101
|
Nudel R, Newbury DF. FOXP2. WILEY INTERDISCIPLINARY REVIEWS. COGNITIVE SCIENCE 2013; 4:547-560. [PMID: 24765219 PMCID: PMC3992897 DOI: 10.1002/wcs.1247] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 03/02/2013] [Revised: 06/04/2013] [Accepted: 07/06/2013] [Indexed: 11/30/2022]
Abstract
The forkhead box P2 gene, designated FOXP2, is the first gene implicated in a speech and language disorder. Since its discovery, many studies have been carried out in an attempt to explain the mechanism by which it influences these characteristically human traits. This review presents the story of the discovery of the FOXP2 gene, including early studies of the phenotypic implications of a disruption in the gene. We then discuss recent investigations into the molecular function of the FOXP2 gene, including functional and gene expression studies. We conclude this review by presenting the fascinating results of recent studies of the FOXP2 ortholog in other species that are capable of vocal communication. WIREs Cogn Sci 2013, 4:547-560. doi: 10.1002/wcs.1247 This article is categorized under: Psychology > Language Neuroscience > Genes, Molecules, and Cells.
Collapse
Affiliation(s)
- Ron Nudel
- Wellcome Trust Centre for Human Genetics, University of OxfordOxford, UK
| | - Dianne F Newbury
- Wellcome Trust Centre for Human Genetics, University of OxfordOxford, UK
| |
Collapse
|
102
|
Williams D, Payne H, Marshall C. Non-word repetition impairment in autism and specific language impairment: evidence for distinct underlying cognitive causes. J Autism Dev Disord 2013; 43:404-17. [PMID: 22733298 DOI: 10.1007/s10803-012-1579-8] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
Abstract
Language-impaired individuals with autism perform poorly on tests such as non-word repetition that are sensitive clinical markers of specific language impairment (SLI). This has fuelled the theory that language impairment in autism represents a co-morbid SLI. However, the underlying cause of these deficits may be different in each disorder. In a novel task, we manipulated non-word stimuli in three ways known to influence the repetition accuracy of children with SLI. Participants with SLI were affected differently by these manipulations to children with autism. Children with autism performed similarly to language-matched typical children in terms of levels and patterns of performance, and types of error made, suggesting that the underlying cognitive cause of non-word repetition deficits is different in each disorder.
Collapse
Affiliation(s)
- David Williams
- Department of Psychology, Durham University, Durham DH1 3LE, UK.
| | | | | |
Collapse
|
103
|
Abstract
In most people, language is processed predominantly by the left hemisphere of the brain, but we do not know how or why. A popular view is that developmental language disorders result from a poorly lateralized brain, but until recently, evidence has been weak and indirect. Modern neuroimaging methods have made it possible to study normal and abnormal development of lateralized function in the developing brain and have confirmed links with language and literacy impairments. However, there is little evidence that weak cerebral lateralization has common genetic origins with language and literacy impairments. Our understanding of the association between atypical language lateralization and developmental disorders may benefit if we reconceptualize the nature of cerebral asymmetry to recognize its multidimensionality and consider variation in lateralization over developmental time. Contrary to popular belief, cerebral lateralization may not be a highly heritable, stable characteristic of individuals; rather, weak lateralization may be a consequence of impaired language learning.
Collapse
Affiliation(s)
- Dorothy V M Bishop
- Department of Experimental Psychology, University of Oxford, 9 South Parks Road, Oxford OX1 3UD, UK.
| |
Collapse
|
104
|
Luciano M, Evans DM, Hansell NK, Medland SE, Montgomery GW, Martin NG, Wright MJ, Bates TC. A genome-wide association study for reading and language abilities in two population cohorts. GENES BRAIN AND BEHAVIOR 2013; 12:645-52. [PMID: 23738518 PMCID: PMC3908370 DOI: 10.1111/gbb.12053] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2012] [Revised: 03/04/2013] [Accepted: 05/24/2013] [Indexed: 01/21/2023]
Abstract
Candidate genes have been identified for both reading and language, but most of the heritable variance in these traits remains unexplained. Here, we report a genome-wide association meta-analysis of two large cohorts: population samples of Australian twins and siblings aged 12–25 years (n = 1177 from 538 families), and a younger cohort of children of the UK Avon Longitudinal Study of Parents and their Children (aged 8 and 9 years; maximum n = 5472). Suggestive association was indicated for reading measures and non-word repetition (NWR), with the greatest support found for single nucleotide polymorphisms (SNPs) in the pseudogene, ABCC13 (P = 7.34 × 10−8), and the gene, DAZAP1 (P = 1.32 × 10−6). Gene-based analyses showed significant association (P < 2.8 × 10−6) for reading and spelling with genes CD2L1, CDC2L2 and RCAN3 in two loci on chromosome 1. Some support was found for the same SNPs having effects on both reading skill and NWR, which is compatible with behavior genetic evidence for influences of reading acquisition on phonological-task performance. The results implicate novel candidates for study in additional cohorts for reading and language abilities.
