic changes in pregnancy allow for adjustments in maternal metabolism and weight necessary to support the pregnancy. Normal hormonal, metabolic, and immunologic changes to the maternal gut microbiome throughout the prenatal period are reviewed, including relevant implications for nurses providing care for pregnant women.
Collapse
|
135
|
Abstract
Preterm prelabor rupture of the membranes (pPROM) remains a significant obstetric problem that affects 3-4% of all pregnancies and precedes 40-50% of all preterm births. pPROM arises from complex, multifaceted pathways. In this review, we summarize some old concepts and introduce some novel theories related to pPROM pathophysiology. Specifically, we introduce the concept that pPROM is a disease of the fetal membranes where inflammation-oxidative stress axis plays a major role in producing pathways that can lead to membrane weakening through a variety of processes. In addition, we report microfractures in fetal membranes that are likely sites of tissue remodeling during gestation; however, increase in number and morphometry (width and depth) of these microfractures in pPROM membranes suggests reduced remodeling capacity of membranes. Microfractures can act as channels for amniotic fluid leak, and inflammatory cell and microbial migration. Further studies on senescence activation and microfracture formation and their role in maintaining membrane homeostasis are needed to fill the knowledge gaps in our understanding of pPROM as well as provide better screening (biomarker and imaging based) tools for predicting women at high risk for pPROM and subsequent preterm birth.
Collapse
Affiliation(s)
- Ramkumar Menon
- Department of Obstetrics and Gynecology, The University of Texas Medical Branch at Galveston, 301 University Blvd, MRB, Room 11.138, Galveston, TX 77555-1062.
| | | |
Collapse
|
136
|
Candida Chorioamnionitis Leads to Preterm Birth and Adverse Fetal-Neonatal Outcome. Infect Dis Obstet Gynecol 2017; 2017:9060138. [PMID: 29180840 PMCID: PMC5664319 DOI: 10.1155/2017/9060138] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2017] [Revised: 09/04/2017] [Accepted: 09/20/2017] [Indexed: 12/30/2022] Open
Abstract
Candida chorioamnionitis is rare but can lead to neonatal infection, high mortality, and neurodevelopmental impairment. We aimed to investigate maternal clinical features and perinatal outcomes and discuss future management strategies. We reviewed the medical records of women with Candida chorioamnionitis at our hospital over a 10-year period (n = 9) and previous published case reports and case series. The most prevalent Candida species was C. albicans (71.3% of the all cases). The most prevalent predisposing condition was preterm premature rupture of membranes (31/123, 25.2%), followed by pregnancy with a retained intrauterine contraceptive device (26/123, 21.1%) and pregnancy after in vitro fertilization (25/123, 20.3%). Preterm labor was the most common symptom (52/123, 42.3%), and only 13% of cases involved fever. Of the infants, 27% of the singletons and 23.8% of the twins were born before 22 gestational weeks, while 60% of the singletons and 76.2% of the twins were born at 22-36 weeks. The median birth weight of the babies born after 22 weeks was 1230 g. The mortality rates of the singletons and twins born after 22 weeks of gestation in the year 2000 or later were 28.6% and 52.4%, respectively. Antenatal treatment for Candida chorioamnionitis has not been established.
Collapse
|
137
|
Urushiyama D, Suda W, Ohnishi E, Araki R, Kiyoshima C, Kurakazu M, Sanui A, Yotsumoto F, Murata M, Nabeshima K, Yasunaga S, Saito S, Nomiyama M, Hattori M, Miyamoto S, Hata K. Microbiome profile of the amniotic fluid as a predictive biomarker of perinatal outcome. Sci Rep 2017; 7:12171. [PMID: 28939908 PMCID: PMC5610236 DOI: 10.1038/s41598-017-11699-8] [Citation(s) in RCA: 71] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2017] [Accepted: 08/29/2017] [Indexed: 12/17/2022] Open
Abstract
Chorioamnionitis (CAM), an inflammation of the foetal membranes due to infection, is associated with preterm birth and poor perinatal prognosis. The present study aimed to determine whether CAM can be diagnosed prior to delivery based on the bacterial composition of the amniotic fluid (AF). AF samples from 79 patients were classified according to placental inflammation: Stage III (n = 32), CAM; Stage II (n = 27), chorionitis; Stage 0-I (n = 20), sub-chorionitis or no neutrophil infiltration; and normal AF in early pregnancy (n = 18). Absolute quantification and sequencing of 16S rDNA showed that in Stage III, the 16S rDNA copy number was significantly higher and the α-diversity index lower than those in the other groups. In principal coordinate analysis, Stage III formed a separate cluster from Stage 0-I, normal AF, and blank. Forty samples were classified as positive for microbiomic CAM (miCAM) defined by the presence of 11 bacterial species that were found to be significantly associated with CAM and some parameters of perinatal prognosis. The diagnostic accuracy for CAM according to miCAM was: sensitivity, approximately 94%, and specificity, 79-87%. Our findings indicate the possibility of predicting CAM prior to delivery based on the AF microbiome profile.
