101
|
Genomic overview and biological functions of exopolysaccharide biosynthesis in Bifidobacterium spp. Appl Environ Microbiol 2013; 80:9-18. [PMID: 24123746 DOI: 10.1128/aem.02977-13] [Citation(s) in RCA: 133] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
For many years, bacterial exopolysaccharides (EPS) have received considerable scientific attention, mainly due to their contribution to biofilm formation and, above all, because EPS are potential virulence factors. In recent times, interest in EPS research has enjoyed a welcome boost thanks to the discovery of their ability to mediate communication processes with their surrounding environment and to their contribution to host health maintenance. In this review, we provide a fresh perspective on the genetics and activity of these polymers in members of the Bifidobacterium genus, a common gut inhabitant of humans and animals that has been associated with several health-promoting effects. Bifidobacteria can use EPS to protect themselves against the harsh conditions of the gastrointestinal tract, thus improving their persistence in the host. Indeed, the relevant function of EPS for bifidobacteria is underlined by the fact that most genomes sequenced until now contain genes related to EPS biosynthesis. A high interspecies variability in the number of genes and structural organization is denoted among species/subspecies; thus, eps clusters in this genus do not display a consensus genetic architecture. Their different G+C content compared to that of the whole genome suggests that eps genes have been acquired by horizontal transfer. From the host perspective, EPS-producing bifidobacteria are able to trigger both innate and adaptive immune responses, and they are able to modulate the composition and activity of the gut microbiota. Thus, these polymers seem to be critical in understanding the physiology of bifidobacteria and their interaction with the host.
Collapse
|
102
|
Suzuki S, Yakabe T, Suganuma H, Fukao M, Saito T, Yajima N. Cell-bound exopolysaccharides of Lactobacillus brevis KB290: protective role and monosaccharide composition. Can J Microbiol 2013; 59:549-55. [PMID: 23898998 DOI: 10.1139/cjm-2013-0115] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
We examined the survivability of Lactobacillus brevis KB290 and derivative strain KB392 in artificial digestive juices and bile salts. The strains have similar membrane fatty acids but different amounts of cell-bound exopolysaccharides (EPS). In artificial digestive juices, KB290 showed significantly higher survivability than KB392, and homogenization, which reduced the amount of EPS in KB290 but not in KB392, reduced the survivability only of KB290. In bile salts, KB290 showed significantly higher survivability than KB392, and cell-bound EPS extraction with EDTA reduced the survivability of only KB290. Transmission electron microscopy showed there to be a greater concentration of cell-bound EPS in KB290 than in either KB392 or EDTA-treated or homogenized KB290. We conclude that KB290's cell-bound EPS (which high performance liquid chromatography showed to be made up of glucose and N-acetylglucosamine) played an important role in bile salt tolerance.
Collapse
Affiliation(s)
- Shigenori Suzuki
- Research and Development Division, Kagome Co., Ltd., 17 Nishitomiyama, Nasushiobara 329-2762, Japan.
| | | | | | | | | | | |
Collapse
|
103
|
Reverón I, Rodríguez H, Campos G, Curiel JA, Ascaso C, Carrascosa AV, Prieto A, de las Rivas B, Muñoz R, de Felipe FL. Tannic acid-dependent modulation of selected Lactobacillus plantarum traits linked to gastrointestinal survival. PLoS One 2013; 8:e66473. [PMID: 23776675 PMCID: PMC3679024 DOI: 10.1371/journal.pone.0066473] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2013] [Accepted: 05/08/2013] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Owing to its antimicrobial properties dietary tannins may alter the functional efficacy of probiotic lactobacilli in the gastrointestinal (GI)-tract influencing their growth, viability and molecular adaptation to the intestinal environment. METHODS AND FINDINGS The effects of tannic acid on Lactobacillus plantarum WCFS1 were studied by in vitro growth monitoring and visualizing the morphological alteration on the cell wall using transmission electron microscopy. Growth upon tannic acid was characterized by dose-dependent reductions of initial viable counts and extended lag phases. Lag phase-cells growing upon 0.5 mM tannic acid were abnormally shaped and experienced disturbance on the cell wall such as roughness, occasional leakage and release of cell debris, but resumed growth later at tannic acid concentrations high as 2.5 mM. To gain insight on how the response to tannic acid influenced the molecular adaptation of L. plantarum to the GI-tract conditions, gene expression of selected biomarkers for GI-survival was assessed by RT-qPCR on cDNA templates synthetized from mRNA samples obtained from cells treated with 0.5 or 2 mM tannic acid. Tannic acid-dependent gene induction was confirmed for selected genes highly expressed in the gut or with confirmed roles in GI-survival. No differential expression was observed for the pbp2A gene, a biomarker negatively related with GI-survival. However PBP2A was not labeled by Bocillin FL, a fluorescent dye-labeled penicillin V derivative, in the presence of tannic acid which suggests for enhanced GI-survival reportedly associated with the inactivation of this function. CONCLUSIONS Probiotic L. plantarum WCFS1 is able to overcome the toxic effects of tannic acid. This dietary constituent modulates molecular traits linked to the adaptation to intestinal environment in ways previously shown to enhance GI-survival.
