101
|
Shenoy A, Pan JJ, Fontana RJ. PRO: Liver transplantation for intrahepatic cholangiocarcinoma. Clin Liver Dis (Hoboken) 2023; 21:56-59. [PMID: 36938313 PMCID: PMC10013333 DOI: 10.1002/cld.1252] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/30/2022] [Accepted: 07/10/2022] [Indexed: 12/03/2022] Open
Affiliation(s)
- Abhishek Shenoy
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Jason J. Pan
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| | - Robert J. Fontana
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, University of Michigan Medical Center, Ann Arbor, Michigan, USA
| |
Collapse
|
102
|
Liu Y, Yeh MM. Bile duct dysplasia and associated invasive carcinoma: clinicopathological features, diagnosis, and practical challenges. Hum Pathol 2023; 132:158-168. [PMID: 35714833 DOI: 10.1016/j.humpath.2022.06.012] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 06/08/2022] [Indexed: 02/07/2023]
Abstract
Cholangiocarcinoma represents the second most frequent type of primary liver cancer that develops through a multistep histopathologic sequence. Dysplasia in the biliary tract epithelium is a precursor lesion of cholangiocarcinoma. This review provides a practical overview of bile duct dysplasia in relation to invasive carcinoma, covering clinicopathological features, diagnostic criteria, differential diagnosis, useful testing modalities, and challenges in daily practice. The key features of biliary intraepithelial neoplasia, intraductal papillary neoplasm, intraductal tubulopapillary neoplasm, and mucinous cystic neoplasm are described. Important differential diagnoses are included. Common pitfalls in histopathologic interpretation of bile duct biopsies and frozen sections are discussed.
Collapse
Affiliation(s)
- Yongjun Liu
- Department of Pathology and Laboratory Medicine, University of Wisconsin School of Medicine and Public Health, WI, 53792, USA
| | - Matthew M Yeh
- Department of Laboratory Medicine and Pathology, University of Washington School of Medicine, Seattle, WA, 98115, USA; Department of Medicine, University of Washington School of Medicine, Seattle, WA, 98195, USA.
| |
Collapse
|
103
|
Granata V, Fusco R, De Muzio F, Cutolo C, Grassi F, Brunese MC, Simonetti I, Catalano O, Gabelloni M, Pradella S, Danti G, Flammia F, Borgheresi A, Agostini A, Bruno F, Palumbo P, Ottaiano A, Izzo F, Giovagnoni A, Barile A, Gandolfo N, Miele V. Risk Assessment and Cholangiocarcinoma: Diagnostic Management and Artificial Intelligence. BIOLOGY 2023; 12:213. [PMID: 36829492 PMCID: PMC9952965 DOI: 10.3390/biology12020213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 01/21/2023] [Accepted: 01/25/2023] [Indexed: 01/31/2023]
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary liver tumor, with a median survival of only 13 months. Surgical resection remains the only curative therapy; however, at first detection, only one-third of patients are at an early enough stage for this approach to be effective, thus rendering early diagnosis as an efficient approach to improving survival. Therefore, the identification of higher-risk patients, whose risk is correlated with genetic and pre-cancerous conditions, and the employment of non-invasive-screening modalities would be appropriate. For several at-risk patients, such as those suffering from primary sclerosing cholangitis or fibropolycystic liver disease, the use of periodic (6-12 months) imaging of the liver by ultrasound (US), magnetic Resonance Imaging (MRI)/cholangiopancreatography (MRCP), or computed tomography (CT) in association with serum CA19-9 measurement has been proposed. For liver cirrhosis patients, it has been proposed that at-risk iCCA patients are monitored in a similar fashion to at-risk HCC patients. The possibility of using Artificial Intelligence models to evaluate higher-risk patients could favor the diagnosis of these entities, although more data are needed to support the practical utility of these applications in the field of screening. For these reasons, it would be appropriate to develop screening programs in the research protocols setting. In fact, the success of these programs reauires patient compliance and multidisciplinary cooperation.
Collapse
Affiliation(s)
- Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
| | - Federica De Muzio
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, 86100 Campobasso, Italy
| | - Carmen Cutolo
- Department of Medicine, Surgery and Dentistry, University of Salerno, 84081 Salerno, Italy
| | - Francesca Grassi
- Division of Radiology, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy
| | - Maria Chiara Brunese
- Diagnostic Imaging Section, Department of Medical and Surgical Sciences & Neurosciences, University of Molise, 86100 Campobasso, Italy
| | - Igino Simonetti
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Orlando Catalano
- Radiology Unit, Istituto Diagnostico Varelli, Via Cornelia dei Gracchi 65, 80126 Naples, Italy
| | - Michela Gabelloni
- Nuclear Medicine Unit, Department of Translational Research, University of Pisa, 56216 Pisa, Italy
| | - Silvia Pradella
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Ginevra Danti
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Federica Flammia
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Alessandra Borgheresi
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Andrea Agostini
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Federico Bruno
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy
| | - Pierpaolo Palumbo
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy
| | - Alessandro Ottaiano
- SSD Innovative Therapies for Abdominal Metastases, Istituto Nazionale Tumori IRCCS-Fondazione G. Pascale, 80130 Naples, Italy
| | - Francesco Izzo
- Division of Epatobiliary Surgical Oncology, Istituto Nazionale Tumori IRCCS Fondazione Pascale—IRCCS di Napoli, 80131 Naples, Italy
| | - Andrea Giovagnoni
- Department of Clinical, Special and Dental Sciences, University Politecnica delle Marche, Via Conca 71, 60126 Ancona, Italy
- Department of Radiology, University Hospital “Azienda Ospedaliera Universitaria delle Marche”, Via Conca 71, 60126 Ancona, Italy
| | - Antonio Barile
- Department of Applied Clinical Sciences and Biotechnology, University of L’Aquila, Via Vetoio 1, 67100 L’Aquila, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, Corso Scassi 1, 16149 Genoa, Italy
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
| | - Vittorio Miele
- Department of Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| |
Collapse
|
104
|
Lee HS, Han DH, Cho K, Park SB, Kim C, Leem G, Jung DE, Kwon SS, Kim CH, Jo JH, Lee HW, Song SY, Park JY. Integrative analysis of multiple genomic data from intrahepatic cholangiocarcinoma organoids enables tumor subtyping. Nat Commun 2023; 14:237. [PMID: 36646721 PMCID: PMC9842736 DOI: 10.1038/s41467-023-35896-4] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Accepted: 01/06/2023] [Indexed: 01/18/2023] Open
Abstract
As genomic analysis technology has advanced, it has become possible to sub-classify intrahepatic cholangiocarcinoma (ICC) at the histological or molecular level. Here, we verify the recently suggested two subgroups of ICC in the organoids model, compare the characteristics between types. ICC patients are subclassified into small-duct (SD) and large-duct (LD) subtype according to histological characteristics. ICC organoids are established, and unsupervised principal component analysis clustering separates each type of ICC. Differential gene expression reveals enrichment on KRAS, TGFβ and ERBB2 signaling pathways in LD-type compared with SD-type (P < 0.05). Gene set enrichment analysis demonstrates that the cholangiocarcinoma class 2 signature, defined by Andersen et al., is enriched in the LD-type (enrichment Score = 2.19, P < 0.001). A protein-protein interaction network analysis identifies ZNF217 as a significant hub protein (odds ratio = 4.96, P = 0.0105). We perform prospective modeling of histological subtype using patient-derived organoids. Moreover, gene expression profiling of ICC organoids enables identification of type-specific targetable pathways.
Collapse
Affiliation(s)
- Hee Seung Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Dai Hoon Han
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, Yonsei University College of Medicine, Seoul, Korea
| | - Kyungjoo Cho
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Soo Been Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Chanyang Kim
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Galam Leem
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
| | - Dawoon E Jung
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Soon Sung Kwon
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Chul Hoon Kim
- Department of Pharmacology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jung Hyun Jo
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Hye Won Lee
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea
| | - Si Young Song
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.
| | - Jun Yong Park
- Division of Gastroenterology, Department of Internal Medicine, Yonsei University College of Medicine, Seoul, Korea.
- Institute of Gastroenterology, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
105
|
Ohaegbulam KC, Koethe Y, Fung A, Mayo SC, Grossberg AJ, Chen EY, Sharzehi K, Kardosh A, Farsad K, Rocha FG, Thomas CR, Nabavizadeh N. The multidisciplinary management of cholangiocarcinoma. Cancer 2023; 129:184-214. [PMID: 36382577 DOI: 10.1002/cncr.34541] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 10/11/2022] [Accepted: 10/14/2022] [Indexed: 11/17/2022]
Abstract
Cholangiocarcinoma is a lethal malignancy of the biliary epithelium that can arise anywhere along the biliary tract. Surgical resection confers the greatest likelihood of long-term survivability. However, its insidious onset, difficult diagnostics, and resultant advanced presentation render the majority of patients unresectable, highlighting the importance of early detection with novel biomarkers. Developing liver-directed therapies and emerging targeted therapeutics may offer improved survivability for patients with unresectable or advanced disease. In this article, the authors review the current multidisciplinary standards of care in resectable and unresectable cholangiocarcinoma, with an emphasis on novel biomarkers for early detection and nonsurgical locoregional therapy options.
Collapse
Affiliation(s)
- Kim C Ohaegbulam
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Yilun Koethe
- Department of Interventional Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Alice Fung
- Department of Diagnostic Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Skye C Mayo
- Department of Surgical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Aaron J Grossberg
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
| | - Emerson Y Chen
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Kaveh Sharzehi
- Division of Gastroenterology and Hepatology, Oregon Health & Science University, Portland, Oregon, USA
| | - Adel Kardosh
- Division of Hematology/Medical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Khashayar Farsad
- Department of Interventional Radiology, Oregon Health & Science University, Portland, Oregon, USA
| | - Flavio G Rocha
- Department of Surgical Oncology, Oregon Health & Science University, Portland, Oregon, USA
| | - Charles R Thomas
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA.,Department of Radiation Oncology, Dartmouth School of Medicine, Hanover, New Hampshire, USA
| | - Nima Nabavizadeh
- Department of Radiation Medicine, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
106
|
Sookprasert A, Wirasorn K, Chindaprasirt J, Watcharenwong P, Sanlung T, Putraveephong S. Systemic Treatment for Cholangiocarcinoma. Recent Results Cancer Res 2023; 219:223-244. [PMID: 37660335 DOI: 10.1007/978-3-031-35166-2_8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/05/2023]
Abstract
Cholangiocarcinoma (CCA) is a diverse group of epithelial cancers that affect the biliary tree. The incidence of CCA is low in Western countries but significantly higher in endemic regions such as China and Thailand. Various risk factors contribute to the development of CCA. Recent studies have revealed molecular alterations in biliary tract cancers, providing insights into cholangiocarcinogenesis and potential targeted therapies. Surgical resection is the primary curative treatment for CCA. Adjuvant chemotherapy has been extensively studied, and some regimens have proven to be beneficial. Neoadjuvant chemotherapy has shown potential benefits in select cases, but its role remains controversial. In advanced stages, chemotherapy is the standard of care, and molecular profiling has identified potential targets such as FGFR, IDH1, HER2, and other tumor-agnostic therapies. Immunotherapy has demonstrated limited benefit in advanced CCA. This chapter provides an overview of the current evidence and ongoing research evaluating various chemotherapy regimens, targeted therapies, and immunotherapies across different stages of CCA.
Collapse
Affiliation(s)
- Aumkhae Sookprasert
- Medical Oncology Unit, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand.
| | - Kosin Wirasorn
- Medical Oncology Unit, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Jarin Chindaprasirt
- Medical Oncology Unit, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Piyakarn Watcharenwong
- Medical Oncology Unit, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Thanachai Sanlung
- Medical Oncology Unit, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Siraphong Putraveephong
- Medical Oncology Unit, Department of Medicine, Faculty of Medicine, Khon Kaen University, Khon Kaen, 40002, Thailand
| |
Collapse
|
107
|
Chen X, Zhu J, Zou Z, Du M, Xie J, Ye Y, Zhang L, Li Y. Nomogram based on MRI for preoperative prediction of Ki-67 expression in patients with intrahepatic mass cholangiocarcinoma. Abdom Radiol (NY) 2023; 48:567-578. [PMID: 36401626 PMCID: PMC9902416 DOI: 10.1007/s00261-022-03719-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Revised: 10/16/2022] [Accepted: 10/17/2022] [Indexed: 11/21/2022]
Abstract
OBJECTIVES To validate a new nomogram based on magnetic resonance imaging (MRI) for pre-operative prediction of Ki-67 expression in patients with intrahepatic mass cholangiocarcinoma (IMCC). METHODS A total of 78 patients with clinicopathologically confirmed IMCC who underwent pre-operative gadolinium-ethoxybenzyl-diethylenetriamine pentaacetic acid enhanced MRI between 2016 and 2022 were enrolled in the training and validation group (53 patients and 25 patients, respectively). Images including qualitative, quantitative MRI features and clinical data were evaluated. Univariate analysis and multivariate logistic regression were used to select the independent predictors and establish different predictive models. The predictive performance was validated by operating characteristic curve (ROC) analysis, calibration curve, and decision curve analysis (DCA). The validation cohort was used to test the predictive performance of the optimal model. The nomogram was constructed with the optimal model. RESULTS In the training cohort, independent predictors obtained from the combined model were DWI (OR 1822.741; 95% CI 6.189, 536,781.805; P = 0.01) and HBP enhancement pattern (OR 14.270; 95% CI 1.044, 195.039; P = 0.046). The combined model showed the good performance (AUC 0.981; 95% CI 0.952, 1.000) for predicting Ki-67 expression. In the validation cohort, The combined model (AUC 0.909; 95% CI 0.787, 1.000)showed the best performance compared to the clinical model (AUC 0.448; 95% CI 0.196, 0.700) and MRI model (AUC 0.770; 95% CI 0.570, 0.970). CONCLUSION This new nomogram has a good performance in predicting Ki-67 expression in patients with IMCC, which could help the decision-making of the patients' therapy strategies.