Collapse
Affiliation(s)
- M Luciano
- Centre for Cognitive Aging and Cognitive Epidemiology, Department of Psychology, University of Edinburgh, Edinburgh, UK.
| | | | | | | | | | | | | | | |
Collapse
|
105
|
Genetic insights into the functional elements of language. Hum Genet 2013; 132:959-86. [PMID: 23749164 DOI: 10.1007/s00439-013-1317-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2012] [Accepted: 05/22/2013] [Indexed: 12/11/2022]
Abstract
Language disorders cover a wide range of conditions with heterologous and overlapping phenotypes and complex etiologies harboring both genetic and environmental influences. Genetic approaches including the identification of genes linked to speech and language phenotypes and the characterization of normal and aberrant functions of these genes have, in recent years, unraveled complex details of molecular and cognitive mechanisms and provided valuable insight into the biological foundations of language. Consistent with this approach, we have reviewed the functional aspects of allelic variants of genes which are currently known to be either causally associated with disorders of speech and language or impact upon the spectrum of normal language ability. We have also reviewed candidate genes associated with heritable speech and language disorders. In addition, we have evaluated language phenotypes and associated genetic components in developmental syndromes that, together with a spectrum of altered language abilities, manifest various phenotypes and offer details of multifactorial determinants of language function. Data from this review have revealed a predominance of regulatory networks involved in the control of differentiation and functioning of neurons, neuronal tracks and connections among brain structures associated with both cognitive and language faculties. Our findings, furthermore, have highlighted several multifactorial determinants in overlapping speech and language phenotypes. Collectively this analysis has revealed an interconnected developmental network and a close association of the language faculty with cognitive functions, a finding that has the potential to provide insight into linguistic hypotheses defining in particular, the contribution of genetic elements to and the modular nature of the language faculty.
Collapse
|
106
|
Rice ML. Language growth and genetics of specific language impairment. INTERNATIONAL JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2013; 15:223-33. [PMID: 23614332 PMCID: PMC3684183 DOI: 10.3109/17549507.2013.783113] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
Behavioural studies of children with specific language impairment (SLI) have reported long-term growth outcomes across different dimensions of language. Genetic studies of children with SLI have identified candidate genes and putative associations of gene variants with SLI. The aims of this review are to summarize these two lines of investigation and to highlight the possible role of underlying growth timing mechanisms that influence the trajectory of language outcomes throughout childhood and into adolescence. Behavioural growth trajectories demonstrate that children with SLI have notable strengths in language acquisition, as well as limitations, across different dimensions of language. Language onset appears delayed, although the rate and pattern of change over time is similar to unaffected children. Growth rate decelerates early in adolescence for some dimensions of language. Genetic investigations reveal candidate genes that are known to influence neuronal development, and reveal possible gene interactions along a causal pathway. Epigenetic studies reveal other genetic influences implicated in the cognitive decline associated with ageing. This review highlights possible parallels between underlying genetic mechanisms and characteristics of linguistic growth trajectories. The conclusion is that new developmental perspectives are needed to inform language intervention in ways that align nurture with nature.
Collapse
Affiliation(s)
- Mabel L Rice
- Child Language Doctoral Program, University of Kansas, Lawrence, KS 66045, USA.
| |
Collapse
|
107
|
Morgan A. Speech-language pathology insights into genetics and neuroscience: beyond surface behaviour. INTERNATIONAL JOURNAL OF SPEECH-LANGUAGE PATHOLOGY 2013; 15:245-254. [PMID: 23586582 DOI: 10.3109/17549507.2013.777786] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
For almost a century, speech-language pathologists (SLPs) have worked at refining communication disorder phenotypes. Yet a hundred years of mastering the characterization of surface behaviours has provided only limited understanding of the neurobiological underpinnings of communication disorder. Arguably, the most momentous aetiological findings in speech-language pathology have been made relatively recently and by cross-disciplinary colleagues in the fields of molecular genetics and neuroimaging. Such findings include discovery of FOXP2, for example, the first gene found to be associated with a primary speech disorder. New gene-brain-behaviour discoveries in communication disorder are occurring on an almost weekly basis and it is challenging for clinical SLPs to engage with, interpret, and keep abreast of this literature. This paper aims to provide a brief overview of genetic and neuroimaging approaches to the study of communication disorders. Further examples of key findings in these fields are presented, with a discussion of the impacts on core SLP practice. Future research directions for further illuminating gene-brain-behaviour relationships in communication disorder are identified.