Collapse
Affiliation(s)
- Daichi Urushiyama
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan.,Department of Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Wataru Suda
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan.,Department of Microbiology and Immunology, Keio University School of Medicine, Tokyo, 160-0016, Japan
| | - Eriko Ohnishi
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan
| | - Ryota Araki
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Chihiro Kiyoshima
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Masamitsu Kurakazu
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Ayako Sanui
- Center for Maternal, Fetal and Neonatal Medicine, Fukuoka University Hospital, Fukuoka, 814-0180, Japan
| | - Fusanori Yotsumoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Masaharu Murata
- Center for Maternal, Fetal and Neonatal Medicine, Fukuoka University Hospital, Fukuoka, 814-0180, Japan
| | - Kazuki Nabeshima
- Department of Pathology, Fukuoka University School of Medicine and Hospital, Fukuoka, 814-0180, Japan
| | - Shin'ichiro Yasunaga
- Department of Biochemistry, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Shigeru Saito
- Department of Obstetrics and Gynecology, University of Toyama, Toyama, 930-0194, Japan
| | - Makoto Nomiyama
- Department of Obstetrics and Gynecology, National Hospital Organization Saga Hospital, Saga, 849-8577, Japan
| | - Masahira Hattori
- Department of Computational Biology, Graduate School of Frontier Sciences, The University of Tokyo, Chiba, 277-8561, Japan.,Cooperative Major in Advanced Health Science, Graduate School of Advanced Science and Engineering, Waseda University, Tokyo, 169-8555, Japan
| | - Shingo Miyamoto
- Department of Obstetrics and Gynecology, Faculty of Medicine, Fukuoka University, Fukuoka, 814-0180, Japan
| | - Kenichiro Hata
- Department of Maternal-Fetal Biology, National Research Institute for Child Health and Development, Tokyo, 157-8535, Japan.
| |
Collapse
|
138
|
Tarca AL, Fitzgerald W, Chaemsaithong P, Xu Z, Hassan SS, Grivel J, Gomez‐Lopez N, Panaitescu B, Pacora P, Maymon E, Erez O, Margolis L, Romero R. The cytokine network in women with an asymptomatic short cervix and the risk of preterm delivery. Am J Reprod Immunol 2017; 78:e12686. [PMID: 28585708 PMCID: PMC5575567 DOI: 10.1111/aji.12686] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2017] [Accepted: 03/20/2017] [Indexed: 01/06/2023] Open
Abstract
PROBLEM To characterize the amniotic fluid (AF) inflammatory-related protein (IRP) network in patients with a sonographic short cervix (SCx) and to determine its relation to early preterm delivery (ePTD). METHOD OF STUDY A retrospective cohort study included women with a SCx (≤25 mm; n=223) who had amniocentesis and were classified according to gestational age (GA) at diagnosis and delivery (ePTD <32 weeks of gestation). RESULTS (i) In women with a SCx ≤ 22 1/7 weeks, the concentration of most IRPs increased as the cervix shortened; those with ePTD had a higher rate of increase in MIP-1α, MCP-1, and IL-6 concentrations than those delivering later; and (ii) the concentration of most IRPs and the correlation between several IRP pairs were higher in the ePTD group than for those delivering later. CONCLUSION Women with a SCx at 16-22 1/7 weeks have a unique AF cytokine network that correlates with cervical length at diagnosis and GA at delivery. This network may aid in predicting ePTD.