Collapse
Affiliation(s)
- Inés Reverón
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición, Consejo Superior de Investigaciones Científicas (ICTAN-CSIC), Madrid, Spain
| | - Héctor Rodríguez
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición, Consejo Superior de Investigaciones Científicas (ICTAN-CSIC), Madrid, Spain
| | - Gema Campos
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición, Consejo Superior de Investigaciones Científicas (ICTAN-CSIC), Madrid, Spain
| | - José Antonio Curiel
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición, Consejo Superior de Investigaciones Científicas (ICTAN-CSIC), Madrid, Spain
| | - Carmen Ascaso
- Dpto. Biología Ambiental, Museo Nacional de Ciencias Naturales, Consejo Superior de Investigaciones Científicas (MNCN-CSIC), Madrid, Spain
| | - Alfonso V. Carrascosa
- Grupo de Microbiología y Biocatálisis de Alimentos, Instituto de Investigación en Ciencias de la Alimentación, Consejo Superior de Investigaciones Científicas (CIAL-CSIC), Madrid, Spain
| | - Alicia Prieto
- Dpto. Biología Medioambiental, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones Científicas (CIB-CSIC), Madrid, Spain
| | - Blanca de las Rivas
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición, Consejo Superior de Investigaciones Científicas (ICTAN-CSIC), Madrid, Spain
| | - Rosario Muñoz
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición, Consejo Superior de Investigaciones Científicas (ICTAN-CSIC), Madrid, Spain
| | - Félix López de Felipe
- Laboratorio de Biotecnología Bacteriana, Instituto de Ciencia y Tecnología de los Alimentos y Nutrición, Consejo Superior de Investigaciones Científicas (ICTAN-CSIC), Madrid, Spain
| |
Collapse
|
104
|
von Ossowski I, Pietilä TE, Rintahaka J, Nummenmaa E, Mäkinen VM, Reunanen J, Satokari R, de Vos WM, Palva I, Palva A. Using recombinant Lactococci as an approach to dissect the immunomodulating capacity of surface piliation in probiotic Lactobacillus rhamnosus GG. PLoS One 2013; 8:e64416. [PMID: 23691212 PMCID: PMC3653913 DOI: 10.1371/journal.pone.0064416] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2013] [Accepted: 04/12/2013] [Indexed: 01/30/2023] Open
Abstract
Primarily arising from their well understood beneficial health effects, many lactobacilli strains are considered good candidates for use as probiotics in humans and animals. Lactobacillar probiosis can itself be best typified by the Lactobacillus rhamnosus GG strain, which, with its well-documented clinical benefits, has emerged as one of the most widely used probiotics in the food and health-supplement industries. Even so, many facets of its molecular mechanisms and limitations as a beneficial commensal bacterium still remain to be thoroughly explored and dissected. Because L. rhamnosus GG is one of only a few such strains exhibiting surface piliation (called SpaCBA), we sought to examine whether this particular type of cell-surface appendage has a discernible immunomodulating capacity and is able to trigger targeted responses in human immune-related cells. Thus, presented herein for this study, we recombinantly engineered Lactococcus lactis to produce native (and pilin-deleted) SpaCBA pili that were assembled in a structurally authentic form and anchored to the cell surface, and which had retained mucus-binding functionality. By using these recombinant lactococcal constructs, we were able to demonstrate that the SpaCBA pilus can be a contributory factor in the activation of Toll-like receptor 2-dependent signaling in HEK cells as well as in the modulation of pro- and anti-inflammatory cytokine (TNF-α, IL-6, IL-10, and IL-12) production in human monocyte-derived dendritic cells. From these data, we suggest that the recombinant-expressed and surface-anchored SpaCBA pilus, given its projected functioning in the gut environment, might be viewed as a new microbe-associated molecular pattern (MAMP)-like modulator of innate immunity. Accordingly, our study has brought some new insight to the molecular immunogenicity of the SpaCBA pilus, thus opening the way to a better understanding of its possible role in the multifaceted nature of L. rhamnosus GG probiosis within the human gut.