Collapse
Affiliation(s)
- Angela Morgan
- Murdoch Childrens Research Institute, Melbourne, Australia.
| |
Collapse
|
108
|
Wong PCM, Ettlinger M, Zheng J. Linguistic grammar learning and DRD2-TAQ-IA polymorphism. PLoS One 2013; 8:e64983. [PMID: 23741438 PMCID: PMC3669058 DOI: 10.1371/journal.pone.0064983] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2012] [Accepted: 04/19/2013] [Indexed: 11/18/2022] Open
Abstract
As research into the neurobiology of language has focused primarily on the systems level, fewer studies have examined the link between molecular genetics and normal variations in language functions. Because the ability to learn a language varies in adults and our genetic codes also vary, research linking the two provides a unique window into the molecular neurobiology of language. We consider a candidate association between the dopamine receptor D2 gene (DRD2) and linguistic grammar learning. DRD2-TAQ-IA polymorphism (rs1800497) is associated with dopamine receptor D2 distribution and dopamine impact in the human striatum, such that A1 allele carriers show reduction in D2 receptor binding relative to carriers who are homozygous for the A2 allele. The individual differences in grammatical rule learning that are particularly prevalent in adulthood are also associated with striatal function and its role in domain-general procedural memory. Therefore, we reasoned that procedurally-based grammar learning could be associated with DRD2-TAQ-IA polymorphism. Here, English-speaking adults learned artificial concatenative and analogical grammars, which have been respectively associated with procedural and declarative memory. Language learning capabilities were tested while learners’ neural hemodynamic responses were simultaneously measured by fMRI. Behavioral learning and brain activation data were subsequently compared with the learners’ DRD2 (rs1800497) genotype. Learners who were homozygous for the A2 allele were better at concatenative (but not analogical) grammar learning and had higher striatal responses relative to those who have at least one A1 allele. These results provide preliminary evidence for the neurogenetic basis of normal variations in linguistic grammar learning and its link to domain-general functions.
Collapse
Affiliation(s)
- Patrick C M Wong
- Department of Linguistics and Modern Languages, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, PR China.
| | | | | |
Collapse
|
109
|
Ayub Q, Yngvadottir B, Chen Y, Xue Y, Hu M, Vernes SC, Fisher SE, Tyler-Smith C. FOXP2 targets show evidence of positive selection in European populations. Am J Hum Genet 2013; 92:696-706. [PMID: 23602712 DOI: 10.1016/j.ajhg.2013.03.019] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2012] [Revised: 03/18/2013] [Accepted: 03/25/2013] [Indexed: 11/28/2022] Open
Abstract
Forkhead box P2 (FOXP2) is a highly conserved transcription factor that has been implicated in human speech and language disorders and plays important roles in the plasticity of the developing brain. The pattern of nucleotide polymorphisms in FOXP2 in modern populations suggests that it has been the target of positive (Darwinian) selection during recent human evolution. In our study, we searched for evidence of selection that might have followed FOXP2 adaptations in modern humans. We examined whether or not putative FOXP2 targets identified by chromatin-immunoprecipitation genomic screening show evidence of positive selection. We developed an algorithm that, for any given gene list, systematically generates matched lists of control genes from the Ensembl database, collates summary statistics for three frequency-spectrum-based neutrality tests from the low-coverage resequencing data of the 1000 Genomes Project, and determines whether these statistics are significantly different between the given gene targets and the set of controls. Overall, there was strong evidence of selection of FOXP2 targets in Europeans, but not in the Han Chinese, Japanese, or Yoruba populations. Significant outliers included several genes linked to cellular movement, reproduction, development, and immune cell trafficking, and 13 of these constituted a significant network associated with cardiac arteriopathy. Strong signals of selection were observed for CNTNAP2 and RBFOX1, key neurally expressed genes that have been consistently identified as direct FOXP2 targets in multiple studies and that have themselves been associated with neurodevelopmental disorders involving language dysfunction.
Collapse
Affiliation(s)
- Qasim Ayub
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SA, UK.
| | | | | | | | | | | | | | | |
Collapse
|
110
|
Abstract
Next-generation sequencing is set to transform the discovery of genes underlying neurodevelopmental disorders, and so offer important insights into the biological bases of spoken language. Success will depend on functional assessments in neuronal cell lines, animal models and humans themselves.