Collapse
Affiliation(s)
- Xiang Chen
- Department of Radiology, The First Affiliated Hospital of Soochow University, Shizi Street 188#, Suzhou, 215000 Jiangsu People’s Republic of China
| | - Jingfen Zhu
- Department of Radiology, The First Affiliated Hospital of Soochow University, Shizi Street 188#, Suzhou, 215000 Jiangsu People’s Republic of China
| | - Zigui Zou
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, 215000 Jiangsu People’s Republic of China
| | - Mingzhan Du
- Department of Pathology, The First Affiliated Hospital of Soochow University, Suzhou, 215000 Jiangsu People’s Republic of China
| | - Junjian Xie
- Department of Radiology, The First Affiliated Hospital of Soochow University, Shizi Street 188#, Suzhou, 215000 Jiangsu People’s Republic of China
| | - Yujie Ye
- Department of Radiology, The First Affiliated Hospital of Soochow University, Shizi Street 188#, Suzhou, 215000 Jiangsu People’s Republic of China
| | - Ling Zhang
- Department of Radiology, Sun Yat-Sen University Cancer Center, Dongfeng East Road 651#, Guangzhou, 510060, Guangdong, People's Republic of China. .,State Key Laboratory of Oncology in South China, Guangzhou, 510060, Guangdong, People's Republic of China. .,Collaborative Innovation Center for Cancer Medicine, Guangzhou, 510060, Guangdong, People's Republic of China.
| | - Yonggang Li
- Department of Radiology, The First Affiliated Hospital of Soochow University, Shizi Street 188#, Suzhou, 215000, Jiangsu, People's Republic of China. .,National Clinical Research Center for Hematologic Diseases, The First Affiliated Hospital of Soochow University, Suzhou, 215000, Jiangsu, People's Republic of China. .,Institute of Medical Imaging, Soochow University, Suzhou, 215000, Jiangsu, People's Republic of China.
| |
Collapse
|
108
|
Yang Y, Zhang X. An overview of extrahepatic cholangiocarcinoma: from here to where? Front Oncol 2023; 13:1171098. [PMID: 37197436 PMCID: PMC10183586 DOI: 10.3389/fonc.2023.1171098] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2023] [Accepted: 04/11/2023] [Indexed: 05/19/2023] Open
Abstract
Extrahepatic cholangiocarcinoma (eCCA) contains perihilar cholangiocarcinoma and distal cholangiocarcinoma both of which can arise at any point of the biliary tree and originate from disparate anatomical sites. Generally, the incidence of eCCA is increasing globally. Though surgical resection is the principal treatment of choice for the early stages of eCCA, optimal survival remains restricted by the high risk of recurrence when most patients are present with unresectable disease or distant metastasis. Furthermore, both intra- and intertumoral heterogeneity make it laborious to determine molecularly targeted therapies. In this review, we mainly focused on current findings in the field of eCCA, mostly including epidemiology, genomic abnormalities, molecular pathogenesis, tumor microenvironment, and other details while a summary of the biological mechanisms driving eCCA may shed light on intricate tumorigenesis and feasible treatment strategies.
Collapse
|
109
|
Makiuchi T, Sobue T. Descriptive epidemiology of biliary tract cancer incidence and geographic variation in Japan. Eur J Cancer Prev 2023; 32:2-9. [PMID: 35485392 DOI: 10.1097/cej.0000000000000758] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
OBJECTIVE The epidemiologic features of each biliary tract cancer (BTC) subtype have not been studied and disclosed in detail. The objective of this study was to provide an up-to-date description of the epidemiologic features of BTC by subtypes, especially in terms of the geographic variation of its incidence. METHODS We calculated the age-standardized incidence rate (ASR) of each BTC subtype at national and prefectural levels using the data from the national cancer registry in 2016 and 2017. The geographic distribution of each BTC subtype incidence was assessed by calculating the ASR ratio (ASRR) against median ASR at the prefectural level and reflecting them on the Japanese map. RESULTS A total of 58 438 people diagnosed with malignant BTC were registered in the national cancer registry in 2016 and 2017 [12 497 for intrahepatic bile duct cancer (IHBDC), 16 568 for gallbladder cancer (GBC), 24 602 for extrahepatic bile duct cancer (EHBDC), 4613 for ampulla of Vater cancer (AVC) and 158 for others]. ASR was higher in men than in women for IHBDC, EHBDC and AVC, and similar between men and women for GBC. The ASR of EHBDC was approximately 2 times higher than those of the other subtypes for men and similar to that of GBC for women. The geographic distribution of ASRR was different among BTC subtypes, with larger variability in EHBDC, which was remarkably higher in the north-eastern region in both men and women. CONCLUSION The pattern of the geographic distribution of incidence in each BTC subtype was different, which suggests different etiology among subtypes.
Collapse
Affiliation(s)
- Takeshi Makiuchi
- Division of Environmental Medicine and Population Sciences, Graduate School of Medicine, Osaka University, Suita Osaka, Japan
| | | |
Collapse
|
110
|
Zhu B, Zheng J, Hong G, Bai T, Qian W, Liu J, Hou X. L-Fucose inhibits the progression of cholangiocarcinoma by causing microRNA-200b overexpression. Chin Med J (Engl) 2022; 135:2956-2967. [PMID: 36728287 PMCID: PMC10106127 DOI: 10.1097/cm9.0000000000002368] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2022] [Indexed: 02/03/2023] Open
Abstract
BACKGROUND Cholangiocarcinoma (CCA) is a malignant biliary tract tumor with an extremely poor prognosis. There is an urgent demand to explore novel therapeutic strategies. L-fucose has been confirmed to participate in anti-inflammation and antitumor activities. However, the effect of L-fucose on the progression of CCA has not been well investigated. This study aimed to determine whether L-fucose induced the inhibition of CCA and its possible mechanism. METHODS The anti-growth activity was determined using Cell Counting Kit-8 assay, colony formation assays, Annexin V-fluorescein isothiocyanate/propidium iodide (FITC/PI) assay, and cell cycle analysis. The anti-metastasis activity was determined by wound healing, transwell, and invasion assays. The anti-angiogenesis activity was determined by tube formation and transwell assays. MicroRNAs that may be involved in the L-fucose-induced CCA inhibition was analyzed using bioinformatics methods. The preclinical therapeutic efficacy was mainly estimated by ultrasound in xenograft nude mouse models. Differences were analyzed via Student's t test or one-way analysis of variance. RESULTS L-Fucose induced apoptosis and G0/G1 cell cycle arrest, inhibited cell epithelial-mesenchymal transition of CCA cells, and additionally inhibited tube formation of human umbilical vein endothelial cells (HUVECs) in a dose-dependent manner, leading to a decrease in cell proliferation, metastasis, and angiogenesis. Mechanistically, L-fucose induced microRNA-200b (miR-200b) upregulation, and mitogen-activated protein kinase 7 (MAPK7) downregulation was found to be targeted by miR-200b, with decreased cell proliferation and metastasis. Additionally, phosphorylated signal transducer and activator of transcription 3 was found to be downregulated after L-fucose treatment. Finally, in vivo experiments in CCA xenograft models also confirmed the antitumor properties of L-fucose. CONCLUSION L-Fucose inhibited the progression of CCA via the miR-200b/MAPK7 and signal transducer and activator of transcription 3 signaling pathways.
Collapse
Affiliation(s)
- Biqiang Zhu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jingjing Zheng
- Department of Diagnostic Medical Sonography, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430014, China
| | - Gaichao Hong
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Tao Bai
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Wei Qian
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Jinsong Liu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| | - Xiaohua Hou
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, China
| |
Collapse
|
111
|
Cremen S, Kelly ME, Gallagher TK. The role of neo-adjuvant therapy in cholangiocarcinoma: A systematic review. Front Oncol 2022; 12:975136. [PMID: 36568243 PMCID: PMC9779982 DOI: 10.3389/fonc.2022.975136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Accepted: 11/17/2022] [Indexed: 12/13/2022] Open
Abstract
Introduction Cholangiocarcinoma (CCA) is the most common malignancy affecting the biliary tree. The only curative treatment is surgical resection, aiming for negative margins (R0). For those who have locally advanced disease, which is borderline resectable, neoadjuvant chemoradiation presents an opportunity to reduce tumour size and allow for surgical resection. The aim of this review is to establish the role of neoadjuvant therapy in each subtype of CCA and establish its impact on survival. Methods Search terms such as 'neoadjuvant therapy' and 'cholangiocarcinoma' were searched on multiple databases, including Pubmed, Ovid and Embase. They were then reviewed separately by two reviewers for inclusion criteria. 978 studies were initially identified from the search strategy, with 21 being included in this review. Results 5,009 patients were included across 21 studies. 1,173 underwent neoadjuvant therapy, 3,818 had surgical resection alone. 359 patients received Gemcitabine based regimes, making it the most commonly utilised regimen for patients CCA and Biliary Tract Cancer (BTC). Data on tolerability of regimes was limited. All included papers were found to have low risk of bias when assessed using The Newcastle Ottawa Scale. Patients who underwent neoadjuvant therapy had a similar median overall survival compared to those who underwent upfront surgery (38.4 versus 35.1 months respectively). Pre-operative CA19-9, microvascular invasion, perineurial invasion and positive lymph nodes were of prognostic significance across BTC and CCA subtypes. Conclusion Neoadjuvant therapy and surgical resection is associated with improved patient outcomes and longer median overall survival compared to therapy and upfront surgery, however heterogeneity between research papers limited the ability to further analyse the significance of these results. Although initial studies are promising, further research is required in order to define suitable treatment protocols and tolerability of neoadjuvant regimes. Systematic review registration https://www.crd.york.ac.uk/prospero/, identifier CRD42020164781.
Collapse
Affiliation(s)
- Sinead Cremen
- Department of Hepatobiliary Surgery, St. Vincent’s University Hospital, Dublin, Ireland
| | - Michael E. Kelly
- Department of Surgery, Tallaght University Hospital, Tallaght, Dublin, Ireland
| | - Tom K. Gallagher
- Department of Hepatobiliary Surgery, St. Vincent’s University Hospital, Dublin, Ireland,*Correspondence: Tom K. Gallagher,
| |
Collapse
|
112
|
Hoffmeister-Wittmann P, Mock A, Nichetti F, Korell F, Heilig CE, Scherr AL, Günther M, Albrecht T, Kelmendi E, Xu K, Nader L, Kessler A, Schmitt N, Fritzsche S, Weiler S, Sobol B, Stenzinger A, Boeck S, Westphalen CB, Schulze-Osthoff K, Trojan J, Kindler T, Weichert W, Spiekermann K, Bitzer M, Folprecht G, Illert AL, Boerries M, Klauschen F, Ochsenreither S, Siveke J, Bauer S, Glimm H, Brors B, Hüllein J, Hübschmann D, Uhrig S, Horak P, Kreutzfeldt S, Banales JM, Springfeld C, Jäger D, Schirmacher P, Roessler S, Ormanns S, Goeppert B, Fröhling S, Köhler BC. Bcl-x L as prognostic marker and potential therapeutic target in cholangiocarcinoma. Liver Int 2022; 42:2855-2870. [PMID: 35983950 DOI: 10.1111/liv.15392] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2022] [Revised: 07/26/2022] [Accepted: 08/08/2022] [Indexed: 01/27/2023]
Abstract
Intrahepatic, perihilar, and distal cholangiocarcinoma (iCCA, pCCA, dCCA) are highly malignant tumours with increasing mortality rates due to therapy resistances. Among the mechanisms mediating resistance, overexpression of anti-apoptotic Bcl-2 proteins (Bcl-2, Bcl-xL , Mcl-1) is particularly important. In this study, we investigated whether antiapoptotic protein patterns are prognostically relevant and potential therapeutic targets in CCA. Bcl-2 proteins were analysed in a pan-cancer cohort from the NCT/DKFZ/DKTK MASTER registry trial (n = 1140, CCA n = 72) via RNA-sequencing and transcriptome-based protein activity interference revealing high ranks of CCA for Bcl-xL and Mcl-1. Expression of Bcl-xL , Mcl-1, and Bcl-2 was assessed in human CCA tissue and cell lines compared with cholangiocytes by immunohistochemistry, immunoblotting, and quantitative-RT-PCR. Immunohistochemistry confirmed the upregulation of Bcl-xL and Mcl-1 in iCCA tissues. Cell death of CCA cell lines upon treatment with specific small molecule inhibitors of Bcl-xL (Wehi-539), of Mcl-1 (S63845), and Bcl-2 (ABT-199), either alone, in combination with each other or together with chemotherapeutics was assessed by flow cytometry. Targeting Bcl-xL induced cell death and augmented the effect of chemotherapy in CCA cells. Combined inhibition of Bcl-xL and Mcl-1 led to a synergistic increase in cell death in CCA cell lines. Correlation between Bcl-2 protein expression and survival was analysed within three independent patient cohorts from cancer centers in Germany comprising 656 CCA cases indicating a prognostic value of Bcl-xL in CCA depending on the CCA subtype. Collectively, these observations identify Bcl-xL as a key protein in cell death resistance of CCA and may pave the way for clinical application.