Collapse
Affiliation(s)
- Ingemar von Ossowski
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- * E-mail: (IvO); (AP)
| | - Taija E. Pietilä
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Johanna Rintahaka
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Elina Nummenmaa
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Veli-Matti Mäkinen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Justus Reunanen
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Reetta Satokari
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Functional Foods Forum, University of Turku, Turku, Finland
| | - Willem M. de Vos
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- Laboratory of Microbiology, Wageningen University, Wageningen, The Netherlands
- Department of Bacteriology and Immunology, Haartman Institute, University of Helsinki, Helsinki, Finland
| | - Ilkka Palva
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
| | - Airi Palva
- Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland
- * E-mail: (IvO); (AP)
| |
Collapse
|
105
|
Petrova MI, Mathys L, Lebeer S, Noppen S, Van Damme EJM, Tanaka H, Igarashi Y, Vaneechoutte M, Vanderleyden J, Balzarini J. Inhibition of infection and transmission of HIV-1 and lack of significant impact on the vaginal commensal lactobacilli by carbohydrate-binding agents. J Antimicrob Chemother 2013; 68:2026-37. [PMID: 23640125 DOI: 10.1093/jac/dkt152] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
OBJECTIVES A selection of carbohydrate-binding agents (CBAs) with different glycan specificities were evaluated for their inhibitory effect against HIV infection and transmission, and their interaction with vaginal commensal bacteria. METHODS Several assays were used for the antiviral evaluation: (i) cell-free virus infection of human CD4+ T lymphocyte C8166 cells; (ii) syncytium formation in co-cultures of persistently HIV-1-infected HUT-78/HIV-1 and non-infected CD4+ SupT1 cells; (iii) DC-SIGN-directed capture of HIV-1 particles; and (iv) transmission of DC-SIGN-captured HIV-1 particles to uninfected CD4+ C8166 cells. CBAs were also examined for their interaction with vaginal commensal lactobacilli using several viability, proliferation and adhesion assays. RESULTS The CBAs showed efficient inhibitory activity in the nanomolar to low-micromolar range against four events that play a crucial role in HIV-1 infection and transmission: cell-free virus infection, fusion between HIV-1-infected and non-infected cells, HIV-1 capture by DC-SIGN and transmission of DC-SIGN-captured virus to T cells. As candidate microbicides should not interfere with the normal human microbiota, we examined the effect of CBAs against Lactobacillus strains, including a variety of vaginal strains, a gastrointestinal strain and several non-human isolates. None of the CBAs included in our studies inhibited the growth of these bacteria in several media, affected their viability or had any significant impact on their adhesion to HeLa cell monolayers. CONCLUSIONS The CBAs in this study were inhibitory to HIV-1 in several in vitro infection and transmission models, and may therefore qualify as potential microbicide candidates. The lack of significant impact on commensal vaginal lactobacilli is an important property of these CBAs in view of their potential microbicidal use.
Collapse
Affiliation(s)
- Mariya I Petrova
- Centre of Microbial and Plant Genetics, KU Leuven, Kasteelpark Arenberg 20, bus 2460, B-3001 Leuven, Belgium
| | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Insights into the ropy phenotype of the exopolysaccharide-producing strain Bifidobacterium animalis subsp. lactis A1dOxR. Appl Environ Microbiol 2013; 79:3870-4. [PMID: 23584772 DOI: 10.1128/aem.00633-13] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
The proteome of the ropy strain Bifidobacterium animalis subsp. lactis A1dOxR, compared to that of its nonropy isogenic strain, showed an overproduction of a protein involved in rhamnose biosynthesis. Results were confirmed by gene expression analysis, and this fact agreed with the high rhamnose content of the ropy exopolysaccharide.
Collapse
|
107
|
Fukao M, Oshima K, Morita H, Toh H, Suda W, Kim SW, Suzuki S, Yakabe T, Hattori M, Yajima N. Genomic analysis by deep sequencing of the probiotic Lactobacillus brevis KB290 harboring nine plasmids reveals genomic stability. PLoS One 2013; 8:e60521. [PMID: 23544154 PMCID: PMC3609814 DOI: 10.1371/journal.pone.0060521] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 02/28/2013] [Indexed: 11/18/2022] Open
Abstract
We determined the complete genome sequence of Lactobacillus brevis KB290, a probiotic lactic acid bacterium isolated from a traditional Japanese fermented vegetable. The genome contained a 2,395,134-bp chromosome that housed 2,391 protein-coding genes and nine plasmids that together accounted for 191 protein-coding genes. KB290 contained no virulence factor genes, and several genes related to presumptive cell wall-associated polysaccharide biosynthesis and the stress response were present in L. brevis KB290 but not in the closely related L. brevis ATCC 367. Plasmid-curing experiments revealed that the presence of plasmid pKB290-1 was essential for the strain's gastrointestinal tract tolerance and tendency to aggregate. Using next-generation deep sequencing of current and 18-year-old stock strains to detect low frequency variants, we evaluated genome stability. Deep sequencing of four periodic KB290 culture stocks with more than 1,000-fold coverage revealed 3 mutation sites and 37 minority variation sites, indicating long-term stability and providing a useful method for assessing the stability of industrial bacteria at the nucleotide level.
Collapse
Affiliation(s)
- Masanori Fukao
- Research Institute, KAGOME Co., Ltd., Nasushiobara, Tochigi, Japan.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
108
|
The role of cell surface architecture of lactobacilli in host-microbe interactions in the gastrointestinal tract. Mediators Inflamm 2013; 2013:237921. [PMID: 23576850 PMCID: PMC3610365 DOI: 10.1155/2013/237921] [Citation(s) in RCA: 178] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2012] [Accepted: 02/11/2013] [Indexed: 11/18/2022] Open
Abstract
Lactobacillus species can exert health promoting effects in the gastrointestinal tract (GIT) through many mechanisms, which include pathogen inhibition, maintenance of microbial balance, immunomodulation, and enhancement of the epithelial barrier function. Different species of the genus Lactobacillus can evoke different responses in the host, and not all strains of the same species can be considered beneficial. Strain variations may be related to diversity of the cell surface architecture of lactobacilli and the bacteria's ability to express certain surface components or secrete specific compounds in response to the host environment. Lactobacilli are known to modify their surface structures in response to stress factors such as bile and low pH, and these adaptations may help their survival in the face of harsh environmental conditions encountered in the GIT. In recent years, multiple cell surface-associated molecules have been implicated in the adherence of lactobacilli to the GIT lining, immunomodulation, and protective effects on intestinal epithelial barrier function. Identification of the relevant bacterial ligands and their host receptors is imperative for a better understanding of the mechanisms through which lactobacilli exert their beneficial effects on human health.