Collapse
Affiliation(s)
- Pelagia Deriziotis
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
| | - Simon E Fisher
- Max Planck Institute for Psycholinguistics, 6525 XD Nijmegen, The Netherlands
- Donders Institute for Brain, Cognition and Behaviour, Radboud University, 6525 EN Nijmegen, The Netherlands
| |
Collapse
|
111
|
Graham SA, Fisher SE. Decoding the genetics of speech and language. Curr Opin Neurobiol 2013; 23:43-51. [PMID: 23228431 DOI: 10.1016/j.conb.2012.11.006] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2012] [Revised: 11/13/2012] [Accepted: 11/14/2012] [Indexed: 12/31/2022]
|
112
|
Klein S, Sharifi-Hannauer P, Martinez-Agosto JA. Macrocephaly as a clinical indicator of genetic subtypes in autism. Autism Res 2013; 6:51-6. [PMID: 23361946 DOI: 10.1002/aur.1266] [Citation(s) in RCA: 62] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2011] [Accepted: 10/22/2012] [Indexed: 11/10/2022]
Abstract
An association between autism and macrocephaly has been previously described. A subset of cases with extreme macrocephaly (>3 standard deviation [SD], 99.7th percentile) have been correlated to mutations in the gene phosphatase and tensin homolog (PTEN). However, the phenotypic and genetic characterization of the remaining cases remains unclear. We report the phenotypic classification and genetic testing evaluation of a cohort of 33 patients with autism and macrocephaly. Within our cohort, we confirm the association of PTEN mutations and extreme macrocephaly (>3 SD, 99.7th percentile) and identify mutations in 22% of cases, including three novel PTEN mutations. In addition, we define three phenotypic subgroups: (a) those cases associated with somatic overgrowth, (b) those with disproportionate macrocephaly, and (c) those with relative macrocephaly. We have devised a novel way to segregate patients into these subgroups that will aide in the stratification of autism macrocephaly cases. Within these subgroups, we further expand the genetic etiologies for autism cases with macrocephaly by describing two novel suspected pathogenic copy number variants located at 6q23.2 and 10q24.32. These findings demonstrate the phenotypic heterogeneity of autism cases associated with macrocephaly and their genetic etiologies. The clinical yield from PTEN mutation analysis is 22% and 9% from chromosomal microarray (CMA) testing within this cohort. The identification of three distinct phenotypic subgroups within macrocephaly autism patients may allow for the identification of their respective distinct genetic etiologies that to date have remained elusive.
Collapse
Affiliation(s)
- Steven Klein
- Department of Human Genetics, David Geffen School of Medicine at UCLA, Los Angeles, CA, USA
| | | | | |
Collapse
|
113
|
Moyle J, Stokes SF, Klee T. Early Language Delay and Specific Language Impairment. ACTA ACUST UNITED AC 2013; 17:160-9. [PMID: 23362035 DOI: 10.1002/ddrr.1110] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2012] [Accepted: 10/05/2012] [Indexed: 11/11/2022]
Affiliation(s)
- Jayne Moyle
- Department of Communication Disorders; University of Canterbury; New Zealand
| | - Stephanie F. Stokes
- Department of Communication Disorders; University of Canterbury; New Zealand
| | - Thomas Klee
- Department of Communication Disorders; University of Canterbury; New Zealand
| |
Collapse
|
114
|
The dyslexia candidate locus on 2p12 is associated with general cognitive ability and white matter structure. PLoS One 2012; 7:e50321. [PMID: 23209710 PMCID: PMC3509064 DOI: 10.1371/journal.pone.0050321] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2012] [Accepted: 10/17/2012] [Indexed: 11/25/2022] Open
Abstract
Independent studies have shown that candidate genes for dyslexia and specific language impairment (SLI) impact upon reading/language-specific traits in the general population. To further explore the effect of disorder-associated genes on cognitive functions, we investigated whether they play a role in broader cognitive traits. We tested a panel of dyslexia and SLI genetic risk factors for association with two measures of general cognitive abilities, or IQ, (verbal and non-verbal) in the Avon Longitudinal Study of Parents and Children (ALSPAC) cohort (N>5,000). Only the MRPL19/C2ORF3 locus showed statistically significant association (minimum P = 0.00009) which was further supported by independent replications following analysis in four other cohorts. In addition, a fifth independent sample showed association between the MRPL19/C2ORF3 locus and white matter structure in the posterior part of the corpus callosum and cingulum, connecting large parts of the cortex in the parietal, occipital and temporal lobes. These findings suggest that this locus, originally identified as being associated with dyslexia, is likely to harbour genetic variants associated with general cognitive abilities by influencing white matter structure in localised neuronal regions.