Collapse
Affiliation(s)
- Paula Hoffmeister-Wittmann
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany.,Department of Radiooncology, University Hospital Heidelberg, Heidelberg, Germany
| | - Andreas Mock
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany.,Department of Translational Medical Oncology, NCT Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany.,Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany
| | - Federico Nichetti
- Department of Medical Oncology, Fondazione IRCCS Istituto Nazionale Dei Tumori, Milan, Italy.,Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Felix Korell
- German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany.,Department of Medicine V, University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph E Heilig
- Department of Translational Medical Oncology, NCT Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany
| | - Anna-Lena Scherr
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Michael Günther
- German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany.,Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany
| | - Thomas Albrecht
- Institute for Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Eblina Kelmendi
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Kaiyu Xu
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Luisa Nader
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Annika Kessler
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Nathalie Schmitt
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Sarah Fritzsche
- Institute for Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Sofia Weiler
- Institute for Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Benjamin Sobol
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Albrecht Stenzinger
- Institute for Pathology, University Hospital Heidelberg, Heidelberg, Germany
| | - Stefan Boeck
- German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany.,Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Christoph B Westphalen
- German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany.,Department of Internal Medicine III and Comprehensive Cancer Center, Klinikum Grosshadern, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Klaus Schulze-Osthoff
- German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany.,Department of Molecular Medicine, Interfaculty Institute for Biochemistry, University of Tübingen, Tübingen, Germany
| | - Jörg Trojan
- German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany.,Department of Gastroenterology, Gastrointestinal Medical Oncology, University Hospital Frankfurt, Frankfurt am Main, Germany
| | - Thomas Kindler
- German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany.,University Cancer Center, University Medical Center Mainz, Germany
| | - Wilko Weichert
- German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany.,Institute of Pathology, Medical Faculty, Technichal University Munich, Munich, Germany
| | - Karsten Spiekermann
- Department of Translational Medical Oncology, NCT Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany.,Department of Hematology and Medical Oncology, University Hospital Munich, Ludwig-Maximilians-University of Munich, Munich, Germany
| | - Michael Bitzer
- German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany.,Department of Internal Medicine I, University Hospital Tübingen, Tübingen, Germany
| | - Gunnar Folprecht
- German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany.,Department of Hematology and Medical Oncology, Carl Gustav Carus University Hospital, Dresden, Germany
| | - Anna L Illert
- German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany.,Department of Internal Medicine I, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Melanie Boerries
- German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany.,Comprehensive Cancer Center Freiburg (CCCF), Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Institute of Medical Bioinformatics and Systems Medicine, Medical Center-University of Freiburg, Faculty of Medicine, University of Freiburg, Freiburg, Germany
| | - Frederick Klauschen
- German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany.,Institute of Pathology, Charité University Medicine Berlin, Berlin, Germany
| | - Sebastian Ochsenreither
- German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany.,Faculty of Medicine, Charité Comprehensive Cancer Center (CCCC), Humboldt University of Berlin, Berlin, Germany.,Department of hematology, medical oncology and tumor immunology, Charité University Medicine Berlin, Berlin, Germany
| | - Jens Siveke
- German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany.,Bridge Institute of Experimental Tumor Therapy, West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany.,Division of Solid Tumor Translational Oncology, German Cancer Consortium (DKTK Partner Site Essen) and German Cancer Research Center, DKFZ, Heidelberg, Germany
| | - Sebastian Bauer
- German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany.,Department for Translational Oncology, West German Tumor Center (WTZ), Essen University Hospital, Essen, Germany
| | - Hanno Glimm
- Translational Medical Oncology, Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany.,Department for Translational Medical Oncology, National Center for Tumor Diseases (NCT/UCC), Dresden, Germany: Germany Cancer Research Center (DKFZ), Heidelberg, Germany; Faculty of Medicine and University Hospital Carl Gustav Carus, Technische Universität Dresden, Dresden, Germany; Helmholtz-Zentrum Dresden - Rossendorf (HZDR), Dresden, Germany.,German Cancer Consortium (DKTK) Dresden, Germany.,Translational Functional Cancer Genomics, National Center für Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Benedikt Brors
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Jennifer Hüllein
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Daniel Hübschmann
- German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany.,Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany.,Heidelberg Institute for Stem cell Technology and Experimental Medicine (HI-STEM), Heidelberg, Germany
| | - Sebastian Uhrig
- Computational Oncology Group, Molecular Precision Oncology Program, National Center for Tumor Diseases (NCT) and German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Peter Horak
- Department of Translational Medical Oncology, NCT Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany
| | - Simon Kreutzfeldt
- Department of Translational Medical Oncology, NCT Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany
| | - Jesus M Banales
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Ikerbasque, Network Centre for Biomedical Research in Liver and Digestive Diseases (CIBERehd), San Sebastian, Spain.,Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Christoph Springfeld
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Dirk Jäger
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Peter Schirmacher
- Institute for Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie Roessler
- Institute for Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| | - Steffen Ormanns
- German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany.,Institute of Pathology, Medical Faculty, Ludwig-Maximilians-University, Munich, Germany
| | - Benjamin Goeppert
- Institute for Pathology, University Hospital Heidelberg, Heidelberg, Germany.,Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany.,Institute of Pathology and Neuropathology, RKH Klinikum Ludwigsburg, Ludwigsburg, Germany
| | - Stefan Fröhling
- Department of Translational Medical Oncology, NCT Heidelberg and German Cancer Research Center (DKFZ), Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany
| | - Bruno C Köhler
- Department of Medical Oncology, National Center for Tumor Diseases (NCT) Heidelberg, University Hospital Heidelberg, Heidelberg, Germany.,German Cancer Consortium (DKTK), Heidelberg and Partner Sites, Heidelberg, Germany.,Liver Cancer Center Heidelberg, University Hospital Heidelberg, Heidelberg, Germany
| |
Collapse
|
113
|
Wang T, Chen X, Liao C, Wang D, Huang L, Li G, Chen J, Lin C, Wang L, Pan J, Zhang C, Zhou S, Qiu F, Wang Y, Zhang Z, Chen Y, Zheng X, Tian Y, Chen S. Impact of sarcopenia on the surgical outcomes in patients with hepatolithiasis: A multicenter 10-year experience. Surgery 2022; 172:1712-1721. [PMID: 36280506 DOI: 10.1016/j.surg.2022.09.007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 09/01/2022] [Accepted: 09/03/2022] [Indexed: 11/06/2022]
Abstract
BACKGROUND The impact of sarcopenia on the surgical outcomes of hepatectomy for hepatolithiasis has not been investigated. The present study elucidated the effect of sarcopenia on short-term outcomes after hemihepatectomy for hepatolithiasis and investigated the benefit of different surgical approaches to hepatectomy in patients with sarcopenia. METHODS Patients who underwent hemihepatectomy for hepatolithiasis at Fujian Provincial Hospital and 5 other medical centers from 2010 to 2020 were enrolled. The sarcopenic obesity subgroup had sarcopenia coexisting with obesity, and the sarcopenic nonobesity subgroup had sarcopenia without obesity. We analyzed the postoperative outcomes of the sarcopenia group, sarcopenic obesity subgroup and sarcopenic nonobesity subgroup and the corresponding benefits of different surgical approaches. RESULTS Patients with sarcopenia (n = 481) had worse surgical outcomes than nonsarcopenia, such as longer postoperative hospital duration of stay, longer time to oral intake, longer time to bowel movement, and longer time to off-bed activities. In postoperative short-term outcomes, we also found that sarcopenia had higher rates of major complications, bile leakage, and intensive care unit occupancy than the nonsarcopenic group. Subgroup analysis showed that sarcopenic obesity subgroup (n = 182) had the worst results in intraoperative outcomes and postoperative short-term outcomes. Multivariate analysis identified sarcopenic obesity as a significant risk factor for postoperative hospital duration of stay (hazard ratio = 2.994, P < .001). Furthermore, the sarcopenic obesity and sarcopenic nonobesity (n = 299) subgroups benefited from laparoscopic surgery compared with open surgery, including postoperative recovery and major complications (all P < .05). However, sarcopenic nonobesity subgroup had more significant benefits of laparoscopy than the sarcopenic obesity subgroup. The learning curve for laparoscopic hemihepatectomy for the sarcopenic obesity subgroup had a plateau, and the surgical outcomes of the sarcopenic obesity subgroup were closer to the sarcopenic nonobesity subgroup after the plateau. CONCLUSION Sarcopenia is associated with more adverse events after hepatectomy and patients with sarcopenic obesity have a higher incidence of adverse events. Patients with sarcopenia could benefit from laparoscopy. Compared with the sarcopenic obesity patients, the sarcopenic nonobesity patients benefited more from laparoscopy. Although the sarcopenic obesity patients had more complications and slower postoperative recovery than the sarcopenic nonobesity patients, laparoscopic also could improve their short-term outcomes, but a longer learning curve was required.
Collapse
Affiliation(s)
- Tingting Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China; Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Xinlei Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China; Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Chengyu Liao
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China; Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Danfeng Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China; Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Long Huang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China; Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Ge Li
- Department of Hepatobiliary Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Jiangzhi Chen
- Department of Hepatobiliary Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Caifeng Lin
- Department of General Surgery, Jinshan Hospital, Provincial Clinical College, Fujian Medical University, Fuzhou, China
| | - Liang Wang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Junyong Pan
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, China
| | - Chun Zhang
- Department of General Surgery, Mindong Hospital Affiliated to Fujian Medical University, Ningde, Fujian, China
| | - Songqiang Zhou
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China; Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Funan Qiu
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China; Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Yaodong Wang
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China; Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Zhibo Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Fujian Medical University, Fuzhou, China
| | - Yanling Chen
- Department of Hepatobiliary Surgery, Union Hospital, Fujian Medical University, Fuzhou, China
| | - Xiaochun Zheng
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China; Department of Anesthesiology, Fujian Provincial Hospital, Fuzhou, Fujian Province, China
| | - Yifeng Tian
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China; Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian Province, China.
| | - Shi Chen
- Shengli Clinical Medical College of Fujian Medical University, Fuzhou, Fujian Province, China; Department of Hepatobiliary Pancreatic Surgery, Fujian Provincial Hospital, Fuzhou, Fujian Province, China.
| |
Collapse
|
114
|
Yu Z, Ni Q, Jia H, Gao H, Yang F, Zhu H, Liu F, Wang J, Zhou X, Chang H, Lu J. Prognostic analysis of radical resection for iCCA phl and iCCA pps: A retrospective cohort study. Front Oncol 2022; 12:992606. [PMID: 36479069 PMCID: PMC9721347 DOI: 10.3389/fonc.2022.992606] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/24/2022] [Indexed: 11/07/2023] Open
Abstract
BACKGROUD At present, there is no definitive conclusion about the relative prognostic factors on intrahepatic cholangiocarcinoma perihilar large duct type (iCCAphl) and iCCA peripheral small duct type (iCCApps). AIM OF THE STUDY To compare the prognoses of two different types of iCCA, and identify the independent risk factors affecting the long-term survival of patients undergoing radical resection for iCCA. METHODS This study included 89 patients with iCCA who underwent radical resection at the Department of Hepatobiliary Surgery of the East Yard of the Shandong Provincial Hospital between January 2013 and March 2022. According to the tumor origin, these patients were divided into the iCCAphl group (n = 37) and iCCApps group (n = 52). The prognoses of the two groups were compared using Kaplan-Meier analysis, whereas the independent risk factors of their prognoses were identified using Cox univariate and multivariate regression analyses. RESULTS In the iCCApps group, the independent risk factors for overall survival included diabetes history (p = 0.006), lymph node metastasis (p = 0.040), and preoperative carbohydrate antigen 19-9 (p = 0.035). In the iCCAphl group, the independent risk factors for overall survival included multiple tumors (p = 0.010), tumor differentiation grade (p = 0.008), and preoperative jaundice (p = 0.009). CONCLUSIONS Among the iCCA patients who underwent radical resection, the long-term prognosis of iCCApps maybe better than that of iCCAphl. The prognoses of these two types of iCCA were affected by different independent risk factors.
Collapse
Affiliation(s)
- Zetao Yu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
| | - Qingqiang Ni
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hongtao Jia
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hengjun Gao
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Faji Yang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Huaqiang Zhu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Fangfeng Liu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jianlu Wang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Xu Zhou
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Hong Chang
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| | - Jun Lu
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital, Shandong University, Jinan, Shandong, China
- Department of Hepatobiliary Surgery, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, Shandong, China
| |
Collapse
|
115
|
Connor AA, Kodali S, Abdelrahim M, Javle MM, Brombosz EW, Ghobrial RM. Intrahepatic cholangiocarcinoma: The role of liver transplantation, adjunctive treatments, and prognostic biomarkers. Front Oncol 2022; 12:996710. [PMID: 36479082 PMCID: PMC9719919 DOI: 10.3389/fonc.2022.996710] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 10/31/2022] [Indexed: 08/01/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a primary epithelial cell malignancy of the liver with rising incidence rate globally. Its insidious presentation, heterogeneous and aggressive biology, and recalcitrance to current therapies results in unacceptably high morbidity and mortality. This has spurred research efforts in the last decade to better characterize it molecularly with translation to improved diagnostic tools and treatments. Much of this has been driven by patient advocacy. This has renewed interest in orthotopic liver transplantation (LT) with adjunctive therapies for iCCA, which was historically disparaged due to poor recipient outcomes and donor organ scarcity. However, the optimal use of LT as a treatment for iCCA care remains unclear. Here, we review the epidemiology of iCCA, the history of LT as a treatment modality, alternative approaches to iCCA local control, the evidence for peri-operative systemic therapies, and the potential roles of biomarkers and targeted agents. In doing so, we hope to prioritize areas for continued research and identify areas where multidisciplinary care can improve outcomes.
Collapse
Affiliation(s)
- Ashton A. Connor
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, JC Walter Jr Transplant Center, Houston Methodist Hospital, Houston, TX, United States
- Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
| | - Sudha Kodali
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, JC Walter Jr Transplant Center, Houston Methodist Hospital, Houston, TX, United States
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| | - Maen Abdelrahim
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
- Section of Gastrointestinal Oncology, Department of Medical Oncology, Houston Methodist Cancer Center, Houston, TX, United States
- Cockrell Center Phase 1 Unit, Cockrell Center for Advanced Therapeutics, Houston Methodist Hospital, Houston, TX, United States
| | - Milind M. Javle
- Department of Gastrointestinal Medical Oncology, MD Anderson Cancer Center, Houston, TX, United States
| | | | - R. Mark Ghobrial
- Sherrie and Alan Conover Center for Liver Disease and Transplantation, JC Walter Jr Transplant Center, Houston Methodist Hospital, Houston, TX, United States
- Department of Surgery, Houston Methodist Hospital, Houston, TX, United States
- Department of Medicine, Weill Cornell Medical College, New York, NY, United States
| |
Collapse
|
116
|
He MY, Yan FF, Cen KL, Shen P. Long survival after immunotherapy plus paclitaxel in advanced intrahepatic cholangiocarcinoma: A case report and review of literature. World J Clin Cases 2022; 10:11889-11897. [PMID: 36405269 PMCID: PMC9669850 DOI: 10.12998/wjcc.v10.i32.11889] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/01/2022] [Accepted: 10/17/2022] [Indexed: 11/08/2022] Open
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (iCCA) is the second most common primary hepatic malignancy worldwide. However, currently available systemic therapies are of limited effectiveness, and the median overall survival of patients treated with first-line standard chemotherapy is less than one year. Immune checkpoint inhibitors have been used to treat solid tumors. Clinical studies recently explored the combination of chemotherapy and immunotherapy for CCA. However, the clinical significance of predictive biomarkers for chemo-immunotherapy in CCA remains unclear. It is also worth exploring whether a combination of chemotherapeutic agents can increase the sensitivity of CCA immunotherapy.
CASE SUMMARY This study reports a case of advanced iCCA in which clinical complete remission had been achieved using a programmed death 1 (PD-1) inhibitor and paclitaxel without known predictive biomarkers, but with BRCA1, KRAS, and NTRK3 mutations after rapid progression to first-line chemotherapy, and has remained in clinical complete remission for more than two years. This case suggests that chemo-immunotherapy is a potential therapeutic option for patients with iCCA and few known predictive biomarkers for immunotherapies as well as synergistic effect of the combination of paclitaxel and PD-1 monoclonal antibody.
CONCLUSION The combination of paclitaxel and PD-1 monoclonal antibodyr can be explored in patients with advanced iCCA.