Collapse
Affiliation(s)
- Adi L. Tarca
- Perinatology Research BranchProgram for Perinatal Research and ObstetricsDivision of Intramural ResearchEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthU.S. Department of Health and Human ServicesBethesdaMD, and Detroit, MIUSA
- Department of Obstetrics and GynecologyWayne State University School of MedicineDetroitMIUSA
| | - Wendy Fitzgerald
- Section on Intercellular InteractionsProgram on Physical BiologyEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthU.S. Department of Health and Human ServicesBethesdaMDUSA
| | - Piya Chaemsaithong
- Perinatology Research BranchProgram for Perinatal Research and ObstetricsDivision of Intramural ResearchEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthU.S. Department of Health and Human ServicesBethesdaMD, and Detroit, MIUSA
- Department of Obstetrics and GynecologyWayne State University School of MedicineDetroitMIUSA
| | - Zhonghui Xu
- Perinatology Research BranchProgram for Perinatal Research and ObstetricsDivision of Intramural ResearchEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthU.S. Department of Health and Human ServicesBethesdaMD, and Detroit, MIUSA
| | - Sonia S. Hassan
- Perinatology Research BranchProgram for Perinatal Research and ObstetricsDivision of Intramural ResearchEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthU.S. Department of Health and Human ServicesBethesdaMD, and Detroit, MIUSA
- Department of Obstetrics and GynecologyWayne State University School of MedicineDetroitMIUSA
| | - Jean‐Charles Grivel
- Division of Translational MedicineSidra Medical and Research CenterDohaQatar
| | - Nardhy Gomez‐Lopez
- Perinatology Research BranchProgram for Perinatal Research and ObstetricsDivision of Intramural ResearchEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthU.S. Department of Health and Human ServicesBethesdaMD, and Detroit, MIUSA
- Department of Obstetrics and GynecologyWayne State University School of MedicineDetroitMIUSA
- Department of ImmunologyMicrobiology and BiochemistryWayne State University School of MedicineDetroitMIUSA
| | - Bogdan Panaitescu
- Perinatology Research BranchProgram for Perinatal Research and ObstetricsDivision of Intramural ResearchEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthU.S. Department of Health and Human ServicesBethesdaMD, and Detroit, MIUSA
- Department of Obstetrics and GynecologyWayne State University School of MedicineDetroitMIUSA
| | - Percy Pacora
- Perinatology Research BranchProgram for Perinatal Research and ObstetricsDivision of Intramural ResearchEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthU.S. Department of Health and Human ServicesBethesdaMD, and Detroit, MIUSA
- Department of Obstetrics and GynecologyWayne State University School of MedicineDetroitMIUSA
| | - Eli Maymon
- Perinatology Research BranchProgram for Perinatal Research and ObstetricsDivision of Intramural ResearchEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthU.S. Department of Health and Human ServicesBethesdaMD, and Detroit, MIUSA
- Department of Obstetrics and GynecologyWayne State University School of MedicineDetroitMIUSA
| | - Offer Erez
- Perinatology Research BranchProgram for Perinatal Research and ObstetricsDivision of Intramural ResearchEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthU.S. Department of Health and Human ServicesBethesdaMD, and Detroit, MIUSA
- Department of Obstetrics and GynecologyWayne State University School of MedicineDetroitMIUSA
| | - Leonid Margolis
- Section on Intercellular InteractionsProgram on Physical BiologyEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthU.S. Department of Health and Human ServicesBethesdaMDUSA
| | - Roberto Romero
- Perinatology Research BranchProgram for Perinatal Research and ObstetricsDivision of Intramural ResearchEunice Kennedy Shriver National Institute of Child Health and Human DevelopmentNational Institutes of HealthU.S. Department of Health and Human ServicesBethesdaMD, and Detroit, MIUSA
- Department of Obstetrics and GynecologyUniversity of MichiganAnn ArborMIUSA
- Department of Epidemiology and BiostatisticsMichigan State UniversityEast LansingMIUSA
- Center for Molecular Medicine and GeneticsWayne State UniversityDetroitMIUSA
| |
Collapse
|
139
|
Replication and refinement of a vaginal microbial signature of preterm birth in two racially distinct cohorts of US women. Proc Natl Acad Sci U S A 2017; 114:9966-9971. [PMID: 28847941 PMCID: PMC5604014 DOI: 10.1073/pnas.1705899114] [Citation(s) in RCA: 265] [Impact Index Per Article: 33.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/11/2023] Open
Abstract
Preterm birth (PTB) is the leading cause of neonatal morbidity and mortality. Previous studies have suggested that the maternal vaginal microbiota contributes to the pathophysiology of PTB, but conflicting results in recent years have raised doubts. We conducted a study of PTB compared with term birth in two cohorts of pregnant women: one predominantly Caucasian (n = 39) at low risk for PTB, the second predominantly African American and at high-risk (n = 96). We profiled the taxonomic composition of 2,179 vaginal swabs collected prospectively and weekly during gestation using 16S rRNA gene sequencing. Previously proposed associations between PTB and lower Lactobacillus and higher Gardnerella abundances replicated in the low-risk cohort, but not in the high-risk cohort. High-resolution bioinformatics enabled taxonomic assignment to the species and subspecies levels, revealing that Lactobacillus crispatus was associated with low risk of PTB in both cohorts, while Lactobacillus iners was not, and that a subspecies clade of Gardnerella vaginalis explained the genus association with PTB. Patterns of cooccurrence between L. crispatus and Gardnerella were highly exclusive, while Gardnerella and L. iners often coexisted at high frequencies. We argue that the vaginal microbiota is better represented by the quantitative frequencies of these key taxa than by classifying communities into five community state types. Our findings extend and corroborate the association between the vaginal microbiota and PTB, demonstrate the benefits of high-resolution statistical bioinformatics in clinical microbiome studies, and suggest that previous conflicting results may reflect the different risk profile of women of black race.