Collapse
|
115
|
Rice ML. Toward epigenetic and gene regulation models of specific language impairment: looking for links among growth, genes, and impairments. J Neurodev Disord 2012; 4:27. [PMID: 23176600 PMCID: PMC3534233 DOI: 10.1186/1866-1955-4-27] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Accepted: 11/01/2012] [Indexed: 11/10/2022] Open
Abstract
Children with specific language impairment (SLI) are thought to have an inherited form of language impairment that spares other developmental domains. SLI shows strong heritability and recent linkage and association studies have replicated results for candidate genes. Regulatory regions of the genes may be involved. Behavioral growth models of language development of children with SLI reveal that the onset of language is delayed, and the growth trajectories of children with SLI parallel those of younger children without SLI. The rate of language acquisition decelerates in the pre-adolescent period, resulting in immature language levels for the children with SLI that persist into adolescence and beyond. Recent genetic and epigenetic discoveries and models relevant to language impairment are reviewed. T cell regulation of onset, acceleration, and deceleration signaling are described as potential conceptual parallels to the growth timing elements of language acquisition and impairment. A growth signaling disruption (GSD) hypothesis is proposed for SLI, which posits that faulty timing mechanisms at the cellular level, intrinsic to neurocortical functioning essential for language onset and growth regulation, are at the core of the growth outcomes of SLI. The GSD highlights the need to document and account for growth patterns over childhood and suggests needed directions for future investigation.
Collapse
|
116
|
CNTNAP2 and language processing in healthy individuals as measured with ERPs. PLoS One 2012; 7:e46995. [PMID: 23115634 PMCID: PMC3480372 DOI: 10.1371/journal.pone.0046995] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2012] [Accepted: 09/07/2012] [Indexed: 11/19/2022] Open
Abstract
The genetic FOXP2-CNTNAP2 pathway has been shown to be involved in the language capacity. We investigated whether a common variant of CNTNAP2 (rs7794745) is relevant for syntactic and semantic processing in the general population by using a visual sentence processing paradigm while recording ERPs in 49 healthy adults. While both AA homozygotes and T-carriers showed a standard N400 effect to semantic anomalies, the response to subject-verb agreement violations differed across genotype groups. T-carriers displayed an anterior negativity preceding the P600 effect, whereas for the AA group only a P600 effect was observed. These results provide another piece of evidence that the neuronal architecture of the human faculty of language is shaped differently by effects that are genetically determined.
Collapse
|
117
|
Gene × gene interaction in shared etiology of autism and specific language impairment. Biol Psychiatry 2012; 72:692-9. [PMID: 22704665 PMCID: PMC3449050 DOI: 10.1016/j.biopsych.2012.05.019] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/10/2011] [Revised: 05/14/2012] [Accepted: 05/15/2012] [Indexed: 02/02/2023]
Abstract
BACKGROUND To examine the relationship between autism spectrum disorders (ASD) and specific language impairment (SLI), family studies typically take a comparative approach where families with one disease are examined for traits of the other disease. In contrast, the present report is the first study with both disorders required to be present in each family to provide a more direct test of the hypothesis of shared genetic etiology. METHODS We behaviorally assessed 51 families including at least one person with ASD and at least one person with SLI (without ASD). Pedigree members were tested with 22 standardized measures of language and intelligence. Because these extended families include a nonshared environmental contrast, we calculated heritability, not just familiality, for each measure twice: 1) baseline heritability analysis, compared with; 2) heritability estimates after statistically removing ASD subjects from pedigrees. RESULTS Significant increases in heritability on four supra-linguistic measures (including Pragmatic Judgment) and a composite language score but not on any other measures were observed when removing ASD subjects from the analysis, indicating differential genetic effects that are unique to ASD. Nongenetic explanations such as effects of ASD severity or measurement error or low score variability in ASD subjects were systematically ruled out, leaving the hypothesis of nonadditive genetics effects as the potential source of the heritability change caused by ASD. CONCLUSIONS Although the data suggest genetic risk factors common to both SLI and ASD, there are effects that seem unique to ASD, possibly caused by nonadditive gene-gene interactions of shared risk loci.
