101
|
Remme CA. Cardiac sodium channelopathy associated with SCN5A mutations: electrophysiological, molecular and genetic aspects. J Physiol 2013; 591:4099-116. [PMID: 23818691 DOI: 10.1113/jphysiol.2013.256461] [Citation(s) in RCA: 121] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Over the last two decades, an increasing number of SCN5A mutations have been described in patients with long QT syndrome type 3 (LQT3), Brugada syndrome, (progressive) conduction disease, sick sinus syndrome, atrial standstill, atrial fibrillation, dilated cardiomyopathy, and sudden infant death syndrome (SIDS). Combined genetic, electrophysiological and molecular studies have provided insight into the dysfunction and dysregulation of the cardiac sodium channel in the setting of SCN5A mutations identified in patients with these inherited arrhythmia syndromes. However, risk stratification and patient management is hindered by the reduced penetrance and variable disease expressivity in sodium channelopathies. Furthermore, various SCN5A-related arrhythmia syndromes are known to display mixed phenotypes known as cardiac sodium channel overlap syndromes. Determinants of variable disease expressivity, including genetic background and environmental factors, are suspected but still largely unknown. Moreover, it has become increasingly clear that sodium channel function and regulation is more complicated than previously assumed, and the sodium channel may play additional, as of yet unrecognized, roles in cardiac structure and function. Development of cardiac structural abnormalities secondary to SCN5A mutations has been reported, but the clinical relevance and underlying mechanisms are unclear. Increased insight into these issues would enable a major next step in research related to cardiac sodium channel disease, ultimately enabling improved diagnosis, risk stratification and treatment strategies.
Collapse
Affiliation(s)
- Carol Ann Remme
- C. A. Remme: Department of Experimental Cardiology, Academic Medical Center, Meibergdreef 9, 1105 AZ Amsterdam, The Netherlands.
| |
Collapse
|
102
|
Ednie AR, Horton KK, Wu J, Bennett ES. Expression of the sialyltransferase, ST3Gal4, impacts cardiac voltage-gated sodium channel activity, refractory period and ventricular conduction. J Mol Cell Cardiol 2013; 59:117-27. [PMID: 23471032 DOI: 10.1016/j.yjmcc.2013.02.013] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/14/2012] [Revised: 02/21/2013] [Accepted: 02/25/2013] [Indexed: 12/19/2022]
Abstract
The sequential glycosylation process typically ends with sialic acid residues added through trans-Golgi sialyltransferase activity. Individuals afflicted with congenital disorders of glycosylation often have reduced glycoprotein sialylation and present with multi-system symptoms including hypotonia, seizures, arrhythmia and cardiomyopathy. Cardiac voltage-gated Na(+) channel (Nav) activity can be influenced by sialic acids likely contributing to an external surface potential causing channels to gate at less depolarized voltages. Here, a possible pathophysiological role for reduced sialylation is investigated by questioning the impact of gene deletion of the uniformly expressed beta-galactoside alpha-2,3-sialyltransferase 4 (ST3Gal4) on cardiac Nav activity, cellular refractory period and ventricular conduction. Whole-cell patch-clamp experiments showed that ventricular Nav from ST3Gal4 deficient mice (ST3Gal4(-/-)) gated at more depolarized potentials, inactivated more slowly and recovered from fast inactivation more rapidly than WT controls. Current-clamp recordings indicated a 20% increase in time to action potential peak and a 30ms decrease in ST3Gal4(-/-) myocyte refractory period, concurrent with increased Nav recovery rate. Nav expression, distribution and maximal Na(+) current levels were unaffected by ST3Gal4 expression, indicating that reduced sialylation does not impact Nav surface expression and distribution. However, enzymatic desialylation suggested that ST3Gal4(-/-) ventricular Nav are less sialylated. Consistent with the shortened myocyte refractory period, epicardial conduction experiments using optical mapping techniques demonstrated a 27% reduction in minimum ventricular refractory period and increased susceptibility to arrhythmias in ST3Gal4(-/-) ventricles. Thus, deletion of a single sialyltransferase significantly impacts ventricular myocyte electrical signaling. These studies offer insight into diseases of glycosylation that are often associated with pathological changes in excitability and highlight the importance of glycosylation in cardiac physiology.