Collapse
|
109
|
The quest for probiotic effector molecules—Unraveling strain specificity at the molecular level. Pharmacol Res 2013; 69:61-74. [DOI: 10.1016/j.phrs.2012.09.010] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/20/2012] [Revised: 09/26/2012] [Accepted: 09/27/2012] [Indexed: 12/25/2022]
|
110
|
Comparative genomic and functional analysis of Lactobacillus casei and Lactobacillus rhamnosus strains marketed as probiotics. Appl Environ Microbiol 2013; 79:1923-33. [PMID: 23315726 DOI: 10.1128/aem.03467-12] [Citation(s) in RCA: 91] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Four Lactobacillus strains were isolated from marketed probiotic products, including L. rhamnosus strains from Vifit (Friesland Campina) and Idoform (Ferrosan) and L. casei strains from Actimel (Danone) and Yakult (Yakult Honsa Co.). Their genomes and phenotypes were characterized and compared in detail with L. casei strain BL23 and L. rhamnosus strain GG. Phenotypic analysis of the new isolates indicated differences in carbohydrate utilization between L. casei and L. rhamnosus strains, which could be linked to their genotypes. The two isolated L. rhamnosus strains had genomes that were virtually identical to that of L. rhamnosus GG, testifying to their genomic stability and integrity in food products. The L. casei strains showed much greater genomic heterogeneity. Remarkably, all strains contained an intact spaCBA pilus gene cluster. However, only the L. rhamnosus strains produced mucus-binding SpaCBA pili under the conditions tested. Transcription initiation mapping demonstrated that the insertion of an iso-IS30 element upstream of the pilus gene cluster in L. rhamnosus strains but absent in L. casei strains had constituted a functional promoter driving pilus gene expression. All L. rhamnosus strains triggered an NF-κB response via Toll-like receptor 2 (TLR2) in a reporter cell line, whereas the L. casei strains did not or did so to a much lesser extent. This study demonstrates that the two L. rhamnosus strains isolated from probiotic products are virtually identical to L. rhamnosus GG and further highlights the differences between these and L. casei strains widely marketed as probiotics, in terms of genome content, mucus-binding and metabolic capacities, and host signaling capabilities.
Collapse
|
111
|
Abstract
Probiotics and prebiotics are increasingly being added to foodstuffs with claims of health benefits. Probiotics are live microorganisms that are thought to have beneficial effects on the host, whereas prebiotics are ingredients that stimulate the growth and/or function of beneficial intestinal microorganisms. But can these products directly modulate immune function and influence inflammatory diseases? Here, Nature Reviews Immunology asks four experts to discuss these issues and provide their thoughts on the future application of probiotics as a disease therapy.
Collapse
|
112
|
Remus DM, van Kranenburg R, van Swam II, Taverne N, Bongers RS, Wels M, Wells JM, Bron PA, Kleerebezem M. Impact of 4 Lactobacillus plantarum capsular polysaccharide clusters on surface glycan composition and host cell signaling. Microb Cell Fact 2012; 11:149. [PMID: 23170998 PMCID: PMC3539956 DOI: 10.1186/1475-2859-11-149] [Citation(s) in RCA: 83] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2012] [Accepted: 11/08/2012] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Bacterial cell surface-associated polysaccharides are involved in the interactions of bacteria with their environment and play an important role in the communication between pathogenic bacteria and their host organisms. Cell surface polysaccharides of probiotic species are far less well described. Therefore, improved knowledge on these molecules is potentially of great importance to understand the strain-specific and proposed beneficial modes of probiotic action. RESULTS The Lactobacillus plantarum WCFS1 genome encodes 4 clusters of genes that are associated with surface polysaccharide production. Two of these clusters appear to encode all functions required for capsular polysaccharide formation (cps2A-J and cps4A-J), while the remaining clusters are predicted to lack genes encoding chain-length control functions and a priming glycosyl-transferase (cps1A-I and cps3A-J). We constructed L. plantarum WCFS1 gene deletion mutants that lack individual (Δcps1A-I, Δcps2A-J, Δcps3A-J and Δcps4A-J) or combinations of cps clusters (Δcps1A-3J and Δcps1A-3I, Δcps4A-J) and assessed the genome wide impact of these mutations by transcriptome analysis. The cps cluster deletions influenced the expression of variable gene sets in the individual cps cluster mutants, but also considerable numbers of up- and down-regulated genes were shared between mutants in cps cluster 1 and 2, as well as between mutant in cps clusters 3 and 4. Additionally, the composition of overall cell surface polysaccharide fractions was altered in each mutant strain, implying that despite the apparent incompleteness of cps1A-I and cps3A-J, all clusters are active and functional in L. plantarum. The Δcps1A-I strain produced surface polysaccharides in equal amounts as compared to the wild-type strain, while the polysaccharides were characterized by a reduced molar mass and the lack of rhamnose. The mutants that lacked functional copies of cps2A-J, cps3A-J or cps4A-J produced decreased levels of surface polysaccharides, whereas the molar mass and the composition of polysaccharides was not affected by these cluster mutations. In the quadruple mutant, the amount of surface polysaccharides was strongly reduced. The impact of the cps cluster mutations on toll-like receptor (TLR)-mediated human nuclear factor (NF)-κB activation in host cells was evaluated using a TLR2 reporter cell line. In comparison to a L. plantarum wild-type derivative, TLR2 activation remained unaffected by the Δcps1A-I and Δcps3A-J mutants but appeared slightly increased after stimulation with the Δcps2A-J and Δcps4A-J mutants, while the Δcps1A-3J and Δcps1A-3J, Δcps4A-J mutants elicited the strongest responses and clearly displayed enhanced TLR2 signaling. CONCLUSIONS Our study reveals that modulation of surface glycan characteristics in L. plantarum highlights the role of these molecules in shielding of cell envelope embedded host receptor ligands. Although the apparently complete cps clusters (cps2A-J and cps4A-J) contributed individually to this shielding, the removal of all cps clusters led to the strongest signaling enhancement. Our findings provide new insights into cell surface glycan biosynthesis in L. plantarum, which bears relevance in the context of host-cell signaling by probiotic bacteria.