Collapse
|
140
|
Musilova I, Kacerovsky M, Stepan M, Bestvina T, Pliskova L, Zednikova B, Jacobsson B. Maternal serum C-reactive protein concentration and intra-amniotic inflammation in women with preterm prelabor rupture of membranes. PLoS One 2017; 12:e0182731. [PMID: 28813455 PMCID: PMC5558959 DOI: 10.1371/journal.pone.0182731] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2017] [Accepted: 07/24/2017] [Indexed: 02/07/2023] Open
Abstract
Objective To evaluate maternal serum C-reactive protein (CRP) concentrations in pregnancies complicated by preterm prelabor rupture of membranes (PPROM) in relation to the presence of microbial invasion of the amniotic cavity (MIAC) and/or intra-amniotic inflammation (IAI). Methods Two hundred and eighty-seven women with singleton pregnancies complicated by PPROM between 2014 and 2016 were included in this study. Maternal blood and amniotic fluid samples were collected at the time of admission. Maternal serum CRP concentration was measured using a high-sensitivity immunoturbidimetric assay. Interleukin-6 (IL-6) concentration was measured using a point-of-care test. MIAC was diagnosed based on a positive polymerase chain reaction result for Ureaplasma species, Mycoplasma hominis, and/or Chlamydia trachomatis and for the 16S rRNA gene. IAI was characterized by an amniotic fluid IL-6 concentration of ≥ 745 pg/mL. Result Women with MIAC and IAI had higher maternal serum CRP concentrations than did women without (with MIAC: median 6.9 mg/L vs. without MIAC: median 4.9 mg/L; p = 0.02; with IAI: median 8.6 mg/L vs. without IAI: median 4.7 mg/L; p < 0.0001). When women were split into four subgroups based on the presence of MIAC and/or IAI, women with the presence of both MIAC and IAI had higher maternal serum CRP than did women with IAI alone, with MIAC alone, and women without MIAC and IAI (both MIAC and IAI: median: 13.1 mg/L; IAI alone: 6.0 mg/L; MIAC alone: 3.9 mg/L; and without MIAC and IAI: median 4.8 mg/L; p < 0.0001). The maternal serum CRP cutoff value of 17.5 mg/L was the best level to identify the presence of both MIAC and IAI, with sensitivity of 47%, specificity of 96%, positive predictive value of 42%, negative predictive value of 96%, and the positive likelihood ratio of 10.9. Conclusion The presence of both MIAC and IAI was associated with the highest maternal serum CRP concentrations. Maternal serum CRP concentration in women with PPROM at the time of admission can rule out the presence of the combined condition of both MIAC and IAI, therefore, it may serve as a non-invasive screening tool to distinguish between women with PPROM who are at high or at low risk for the presence of both MIAC and IAI.
Collapse
Affiliation(s)
- Ivana Musilova
- Department of Obstetrics and Gynecology, Charles University Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Marian Kacerovsky
- Department of Obstetrics and Gynecology, Charles University Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- Biomedical Research Center, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
- * E-mail:
| | - Martin Stepan
- Department of Obstetrics and Gynecology, Charles University Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Tomas Bestvina
- Department of Obstetrics and Gynecology, Charles University Faculty of Medicine in Hradec Kralove, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Lenka Pliskova
- Institute of Clinical Biochemistry and Diagnostics, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Barbora Zednikova
- Department of Clinical Immunology and Allergy, University Hospital Hradec Kralove, Hradec Kralove, Czech Republic
| | - Bo Jacobsson
- Department of Obstetrics and Gynecology, Sahlgrenska Academy, Gothenburg University, Gothenburg, Sweden
- Domain of Health Data and Digitalization, Norwegian Institute of Public Health, Oslo, Norway
| |
Collapse
|
141
|
Doyle RM, Harris K, Kamiza S, Harjunmaa U, Ashorn U, Nkhoma M, Dewey KG, Maleta K, Ashorn P, Klein N. Bacterial communities found in placental tissues are associated with severe chorioamnionitis and adverse birth outcomes. PLoS One 2017; 12:e0180167. [PMID: 28700642 PMCID: PMC5507499 DOI: 10.1371/journal.pone.0180167] [Citation(s) in RCA: 89] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 06/12/2017] [Indexed: 01/12/2023] Open
Abstract
Preterm birth is a major cause of neonatal mortality and morbidity worldwide. Bacterial infection and the subsequent inflammatory response are recognised as an important cause of preterm birth. It is hypothesised that these organisms ascend the cervical canal, colonise placental tissues, cause chorioamnionitis and in severe cases infect amniotic fluid and the foetus. However, the presence of bacteria within the intrauterine cavity does not always precede chorioamnionitis or preterm birth. Whereas previous studies observing the types of bacteria present have been limited in size and the specificity of a few predetermined organisms, in this study we characterised bacteria found in placental tissues from a cohort of 1391 women in rural Malawi using 16S ribosomal RNA gene sequencing. We found that specific bacteria found concurrently on placental tissues associate with chorioamnionitis and delivery of a smaller newborn. Severe chorioamnionitis was associated with a distinct difference in community members, a higher bacterial load and lower species richness. Furthermore, Sneathia sanguinengens and Peptostreptococcus anaerobius found in both matched participant vaginal and placental samples were associated with a lower newborn length-for-age Z-score. This is the largest study to date to examine the placental microbiome and its impact of birth outcomes. Our results provide data on the role of the vaginal microbiome as a source of placental infection as well as the possibility of therapeutic interventions against targeted organisms during pregnancy.