Collapse
Affiliation(s)
- Andrew R Ednie
- Department of Molecular Pharmacology and Physiology, University of South Florida Morsani College of Medicine, Tampa, FL 33612, USA
| | | | | | | |
Collapse
|
103
|
Abstract
The anti-arrhythmic efficacy of the late sodium channel current (late I(Na)) inhibition has been convincingly demonstrated in the ventricles, particularly under conditions of prolonged ventricular repolarization. The value of late I(Na) block in the setting of atrial fibrillation (AF) remains poorly investigated. All sodium channel blockers inhibit both peak and late I(Na) and are generally more potent in inhibiting late vs. early I(Na). Selective late I(Na) block does not prolong the effective refractory period (ERP), a feature common to practically all anti-AF agents. Although the late I(Na) blocker ranolazine has been shown to be effective in suppression of AF, it is noteworthy that at concentrations at which it blocks late I(Na) in the ventricles, it also potently blocks peak I(Na) in the atria, thus causing rate-dependent prolongation of ERP due to development of post-repolarization refractoriness. Late I(Na) inhibition in atria is thought to suppress intracellular calcium (Ca(i))-mediated triggered activity, secondary to a reduction in intracellular sodium (Na(i)). However, agents that block late I(Na) (ranolazine, amiodarone, vernakalant, etc) are also potent atrial-selective peak I(Na) blockers, so that the reduction of Na(i) loading in atrial cells by these agents can be in large part due to the block of peak I(Na). The impact of late I(Na) inhibition is reduced by the abbreviation of the action potential that occurs in AF patients secondary to electrical remodeling. It stands to reason that selective late I(Na) block may contribute more to inhibition of Ca(i)-mediated triggered activity responsible for initiation of AF in clinical pathologies associated with a prolonged atrial APD (such as long QT syndrome). Additional studies are clearly needed to test this hypothesis.
Collapse
|
104
|
Wu AZY, Loh SH, Cheng TH, Lu HH, Lin CI. Antiarrhythmic effects of (-)-epicatechin-3-gallate, a novel sodium channel agonist in cultured neonatal rat ventricular myocytes. Biochem Pharmacol 2013; 85:69-80. [PMID: 23116965 DOI: 10.1016/j.bcp.2012.10.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2012] [Revised: 09/24/2012] [Accepted: 10/01/2012] [Indexed: 02/08/2023]
Abstract
(-)-Epicatechin-3-gallate (ECG), a polyphenol extracted from green tea, has been proposed as an effective compound for improving cardiac contractility. However, the therapeutic potential of ECG on the treatment of arrhythmia remains unknown. We investigated the direct actions of ECG on the modulation of ion currents and cardiac cell excitability in the primary culture of neonatal rat ventricular myocyte (NRVM), which is considered a hypertrophic model for analysis of myocardial arrhythmias. By using the whole-cell patch-clamp configurations, we found ECG enhanced the slowly inactivating component of voltage-gated Na(+) currents (I(Na)) in a concentration-dependent manner (0.1-100 μM) with an EC(50) value of 3.8 μM. ECG not only shifted the current-voltage relationship of peak I(Na) to the hyperpolarizing direction but also accelerated I(Na) recovery kinetics. Working at a concentration level of I(Na) enhancement, ECG has no notable effect on voltage-gated K(+) currents and L-type Ca(2+) currents. With culture time increment, the firing rate of spontaneous action potential (sAP) in NRVMs was gradually decreased until spontaneous early after-depolarization (EAD) was observed after about one week culture. ECG increased the firing rate of normal sAP about two-fold without waveform alteration. Interestingly, the bradycardia-dependent EAD could be significantly restored by ECG in fast firing rate to normal sAP waveform. The expression of dominant cardiac sodium channel subunit, Nav1.5, was consistently detected throughout the culture periods. Our results reveal how ECG, the novel I(Na) agonist, may act as a promising candidate in clinical applications on cardiac arrhythmias.