Collapse
|
118
|
Huang H, Jeon T, Sedmak G, Pletikos M, Vasung L, Xu X, Yarowsky P, Richards LJ, Kostovic I, Sestan N, Mori S. Coupling diffusion imaging with histological and gene expression analysis to examine the dynamics of cortical areas across the fetal period of human brain development. Cereb Cortex 2012; 23:2620-31. [PMID: 22933464 DOI: 10.1093/cercor/bhs241] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
As a prominent component of the human fetal brain, the structure of the cerebral wall is characterized by its laminar organization which includes the radial glial scaffold during fetal development. Diffusion tensor imaging (DTI) is useful to quantitatively delineate the microstructure of the developing brain and to clearly identify transient fetal layers in the cerebral wall. In our study, the spatio-temporal microstructural changes in the developing human fetal cerebral wall were quantitatively characterized with high-resolution DTI data of postmortem fetal brains from 13 to 21 gestational weeks. Eleven regions of interest for each layer in the entire cerebral wall were included. Distinctive time courses of microstructural changes were revealed for 11 regions of the neocortical plate. A histological analysis was also integrated to elucidate the relationship between DTI fractional anisotropy (FA) and histology. High FA values correlated with organized radial architecture in histological image. Expression levels of 17565 genes were quantified for each of 11 regions of human fetal neocortex from 13 to 21 gestational weeks to identify transcripts showing significant correlation with FA change. These correlations suggest that the heterogeneous and regionally specific microstructural changes of the human neocortex are related to different gene expression patterns.
Collapse
|
119
|
Falivelli G, De Jaco A, Favaloro FL, Kim H, Wilson J, Dubi N, Ellisman MH, Abrahams BS, Taylor P, Comoletti D. Inherited genetic variants in autism-related CNTNAP2 show perturbed trafficking and ATF6 activation. Hum Mol Genet 2012; 21:4761-73. [PMID: 22872700 DOI: 10.1093/hmg/dds320] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Although genetic variations in several genes encoding for synaptic adhesion proteins have been found to be associated with autism spectrum disorders, one of the most consistently replicated genes has been CNTNAP2, encoding for contactin-associated protein-like 2 (CASPR2), a multidomain transmembrane protein of the neurexin superfamily. Using immunofluorescence confocal microscopy and complementary biochemical techniques, we compared wild-type CASPR2 to 12 point mutations identified in individuals with autism. In contrast to the wild-type protein, localized to the cell surface, some of the mutants show altered cellular disposition. In particular, CASPR2-D1129H is largely retained in the endoplasmic reticulum (ER) in HEK-293 cells and in hippocampal neurons. BiP/Grp78, Calnexin and ERp57, key ER chaperones, appear to be responsible for retention of this mutant and activation of one signaling pathway of the unfolded protein response (UPR). The presence of this mutation also lowers expression and activates proteosomal degradation. A frame-shift mutation that causes a form of syndromic epilepsy (CASPR2-1253*), results in a secreted protein with seemingly normal folding and oligomerization. Taken together, these data indicate that CASPR2-D1129H has severe trafficking abnormalities and CASPR2-1253* is a secreted soluble protein, suggesting that the structural or signaling functions of the membrane tethered form are lost. Our data support a complex genetic architecture in which multiple distinct risk factors interact with others to shape autism risk and presentation.
Collapse
Affiliation(s)
- Giulia Falivelli
- Department of Pharmacology, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of California San Diego, La Jolla, CA 92093, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
120
|
Coghlan S, Horder J, Inkster B, Mendez MA, Murphy DG, Nutt DJ. GABA system dysfunction in autism and related disorders: from synapse to symptoms. Neurosci Biobehav Rev 2012; 36:2044-55. [PMID: 22841562 DOI: 10.1016/j.neubiorev.2012.07.005] [Citation(s) in RCA: 323] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2012] [Revised: 07/10/2012] [Accepted: 07/16/2012] [Indexed: 12/13/2022]
Abstract
Autism spectrum disorders (ASDs) are neurodevelopmental syndromes characterised by repetitive behaviours and restricted interests, impairments in social behaviour and relations, and in language and communication. These symptoms are also observed in a number of developmental disorders of known origin, including Fragile X Syndrome, Rett Syndrome, and Foetal Anticonvulsant Syndrome. While these conditions have diverse etiologies, and poorly understood pathologies, emerging evidence suggests that they may all be linked to dysfunction in particular aspects of GABAergic inhibitory signalling in the brain. We review evidence from genetics, molecular neurobiology and systems neuroscience relating to the role of GABA in these conditions. We conclude by discussing how these deficits may relate to the specific symptoms observed.