Collapse
Affiliation(s)
- Ronan M. Doyle
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
- * E-mail:
| | - Kathryn Harris
- Department of Microbiology, Virology and Infection Control, Great Ormond Street Hospital NHS Foundation Trust, London, United Kingdom
| | - Steve Kamiza
- Department of Pathology, University of Malawi College of Medicine, Blantyre, Malawi
| | - Ulla Harjunmaa
- Center for Child Health Research, University of Tampere Faculty of Medicine and Life Sciences, and Tampere University Hospital, Tampere, Finland
| | - Ulla Ashorn
- Department for International Health, University of Tampere School of Medicine, Tampere, Finland
| | - Minyanga Nkhoma
- Department for International Health, University of Tampere School of Medicine, Tampere, Finland
| | - Kathryn G. Dewey
- Department of Nutrition, University of California Davis, Davis, California, United States of America
| | - Kenneth Maleta
- Department of Community Health, University of Malawi College of Medicine, Blantyre, Malawi
| | - Per Ashorn
- Department for International Health, University of Tampere School of Medicine, Tampere, Finland
- Department of Paediatrics, University of Tampere School of Medicine, Tampere, Finland
- Department of Paediatrics, Tampere University Hospital, Tampere, Finland
| | - Nigel Klein
- UCL Great Ormond Street Institute of Child Health, University College London, London, United Kingdom
| |
Collapse
|
142
|
Oh KJ, Kim SM, Hong JS, Maymon E, Erez O, Panaitescu B, Gomez-Lopez N, Romero R, Yoon BH. Twenty-four percent of patients with clinical chorioamnionitis in preterm gestations have no evidence of either culture-proven intraamniotic infection or intraamniotic inflammation. Am J Obstet Gynecol 2017; 216:604.e1-604.e11. [PMID: 28257964 PMCID: PMC5769703 DOI: 10.1016/j.ajog.2017.02.035] [Citation(s) in RCA: 72] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/15/2017] [Accepted: 02/21/2017] [Indexed: 12/23/2022]
Abstract
BACKGROUND Recent studies on clinical chorioamnionitis at term suggest that some patients with this diagnosis have neither intraamniotic infection nor intraamniotic inflammation. A false-positive diagnosis of clinical chorioamnionitis in preterm gestation may lead to unwarranted preterm delivery. OBJECTIVE We sought to determine the frequency of intraamniotic inflammation and microbiologically proven amniotic fluid infection in patients with preterm clinical chorioamnionitis. STUDY DESIGN Amniocentesis was performed in singleton pregnant women with preterm clinical chorioamnionitis (<36 weeks of gestation). Amniotic fluid was cultured for aerobic and anaerobic bacteria and genital mycoplasmas and assayed for matrix metalloproteinase-8 concentration. Microbial invasion of the amniotic cavity was defined as a positive amniotic fluid culture; intraamniotic inflammation was defined as an elevated amniotic fluid matrix metalloproteinase-8 concentration of >23 ng/mL. Nonparametric and survival techniques were used for analysis. RESULTS Among patients with preterm clinical chorioamnionitis, 24% (12/50) had neither microbiologic evidence of intraamniotic infection nor intraamniotic inflammation. Microbial invasion of the amniotic cavity was present in 34% (18/53) and intraamniotic inflammation in 76% (38/50) of patients. The most common microorganisms isolated from the amniotic cavity were the Ureaplasma species. Finally, patients without microbial invasion of the amniotic cavity or intraamniotic inflammation had significantly lower rates of adverse outcomes (including lower gestational age at delivery, a shorter amniocentesis-to-delivery interval, acute histologic chorioamnionitis, acute funisitis, and significant neonatal morbidity) than those with microbial invasion of the amniotic cavity and/or intraamniotic inflammation. CONCLUSION Among patients with preterm clinical chorioamnionitis, 24% had no evidence of either intraamniotic infection or intraamniotic inflammation, and 66% had negative amniotic fluid cultures, using standard microbiologic techniques. These observations call for a reexamination of the criteria used to diagnose preterm clinical chorioamnionitis.
Collapse
Affiliation(s)
- Kyung Joon Oh
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Sun Min Kim
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Obstetrics and Gynecology, Seoul Metropolitan Government Seoul National University Boramae Medical Center, Seoul, Republic of Korea
| | - Joon-Seok Hong
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea; Department of Obstetrics and Gynecology, Seoul National University Bundang Hospital, Seongnam-si, Republic of Korea
| | - Eli Maymon
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development/National Institutes of Health/US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Offer Erez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development/National Institutes of Health/US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Bogdan Panaitescu
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development/National Institutes of Health/US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI
| | - Nardhy Gomez-Lopez
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development/National Institutes of Health/US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI; Department of Immunology, Microbiology and Biochemistry, Wayne State University School of Medicine, Detroit, MI
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development/National Institutes of Health/US Department of Health and Human Services, Bethesda, MD, and Detroit, MI; Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI; Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI; Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI.