Collapse
Affiliation(s)
- Daniela M Remus
- TI Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen,, The Netherlands
- NIZO food research, Kernhemseweg, 2, 6718 ZB Ede, The Netherlands
- Laboratory for Microbiology, Wageningen University, Dreijenplein 10, 6703 HB Wageningen, The Netherlands
| | | | - Iris I van Swam
- TI Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen,, The Netherlands
- NIZO food research, Kernhemseweg, 2, 6718 ZB Ede, The Netherlands
| | - Nico Taverne
- TI Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen,, The Netherlands
- Host-Microbe Interactomics Group, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Roger S Bongers
- TI Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen,, The Netherlands
- NIZO food research, Kernhemseweg, 2, 6718 ZB Ede, The Netherlands
| | - Michiel Wels
- TI Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen,, The Netherlands
- NIZO food research, Kernhemseweg, 2, 6718 ZB Ede, The Netherlands
| | - Jerry M Wells
- TI Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen,, The Netherlands
- Host-Microbe Interactomics Group, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| | - Peter A Bron
- TI Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen,, The Netherlands
- NIZO food research, Kernhemseweg, 2, 6718 ZB Ede, The Netherlands
- Kluyver Centre for Genomics of Industrial Fermentation, P.O. Box 5057, , 2600 GA Delft, The Netherlands
| | - Michiel Kleerebezem
- TI Food & Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen,, The Netherlands
- NIZO food research, Kernhemseweg, 2, 6718 ZB Ede, The Netherlands
- Host-Microbe Interactomics Group, Wageningen University, De Elst 1, 6708 WD Wageningen, The Netherlands
| |
Collapse
|
113
|
Inhibition of Fe-induced colon oxidative stress by lactobacilli in mice. World J Microbiol Biotechnol 2012; 29:209-16. [DOI: 10.1007/s11274-012-1172-5] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2012] [Accepted: 09/14/2012] [Indexed: 01/27/2023]
|
114
|
Nikolic M, López P, Strahinic I, Suárez A, Kojic M, Fernández-García M, Topisirovic L, Golic N, Ruas-Madiedo P. Characterisation of the exopolysaccharide (EPS)-producing Lactobacillus paraplantarum BGCG11 and its non-EPS producing derivative strains as potential probiotics. Int J Food Microbiol 2012; 158:155-62. [DOI: 10.1016/j.ijfoodmicro.2012.07.015] [Citation(s) in RCA: 96] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2012] [Revised: 07/10/2012] [Accepted: 07/15/2012] [Indexed: 11/25/2022]
|
115
|
Modulation of Lactobacillus plantarum gastrointestinal robustness by fermentation conditions enables identification of bacterial robustness markers. PLoS One 2012; 7:e39053. [PMID: 22802934 PMCID: PMC3389004 DOI: 10.1371/journal.pone.0039053] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2012] [Accepted: 05/14/2012] [Indexed: 01/01/2023] Open
Abstract
Background Lactic acid bacteria (LAB) are applied worldwide in the production of a variety of fermented food products. Additionally, specific Lactobacillus species are nowadays recognized for their health-promoting effects on the consumer. To optimally exert such beneficial effects, it is considered of great importance that these probiotic bacteria reach their target sites in the gut alive. Methodology/Principal Findings In the accompanying manuscript by Bron et al. the probiotic model organism Lactobacillus plantarum WCFS1 was cultured under different fermentation conditions, which was complemented by the determination of the corresponding molecular responses by full-genome transcriptome analyses. Here, the gastrointestinal (GI) survival of the cultures produced was assessed in an in vitro assay. Variations in fermentation conditions led to dramatic differences in GI-tract survival (up to 7-log) and high robustness could be associated with low salt and low pH during the fermentations. Moreover, random forest correlation analyses allowed the identification of specific transcripts associated with robustness. Subsequently, the corresponding genes were targeted by genetic engineering, aiming to enhance robustness, which could be achieved for 3 of the genes that negatively correlated with robustness and where deletion derivatives displayed enhanced survival compared to the parental strain. Specifically, a role in GI-tract survival could be confirmed for the lp_1669-encoded AraC-family transcription regulator, involved in capsular polysaccharide remodeling, the penicillin-binding protein Pbp2A involved in peptidoglycan biosynthesis, and the Na+/H+ antiporter NapA3. Moreover, additional physiological analysis established a role for Pbp2A and NapA3 in bile salt and salt tolerance, respectively. Conclusion Transcriptome trait matching enabled the identification of biomarkers for bacterial (gut-)robustness, which is important for our molecular understanding of GI-tract survival and could facilitate the design of culture conditions aimed to enhance probiotic culture robustness.