Collapse
Affiliation(s)
- Meng-Ye He
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Fei-Fei Yan
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Kai-Li Cen
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| | - Peng Shen
- Department of Medical Oncology, First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
117
|
Tomita H, Hara A. Development of extrahepatic bile ducts and mechanisms of tumorigenesis: Lessons from mouse models. Pathol Int 2022; 72:589-605. [PMID: 36349994 PMCID: PMC10098476 DOI: 10.1111/pin.13287] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 10/12/2022] [Indexed: 11/11/2022]
Abstract
The biliary system is a highly branched tubular network consisting of intrahepatic bile ducts (IHBDs) and extrahepatic bile ducts (EHBDs). IHBDs are derived from hepatic progenitor cells, while EHBDs originate directly from the endoderm through a separate branching morphogenetic process. Traits that are important for cancer are often found to overlap in developmental and other processes. Therefore, it has been suggested that intrahepatic cholangiocarcinomas (iCCAs) and extrahepatic cholangiocarcinomas (eCCAs) have different developmental mechanisms. While much evidence is being gathered on the mechanism of iCCAs, the evidence for eCCA is still very limited. The main reason for this is that there are very few appropriate animal models for eCCA. We can gain important insights from these animal models, particularly genetically engineered mouse models (GEMMs). GEMMs are immunocompetent and mimic human CCA subtypes with a specific mutational pattern, allowing the development of precancerous lesions, that is, biliary intraepithelial neoplasia (BilIN) and intraductal papillary neoplasm of the bile duct (IPNB). This review provides a summary of the pathogenesis and mechanisms of eCCA that can be revealed by GEMMs. Furthermore, we discuss several clinical questions, such as whether BilIN and IPNB really become malignant, whether the peribiliary gland is the origin of eCCAs, and others.
Collapse
Affiliation(s)
- Hiroyuki Tomita
- Department of Tumor Pathology Gifu University Graduate School of Medicine Gifu Japan
| | - Akira Hara
- Department of Tumor Pathology Gifu University Graduate School of Medicine Gifu Japan
| |
Collapse
|
118
|
Charbel A, Tavernar L, Albrecht T, Brinkmann F, Verheij J, Roos E, Vogel MN, Köhler B, Springfeld C, Brobeil A, Schirmacher P, Singer S, Mehrabi A, Roessler S, Goeppert B. Spatiotemporal analysis of tumour-infiltrating immune cells in biliary carcinogenesis. Br J Cancer 2022; 127:1603-1614. [PMID: 36068277 PMCID: PMC9596479 DOI: 10.1038/s41416-022-01933-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 06/01/2022] [Accepted: 07/21/2022] [Indexed: 02/01/2023] Open
Abstract
BACKGROUND Intraductal papillary neoplasms (IPN) and biliary epithelial neoplasia (BilIN) are well-defined precursor lesions of biliary tract carcinoma (BTC). The aim of this study was to provide a comprehensive characterisation of the inflammatory microenvironment in BTC precursor lesions. METHODS Immunohistochemistry was employed to assess tumour-infiltrating immune cells in tissue samples from patients, for whom precursor lesions were identified alongside invasive BTC. The spatiotemporal evolution of the immune microenvironment during IPN-associated carcinogenesis was comprehensively analysed using triplet sample sets of non-neoplastic epithelium, precursor lesion and invasive BTC. Immune-cell dynamics during IPN- and BilIN-associated carcinogenesis were subsequently compared. RESULTS Stromal CD3+ (P = 0.002), CD4+ (P = 0.007) and CD8+ (P < 0.001) T cells, CD20+ B cells (P = 0.008), MUM1+ plasma cells (P = 0.012) and CD163+ M2-like macrophages (P = 0.008) significantly decreased in IPN compared to non-tumorous biliary epithelium. Upon transition from IPN to invasive BTC, stromal CD68+ (P = 0.001) and CD163+ (P < 0.001) macrophages significantly increased. In contrast, BilIN-driven carcinogenesis was characterised by significant reduction of intraepithelial CD8+ T-lymphocytic infiltration from non-tumorous epithelium via BilIN (P = 0.008) to BTC (P = 0.004). CONCLUSION IPN and BilIN are immunologically distinct entities that undergo different immune-cell variations during biliary carcinogenesis. Intraepithelial CD8+ T-lymphocytic infiltration of biliary tissue decreased already at the IPN-precursor stage, whereas BilIN-associated carcinogenesis showed a slowly progressing reduction towards invasive carcinoma.
Collapse
Affiliation(s)
- Alphonse Charbel
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Liver Cancer Centre Heidelberg (LCCH), Heidelberg, Germany
| | - Luca Tavernar
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Liver Cancer Centre Heidelberg (LCCH), Heidelberg, Germany
| | - Thomas Albrecht
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Liver Cancer Centre Heidelberg (LCCH), Heidelberg, Germany
| | - Fritz Brinkmann
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Liver Cancer Centre Heidelberg (LCCH), Heidelberg, Germany
| | - Joanne Verheij
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Eva Roos
- Department of Pathology, Amsterdam UMC, University of Amsterdam, Amsterdam, The Netherlands
| | - Monika Nadja Vogel
- Diagnostic and Interventional Radiology, Thoraxklinik at University Hospital Heidelberg, Heidelberg, Germany
| | - Bruno Köhler
- Liver Cancer Centre Heidelberg (LCCH), Heidelberg, Germany
- Department of Medical Oncology, National Centre for Tumour Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Christoph Springfeld
- Liver Cancer Centre Heidelberg (LCCH), Heidelberg, Germany
- Department of Medical Oncology, National Centre for Tumour Diseases, University Hospital Heidelberg, Heidelberg, Germany
| | - Alexander Brobeil
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Tumor Bank Unit, Tissue Bank of the National Center for Tumor Diseases, Heidelberg, Germany
| | - Peter Schirmacher
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany
- Liver Cancer Centre Heidelberg (LCCH), Heidelberg, Germany
| | - Stephan Singer
- Institute of Pathology, University of Tübingen, Tübingen, Germany
| | - Arianeb Mehrabi
- Liver Cancer Centre Heidelberg (LCCH), Heidelberg, Germany
- Department of General, Visceral and Transplantation Surgery, University Hospital Heidelberg, Heidelberg, Germany
| | - Stephanie Roessler
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
- Liver Cancer Centre Heidelberg (LCCH), Heidelberg, Germany.
| | - Benjamin Goeppert
- Institute of Pathology, University Hospital Heidelberg, Heidelberg, Germany.
- Liver Cancer Centre Heidelberg (LCCH), Heidelberg, Germany.
- Institute of Pathology and Neuropathology, Hospital RKH Kliniken Ludwigsburg, Ludwigsburg, Germany.
| |
Collapse
|
119
|
Zhang X, Cai Y, Xiong X, Liu A, Zhou R, You Z, Li F, Cheng N. Comparison of current guidelines and consensus on the management of patients with cholangiocarcinoma: 2022 update. Intractable Rare Dis Res 2022; 11:161-172. [PMID: 36457589 PMCID: PMC9709616 DOI: 10.5582/irdr.2022.01109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/02/2022] [Revised: 11/06/2022] [Accepted: 11/23/2022] [Indexed: 11/28/2022] Open
Abstract
As a consequence of breakthroughs in the area of guidelines research, the therapy for cholangiocarcinoma has significantly improved the efficacy rate of diagnosis and survival outcomes. We compared the most recently updated clinical practice guidelines and consensus to provide recommendations based on the diagnostic and therapeutic equipment available in various countries. Following a systematic review, we discovered that these guidelines and consensus had both similarities and differences in terms of what organizations or groups drafted the guidelines and the approach, applicability, content and recent updates of the guidelines as well as in terms of diagnostic and treatment algorithms. The disparities could be attributable to a variety of etiological factors, high risk patients, health resources, medical technology, treatment options, and income levels. Additionally, while complete adoption of guidelines may benefit physicians, patients, and authorities, there remains a disconnect between expected goals and implementation.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Nansheng Cheng
- Address correspondence to:Nansheng Cheng, Division of Biliary Surgery, Department of General Surgery, West China Hospital, Sichuan University, No.37 Guo Xue Xiang, Chengdu, 610041, Sichuan Province, China. E-mail:
| |
Collapse
|
120
|
Shreenivas AV, Kato S, Hu J, Skefos C, Sicklick J, Kurzrock R. Carcinoma of unknown primary: Molecular tumor board-based therapy. CA Cancer J Clin 2022; 72:510-523. [PMID: 36006378 PMCID: PMC10180180 DOI: 10.3322/caac.21748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Revised: 05/20/2022] [Accepted: 06/01/2022] [Indexed: 11/18/2022] Open
Affiliation(s)
- Aditya V Shreenivas
- Division of Hematology and Medical Oncology, Medical College of Wisconsin Cancer Center, Milwaukee, Wisconsin, USA
| | - Shumei Kato
- Medical Oncology, Department of Medicine, Moores Cancer Center, University of California-San Diego, San Diego, California, USA
| | - Jingjing Hu
- Department of Pathology, Moores Cancer Center, University of California-San Diego, San Diego, California, USA
| | - Catherine Skefos
- Clinical Cancer Genetics Program, The University of Texas MD Anderson Cancer Center, Houston, Texas, USA
| | - Jason Sicklick
- Division of Surgical Oncology, Moores Cancer Center, University of California-San Diego, San Diego, California, USA
| | - Razelle Kurzrock
- Division of Hematology and Medical Oncology, Medical College of Wisconsin Cancer Center, Milwaukee, Wisconsin, USA
- Genomic Sciences and Precision Medicine Center, Medical College of Wisconsin Cancer Center, Milwaukee, Wisconsin, USA
| |
Collapse
|
121
|
Pemigatinib in Intrahepatic Cholangiocarcinoma: A Work in Progress. Curr Oncol 2022; 29:7925-7931. [PMID: 36290903 PMCID: PMC9600707 DOI: 10.3390/curroncol29100626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2022] [Revised: 10/17/2022] [Accepted: 10/18/2022] [Indexed: 11/09/2022] Open
Abstract
Cholangiocarcinoma (CCA) is the second most frequent primary liver cancer, following hepatocellular carcinoma (HCC). Progress in the molecular understanding of CCA has led to the development of several agents, including FGFR inhibitors, such as pemigatinib, whose approval has marked a new era in this hepatobiliary malignancy. However, a number of questions remain unanswered, including the development of secondary resistance and the role of combination therapies, including FGFR inhibitors. Herein, we specifically focus on the current challenges and future research directions of pemigatinib use in CCA patients.
Collapse
|
122
|
Tanaka M, Kunita A, Yamagishi M, Katoh H, Ishikawa S, Yamamoto H, Abe J, Arita J, Hasegawa K, Shibata T, Ushiku T. KRAS mutation in intrahepatic cholangiocarcinoma: Linkage with metastasis-free survival and reduced E-cadherin expression. Liver Int 2022; 42:2329-2340. [PMID: 35833881 DOI: 10.1111/liv.15366] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Revised: 06/21/2022] [Accepted: 07/11/2022] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS Although KRAS mutations are the major driver of intrahepatic cholangiocarcinoma (ICC), their role remains unexplored. This study aimed to elucidate the prognostic effects, association with clinicopathologic characteristics and potent functions of KRAS mutations in ICC. METHODS A hundred and seven resected stage I-III ICCs were analysed for KRAS mutation status and its link with clinicopathological features. An independent validation cohort (n = 138) was included. In vitro analyses using KRAS-mutant ICC cell lines were performed. RESULTS KRAS mutation was significantly associated with worse overall survival in stage I-III ICCs, which was validated in an independent cohort. Recurrence-free survival did not significantly differ between cases with and without KRAS mutations, but if limited to recurrence with extrahepatic metastasis, KRAS-mutant cases showed significantly worse distant metastasis-free survival than KRAS-wild cases showed. KRAS mutations were associated with frequent tumour budding with reduced E-cadherin expression. In vitro, KRAS depletion caused marked inhibition of cell growth and migration together with E-cadherin upregulation in KRAS-mutant ICC cells. The RNA-sequencing assay revealed that KRAS depletion caused MYC pathway downregulation and interferon pathway upregulation. CONCLUSIONS Our observations suggest that KRAS mutations are associated with aggressive behaviour of ICC, especially the development of extrahepatic metastasis. Mutant KRAS is likely to change the adhesive status of ICC cells, affect the responsiveness of tumour cells to interferon immune signals, and consequently promote extrahepatic metastasis. KRAS mutation status, which predicts the prognoses of patients with ICC after surgical resection, is expected to help stratify patients better for individual postoperative treatment strategies.
Collapse
Affiliation(s)
- Mariko Tanaka
- Department of Pathology, The University of Tokyo, Tokyo, Japan
| | - Akiko Kunita
- Department of Pathology, The University of Tokyo, Tokyo, Japan
| | - Makoto Yamagishi
- Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Tokyo, Japan
| | - Hiroto Katoh
- Department of Preventive Medicine, The University of Tokyo, Tokyo, Japan
| | - Shumpei Ishikawa
- Department of Preventive Medicine, The University of Tokyo, Tokyo, Japan
| | - Hiroyuki Yamamoto
- AIDS Research Center, National Institute of Infectious Diseases, Tokyo, Japan
| | - Jun Abe
- Department of Oncology, Microbiology and Immunology, University of Fribourg, Fribourg, Switzerland
| | - Junichi Arita
- Department of Surgery, Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Kiyoshi Hasegawa
- Department of Surgery, Hepato-Biliary-Pancreatic Surgery, Graduate School of Medicine, The University of Tokyo, Tokyo, Japan
| | - Tatsuhiro Shibata
- Division of Cancer Genomics, National Cancer Center Research Institute, Tokyo, Japan
| | - Tetsuo Ushiku
- Department of Pathology, The University of Tokyo, Tokyo, Japan
| |
Collapse
|
123
|
Kinzler MN, Schulze F, Bankov K, Gretser S, Becker N, Leichner R, Stehle A, Abedin N, Trojan J, Zeuzem S, Schnitzbauer AA, Wild PJ, Walter D. Impact of small duct- and large duct type on survival in patients with intrahepatic cholangiocarcinoma: Results from a German tertiary center. Pathol Res Pract 2022; 238:154126. [PMID: 36137398 DOI: 10.1016/j.prp.2022.154126] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/09/2022] [Accepted: 09/13/2022] [Indexed: 11/25/2022]
Abstract
BACKGROUND & AIMS In recent years, histopathological characterization of intrahepatic cholangiocarcinoma revealed small duct type (SD-iCCA) and large duct type (LD-iCCA). Data on the prevalence of the subtypes are limited and highly varying. The aim of this study was to assess the prevalence of SD-iCCA and LD-iCCA and their impact on survival for the first time in a European cohort. MATERIALS AND METHODS All patients with surgically resected iCCA diagnosed between December 2005 and December 2021 at the University Hospital Frankfurt were analyzed by an expert hepatobiliary pathologist. For overall survival (OS) and progression-free survival (PFS), Kaplan-Meier curves and Cox-regression analyses were performed. RESULTS In total, 116 patients with surgically resected iCCA treated in our tertiary hospital were classified as SD-iCCA (73.3%, n = 85) and LD-iCCA (26.7%, n = 31). Subgroup analyses revealed median OS of 54.4 months (95% CI = 38.3 - 70.4 months) and 25.4 months (95% CI = 15.1 - 35.7 months) for SD-iCCA and LD-iCCA, respectively (p = 0.027). The median PFS for patients receiving gemcitabine-based chemotherapy with SD- and LD-iCCA was 8.4 months (95% CI = 4.7 - 12 months) and 3.3 months (95% CI = 1.8 - 4.7 months), respectively (p = 0.011). While LD-iCCA was as a significant risk factor of OS (HR = 1.7, 95% CI = 1 - 2.8, p = 0.031) in univariate analysis, it was not significant in multivariate analysis. CONCLUSION In contrast to data from Asia, SD-iCCA is more prevalent than LD-iCCA in our cohort. LD-iCCA is associated with impaired OS after surgical resection and decreased PFS for patients receiving chemotherapy. These findings may suggest including the histological subtype in clinical routine diagnostics.