| | - Bo Hyun Yoon
- Department of Obstetrics and Gynecology, Seoul National University College of Medicine, Seoul, Republic of Korea.
| |
Collapse
|
143
|
Perez-Muñoz ME, Arrieta MC, Ramer-Tait AE, Walter J. A critical assessment of the "sterile womb" and "in utero colonization" hypotheses: implications for research on the pioneer infant microbiome. MICROBIOME 2017; 5:48. [PMID: 28454555 PMCID: PMC5410102 DOI: 10.1186/s40168-017-0268-4] [Citation(s) in RCA: 655] [Impact Index Per Article: 81.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2017] [Accepted: 04/21/2017] [Indexed: 05/10/2023]
Abstract
After more than a century of active research, the notion that the human fetal environment is sterile and that the neonate's microbiome is acquired during and after birth was an accepted dogma. However, recent studies using molecular techniques suggest bacterial communities in the placenta, amniotic fluid, and meconium from healthy pregnancies. These findings have led many scientists to challenge the "sterile womb paradigm" and propose that microbiome acquisition instead begins in utero, an idea that would fundamentally change our understanding of gut microbiota acquisition and its role in human development. In this review, we provide a critical assessment of the evidence supporting these two opposing hypotheses, specifically as it relates to (i) anatomical, immunological, and physiological characteristics of the placenta and fetus; (ii) the research methods currently used to study microbial populations in the intrauterine environment; (iii) the fecal microbiome during the first days of life; and (iv) the generation of axenic animals and humans. Based on this analysis, we argue that the evidence in support of the "in utero colonization hypothesis" is extremely weak as it is founded almost entirely on studies that (i) used molecular approaches with an insufficient detection limit to study "low-biomass" microbial populations, (ii) lacked appropriate controls for contamination, and (iii) failed to provide evidence of bacterial viability. Most importantly, the ability to reliably derive axenic animals via cesarean sections strongly supports sterility of the fetal environment in mammals. We conclude that current scientific evidence does not support the existence of microbiomes within the healthy fetal milieu, which has implications for the development of clinical practices that prevent microbiome perturbations after birth and the establishment of future research priorities.
Collapse
Affiliation(s)
- Maria Elisa Perez-Muñoz
- Department of Agriculture, Food and Nutritional Sciences, 4-126 Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta T6G 2E1 Canada
| | - Marie-Claire Arrieta
- Department of Physiology and Pharmacology, University of Calgary, Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1 Canada
- Department of Pediatrics, University of Calgary, Cumming School of Medicine, 3330 Hospital Drive NW, Calgary, Alberta T2N 4N1 Canada
| | - Amanda E. Ramer-Tait
- Department of Food Science and Technology, 260 Food Innovation Center, University of Nebraska-Lincoln, 1901 N 21st Street, Lincoln, Nebraska 68588-6205 USA
| | - Jens Walter
- Department of Agriculture, Food and Nutritional Sciences, 4-126 Li Ka Shing Centre for Health Research Innovation, University of Alberta, Edmonton, Alberta T6G 2E1 Canada
- Department of Biological Sciences, 7-142 Katz Group Centre, University of Alberta, Edmonton, Alberta T6G 2E1 Canada
| |
Collapse
|
144
|
Sweeney EL, Kallapur SG, Meawad S, Gisslen T, Stephenson SA, Jobe AH, Knox CL. Ureaplasma Species Multiple Banded Antigen (MBA) Variation Is Associated with the Severity of Inflammation In vivo and In vitro in Human Placentae. Front Cell Infect Microbiol 2017; 7:123. [PMID: 28451522 PMCID: PMC5390016 DOI: 10.3389/fcimb.2017.00123] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2017] [Accepted: 03/27/2017] [Indexed: 02/06/2023] Open
Abstract
Background: The multiple banded antigen (MBA), a surface-exposed lipoprotein, is a proposed virulence factor of Ureaplasma spp. We previously demonstrated that the number of Ureaplasma parvum MBA size variants in amniotic fluid was inversely proportional to the severity of chorioamnionitis in experimentally infected pregnant sheep. However, the effect of ureaplasma MBA size variation on inflammation in human pregnancies has not been reported. Methods: Ureaplasmas isolated from the chorioamnion of pregnant women from a previous study (n = 42) were speciated/serotyped and MBA size variation was demonstrated by PCR and western blot. Results were correlated with the severity of chorioamnionitis and cord blood cytokines. In vitro, THP-1-derived macrophages were exposed to recombinant-MBA proteins of differing sizes and NF-κB activation and cytokine responses were determined. Results: MBA size variation was identified in 21/32 (65.6%) clinical isolates (in 10 clinical isolates MBA size variation was unable to be determined). Any size variation (increase/decrease) of the MBA (regardless of Ureaplasma species or serovar) was associated with mild or absent chorioamnionitis (P = 0.023) and lower concentrations of cord blood cytokines IL-8 (P = 0.04) and G-CSF (P = 0.008). In vitro, recombinant-MBA variants elicited different cytokine responses and altered expression of NF-κB p65. Conclusion: This study demonstrates that size variation of the ureaplasma MBA protein modulates the host immune response in vivo and in vitro.