Collapse
Affiliation(s)
- Adonis Zhi-Yang Wu
- Graduate Institute of Life Sciences, National Defense Medical Center, Taipei, Taiwan, ROC
| | | | | | | | | |
Collapse
|
105
|
Ion Channels. Mol Pharmacol 2012. [DOI: 10.1002/9781118451908.ch4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
|
106
|
Marionneau C, Lichti CF, Lindenbaum P, Charpentier F, Nerbonne JM, Townsend RR, Mérot J. Mass spectrometry-based identification of native cardiac Nav1.5 channel α subunit phosphorylation sites. J Proteome Res 2012; 11:5994-6007. [PMID: 23092124 DOI: 10.1021/pr300702c] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
Cardiac voltage-gated Na+ (Nav) channels are key determinants of action potential waveforms, refractoriness and propagation, and Nav1.5 is the main Nav pore-forming (α) subunit in the mammalian heart. Although direct phosphorylation of the Nav1.5 protein has been suggested to modulate various aspects of Nav channel physiology and pathophysiology, native Nav1.5 phosphorylation sites have not been identified. In the experiments here, a mass spectrometry (MS)-based proteomic approach was developed to identify native Nav1.5 phosphorylation sites directly. Using an anti-NavPAN antibody, Nav channel complexes were immunoprecipitated from adult mouse cardiac ventricles. The MS analyses revealed that this antibody immunoprecipitates several Nav α subunits in addition to Nav1.5, as well as several previously identified Nav channel associated/regulatory proteins. Label-free comparative and data-driven phosphoproteomic analyses of purified cardiac Nav1.5 protein identified 11 phosphorylation sites, 8 of which are novel. All the phosphorylation sites identified except one in the N-terminus are in the first intracellular linker loop, suggesting critical roles for this region in phosphorylation-dependent cardiac Nav channel regulation. Interestingly, commonly used prediction algorithms did not reliably predict these newly identified in situ phosphorylation sites. Taken together, the results presented provide the first in situ map of basal phosphorylation sites on the mouse cardiac Nav1.5 α subunit.
Collapse
|
107
|
Nardi A, Damann N, Hertrampf T, Kless A. Advances in targeting voltage-gated sodium channels with small molecules. ChemMedChem 2012; 7:1712-40. [PMID: 22945552 DOI: 10.1002/cmdc.201200298] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2012] [Revised: 07/30/2012] [Indexed: 12/19/2022]
Abstract
Blockade of voltage-gated sodium channels (VGSCs) has been used successfully in the clinic to enable control of pathological firing patterns that occur in conditions as diverse as chronic pain, epilepsy, and arrhythmias. Herein we review the state of the art in marketed sodium channel inhibitors, including a brief compendium of their binding sites and of the cellular and molecular biology of sodium channels. Despite the preferential action of this drug class toward over-excited cells, which significantly limits potential undesired side effects on other cells, the need to develop a second generation of sodium channel inhibitors to overcome their critical clinical shortcomings is apparent. Current approaches in drug discovery to deliver novel and truly innovative sodium channel inhibitors is next presented by surveying the most recent medicinal chemistry breakthroughs in the field of small molecules and developments in automated patch-clamp platforms. Various strategies aimed at identifying small molecules that target either particular isoforms of sodium channels involved in specific diseases or anomalous sodium channel currents, irrespective of the isoform by which they have been generated, are critically discussed and revised.