Collapse
Affiliation(s)
- Maximilian N Kinzler
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany.
| | - Falko Schulze
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany
| | - Katrin Bankov
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany
| | - Steffen Gretser
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany
| | - Nina Becker
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany; University Cancer Center (UCT) Frankfurt, University Hospital Frankfurt, Goethe University, Frankfurt am Main, Germany
| | - Regina Leichner
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany; German Cancer Research Center (DKFZ), Heidelberg, Germany, and German Cancer Consortium (DKTK), partner site Frankfurt, Germany
| | - Angelika Stehle
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany
| | - Nada Abedin
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany
| | - Jörg Trojan
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany
| | - Stefan Zeuzem
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany
| | - Andreas A Schnitzbauer
- Department of General, Visceral, Transplant and Thoracic Surgery, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany
| | - Peter J Wild
- Dr. Senckenberg Institute of Pathology, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany; Frankfurt Institute for Advanced Studies (FIAS), Frankfurt am Main, Germany; Wildlab, University Hospital Frankfurt MVZ GmbH, Frankfurt am Main, Germany
| | - Dirk Walter
- Department of Internal Medicine I, University Hospital Frankfurt, Goethe University Frankfurt am Main, Germany
| |
Collapse
|
124
|
Gilbert TM, Hackett J, Holt L, Bird N, Quinn M, Gordon-Weeks A, Diaz-Nieto R, Fenwick SW, Malik HZ, Jones RP. Long-term morbidity after surgery for perihilar cholangiocarcinoma: A cohort study. Surg Oncol 2022; 45:101875. [DOI: 10.1016/j.suronc.2022.101875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 08/25/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022]
|
125
|
Kanai M. Current Clinical Practice of Precision Medicine Using Comprehensive Genomic Profiling Tests in Biliary Tract Cancer in Japan. Curr Oncol 2022; 29:7272-7284. [PMID: 36290850 PMCID: PMC9599999 DOI: 10.3390/curroncol29100573] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 09/25/2022] [Accepted: 09/28/2022] [Indexed: 11/06/2022] Open
Abstract
With the recent advances of next generation sequencing technologies, comprehensive genomic profiling (CGP) tests, which are designed to measure more than hundreds of cancer-related genes at a time, have now been widely introduced into daily clinical practice. For the patients whose tumor samples are not fit for tissue-based CGP tests, a blood-based CGP test (liquid biopsy) is available as an alternative option. Three CGP tests, "OncoGuide NCC™Oncopanel System (124 genes)", "FoundationOne®CDx (324 genes)", and "Founda-tionOne®CDx Liquid (324 genes)", are now reimbursed by public insurance in 233 hospitals designated for cancer genomic medicine in Japan. In biliary tract cancer, the prevalence of druggable variants is relatively higher compared to other cancer types and the European Society for Medical Oncology recommends routine use of CGP tests for advanced biliary tract cancer to guide treatment options. The latest National Cancer Center Network guideline lists eight druggable markers (NTRK fusion, MSI-H, TMB-H, BRAF V600E, FGFR2 fusions/rearrangement, IDH1 mutations, RET fusion, and HER2 overexpression) and matched therapies. In Japan, matched therapies for four markers (NTRK, MSI-H, TMB-H, and FGFR2) are reimbursed by public insurance (as of September 2022). The progress of genomic profiling technology will contribute to the improvement of the dismal clinical outcomes of this disease in the future.
Collapse
Affiliation(s)
- Masashi Kanai
- Department of Therapeutic Oncology, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| |
Collapse
|
126
|
The Efficacy and Safety of Hepatic Arterial Infusion Chemotherapy Based on FOLFIRI for Advanced Intrahepatic Cholangiocarcinoma as Second-Line and Successive Treatment: A Real-World Study. Can J Gastroenterol Hepatol 2022; 2022:9680933. [PMID: 36199981 PMCID: PMC9529477 DOI: 10.1155/2022/9680933] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/30/2022] [Revised: 08/29/2022] [Accepted: 08/30/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE Intrahepatic cholangiocarcinoma (iCCA) is a primary liver malignancy with a poor prognosis and limited treatment. Cisplatin with gemcitabine is used as the standard first-line chemotherapy regimen; however, there is still no robust evidence for second-line and successive treatments. Although preliminary evidence suggests a vital role of precision therapy or immunotherapy in a subset of patients, the gene alteration rate is relatively low. Herein, we explored the second-line and successive treatments using hepatic arterial infusion chemotherapy (HAIC) based on FOLFIRI after the failure of gemcitabine and platinum combined with target and immunotherapy in refractory CCAs. METHODS Advanced patients with iCCAs confirmed by diagnostic pathology, who progressed at least on a gemcitabine/platinum doublet and/or other systemic chemotherapy combined with target therapy and immune checkpoint inhibitor, were included. All patients received infusional 5-fluorouracil/leucovorin with irinotecan (FOLFIRI) via HAIC until progression or unacceptable toxicity. The primary objective was the feasibility of treatment, with secondary objectives of disease control rate (DCR) and 6-month survival rate. RESULTS A total of 9 iCCA patients treated between Dec 2020 and May 2021 were enrolled; 2 patients suffered from distant metastasis, while 7 had local lymph node metastasis and portal vein or hepatic vein invasion. HAIC was delivered as second-line therapy in 6/9 patients, while a third or successive therapy in 3/9 patients. The patients accepted an average of 2.90 ± 1.69 cycles of HAIC. The objective response rate was 22.2%; the disease control rate was 55.5% (5/9); median progression-free survival was 5 months; and 6-month survival rate was 66.7% (6/9). CONCLUSIONS Our results provide preliminary evidence that HAIC based on FOLFIRI regimen is efficient and safe in some patients progressing after previous treatment. Therefore, HAIC may be a promising and valuable complementary therapy for advanced CCAs as a second-line and successive therapy. Otherwise, the combination of HAIC with precision medicine may improve clinical benefits (clinical registration number: 2021BAT4857).
Collapse
|
127
|
Gorji L, Beal EW. Surgical Treatment of Distal Cholangiocarcinoma. Curr Oncol 2022; 29:6674-6687. [PMID: 36135093 PMCID: PMC9498206 DOI: 10.3390/curroncol29090524] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Distal cholangiocarcinoma (dCCA) is a rare malignancy arising from the epithelial cells of the distal biliary tract and has a poor prognosis. dCCA is often clinically silent and patients commonly present with locally advanced and/or distant disease. For patients identified with early stage, resectable disease, surgical resection with negative margins remains the only curative treatment strategy available. However, despite appropriate treatment and diligent surveillance, risk of recurrence remains high with nearly 50% of patients experiencing recurrence at 5 years subsequent to surgical resection; therefore, it is prudent to continue to optimize neoadjuvant and adjuvant therapies in order to reduce the risk of recurrence and improve overall survival. In this review, we discuss the clinical presentation, workup and surgical treatment of dCCA.
Collapse
Affiliation(s)
- Leva Gorji
- Department of Surgery, Kettering Health Dayton, Dayton, OH 45405, USA
| | - Eliza W. Beal
- Departments of Oncology and Surgery, Barbara Ann Karmanos Cancer Institute, Wayne State University School of Medicine, Detroit, MI 48201, USA
| |
Collapse
|
128
|
Dall'Magro AK, Dogenski LC, Bade P, Cé LC, Dall'Magro E, De Carli JP. Mandibular metastasis of primary extrahepatic biliary carcinoma: Case report. Int J Surg Case Rep 2022; 98:107498. [PMID: 35985115 PMCID: PMC9418373 DOI: 10.1016/j.ijscr.2022.107498] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/03/2022] [Accepted: 08/06/2022] [Indexed: 11/19/2022] Open
Affiliation(s)
| | | | - Patrícia Bade
- Graduation in Odontology, University of Passo Fundo, Passo Fundo, RS, Brazil
| | - Larissa Cunha Cé
- Department of Oral and Maxillofacial Surgery, São Vicente de Paulo Hospital, Passo Fundo, RS, Brazil
| | - Eduardo Dall'Magro
- Department of Dental Prothesis, University of Passo Fundo, Passo Fundo, RS, Brazil
| | - João Paulo De Carli
- Department of Implantology and Dental Prosthesis, University of Passo Fundo, Passo Fundo, RS, Brazil.
| |
Collapse
|
129
|
Isidan A, Yenigun A, Soma D, Aksu E, Lopez K, Park Y, Cross-Najafi A, Li P, Kundu D, House MG, Chakraborty S, Glaser S, Kennedy L, Francis H, Zhang W, Alpini G, Ekser B. Development and Characterization of Human Primary Cholangiocarcinoma Cell Lines. THE AMERICAN JOURNAL OF PATHOLOGY 2022; 192:1200-1217. [PMID: 35640676 PMCID: PMC9472155 DOI: 10.1016/j.ajpath.2022.05.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 05/12/2022] [Accepted: 05/18/2022] [Indexed: 06/15/2023]
Abstract
Cholangiocarcinoma (CCA) is the second most common primary liver tumor and is associated with late diagnosis, limited treatment options, and a 5-year survival rate of around 30%. CCA cell lines were first established in 1971, and since then, only 70 to 80 CCA cell lines have been established. These cell lines have been essential in basic and translational research to understand and identify novel mechanistic pathways, biomarkers, and disease-specific genes. Each CCA cell line has unique characteristics, reflecting a specific genotype, sex-related properties, and patient-related signatures, making them scientifically and commercially valuable. CCA cell lines are crucial in the use of novel technologies, such as three-dimensional organoid models, which help to model the tumor microenvironment and cell-to-cell crosstalk between tumor-neighboring cells. This review highlights crucial information on CCA cell lines, including: i) type of CCA (eg, intra- or extrahepatic), ii) isolation source (eg, primary tumor or xenograft), iii) chemical digestion method (eg, trypsin or collagenase), iv) cell-sorting method (colony isolation or removal of fibroblasts), v) maintenance-medium choice (eg, RPMI or Dulbecco's modified Eagle's medium), vi) cell morphology (eg, spindle or polygonal shape), and vii) doubling time of cells.
Collapse
Affiliation(s)
- Abdulkadir Isidan
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ali Yenigun
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana; Department of General Surgery, Yeditepe University Faculty of Medicine, Istanbul, Turkey
| | - Daiki Soma
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana; Division of Transplantation & Hepatobiliary Surgery, Department of Surgery, University of Florida College of Medicine, Gainesville, Florida
| | - Eric Aksu
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Kevin Lopez
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Yujin Park
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Arthur Cross-Najafi
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Ping Li
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Debjyoti Kundu
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Michael G House
- Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Sanjukta Chakraborty
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas
| | - Shannon Glaser
- Department of Medical Physiology, Texas A&M University College of Medicine, Bryan, Texas
| | - Lindsey Kennedy
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Heather Francis
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Wenjun Zhang
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana
| | - Gianfranco Alpini
- Division of Gastroenterology and Hepatology, Department of Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Division of Research, Richard L. Roudebush VA Medical Center, Indianapolis, Indiana
| | - Burcin Ekser
- Transplant Division, Department of Surgery, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
130
|
Caligiuri A, Gitto S, Lori G, Marra F, Parola M, Cannito S, Gentilini A. Oncostatin M: From Intracellular Signaling to Therapeutic Targets in Liver Cancer. Cancers (Basel) 2022; 14:4211. [PMID: 36077744 PMCID: PMC9454586 DOI: 10.3390/cancers14174211] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2022] [Revised: 08/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
Primary liver cancers represent the third-most-common cause of cancer-related mortality worldwide, with an incidence of 80-90% for hepatocellular carcinoma (HCC) and 10-15% for cholangiocarcinoma (CCA), and an increasing morbidity and mortality rate. Although HCC and CCA originate from independent cell populations (hepatocytes and biliary epithelial cells, respectively), they develop in chronically inflamed livers. Evidence obtained in the last decade has revealed a role for cytokines of the IL-6 family in the development of primary liver cancers. These cytokines operate through the receptor subunit gp130 and the downstream Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling pathways. Oncostatin M (OSM), a member of the IL-6 family, plays a significant role in inflammation, autoimmunity, and cancer, including liver tumors. Although, in recent years, therapeutic approaches for the treatment of HCC and CCA have been implemented, limited treatment options with marginal clinical benefits are available. We discuss how OSM-related pathways can be selectively inhibited and therapeutically exploited for the treatment of liver malignancies.
Collapse
Affiliation(s)
- Alessandra Caligiuri
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Stefano Gitto
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Giulia Lori
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Fabio Marra
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| | - Maurizio Parola
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy
| | - Stefania Cannito
- Department of Clinical and Biological Sciences, Unit of Experimental Medicine & Clinical Pathology, University of Torino, 10125 Torino, Italy
| | - Alessandra Gentilini
- Department of Experimental and Clinical Medicine, University of Florence, 50139 Florence, Italy
| |
Collapse
|
131
|
Sun H, Qi X. The role of insulin and incretin-based drugs in biliary tract cancer: epidemiological and experimental evidence. Discov Oncol 2022; 13:70. [PMID: 35933633 PMCID: PMC9357599 DOI: 10.1007/s12672-022-00536-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Accepted: 07/26/2022] [Indexed: 11/29/2022] Open
Abstract
Insulin and incretin-based drugs are important antidiabetic agents with complex effects on cell growth and metabolism. Emerging evidence shows that insulin and incretin-based drugs are associated with altered risk of biliary tract cancer (BTC). Observational study reveals that insulin is associated with an increased risk of extrahepatic cholangiocarcinoma (ECC), but not intrahepatic cholangiocarcinoma (ICC) or gallbladder cancer (GBC). This type-specific effect can be partly explained by the cell of origin and heterogeneous genome landscape of the three subtypes of BTC. Similar to insulin, incretin-based drugs also exhibit very interesting contradictions and inconsistencies in response to different cancer phenotypes, including BTC. Both epidemiological and experimental evidence suggests that incretin-based drugs can be a promoter of some cancers and an inhibitor of others. It is now more apparent that this type of drugs has a broader range of physiological effects on the body, including regulation of endoplasmic reticulum stress, autophagy, metabolic reprogramming, and gene expression. In particular, dipeptidyl peptidase-4 inhibitors (DPP-4i) have a more complex effect on cancer due to the multi-functional nature of DPP-4. DPP-4 exerts both catalytic and non-enzymatic functions to regulate metabolic homeostasis, immune reaction, cell migration, and proliferation. In this review, we collate the epidemiological and experimental evidence regarding the effect of these two classes of drugs on BTC to provide valuable information.