Collapse
|
116
|
|
117
|
Glutamine synthetase and glucose-6-phosphate isomerase are adhesive moonlighting proteins of Lactobacillus crispatus released by epithelial cathelicidin LL-37. J Bacteriol 2012; 194:2509-19. [PMID: 22389474 DOI: 10.1128/jb.06704-11] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Glutamine synthetase (GS) and glucose-6-phosphate isomerase (GPI) were identified as novel adhesive moonlighting proteins of Lactobacillus crispatus ST1. Both proteins were bound onto the bacterial surface at acidic pHs, whereas a suspension of the cells to pH 8 caused their release into the buffer, a pattern previously observed with surface-bound enolase and glyceraldehyde-3-phosphate dehydrogenase (GAPDH) of L. crispatus. The pH shift was associated with a rapid and transient increase in cell wall permeability, as measured by cell staining with propidium iodide. A gradual increase in the release of the four moonlighting proteins was also observed after the treatment of L. crispatus ST1 cells with increasing concentrations of the antimicrobial cationic peptide LL-37, which kills bacteria by disturbing membrane integrity and was here observed to increase the cell wall permeability of L. crispatus ST1. At pH 4, the fusion proteins His(6)-GS, His(6)-GPI, His(6)-enolase, and His(6)-GAPDH showed localized binding to cell division septa and poles of L. crispatus ST1 cells, whereas no binding to Lactobacillus rhamnosus GG was detected. Strain ST1 showed a pH-dependent adherence to the basement membrane preparation Matrigel. Purified His(6)-GS and His(6)-GPI proteins bound to type I collagen, and His(6)-GS also bound to laminin, and their level of binding was higher at pH 5.5 than at pH 6.5. His(6)-GS also expressed a plasminogen receptor function. The results show the strain-dependent surface association of moonlighting proteins in lactobacilli and that these proteins are released from the L. crispatus surface after cell trauma, under conditions of alkaline stress, or in the presence of the antimicrobial peptide LL-37 produced by human cells.
Collapse
|
118
|
Contribution of surface β-glucan polysaccharide to physicochemical and immunomodulatory properties of Propionibacterium freudenreichii. Appl Environ Microbiol 2012; 78:1765-75. [PMID: 22247154 DOI: 10.1128/aem.07027-11] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Propionibacterium freudenreichii is a bacterial species found in Swiss-type cheeses and is also considered for its health properties. The main claimed effect is the bifidogenic property. Some strains were shown recently to display other interesting probiotic potentialities such as anti-inflammatory properties. About 30% of strains were shown to produce a surface exopolysaccharide (EPS) composed of (1→3,1→2)-β-D-glucan due to a single gene named gtfF. We hypothesized that functional properties of P. freudenreichii strains, including their anti-inflammatory properties, could be linked to the presence of β-glucan. To evaluate this hypothesis, gtfF genes of three β-glucan-producing strains were disrupted. These knockout (KO) mutants were complemented with a plasmid harboring gtfF (KO-C mutants). The absence of β-glucan in KO mutants was verified by immunological detection and transmission electron microscopy. We observed by atomic force microscopy that the absence of β-glucan in the KO mutant dramatically changed the cell's topography. The capacity to adhere to polystyrene surface was increased for the KO mutants compared to wild-type (WT) strains. Anti-inflammatory properties of WT strains and mutants were analyzed by stimulation of human peripheral blood mononuclear cells (PBMCs). A significant increase of the anti-inflammatory interleukin-10 cytokine production by PBMCs was measured in the KO mutants compared to WT strains. For one strain, the role of β-glucan in mice gut persistence was assessed, and no significant difference was observed between the WT strain and its KO mutant. Thus, β-glucan appears to partly hide the anti-inflammatory properties of P. freudenreichii; which is an important result for the selection of probiotic strains.