Collapse
Affiliation(s)
- Suzanne Coghlan
- King's College London, Department of Forensic and Neurodevelopmental Sciences, Institute of Psychiatry, De Crespigny Park, London, SE5 8AF, United Kingdom
| | | | | | | | | | | |
Collapse
|
121
|
Bacon C, Rappold GA. The distinct and overlapping phenotypic spectra of FOXP1 and FOXP2 in cognitive disorders. Hum Genet 2012; 131:1687-98. [PMID: 22736078 PMCID: PMC3470686 DOI: 10.1007/s00439-012-1193-z] [Citation(s) in RCA: 97] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2012] [Accepted: 06/11/2012] [Indexed: 12/15/2022]
Abstract
Rare disruptions of FOXP2 have been strongly implicated in deficits in language development. Research over the past decade has suggested a role in the formation of underlying neural circuits required for speech. Until recently no evidence existed to suggest that the closely related FOXP1 gene played a role in neurodevelopmental processes. However, in the last few years, novel rare disruptions in FOXP1 have been reported in multiple cases of cognitive dysfunction, including intellectual disability and autism spectrum disorder, together with language impairment. As FOXP1 and FOXP2 form heterodimers for transcriptional regulation, one may assume that they co-operate in common neurodevelopmental pathways through the co-regulation of common targets. Here we compare the phenotypic consequences of FOXP1 and FOXP2 impairment, drawing on well-known studies from the past as well as recent exciting findings and consider what these tell us regarding the functions of these two genes in neural development.
Collapse
Affiliation(s)
- Claire Bacon
- Department of Human Molecular Genetics, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| | - Gudrun A. Rappold
- Department of Human Molecular Genetics, University of Heidelberg, Im Neuenheimer Feld 366, 69120 Heidelberg, Germany
| |
Collapse
|
122
|
Amino-Terminal Microdeletion within the CNTNAP2 Gene Associated with Variable Expressivity of Speech Delay. Case Rep Genet 2012; 2012:172408. [PMID: 23074684 PMCID: PMC3447220 DOI: 10.1155/2012/172408] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2012] [Accepted: 03/26/2012] [Indexed: 01/21/2023] Open
Abstract
The contactin-associated protein-like 2 (CNTNAP2) gene is highly expressed in the frontal lobe circuits in the developing human brain. Mutations in this gene have been associated with several neurodevelopmental disorders such as autism and specific language impairment. Here we describe a 450 kb deletion within the CNTNAP2 gene that is maternally inherited in two male siblings, but with a variable clinical phenotype. This variability is described in the context of a limited number of other cases reported in the literature. The in-frame intragenic deletion removes a critical domain of the CNTNAP2 protein, and this case also highlights the challenges of correlating genotype and phenotype.
Collapse
|
123
|
Wong PCM, Morgan-Short K, Ettlinger M, Zheng J. Linking neurogenetics and individual differences in language learning: the dopamine hypothesis. Cortex 2012; 48:1091-102. [PMID: 22565204 DOI: 10.1016/j.cortex.2012.03.017] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Revised: 01/27/2012] [Accepted: 03/21/2012] [Indexed: 11/19/2022]
Abstract
Fundamental advances in neuroscience have come from investigations into neuroplasticity and learning. These investigations often focus on identifying universal principles across different individuals of the same species. Increasingly, individual differences in learning success have also been observed, such that any seemingly universal principle might only be applicable to a certain extent within a particular learner. One potential source of this variation is individuals' genetic differences. Adult language learning provides a unique opportunity for understanding individual differences and genetic bases of neuroplasticity because of the large individual differences in learning success that have already been documented, and because of the body of empirical work connecting language learning and neurocognition. In this article, we review the literature on the genetic bases of neurocognition, especially studies examining polymorphisms of dopamine (DA)-related genes and procedural learning. This review leads us to hypothesize that there may be an association between DA-related genetic variation and language learning differences. If this hypothesis is supported by future empirical findings we suggest that it may point to neurogenetic markers that allow for language learning to be personalized.
Collapse
Affiliation(s)
- Patrick C M Wong
- Roxelyn and Richard Pepper Department of Communication Sciences & Disorders, Northwestern University, Evanston, IL, USA.
| | | | | | | |
Collapse
|
124
|
Peñagarikano O, Geschwind DH. What does CNTNAP2 reveal about autism spectrum disorder? Trends Mol Med 2012; 18:156-63. [PMID: 22365836 PMCID: PMC3633421 DOI: 10.1016/j.molmed.2012.01.003] [Citation(s) in RCA: 118] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Revised: 01/07/2012] [Accepted: 01/10/2012] [Indexed: 01/02/2023]
Abstract
Autism spectrum disorder (ASD) is a phenotypically and genetically heterogeneous condition characterized by the presence of repetitive/restrictive behaviors and variable deficits in language and social behavior. Many genes predisposing an individual to ASD have been identified, and understanding the causal disease mechanism(s) is critical to be able to develop treatments. Neurobiological, genetic, and imaging data provide strong evidence for the CNTNAP2 gene as a risk factor for ASD and related neurodevelopmental disorders. This review discusses the clinical genetics and current understanding of the biology of CNTNAP2 as related to ASD and illustrates how the integration of multiple research approaches, from human studies to animal models, converge to inform functional biology focused on novel treatment development.