Collapse
Affiliation(s)
- Hua Sun
- Department of Geriatrics, Zhejiang Hospital of Integrated Traditional Chinese and Western Medicine, No.208 East Huancheng Road, Hangzhou, Zhejiang, China
| | - Xiaohui Qi
- Department of Endocrine and Metabolic Diseases, Shanghai Institute of Endocrine and Metabolic Diseases, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.197 Ruijin Er Road, Shanghai, China.
- Shanghai National Clinical Research Center for Metabolic Diseases, Key Laboratory for Endocrine and Metabolic Diseases of the National Health Commission of the PR China, Shanghai Key Laboratory for Endocrine Tumor, State Key Laboratory of Medical Genomics, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, No.573 Xujiahui Road, Shanghai, China.
| |
Collapse
|
132
|
Macias RIR, Cardinale V, Kendall TJ, Avila MA, Guido M, Coulouarn C, Braconi C, Frampton AE, Bridgewater J, Overi D, Pereira SP, Rengo M, Kather JN, Lamarca A, Pedica F, Forner A, Valle JW, Gaudio E, Alvaro D, Banales JM, Carpino G. Clinical relevance of biomarkers in cholangiocarcinoma: critical revision and future directions. Gut 2022; 71:1669-1683. [PMID: 35580963 DOI: 10.1136/gutjnl-2022-327099] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Accepted: 04/22/2022] [Indexed: 02/06/2023]
Abstract
Cholangiocarcinoma (CCA) is a malignant tumour arising from the biliary system. In Europe, this tumour frequently presents as a sporadic cancer in patients without defined risk factors and is usually diagnosed at advanced stages with a consequent poor prognosis. Therefore, the identification of biomarkers represents an utmost need for patients with CCA. Numerous studies proposed a wide spectrum of biomarkers at tissue and molecular levels. With the present paper, a multidisciplinary group of experts within the European Network for the Study of Cholangiocarcinoma discusses the clinical role of tissue biomarkers and provides a selection based on their current relevance and potential applications in the framework of CCA. Recent advances are proposed by dividing biomarkers based on their potential role in diagnosis, prognosis and therapy response. Limitations of current biomarkers are also identified, together with specific promising areas (ie, artificial intelligence, patient-derived organoids, targeted therapy) where research should be focused to develop future biomarkers.
Collapse
Affiliation(s)
- Rocio I R Macias
- Experimental Hepatology and Drug Targeting (HEVEPHARM) group, University of Salamanca, IBSAL, Salamanca, Spain
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
| | - Vincenzo Cardinale
- Department of Medico-Surgical Sciences and Biotechnologies, Sapienza University of Rome, Rome, Italy
| | - Timothy J Kendall
- Centre for Inflammation Research, University of Edinburgh, Edinburgh, UK
| | - Matias A Avila
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Center for Applied Medical Research (CIMA), University of Navarra, Pamplona, Spain
| | - Maria Guido
- Department of Medicine - DIMED, University of Padua, Padua, Italy
| | - Cedric Coulouarn
- UMR_S 1242, COSS, Centre de Lutte contre le Cancer Eugène Marquis, INSERM University of Rennes 1, Rennes, France
| | - Chiara Braconi
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| | - Adam E Frampton
- Department of Clinical and Experimental Medicine, University of Surrey, Guildford, Surrey, UK
| | - John Bridgewater
- Department of Medical Oncology, UCL Cancer Institute, London, UK
| | - Diletta Overi
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Stephen P Pereira
- Institute for Liver & Digestive Health, University College London, London, UK
| | - Marco Rengo
- Department of Radiological Sciences, Oncology and Pathology, Sapienza University of Rome, Rome, Italy
| | - Jakob N Kather
- Department of Medicine III, University Hospital RWTH Aachen, Aachen, Germany
| | - Angela Lamarca
- Medical Oncology/Institute of Cancer Sciences, The Christie NHS Foundation Trust/University of Manchester, Manchester, UK
| | - Federica Pedica
- Department of Pathology, San Raffaele Scientific Institute, Milan, Italy
| | - Alejandro Forner
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- BCLC group, Liver Unit, Hospital Clínic Barcelona. IDIBAPS, University of Barcelona, Barcelona, Spain
| | - Juan W Valle
- Medical Oncology/Institute of Cancer Sciences, The Christie NHS Foundation Trust/University of Manchester, Manchester, UK
| | - Eugenio Gaudio
- Department of Anatomical, Histological, Forensic Medicine and Orthopaedic Sciences, Sapienza University of Rome, Rome, Italy
| | - Domenico Alvaro
- Department of Translational and Precision Medicine, Sapienza University of Rome, Rome, Italy
| | - Jesus M Banales
- Center for the Study of Liver and Gastrointestinal Diseases (CIBERehd), Carlos III National Institute of Health, Madrid, Spain
- Department of Liver and Gastrointestinal Diseases, Biodonostia Health Research Institute, Donostia University Hospital, University of the Basque Country (UPV/EHU), Ikerbasque, San Sebastian, Spain
- Department of Biochemistry and Genetics, School of Sciences, University of Navarra, Pamplona, Spain
| | - Guido Carpino
- Department of Movement, Human and Health Sciences, University of Rome 'Foro Italico', Rome, Italy
| |
Collapse
|
133
|
Molecular Profile and Prognostic Value of BAP1 Mutations in Intrahepatic Cholangiocarcinoma: A Genomic Database Analysis. J Pers Med 2022; 12:jpm12081247. [PMID: 36013199 PMCID: PMC9410256 DOI: 10.3390/jpm12081247] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 07/23/2022] [Accepted: 07/28/2022] [Indexed: 11/26/2022] Open
Abstract
Background. Recent years have witnessed the advent of molecular profiling for intrahepatic cholangiocarcinoma (iCCA), and new techniques have led to the identification of several molecular alterations. Precision oncology approaches have been widely evaluated and are currently under assessment, as shown by the recent development of a wide range of agents targeting Fibroblast Growth Factor Receptor (FGFR) 2, Isocitrate Dehydrogenase 1 (IDH-1), and BRAF. However, several knowledge gaps persist in the understanding of the genomic landscape of this hepatobiliary malignancy. Methods. In the current study, we aimed to comprehensively analyze clinicopathological features of BAP1-mutated iCCA patients in public datasets to increase the current knowledge on the molecular and biological profile of iCCA. Results. The current database study, including 772 iCCAs, identified BAP1 mutations in 120 cases (15.7%). According to our analysis, no differences in terms of overall survival and relapse-free survival were observed between BAP1-mutated and BAP1 wild-type patients receiving radical surgery. In addition, IDH1, PBRM1, and ARID1A mutations were the most commonly co-altered genes in BAP1-mutated iCCAs. Conclusions. The genomic characterization of iCCA is destined to become increasingly important, and more efforts aimed to implement iCCA genomics analysis are warranted.
Collapse
|
134
|
Genomic architecture of FGFR2 fusions in cholangiocarcinoma and its implication for molecular testing. Br J Cancer 2022; 127:1540-1549. [PMID: 35871236 PMCID: PMC9553883 DOI: 10.1038/s41416-022-01908-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 06/23/2022] [Accepted: 06/29/2022] [Indexed: 12/16/2022] Open
Abstract
Background Cholangiocarcinoma (CCA) is a primary malignancy of the biliary tract with a dismal prognosis. Recently, several actionable genetic aberrations were identified with significant enrichment in intrahepatic CCA, including FGFR2 gene fusions with a prevalence of 10–15%. Recent clinical data demonstrate that these fusions are druggable in a second-line setting in advanced/metastatic disease and the efficacy in earlier lines of therapy is being evaluated in ongoing clinical trials. This scenario warrants standardised molecular profiling of these tumours. Methods A detailed analysis of the original genetic data from the FIGHT-202 trial, on which the approval of Pemigatinib was based, was conducted. Results Comparing different detection approaches and displaying representative cases, we described the genetic landscape and architecture of FGFR2 fusions in iCCA and show biological and technical aspects to be considered for their detection. We elaborated parameters, including a suggestion for annotation, that should be stated in a molecular diagnostic FGFR2 report to allow a complete understanding of the analysis performed and the information provided. Conclusion This study provides a detailed presentation and dissection of the technical and biological aspects regarding FGFR2 fusion detection, which aims to support molecular pathologists, pathologists and clinicians in diagnostics, reporting of the results and decision-making.
Collapse
|
135
|
Rizzo A, Carloni R, Frega G, Palloni A, Di Federico A, Ricci AD, De Luca R, Tavolari S, Brandi G. Intensive Follow-Up Program and Oncological Outcomes of Biliary Tract Cancer Patients after Curative-Intent Surgery: A Twenty-Year Experience in a Single Tertiary Medical Center. Curr Oncol 2022; 29:5084-5090. [PMID: 35877262 PMCID: PMC9322137 DOI: 10.3390/curroncol29070402] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2022] [Revised: 07/08/2022] [Accepted: 07/16/2022] [Indexed: 11/16/2022] Open
Abstract
Aim. The aim of this research was to assess the impact of an intensive follow-up program on BTC patients who had received surgery with curative intent at a tertiary referral hospital. Methods. BTC patients were followed-up every three months during the first two years after their first surgery and every six months from the third to the fifth post-operative year. Results. A total of 278 BTC patients who received R0/R1 surgery were included. A total of 17.7% of patients underwent a second surgery following disease relapse, and none of these patients experienced additional disease relapse. Conclusions. An intensive follow-up after surgical resection may help in the early identification of disease relapse, leading to early treatment and prolonged survival in selected cases.
Collapse
Affiliation(s)
- Alessandro Rizzo
- Struttura Semplice Dipartimentale di Oncologia Medica per la Presa in Carico Globale del Paziente Oncologico “Don Tonino Bello”, IRCCS Istituto Tumori “Giovanni Paolo II”, Viale Orazio Flacco 65, 70124 Bari, Italy;
| | - Riccardo Carloni
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy; (R.C.); (A.P.); (A.D.F.); (S.T.); (G.B.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15, 40138 Bologna, Italy
| | - Giorgio Frega
- Osteoncology, Bone and Soft Tissue Sarcomas, and Innovative Therapies, IRCCS Istituto Ortopedico Rizzoli, 40136 Bologna, Italy;
| | - Andrea Palloni
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy; (R.C.); (A.P.); (A.D.F.); (S.T.); (G.B.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15, 40138 Bologna, Italy
| | - Alessandro Di Federico
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy; (R.C.); (A.P.); (A.D.F.); (S.T.); (G.B.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15, 40138 Bologna, Italy
| | - Angela Dalia Ricci
- Medical Oncology Unit, National Institute of Gastroenterology, “Saverio de Bellis” Research Hospital, Castellana Grotte, 70013 Bari, Italy
- Correspondence:
| | - Raffaele De Luca
- Department of Surgical Oncology, IRCCS Istituto Tumori ‘Giovanni Paolo II’, Viale Orazio Flacco, 65, 70124 Bari, Italy;
| | - Simona Tavolari
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy; (R.C.); (A.P.); (A.D.F.); (S.T.); (G.B.)
| | - Giovanni Brandi
- Department of Specialized, Experimental and Diagnostic Medicine, University of Bologna, Via Giuseppe Massarenti, 9, 40138 Bologna, Italy; (R.C.); (A.P.); (A.D.F.); (S.T.); (G.B.)
- Division of Medical Oncology, IRCCS Azienda Ospedaliero-Universitaria di Bologna, Via Albertoni, 15, 40138 Bologna, Italy
| |
Collapse
|
136
|
Scott AJ, Sharman R, Shroff RT. Precision Medicine in Biliary Tract Cancer. J Clin Oncol 2022; 40:2716-2734. [PMID: 35839428 DOI: 10.1200/jco.21.02576] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Precision medicine has become a dominant theme in the treatment of biliary tract cancers (BTCs). Although prognosis remains poor, technologies for improved molecular characterization along with the US Food and Drug Administration approval of several targeted therapies have changed the therapeutic landscape of advanced BTC. The hallmark of BTC oncogenesis is chronic inflammation of the liver and biliary tract regardless of the anatomical subtype. Subtypes of BTC correspond to distinct molecular characteristics, making BTC a molecularly heterogenous collection of tumors. Collectively, up to 40% of BTCs harbor a potentially targetable molecular abnormality, and the National Comprehensive Cancer Network guidelines recommend molecular profiling for all patients with advanced BTC. Use of circulating tumor DNA, immunohistochemistry, and next-generation sequencing continues to expand the utility for biomarker-driven management and molecular monitoring of BTC. Improving outcomes using biomarker-agnostic treatment for nontargetable tumors also remains a priority, and combinational treatment strategies such as immune checkpoint inhibition plus chemotherapy hold promise for this subgroup of patients.