Collapse
|
119
|
Ferreira AS, Silva IN, Oliveira VH, Cunha R, Moreira LM. Insights into the role of extracellular polysaccharides in Burkholderia adaptation to different environments. Front Cell Infect Microbiol 2011; 1:16. [PMID: 22919582 PMCID: PMC3417362 DOI: 10.3389/fcimb.2011.00016] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2011] [Accepted: 11/21/2011] [Indexed: 12/11/2022] Open
Abstract
The genus Burkholderia comprises more than 60 species able to adapt to a wide range of environments such as soil and water, and also colonize and infect plants and animals. They have large genomes with multiple replicons and high gene number, allowing these bacteria to thrive in very different niches. Among the properties of bacteria from the genus Burkholderia is the ability to produce several types of exopolysaccharides (EPSs). The most common one, cepacian, is produced by the majority of the strains examined irrespective of whether or not they belong to the Burkholderia cepacia complex (Bcc). Cepacian biosynthesis proceeds by a Wzy-dependent mechanism, and some of the B. cepacia exopolysaccharide (Bce) proteins have been functionally characterized. In vitro studies showed that cepacian protects bacterial cells challenged with external stresses. Regarding virulence, bacterial cells with the ability to produce EPS are more virulent in several animal models of infection than their isogenic non-producing mutants. Although the production of EPS within the lungs of cystic fibrosis (CF) patients has not been demonstrated, the in vitro assessment of the mucoid phenotype in serial Bcc isolates from CF patients colonized for several years showed that mucoid to non-mucoid transitions are relatively frequent. This morphotype variation can be induced under laboratory conditions by exposing cells to stress such as high antibiotic concentration. Clonal isolates where mucoid to non-mucoid transition had occurred showed that during lung infection, genomic rearrangements, and mutations had taken place. Other phenotypic changes include variations in motility, chemotaxis, biofilm formation, bacterial survival rate under nutrient starvation and virulence. In this review, we summarize major findings related to EPS biosynthesis by Burkholderia and the implications in broader regulatory mechanisms important for cell adaptation to the different niches colonized by these bacteria.
Collapse
Affiliation(s)
- Ana S Ferreira
- Institute for Biotechnology and Bioengineering, Centre for Biological and Chemical Engineering, Instituto Superior Técnico Lisboa, Portugal
| | | | | | | | | |
Collapse
|
120
|
Bron PA, van Baarlen P, Kleerebezem M. Emerging molecular insights into the interaction between probiotics and the host intestinal mucosa. Nat Rev Microbiol 2011; 10:66-78. [PMID: 22101918 DOI: 10.1038/nrmicro2690] [Citation(s) in RCA: 437] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
Probiotic bacteria can modulate immune responses in the host gastrointestinal tract to promote health. The genomics era has provided novel opportunities for the discovery and characterization of bacterial probiotic effector molecules that elicit specific responses in the intestinal system. Furthermore, nutrigenomic analyses of the response to probiotics have unravelled the signalling and immune response pathways which are modulated by probiotic bacteria. Together, these genomic approaches and nutrigenomic analyses have identified several bacterial factors that are involved in modulation of the immune system and the mucosal barrier, and have revealed that a molecular 'bandwidth of human health' could represent a key determinant in an individual's physiological responsiveness to probiotics. These approaches may lead to improved stratification of consumers and to subpopulation-level probiotic supplementation to maintain or improve health, or to reduce the risk of disease.
Collapse
Affiliation(s)
- Peter A Bron
- Top Institute Food and Nutrition, Nieuwe Kanaal 9A, 6709 PA Wageningen, The Netherlands
| | | | | |
Collapse
|
121
|
Mantis NJ, Rol N, Corthésy B. Secretory IgA's complex roles in immunity and mucosal homeostasis in the gut. Mucosal Immunol 2011; 4:603-11. [PMID: 21975936 PMCID: PMC3774538 DOI: 10.1038/mi.2011.41] [Citation(s) in RCA: 863] [Impact Index Per Article: 61.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Secretory IgA (SIgA) serves as the first line of defense in protecting the intestinal epithelium from enteric toxins and pathogenic microorganisms. Through a process known as immune exclusion, SIgA promotes the clearance of antigens and pathogenic microorganisms from the intestinal lumen by blocking their access to epithelial receptors, entrapping them in mucus, and facilitating their removal by peristaltic and mucociliary activities. In addition, SIgA functions in mucosal immunity and intestinal homeostasis through mechanisms that have only recently been revealed. In just the past several years, SIgA has been identified as having the capacity to directly quench bacterial virulence factors, influence composition of the intestinal microbiota by Fab-dependent and Fab-independent mechanisms, promote retro-transport of antigens across the intestinal epithelium to dendritic cell subsets in gut-associated lymphoid tissue, and, finally, to downregulate proinflammatory responses normally associated with the uptake of highly pathogenic bacteria and potentially allergenic antigens. This review summarizes the intrinsic biological activities now associated with SIgA and their relationships with immunity and intestinal homeostasis.