Collapse
Affiliation(s)
- Emma L Sweeney
- Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of TechnologyBrisbane, QLD, Australia
| | - Suhas G Kallapur
- Division of Neonatology, Cincinnati Children's Hospital Medical CentreCincinnati, OH, USA
| | - Simone Meawad
- Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of TechnologyBrisbane, QLD, Australia
| | - Tate Gisslen
- Division of Neonatology, Cincinnati Children's Hospital Medical CentreCincinnati, OH, USA.,Division of Neonatology, Department of Paediatrics, University of MinnesotaMinneapolis, MN, USA
| | - Sally-Anne Stephenson
- Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of TechnologyBrisbane, QLD, Australia
| | - Alan H Jobe
- Division of Neonatology, Cincinnati Children's Hospital Medical CentreCincinnati, OH, USA
| | - Christine L Knox
- Faculty of Health, School of Biomedical Sciences, Institute of Health and Biomedical Innovation, Queensland University of TechnologyBrisbane, QLD, Australia
| |
Collapse
|
145
|
Nagpal R, Tsuji H, Takahashi T, Kawashima K, Nagata S, Nomoto K, Yamashiro Y. Sensitive Quantitative Analysis of the Meconium Bacterial Microbiota in Healthy Term Infants Born Vaginally or by Cesarean Section. Front Microbiol 2016; 7:1997. [PMID: 28018325 PMCID: PMC5156933 DOI: 10.3389/fmicb.2016.01997] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2016] [Accepted: 11/29/2016] [Indexed: 12/26/2022] Open
Abstract
For decades, babies were thought to be born germ-free, but recent evidences suggest that they are already exposed to various bacteria in utero. However, the data on population levels of such pioneer gut bacteria, particularly in context to birth mode, is sparse. We herein aimed to quantify such bacteria from the meconium of 151 healthy term Japanese infants born vaginally or by C-section. Neonatal first meconium was obtained within 24–48 h of delivery; RNA was extracted and subjected to reverse-transcription-quantitative PCR using specific primers for Clostridium coccoides group, C. leptum subgroup, Bacteroides fragilis group, Atopobium cluster, Prevotella, Bifidobacterium, Lactobacillus, Enterococcus, Enterobacteriaceae, Staphylococcus, Enterococcus, Streptococcus, C. perfringens, and C. difficile. We detected several bacterial groups in both vaginally- and cesarean-born infants. B. fragilis group, Enterobacteriaceae, Enterococcus, Streptococcus, and Staphylococcus were detected in more than 50% of infants, with counts ranging from 105 to 108 cells/g sample. About 30–35% samples harbored Bifidobacterium and Lactobacillus (104–105 cells/g); whereas C. coccoides group, C. leptum subgroup and C. perfringens were detected in 10–20% infants (103–105 cells/g). Compared to vaginally-born babies, cesarean-born babies were significantly less often colonized with Lactobacillus genus (6% vs. 37%; P = 0.01) and Lactobacillus gasseri subgroup (6% vs. 31%; P = 0.04). Overall, seven Lactobacillus subgroups/species, i.e., L. gasseri subgroup, L. ruminis subgroup, L. casei subgroup, L. reuteri subgroup, L. sakei subgroup, L. plantarum subgroup, and L. brevis were detected in the samples from vaginally-born group, whereas only two members, i.e., L. gasseri subgroup and L. brevis were detected in the cesarean group. These data corroborate that several bacterial clades may already be present before birth in term infants’ gut. Further, lower detection rate of lactobacilli in cesarean-born babies suggests that the primary source of lactobacilli in infant gut is mainly from maternal vaginal and–to a lesser extent–anal microbiota during vaginal delivery, and that the colonization by some important Lactobacillus species is delayed in babies delivered via cesarean-section.