Collapse
Affiliation(s)
- Aaron J Scott
- Division of Hematology and Oncology, University of Arizona Cancer Center, Tucson, AZ
| | - Reya Sharman
- Division of Hematology and Oncology, University of Arizona Cancer Center, Tucson, AZ
| | - Rachna T Shroff
- Division of Hematology and Oncology, University of Arizona Cancer Center, Tucson, AZ
| |
Collapse
|
137
|
Integrative Analysis of Intrahepatic Cholangiocarcinoma Subtypes for Improved Patient Stratification: Clinical, Pathological, and Radiological Considerations. Cancers (Basel) 2022; 14:cancers14133156. [PMID: 35804931 PMCID: PMC9264781 DOI: 10.3390/cancers14133156] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Revised: 06/20/2022] [Accepted: 06/23/2022] [Indexed: 02/04/2023] Open
Abstract
Simple Summary Liver cancer subtypes differ in prognosis and genetic alterations. An accurate diagnosis made on time is the key aspect of clinical decision-making. Hence, a correct diagnosis is of pivotal importance for individual patients. In this study, we identified the most relevant clinical, radiological, and histological parameters for an improved subtype diagnosis of intrahepatic cholangiocarcinoma. As a result of our study, the radiologist should consider factors such as growth pattern, location, and contrast agent behavior. For the pathologist, precursor lesions, mucin secretion, and a periductal-infiltrating growth are of utmost importance, while immunohistochemical analyses are essential for exclusion of extrahepatic malignancies, but have so far only value for iCCA subtype analysis in the context with other parameters. Abstract Intrahepatic cholangiocarcinomas (iCCAs) may be subdivided into large and small duct types that differ in etiology, molecular alterations, therapy, and prognosis. Therefore, the optimal iCCA subtyping is crucial for the best possible patient outcome. In our study, we analyzed 148 small and 84 large duct iCCAs regarding their clinical, radiological, histological, and immunohistochemical features. Only 8% of small duct iCCAs, but 27% of large duct iCCAs, presented with initial jaundice. Ductal tumor growth pattern and biliary obstruction were significant radiological findings in 33% and 48% of large duct iCCAs, respectively. Biliary epithelial neoplasia and intraductal papillary neoplasms of the bile duct were detected exclusively in large duct type iCCAs. Other distinctive histological features were mucin formation and periductal-infiltrating growth pattern. Immunohistochemical staining against CK20, CA19-9, EMA, CD56, N-cadherin, and CRP could help distinguish between the subtypes. To summarize, correct subtyping of iCCA requires an interplay of several factors. While the diagnosis of a precursor lesion, evidence of mucin, or a periductal-infiltrating growth pattern indicates the diagnosis of a large duct type, in their absence, several other criteria of diagnosis need to be combined.
Collapse
|
138
|
Arrichiello G, Nacca V, Paragliola F, Giunta EF. Liquid biopsy in biliary tract cancer from blood and bile samples: current knowledge and future perspectives. EXPLORATION OF TARGETED ANTI-TUMOR THERAPY 2022; 3:362-374. [PMID: 36045913 PMCID: PMC9400719 DOI: 10.37349/etat.2022.00087] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2022] [Accepted: 04/18/2022] [Indexed: 12/05/2022] Open
Abstract
Biliary tract cancer (BTC) is an aggressive tumor characterized by a poor prognosis. In the latest years, targetable genetic alterations have been discovered in BTC patients, leading to the approval of new targeted therapies. Liquid biopsy, which is a non-invasive method for detecting tumor biomarkers from fluid samples, is a useful tool for diagnosis and molecular characterization, but also for prognosis assessment and monitoring of treatment response. In this review, recent works on liquid biopsy in BTC patients were analyzed, focusing on some relevant aspects for clinical use and trying to depict the future role of this technique. Moreover, differences between plasma and bile samples were pointed out, in light of the peculiar biology of BTC and the possibility of using bile as an alternative source of cell-free DNA (cfDNA) for genomic analysis. In the era of precision oncology, the increasing adoption of liquid biopsy in BTC patients will certainly improve the management of this disease.
Collapse
Affiliation(s)
- Gianluca Arrichiello
- Oncology Unit, Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Valeria Nacca
- Oncology Unit, Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Fernando Paragliola
- Oncology Unit, Department of Precision Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80131 Naples, Italy
| | - Emilio Francesco Giunta
- Department of Experimental Medicine, Università degli Studi della Campania Luigi Vanvitelli, 80138 Naples, Italy
| |
Collapse
|
139
|
Kunprom W, Aphivatanasiri C, Sa-Ngiamwibool P, Sangkhamanon S, Intarawichian P, Bamrungkit W, Thanee M, Prajumwongs P, Loilome W, Khuntikeo N, Titapun A, Jareanrat A, Thanasukarn V, Srisuk T, Luvira V, Eurboonyanun K, Promsorn J, Koonmee S. Prognostic Significance of Growth Pattern in Predicting Outcome of Opisthorchis viverrini-Associated Distal Cholangiocarcinoma in Thailand. Front Public Health 2022; 10:816028. [PMID: 35651852 PMCID: PMC9149579 DOI: 10.3389/fpubh.2022.816028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2021] [Accepted: 04/26/2022] [Indexed: 11/23/2022] Open
Abstract
Distal cholangiocarcinoma (dCCA) is a rare type of CCA in Asia, even in Opisthorchis viverrini-prevalent Northeastern Thailand. The clinical ambiguity and imprecision of diagnosis surrounding this malignancy result in high mortality due often to advanced/metastatic disease on presentation. We aim to identify a prognostic factor that can improve the performance stratification and influence the outcome of dCCA patients after curative resection. A total of 79 patients who underwent curative-intended surgery for dCCA was enrolled. Possible risk factors for survival were analyzed with log-rank test, and independent factors with Cox regression model. dCCA patients were staged and classified according to the 8th edition the American Joint Committee on Cancer (AJCC) Staging Manual. Results were then compared with the revised classification employing the prognostic factor identified from multivariate analysis. Multivariate analysis revealed that growth pattern (p < 0.01) and distant metastasis (p = 0.012) were independent factors. Growth patterns comprise intraductal (ID), periductal infiltrating (PI), mass-forming (MF), and mixed types. When dCCA patients were grouped into those having good and poor outcomes (with and without ID components, respectively). The survival outcomes significantly differed among patients with and without ID components, which was better than with the 8th AJCC staging system in our cohort. Furthermore, Chi-square test showed that patterns without ID components (PI, MF, PI + MF) correlated with lymph node and distant metastasis. Therefore, classification of dCCA patients after curative-intended surgical resection based on growth pattern provides additional beneficial information for the prediction of survival in dCCA patients.
Collapse
Affiliation(s)
- Waritta Kunprom
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Chaiwat Aphivatanasiri
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Prakasit Sa-Ngiamwibool
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Sakkarn Sangkhamanon
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Piyapharom Intarawichian
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Walailak Bamrungkit
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Malinee Thanee
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Piya Prajumwongs
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Watcharin Loilome
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Biochemistry, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Narong Khuntikeo
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Attapol Titapun
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Apiwat Jareanrat
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Vasin Thanasukarn
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Tharatip Srisuk
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Vor Luvira
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Surgery, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Kulyada Eurboonyanun
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Julaluck Promsorn
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Radiology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| | - Supinda Koonmee
- Cholangiocarcinoma Screening and Care Program (CASCAP), Khon Kaen University, Khon Kaen, Thailand.,Cholangiocarcinoma Research Institute, Khon Kaen University, Khon Kaen, Thailand.,Department of Pathology, Faculty of Medicine, Khon Kaen University, Khon Kaen, Thailand
| |
Collapse
|
140
|
Bollwein C, Gonҫalves JPL, Utpatel K, Weichert W, Schwamborn K. MALDI Mass Spectrometry Imaging for the Distinction of Adenocarcinomas of the Pancreas and Biliary Tree. Molecules 2022; 27:3464. [PMID: 35684402 PMCID: PMC9182561 DOI: 10.3390/molecules27113464] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Revised: 05/14/2022] [Accepted: 05/23/2022] [Indexed: 02/04/2023] Open
Abstract
Pancreatic ductal adenocarcinoma and cholangiocarcinoma constitute two aggressive tumor types that originate from the epithelial lining of the excretory ducts of the pancreatobiliary tract. Given their close histomorphological resemblance, a correct diagnosis can be challenging and almost impossible without clinical information. In this study, we investigated whether mass spectrometric peptide features could be employed to distinguish pancreatic ductal adenocarcinoma from cholangiocarcinoma. Three tissue microarrays of formalin-fixed and paraffin-embedded material (FFPE) comprising 41 cases of pancreatic ductal adenocarcinoma and 41 cases of cholangiocarcinoma were analyzed by matrix-assisted laser desorption/ionization mass spectrometry imaging (MALDI-MSI). The derived peptide features and respective intensities were used to build different supervised classification algorithms: gradient boosting (GB), support vector machine (SVM), and k-nearest neighbors (KNN). On a pixel-by-pixel level, a classification accuracy of up to 95% could be achieved. The tentative identification of discriminative tryptic peptide signatures revealed proteins that are involved in the epigenetic regulation of the genome and tumor microenvironment. Despite their histomorphological similarities, mass spectrometry imaging represents an efficient and reliable approach for the distinction of PDAC from CC, offering a promising complementary or alternative approach to the existing tools used in diagnostics such as immunohistochemistry.
Collapse
Affiliation(s)
- Christine Bollwein
- Institute of Pathology, School of Medicine, Technical University of Munich, Trogerstraße 18, 81675 Munich, Germany; (J.P.L.G.); (W.W.); (K.S.)
| | - Juliana Pereira Lopes Gonҫalves
- Institute of Pathology, School of Medicine, Technical University of Munich, Trogerstraße 18, 81675 Munich, Germany; (J.P.L.G.); (W.W.); (K.S.)
| | - Kirsten Utpatel
- Institute of Pathology, University of Regensburg, Franz-Josef-Strauß-Allee 11, 93053 Regensburg, Germany;
| | - Wilko Weichert
- Institute of Pathology, School of Medicine, Technical University of Munich, Trogerstraße 18, 81675 Munich, Germany; (J.P.L.G.); (W.W.); (K.S.)
| | - Kristina Schwamborn
- Institute of Pathology, School of Medicine, Technical University of Munich, Trogerstraße 18, 81675 Munich, Germany; (J.P.L.G.); (W.W.); (K.S.)
| |
Collapse
|
141
|
Wu MJ, Shi L, Merritt J, Zhu AX, Bardeesy N. Biology of IDH mutant cholangiocarcinoma. Hepatology 2022; 75:1322-1337. [PMID: 35226770 DOI: 10.1002/hep.32424] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 12/15/2022]
Abstract
Isocitrate dehydrogenase 1 and 2 (IDH1 and IDH2) are the most frequently mutated metabolic genes across human cancers. These hotspot gain-of-function mutations cause the IDH enzyme to aberrantly generate high levels of the oncometabolite, R-2-hydroxyglutarate, which competitively inhibits enzymes that regulate epigenetics, DNA repair, metabolism, and other processes. Among epithelial malignancies, IDH mutations are particularly common in intrahepatic cholangiocarcinoma (iCCA). Importantly, pharmacological inhibition of mutant IDH (mIDH) 1 delays progression of mIDH1 iCCA, indicating a role for this oncogene in tumor maintenance. However, not all patients receive clinical benefit, and those who do typically show stable disease rather than significant tumor regressions. The elucidation of the oncogenic functions of mIDH is needed to inform strategies that can more effectively harness mIDH as a therapeutic target. This review will discuss the biology of mIDH iCCA, including roles of mIDH in blocking cell differentiation programs and suppressing antitumor immunity, and the potential relevance of these effects to mIDH1-targeted therapy. We also cover opportunities for synthetic lethal therapeutic interactions that harness the altered cell state provoked by mIDH1 rather than inhibiting the mutant enzyme. Finally, we highlight key outstanding questions in the biology of this fascinating and incompletely understood oncogene.
Collapse
Affiliation(s)
- Meng-Ju Wu
- Cancer CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Broad Institute of Harvard and Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Lei Shi
- Cancer CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Broad Institute of Harvard and Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| | - Joshua Merritt
- Cancer CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
| | - Andrew X Zhu
- Cancer CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Jiahui International Cancer CenterShanghaiChina
| | - Nabeel Bardeesy
- Cancer CenterMassachusetts General HospitalBostonMassachusettsUSA
- Department of MedicineHarvard Medical SchoolBostonMassachusettsUSA
- Broad Institute of Harvard and Massachusetts Institute of TechnologyCambridgeMassachusettsUSA
| |
Collapse
|
142
|
Trifylli EM, Koustas E, Papadopoulos N, Sarantis P, Aloizos G, Damaskos C, Garmpis N, Garmpi A, Karamouzis MV. An Insight into the Novel Immunotherapy and Targeted Therapeutic Strategies for Hepatocellular Carcinoma and Cholangiocarcinoma. Life (Basel) 2022; 12:665. [PMID: 35629333 PMCID: PMC9146702 DOI: 10.3390/life12050665] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Revised: 04/28/2022] [Accepted: 04/29/2022] [Indexed: 02/05/2023] Open
Abstract
Hepatocellular carcinoma (HCC) and cholangiocarcinoma (CCA) constitute highly malignant forms of primary liver cancers. Hepatocellular and bile duct carcinogenesis is a multiplex process, caused by various genetic and epigenetic alterations, the influence of environmental factors, as well as the implication of the gut microbiome, which was undervalued in the previous years. The molecular and immunological analysis of the above malignancies, as well as the identification of the crucial role of intestinal microbiota for hepatic and biliary pathogenesis, opened the horizon for novel therapeutic strategies, such as immunotherapy, and enhanced the overall survival of cancer patients. Some of the immunotherapy strategies that are either clinically applied or under pre-clinical studies include monoclonal antibodies, immune checkpoint blockade, cancer vaccines, as well as the utilization of oncolytic viral vectors and Chimeric antigen, receptor-engineered T (CAR-T) cell therapy. In this current review, we will shed light on the recent therapeutic modalities for the above primary liver cancers, as well as on the methods for the enhancement and optimization of anti-tumor immunity.
Collapse
Affiliation(s)
- Eleni-Myrto Trifylli
- 1st Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece; (E.K.); (N.P.); (G.A.)
- Division of Molecular Oncology, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (M.V.K.)
| | - Evangelos Koustas
- 1st Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece; (E.K.); (N.P.); (G.A.)