Collapse
Affiliation(s)
- Nicholas J. Mantis
- Division of Infectious Diseases, Wadsworth Center, New York State Department of Health, Albany, NY 12208,Biomedical Sciences Program, University at Albany School of Public Health, Albany, NY 12201,To whom correspondence should be addressed: and
| | | | - Blaise Corthésy
- R&D Laboratory of the Division of Immunology and Allergy, Centre Hospitalier Universitaire Vaudois, 1011 Lausanne, Switzerland,To whom correspondence should be addressed: and
| |
Collapse
|
122
|
Lebeer S, Claes IJJ, Vanderleyden J. Anti-inflammatory potential of probiotics: lipoteichoic acid makes a difference. Trends Microbiol 2011; 20:5-10. [PMID: 22030243 DOI: 10.1016/j.tim.2011.09.004] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2011] [Revised: 09/19/2011] [Accepted: 09/27/2011] [Indexed: 12/26/2022]
Abstract
Lipoteichoic acid (LTA) mutants of lactobacilli suppress inflammation in animal models of experimental colitis. The fact that a single mutation of an administered Lactobacillus strain can result in enhanced probiotic efficacy is surprising given the genetic diversity and complexity of the intestinal niche, but at the same time exciting from a microbiological, immunological and gastroenterological point of view. In this Opinion article, we discuss the possible impacts of LTA modification in probiotic bacteria in the context of the current knowledge regarding the proinflammatory capacity of LTA, structure-activity relationships of LTA, intestinal LTA recognition in healthy and colitis conditions and anti-inflammatory molecules of lactobacilli.
Collapse
Affiliation(s)
- Sarah Lebeer
- Centre of Microbial and Plant Genetics, K.U. Leuven, Kasteelpark Arenberg 20, Box 2460, B-3001 Leuven, Belgium.
| | | | | |
Collapse
|
123
|
Remus DM, Kleerebezem M, Bron PA. An intimate tête-à-tête — How probiotic lactobacilli communicate with the host. Eur J Pharmacol 2011; 668 Suppl 1:S33-42. [DOI: 10.1016/j.ejphar.2011.07.012] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2011] [Revised: 06/29/2011] [Accepted: 07/07/2011] [Indexed: 12/28/2022]
|
124
|
Laakso K, Koskenniemi K, Koponen J, Kankainen M, Surakka A, Salusjärvi T, Auvinen P, Savijoki K, Nyman TA, Kalkkinen N, Tynkkynen S, Varmanen P. Growth phase-associated changes in the proteome and transcriptome of Lactobacillus rhamnosus GG in industrial-type whey medium. Microb Biotechnol 2011; 4:746-66. [PMID: 21883975 PMCID: PMC3815411 DOI: 10.1111/j.1751-7915.2011.00275.x] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
The growth phase during which probiotic bacteria are harvested and consumed can strongly influence their performance as health‐promoting agents. In this study, global transcriptomic and proteomic changes were studied in the widely used probiotic Lactobacillus rhamnosus GG during growth in industrial‐type whey medium under strictly defined bioreactor conditions. The expression of 636 genes (P ≤ 0.01) and 116 proteins (P < 0.05) changed significantly over time. Of the significantly differentially produced proteins, 61 were associated with alterations at the transcript level. The most remarkable growth phase‐dependent changes occurred during the transition from the exponential to the stationary growth phase and were associated with the shift from glucose fermentation to galactose utilization and the transition from homolactic to mixed acid fermentation. Furthermore, several genes encoding proteins proposed to promote the survival and persistence of L. rhamnosus GG in the host and proteins that directly contribute to human health showed temporal changes in expression. Our results suggest that L. rhamnosus GG has a highly flexible and adaptable metabolism and that the growth stage during which bacterial cells are harvested and consumed should be taken into consideration to gain the maximal benefit from probiotic bacteria.
Collapse
Affiliation(s)
- Kati Laakso
- Research and Development, Valio Ltd, Helsinki, Finland
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Functional characterization of a mucus-specific LPXTG surface adhesin from probiotic Lactobacillus rhamnosus GG. Appl Environ Microbiol 2011; 77:4465-72. [PMID: 21602388 DOI: 10.1128/aem.02497-10] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
In spite of the wealth of clinical evidence supporting the health benefits of Lactobacillus rhamnosus GG in humans, there is still a lack of understanding of the molecular mechanisms behind its probiosis. Current knowledge suggests that the health-promoting effects of this probiotic strain might be partly dependent on its persistence in the intestine and adhesion to mucosal surfaces. Moreover, L. rhamnosus GG contains mucus-binding pili that might also explain the occupation of its ecological niche as a comparatively less stringent allochthonous intestine-dwelling bacterium. To uncover additional surface proteins involved in mucosal adhesion, we investigated the adherence properties of the only predicted protein (LGG_02337) in L. rhamnosus GG that exhibits homology with a known mucus-binding domain. We cloned a recombinant form of the gene for this putative mucus adhesin and established that the purified protein readily adheres to human intestinal mucus. We also showed that this mucus adhesin is visibly distributed throughout the cell surface and participates in the adhesive interaction between L. rhamnosus GG and mucus, although less prominently than the mucus-binding pili in this strain. Based on primary structural comparisons, we concluded that the current annotation of the LGG_02337 protein likely does not accurately reflect its predicted properties, and we propose that this mucus-specific adhesin be called the mucus-binding factor (MBF). Finally, we interpret our results to mean that L. rhamnosus GG MBF, as an active mucus-specific surface adhesin with a presumed ancillary involvement in pilus-mediated mucosal adhesion, plays a part in the adherent mechanisms during intestinal colonization by this probiotic.
Collapse
|