Collapse
Affiliation(s)
- Olga Peñagarikano
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA
| | | |
Collapse
|
125
|
Li N, Bartlett CW. Defining the genetic architecture of human developmental language impairment. Life Sci 2012; 90:469-75. [PMID: 22365959 DOI: 10.1016/j.lfs.2012.01.016] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2011] [Revised: 01/24/2012] [Accepted: 01/26/2012] [Indexed: 01/08/2023]
Abstract
Language is a uniquely human trait, which poses limitations on animal models for discovering biological substrates and pathways. Despite this challenge, rapidly developing biotechnology in the field of genomics has made human genetics studies a viable alternative route for defining the molecular neuroscience of human language. This is accomplished by studying families that transmit both normal and disordered language across generations. The language disorder reviewed here is specific language impairment (SLI), a developmental deficiency in language acquisition despite adequate opportunity, normal intelligence, and without any apparent neurological etiology. Here, we describe disease gene discovery paradigms as applied to SLI families and review the progress this field has made. After review the evidence that genetic factors influence SLI, we discuss methods and findings from scans of the human chromosomes, including the main replicated regions on chromosomes 13, 16 and 19 and two identified genes, ATP2C2 and CMIP that appear to account for the language variation on chromosome 16. Additional work has been done on candidate genes, i.e., genes chosen a priori and not through a genome scanning studies, including several studies of CNTNAP2 and some recent work implicating BDNF as a gene x gene interaction partner of genetic variation on chromosome 13 that influences language. These recent developments may allow for better use of post-mortem human brain samples functional studies and animal models for circumscribed language subcomponents. In the future, the identification of genetic variation associated with language phenotypes will provide the molecular pathways to understanding human language.
Collapse
Affiliation(s)
- Ning Li
- The Battelle Center for Mathematical Medicine, The Research Institute at Nationwide Children's Hospital, Columbus, OH 43205, USA
| | | |
Collapse
|
126
|
Dissection of genetic associations with language-related traits in population-based cohorts. J Neurodev Disord 2011; 3:365-73. [PMID: 21894572 PMCID: PMC3230763 DOI: 10.1007/s11689-011-9091-6] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/24/2011] [Indexed: 11/09/2022] Open
Abstract
Recent advances in the field of language-related disorders have led to the identification of candidate genes for specific language impairment (SLI) and dyslexia. Replication studies have been conducted in independent samples including population-based cohorts, which can be characterised for a large number of relevant cognitive measures. The availability of a wide range of phenotypes allows us to not only identify the most suitable traits for replication of genetic association but also to refine the associated cognitive trait. In addition, it is possible to test for pleiotropic effects across multiple phenotypes which could explain the extensive comorbidity observed across SLI, dyslexia and other neurodevelopmental disorders. The availability of genome-wide genotype data for such cohorts will facilitate this kind of analysis but important issues, such as multiple test corrections, have to be taken into account considering that small effect sizes are expected to underlie such associations.
Collapse
|
127
|
Abstract
Characterized by a combination of abnormalities in language, social cognition and mental flexibility, autism is not a single disorder but a neurodevelopmental syndrome commonly referred to as autism spectrum disorder (ASD). Several dozen ASD susceptibility genes have been identified in the past decade, collectively accounting for 10-20% of ASD cases. These findings, although demonstrating that ASD is etiologically heterogeneous, provide important clues about its pathophysiology. Diverse genetic and genomic approaches provide evidence converging on disruption of key biological pathways, many of which are also implicated in other allied neurodevelopmental disorders. Knowing the genes involved in ASD provides us with a crucial tool to probe both the specificity of ASD and the shared neurobiological and cognitive features across what are considered clinically distinct disorders, with the goal of linking gene to brain circuits to cognitive function.
Collapse
Affiliation(s)
- Daniel H Geschwind
- Program in Neurogenetics, Department of Neurology, David Geffen School of Medicine, University of California, Los Angeles, CA 90095, USA.
| |
Collapse
|