Collapse
Affiliation(s)
- Antonio Nardi
- Global Drug Discovery, Department of Medicinal Chemistry, Grünenthal, Zieglerstrasse 6, 52078 Aachen, Germany.
| | | | | | | |
Collapse
|
108
|
Morris CE, Juranka PF, Joós B. Perturbed voltage-gated channel activity in perturbed bilayers: implications for ectopic arrhythmias arising from damaged membrane. PROGRESS IN BIOPHYSICS AND MOLECULAR BIOLOGY 2012; 110:245-56. [PMID: 22846437 DOI: 10.1016/j.pbiomolbio.2012.07.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2012] [Accepted: 07/11/2012] [Indexed: 12/31/2022]
Abstract
The ceaseless opening and closing of the voltage-gated channels (VGCs) underlying cardiac rhythmicity is controlled, in each VGC, by four mobile voltage sensors embedded in bilayer. Every action potential necessitates extensive packing/repacking of voltage sensor domains with adjacent interacting lipid molecules. This renders VGC activity mechanosensitive (MS), i.e., energetically sensitive to the bilayer's mechanical state. Irreversible perturbations of sarcolemmal bilayer such as those associated with ischemia, reperfusion, inflammation, cortical-cytoskeleton abnormalities, bilayer-disrupting toxins, diet aberrations, etc, should therefore perturb VGC activity. Disordered/fluidized bilayer states that facilitate voltage sensor repacking, and thus make VGC opening too easy could, therefore, explain VGC-leakiness in these conditions. To study this in membrane patches we impose mechanical blebbing injury during pipette aspiration-induced membrane stretch, a process that modulates VGC activity irreversibly (plastic regime) and then, eventually, reversibly (elastic regime). Because of differences in sensor-to-gate coupling among different VGCs, their responses to stretch fall into two major categories, MS-Speed, MS-Number, exemplified by Nav and Cav channels. For particular VGCs in perturbed bilayers, leak mechanisms depend on whether or not the rate-limiting voltage-dependent step is MS. Mode-switch transitions might also be mechanosensitive and thus play a role. Incorporated mathematically in axon models, plastic-regime Nav responses elicit ectopic firing behaviors typical of peripheral neuropathies. In cardiomyocytes with mild bleb damage, Nav and/or Cav leaks from irreversible MS modulation (MS-Speed, MS-Number, respectively) could, similarly, foster ectopic arrhythmias. Where pathologically leaky VGCs reside in damaged bilayer, peri-channel bilayer disorder/fluidity conditions could be an important "target feature" for anti-arrhythmic VGC drugs.
Collapse
|
109
|
Yang T, Atack TC, Stroud DM, Zhang W, Hall L, Roden DM. Blocking Scn10a channels in heart reduces late sodium current and is antiarrhythmic. Circ Res 2012; 111:322-32. [PMID: 22723299 DOI: 10.1161/circresaha.112.265173] [Citation(s) in RCA: 138] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
RATIONALE Although the sodium channel locus SCN10A has been implicated by genome-wide association studies as a modulator of cardiac electrophysiology, the role of its gene product Nav1.8 as a modulator of cardiac ion currents is unknown. OBJECTIVE We determined the electrophysiological and pharmacological properties of Nav1.8 in heterologous cell systems and assessed the antiarrhythmic effect of Nav1.8 block on isolated mouse and rabbit ventricular cardiomyocytes. METHODS AND RESULTS We first demonstrated that Scn10a transcripts are identified in mouse heart and that the blocker A-803467 is highly specific for Nav1.8 current over that of Nav1.5, the canonical cardiac sodium channel encoded by SCN5A. We then showed that low concentrations of A-803467 selectively block "late" sodium current and shorten action potentials in mouse and rabbit cardiomyocytes. Exaggerated late sodium current is known to mediate arrhythmogenic early afterdepolarizations in heart, and these were similarly suppressed by low concentrations of A-803467. CONCLUSIONS Scn10a expression contributes to late sodium current in heart and represents a new target for antiarrhythmic intervention.