Collapse
Affiliation(s)
- Ravinder Nagpal
- Probiotics Research Laboratory, Graduate School of Medicine, Juntendo University Tokyo, Japan
| | | | | | | | - Satoru Nagata
- Department of Pediatrics, School of Medicine, Tokyo Women's Medical University Tokyo, Japan
| | | | - Yuichiro Yamashiro
- Probiotics Research Laboratory, Graduate School of Medicine, Juntendo University Tokyo, Japan
| |
Collapse
|
146
|
Paramel Jayaprakash T, Wagner EC, van Schalkwyk J, Albert AYK, Hill JE, Money DM. High Diversity and Variability in the Vaginal Microbiome in Women following Preterm Premature Rupture of Membranes (PPROM): A Prospective Cohort Study. PLoS One 2016; 11:e0166794. [PMID: 27861554 PMCID: PMC5115810 DOI: 10.1371/journal.pone.0166794] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2016] [Accepted: 11/03/2016] [Indexed: 11/18/2022] Open
Abstract
Objective To characterize the vaginal microbiota of women following preterm premature rupture of membranes (PPROM), and determine if microbiome composition predicts latency duration and perinatal outcomes. Design A prospective cohort study Setting Canada Population Women with PPROM between 24+0 and 33+6 weeks gestational age (GA). Methods Microbiome profiles, based on pyrosequencing of the cpn60 universal target, were generated from vaginal samples at time of presentation with PPROM, weekly thereafter, and at delivery. Main Outcome Measures Vaginal microbiome composition, latency duration, gestational age at delivery, perinatal outcomes. Results Microbiome profiles were generated from 70 samples from 36 women. Mean GA at PPROM was 28.8 wk (mean latency 2.7 wk). Microbiome profiles were highly diverse but sequences representing Megasphaera type 1 and Prevotella spp. were detected in all vaginal samples. Only 13/70 samples were dominated by Lactobacillus spp. Microbiome profiles at the time of membrane rupture did not cluster by gestational age at PPROM, latency duration, presence of chorioamnionitis or by infant outcomes. Mycoplasma and/or Ureaplasma were detected by PCR in 81% (29/36) of women, and these women had significantly lower GA at delivery and correspondingly lower birth weight infants than Mycoplasma and/or Ureaplasma negative women. Conclusion Women with PPROM had mixed, abnormal vaginal microbiota but the microbiome profile at PPROM did not correlate with latency duration. Prevotella spp. and Megasphaera type I were ubiquitous. The presence of Mollicutes in the vaginal microbiome was associated with lower GA at delivery. The microbiome was remarkably unstable during the latency period.
Collapse
Affiliation(s)
| | - Emily C. Wagner
- Women’s Health Research Institute, BC Women’s Hospital and Health Centre, Vancouver, BC, Canada
| | - Julie van Schalkwyk
- Women’s Health Research Institute, BC Women’s Hospital and Health Centre, Vancouver, BC, Canada
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada
| | - Arianne Y. K. Albert
- Women’s Health Research Institute, BC Women’s Hospital and Health Centre, Vancouver, BC, Canada
| | - Janet E. Hill
- Department of Veterinary Microbiology, University of Saskatchewan, Saskatoon, SK, Canada
| | - Deborah M. Money
- Women’s Health Research Institute, BC Women’s Hospital and Health Centre, Vancouver, BC, Canada
- Department of Obstetrics and Gynaecology, University of British Columbia, Vancouver, BC, Canada
- * E-mail:
| | | |
Collapse
|
147
|
A microbial perspective of human developmental biology. Nature 2016; 535:48-55. [PMID: 27383979 DOI: 10.1038/nature18845] [Citation(s) in RCA: 160] [Impact Index Per Article: 17.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 04/25/2016] [Indexed: 12/12/2022]
Abstract
When most people think of human development, they tend to consider only human cells and organs. Yet there is another facet that involves human-associated microbial communities. A microbial perspective of human development provides opportunities to refine our definitions of healthy prenatal and postnatal growth and to develop innovative strategies for disease prevention and treatment. Given the dramatic changes in lifestyles and disease patterns that are occurring with globalization, we issue a call for the establishment of 'human microbial observatories' designed to examine microbial community development in birth cohorts representing populations with diverse anthropological characteristics, including those undergoing rapid change.
Collapse
|
148
|
A New Catalog of Microbiological Tools for Women's Infectious Disease Research. GENOME ANNOUNCEMENTS 2016; 4:4/5/e00890-16. [PMID: 27688331 PMCID: PMC5043549 DOI: 10.1128/genomea.00890-16] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
Genitourinary infections pose serious health risks. But, little is known about how genitourinary bacteria attach, maintain colonization, compete for resources, and cause pathology. In this issue, we introduce a new set of 62 genitourinary reference strains of bacteria and their genomes to spur experimental research on infectious diseases that impact women.
Collapse
|
149
|
Genome Sequences of 15 Gardnerella vaginalis Strains Isolated from the Vaginas of Women with and without Bacterial Vaginosis. GENOME ANNOUNCEMENTS 2016; 4:4/5/e00879-16. [PMID: 27688326 PMCID: PMC5043544 DOI: 10.1128/genomea.00879-16] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/04/2022]
Abstract
Gardnerella vaginalis is a predominant species in bacterial vaginosis, a dysbiosis of the vagina that is associated with adverse health outcomes, including preterm birth. Here, we present the draft genome sequences of 15 Gardnerella vaginalis strains (now available through BEI Resources) isolated from women with and without bacterial vaginosis.
Collapse
|
150
|
Abstract
The vagina is home to a wide variety of bacteria that have great potential to impact human health. Here, we announce reference strains (now available through BEI Resources) and draft genome sequences for 9 Gram-negative vaginal isolates from the taxa Citrobacter, Klebsiella, Fusobacterium, Proteus, and Prevotella.
Collapse
|