Collapse
Affiliation(s)
- Tao Yang
- Department of Medicine, Vanderbilt University School of Medicine, Nashville, TN 37232, USA
| | | | | | | | | | | |
Collapse
|
110
|
Davis RP, Casini S, van den Berg CW, Hoekstra M, Remme CA, Dambrot C, Salvatori D, Oostwaard DWV, Wilde AAM, Bezzina CR, Verkerk AO, Freund C, Mummery CL. Cardiomyocytes derived from pluripotent stem cells recapitulate electrophysiological characteristics of an overlap syndrome of cardiac sodium channel disease. Circulation 2012; 125:3079-91. [PMID: 22647976 DOI: 10.1161/circulationaha.111.066092] [Citation(s) in RCA: 191] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
BACKGROUND Pluripotent stem cells (PSCs) offer a new paradigm for modeling genetic cardiac diseases, but it is unclear whether mouse and human PSCs can truly model both gain- and loss-of-function genetic disorders affecting the Na(+) current (I(Na)) because of the immaturity of the PSC-derived cardiomyocytes. To address this issue, we generated multiple PSC lines containing a Na(+) channel mutation causing a cardiac Na(+) channel overlap syndrome. METHOD AND RESULTS Induced PSC (iPSC) lines were generated from mice carrying the Scn5a(1798insD/+) (Scn5a-het) mutation. These mouse iPSCs, along with wild-type mouse iPSCs, were compared with the targeted mouse embryonic stem cell line used to generate the mutant mice and with the wild-type mouse embryonic stem cell line. Patch-clamp experiments showed that the Scn5a-het cardiomyocytes had a significant decrease in I(Na) density and a larger persistent I(Na) compared with Scn5a-wt cardiomyocytes. Action potential measurements showed a reduced upstroke velocity and longer action potential duration in Scn5a-het myocytes. These characteristics recapitulated findings from primary cardiomyocytes isolated directly from adult Scn5a-het mice. Finally, iPSCs were generated from a patient with the equivalent SCN5A(1795insD/+) mutation. Patch-clamp measurements on the derivative cardiomyocytes revealed changes similar to those in the mouse PSC-derived cardiomyocytes. CONCLUSION Here, we demonstrate that both embryonic stem cell- and iPSC-derived cardiomyocytes can recapitulate the characteristics of a combined gain- and loss-of-function Na(+) channel mutation and that the electrophysiological immaturity of PSC-derived cardiomyocytes does not preclude their use as an accurate model for cardiac Na(+) channel disease.
Collapse
Affiliation(s)
- Richard P Davis
- Department of Anatomy and Embryology, Leiden University Medical Center, Einthovenweg 20, 2333 ZC Leiden, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
111
|
|
112
|
Kolder ICRM, Tanck MWT, Bezzina CR. Common genetic variation modulating cardiac ECG parameters and susceptibility to sudden cardiac death. J Mol Cell Cardiol 2012; 52:620-9. [PMID: 22248531 DOI: 10.1016/j.yjmcc.2011.12.014] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/25/2011] [Revised: 12/23/2011] [Accepted: 12/31/2011] [Indexed: 01/19/2023]
Abstract
Sudden cardiac death (SCD) is a prevalent cause of death in Western societies. Genome-wide association studies (GWAS) conducted over the last few years have uncovered common genetic variants modulating risk of SCD. Furthermore, GWAS studies uncovered several loci impacting on heart rate and ECG indices of conduction and repolarization, as measures of cardiac electrophysiological function and likely intermediate phenotypes of SCD risk. We here review these recent developments and their implications for the identification of novel molecular pathways underlying normal electrophysiological function and susceptibility to SCD.
Collapse
Affiliation(s)
- Iris C R M Kolder
- Heart Failure Research Center, Department of Experimental Cardiology, Academic Medical Center, Meibergdreef 15, 1105 AZ, Amsterdam, The Netherlands
| | | | | |
Collapse
|