- Division of Molecular Oncology, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (M.V.K.)
| | - Nikolaos Papadopoulos
- 1st Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece; (E.K.); (N.P.); (G.A.)
| | - Panagiotis Sarantis
- Division of Molecular Oncology, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (M.V.K.)
| | - Georgios Aloizos
- 1st Department of Internal Medicine, 417 Army Share Fund Hospital, 11521 Athens, Greece; (E.K.); (N.P.); (G.A.)
| | - Christos Damaskos
- N.S. Christeas Laboratory of Experimental Surgery and Surgical Research, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
- Renal Transplantation Unit, Laiko General Hospital, 11527 Athens, Greece
| | - Nikolaos Garmpis
- Second Department of Propedeutic Surgery, Laiko General Hospital, Medical School, National and Kapodistrian University of Athens, 11572 Athens, Greece;
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Anna Garmpi
- First Department of Pathology, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece;
| | - Michalis V. Karamouzis
- Division of Molecular Oncology, Department of Biological Chemistry, Medical School, National and Kapodistrian University of Athens, 11527 Athens, Greece; (P.S.); (M.V.K.)
| |
Collapse
|
143
|
Bai Z, Guo Z, Liu J, Chen YA, Lu Q, Zhang P, Hong L, Wang Y, Dong J. Lapatinib Suppresses HER2-Overexpressed Cholangiocarcinoma and Overcomes ABCB1- Mediated Gemcitabine Chemoresistance. Front Oncol 2022; 12:860339. [PMID: 35463361 PMCID: PMC9033256 DOI: 10.3389/fonc.2022.860339] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2022] [Accepted: 03/22/2022] [Indexed: 11/29/2022] Open
Abstract
Background Recent breakthroughs in cholangiocarcinoma (CCA) genomics have led to the discovery of many unique identifying mutations, of which HER2 has been found to be overexpressed specifically in cases of extrahepatic CCA. However, whether or not lapatinib (an oral tyrosine kinase inhibitor selective for inhibition of HER2), or a combination of lapatinib and gemcitabine, exerts inhibitory effects on HER2-overexpressed CCA is still unclear. Methods The effect of lapatinib and a lapatinib-gemcitabine combination treatment on CCA was determined using organoid and cell line models. Cell cycle arrest, apoptosis and proteins involving HER2-dependent downstream signaling pathways were analyzed to assess the effect of lapatinib on HER2+ CCA. The synergistic effect of lapatinib and gemcitabine was interpreted by docking analysis, ABCB1-associated ATPase assay, rhodamine transport assay and LC-MS/MS analyses. Results dFdCTP, the active metabolite of gemcitabine, is proved to be the substrate of ABCB1 by docking analysis and ATPase assay. The upregulation of ABCB1 after gemcitabine treatment accounts for the resistance of gemcitabine. Lapatinib exerts a dual effect on HER2-overexpressed CCA, suppressing the growth of CCA cells by inhibiting HER2 and HER2-dependent downstream signaling pathways while inhibiting ABCB1 transporter function, allowing for the accumulation of active gemcitabine metabolites within cells. Conclusions Our data demonstrates that lapatinib can not only inhibit growth of CCA overexpressing HER2, but can also circumvent ABCB1-mediated chemoresistance after gemcitabine treatment. As such, this provides a preclinical rationale basis for further clinical investigation into the effectiveness of a combination treatment of lapatinib with gemcitabine in HER2-overexpressed CCA.
Collapse
Affiliation(s)
- Zhiqing Bai
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Zhiying Guo
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jiaxing Liu
- State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu-Ann Chen
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Qian Lu
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Ping Zhang
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China
| | - Lili Hong
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College (State Key Laboratory of Bioactive Substance and Function of Natural Medicines & NHC Key Laboratory of Biosynthesis of Natural Products), Beijing, China
| | - Yunfang Wang
- Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Jiahong Dong
- Department of Hepatobiliary and Pancreatic Surgery, The First Hospital of Jilin University, Changchun, China.,Hepatopancreatobiliary Center, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| |
Collapse
|
144
|
Upregulation of circ_0059961 suppresses cholangiocarcinoma development by modulating miR-629-5p/SFRP2 axis. Pathol Res Pract 2022; 234:153901. [DOI: 10.1016/j.prp.2022.153901] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/23/2022] [Revised: 04/03/2022] [Accepted: 04/15/2022] [Indexed: 12/25/2022]
|
145
|
Rhee H, Choi SH, Park JH, Cho ES, Yeom SK, Park S, Han K, Lee SS, Park MS. Preoperative magnetic resonance imaging-based prognostic model for mass-forming intrahepatic cholangiocarcinoma. Liver Int 2022; 42:930-941. [PMID: 35152534 DOI: 10.1111/liv.15196] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Revised: 02/02/2022] [Accepted: 02/04/2022] [Indexed: 02/13/2023]
Abstract
BACKGROUND & AIMS As most staging systems for intrahepatic cholangiocarcinoma (iCCA) are based on pathological results, preoperative prognostic prediction is limited. This study aimed to develop and validate a prognostic model for the overall survival of patients with mass-forming iCCA (MF-iCCA) using preoperative magnetic resonance imaging (MRI) and clinical findings. METHODS We enrolled a total of 316 patients who underwent preoperative MRI and surgical resection for treatment-naive MF-iCCA from six institutions, between January 2009 and December 2015. The subjects were randomly assigned to a training set (n = 208) or validation set (n = 108). The MRIs were independently reviewed by three abdominal radiologists. Using MRI and clinical findings, an MRI prognostic score was established. We compared the discrimination performance of MRI prognostic scores with those of conventional pathological staging systems. RESULTS We developed an MRI prognostic score consisting of serum CA19-9 and three MRI findings (tumour multiplicity, lymph node metastasis and bile duct invasion). The MRI prognostic score demonstrated good discrimination performance in both the training set (C-index, 0.738; 95% confidence interval [CI], 0.698-0.780) and validation set (C-index, 0.605; 95% CI, 0.526-0.680). In the validation set, MRI prognostic score showed no significant difference with AJCC 8th TNM stage, MEGNA score and Nathan's stage. CONCLUSIONS Our MRI prognostic score for overall survival of MF-iCCA showed comparable discriminatory performance with pathological staging systems and might be used to determine an optimal treatment strategy.
Collapse
Affiliation(s)
- Hyungjin Rhee
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Hyun Choi
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Ji Hoon Park
- Department of Radiology, Seoul National University Bundang Hospital, Seoul, Republic of Korea
| | - Eun-Suk Cho
- Department of Radiology, Gangnam Severance Hospital, Yonsei University College of Medicine Seoul, Seoul, Republic of Korea
| | - Suk-Keu Yeom
- Department of Radiology, Korea University Ansan Hospital, Korea University College of Medicine, Seoul, Republic of Korea
| | - Sumi Park
- Department of Radiology, National Health Insurance Service Ilsan Hospital, Goyang, Republic of Korea
| | - Kyunghwa Han
- Department of Radiology, Research Institute of Radiological Science, Center for Clinical Imaging Data Science, College of Medicine, Yonsei University, Seoul, South Korea
| | - Seung Soo Lee
- Department of Radiology and Research Institute of Radiology, University of Ulsan College of Medicine, Asan Medical Center, Seoul, Republic of Korea
| | - Mi-Suk Park
- Department of Radiology, Research Institute of Radiological Science, Severance Hospital, Yonsei University College of Medicine, Seoul, Republic of Korea
| |
Collapse
|
146
|
Song G, Shi Y, Meng L, Ma J, Huang S, Zhang J, Wu Y, Li J, Lin Y, Yang S, Rao D, Cheng Y, Lin J, Ji S, Liu Y, Jiang S, Wang X, Zhang S, Ke A, Wang X, Cao Y, Ji Y, Zhou J, Fan J, Zhang X, Xi R, Gao Q. Single-cell transcriptomic analysis suggests two molecularly subtypes of intrahepatic cholangiocarcinoma. Nat Commun 2022; 13:1642. [PMID: 35347134 PMCID: PMC8960779 DOI: 10.1038/s41467-022-29164-0] [Citation(s) in RCA: 80] [Impact Index Per Article: 26.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2021] [Accepted: 02/25/2022] [Indexed: 12/12/2022] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) is a highly heterogeneous cancer with limited understanding of its classification and tumor microenvironment. Here, by performing single-cell RNA sequencing on 144,878 cells from 14 pairs of iCCA tumors and non-tumor liver tissues, we find that S100P and SPP1 are two markers for iCCA perihilar large duct type (iCCAphl) and peripheral small duct type (iCCApps). S100P + SPP1- iCCAphl has significantly reduced levels of infiltrating CD4+ T cells, CD56+ NK cells, and increased CCL18+ macrophages and PD1+CD8+ T cells compared to S100P-SPP1 + iCCApps. The transcription factor CREB3L1 is identified to regulate the S100P expression and promote tumor cell invasion. S100P-SPP1 + iCCApps has significantly more SPP1+ macrophage infiltration, less aggressiveness and better survival than S100P + SPP1- iCCAphl. Moreover, S100P-SPP1 + iCCApps harbors tumor cells at different status of differentiation, such as ALB + hepatocyte differentiation and ID3+ stemness. Our study extends the understanding of the diversity of tumor cells in iCCA.
Collapse
Affiliation(s)
- Guohe Song
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Yang Shi
- School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing, China
| | - Lu Meng
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Jiaqiang Ma
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Siyuan Huang
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Juan Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Yingcheng Wu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Jiaxin Li
- Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing, China
| | - Youpei Lin
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Shuaixi Yang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Dongning Rao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Yifei Cheng
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Jian Lin
- Department of Cancer Center, Jin Shan Hospital, Fudan University, Shanghai, China
| | - Shuyi Ji
- Department of Cancer Center, Jin Shan Hospital, Fudan University, Shanghai, China
| | - Yuming Liu
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Shan Jiang
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China
| | - Xiaoliang Wang
- Department of General Surgery, Qingpu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, China
| | - Shu Zhang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Aiwu Ke
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Xiaoying Wang
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
| | - Ya Cao
- Cancer Research Institute, Xiangya School of Medicine, Central South University, Changsha, Hunan, China
| | - Yuan Ji
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Jian Zhou
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China
| | - Jia Fan
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China.
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, China.
| | - Xiaoming Zhang
- Key Laboratory of Molecular Virology & Immunology, Institut Pasteur of Shanghai, Chinese Academy of Sciences, Shanghai, China.
| | - Ruibin Xi
- School of Mathematical Sciences and Center for Statistical Science, Peking University, Beijing, China.
| | - Qiang Gao
- Department of Liver Surgery and Transplantation, Liver Cancer Institute, Zhongshan Hospital, and Key Laboratory of Carcinogenesis and Cancer Invasion of Ministry of Education, Fudan University, Shanghai, China.
| |
Collapse
|
147
|
Vij M, Puri Y, Rammohan A, G G, Rajalingam R, Kaliamoorthy I, Rela M. Pathological, molecular, and clinical characteristics of cholangiocarcinoma: A comprehensive review. World J Gastrointest Oncol 2022; 14:607-627. [PMID: 35321284 PMCID: PMC8919011 DOI: 10.4251/wjgo.v14.i3.607] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2021] [Revised: 12/13/2021] [Accepted: 02/23/2022] [Indexed: 02/06/2023] Open
Abstract
Cholangiocarcinomas are a heterogeneous group of highly aggressive cancers that may arise anywhere within the biliary tree. There is a wide geographical variation with regards to its incidence, and risk-factor associations which may include liver fluke infection, primary sclerosing cholangitis, and hepatolithiasis amongst others. These tumours are classified into intrahepatic, perihilar and distal based on their anatomical location. Morphologically, intrahepatic cholangiocarcinomas are further sub-classified into small and large duct variants. Perihilar and distal cholangiocarcinomas are usually mucin-producing tubular adenocarcinomas. Cholangiocarcinomas develop through a multistep carcinogenesis and are preceded by dysplastic and in situ lesions. While clinical characteristics and management of these tumours have been extensively elucidated in literature, their ultra-structure and tumour biology remain relatively unknown. This review focuses on the current knowledge of pathological characteristics, molecular alterations of cholangiocarcinoma, and its precursor lesions (including biliary intraepithelial neoplasia, intraductal papillary neoplasms of the bile duct, intraductal tubulopapillary neoplasms and mucinous cystic neoplasm).
Collapse
Affiliation(s)
- Mukul Vij
- Department of Pathology, Dr Rela Institute and Medical center, Chennai 600044, Tamil Nadu, India
| | - Yogesh Puri
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Ashwin Rammohan
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Gowripriya G
- Department of Pathology, Dr Rela Institute and Medical center, Chennai 600044, Tamil Nadu, India
| | - Rajesh Rajalingam
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Ilankumaran Kaliamoorthy
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| | - Mohamed Rela
- Institute of Liver Disease and Transplantation, Dr Rela Institute and Medical Center, Chennai 600044, Tamil Nadu, India
| |
Collapse
|
148
|
Ko S, Kim M, Molina L, Sirica AE, Monga SP. YAP1 activation and Hippo pathway signaling in the pathogenesis and treatment of intrahepatic cholangiocarcinoma. Adv Cancer Res 2022; 156:283-317. [PMID: 35961703 PMCID: PMC9972177 DOI: 10.1016/bs.acr.2022.02.003] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Intrahepatic cholangiocarcinoma (iCCA), the second most common primary liver cancer, is a highly lethal epithelial cell malignancy exhibiting features of cholangiocyte differentiation. iCCAs can potentially develop from multiple cell types of origin within liver, including immature or mature cholangiocytes, hepatic stem cells/progenitor cells, and from transdifferentiation of hepatocytes. Understanding the molecular mechanisms and genetic drivers that diversely drive specific cell lineage pathways leading to iCCA has important biological and clinical implications. In this context, activation of the YAP1-TEAD dependent transcription, driven by Hippo-dependent or -independent diverse mechanisms that lead to the stabilization of YAP1 is crucially important to biliary fate commitment in hepatobiliary cancer. In preclinical models, YAP1 activation in hepatocytes or cholangiocytes is sufficient to drive their malignant transformation into iCCA. Moreover, nuclear YAP1/TAZ is highly prevalent in human iCCA irrespective of the varied etiology, and significantly correlates with poor prognosis in iCCA patients. Based on the ubiquitous expression and diverse physiologic roles for YAP1/TAZ in the liver, recent studies have further revealed distinct functions of active YAP1/TAZ in regulating tumor metabolism, as well as the tumor immune microenvironment. In the current review, we discuss our current understanding of the various roles of the Hippo-YAP1 signaling in iCCA pathogenesis, with a specific focus on the roles played by the Hippo-YAP1 pathway in modulating biliary commitment and oncogenicity, iCCA metabolism, and immune microenvironment. We also discuss the therapeutic potential of targeting the YAP1/TAZ-TEAD transcriptional machinery in iCCA, its current limitations, and what future studies are needed to facilitate clinical translation.
Collapse
Affiliation(s)
- Sungjin Ko
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Pittsburgh Liver Research Center, Pittsburgh, PA, United States.
| | - Minwook Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States
| | - Laura Molina
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Pittsburgh Liver Research Center, Pittsburgh, PA, United States
| | - Alphonse E Sirica
- Department of Pathology, Virginia Commonwealth University School of Medicine, Richmond, VA, United States
| | - Satdarshan P Monga
- Division of Experimental Pathology, Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States; Pittsburgh Liver Research Center, Pittsburgh, PA, United States; Division of Gastroenterology, Hepatology, and Nutrition, University of Pittsburgh and UPMC, Pittsburgh, PA, United States.
| |
Collapse
|
149
|
Brown ZJ, Hewitt DB, Pawlik TM. Biomarkers of intrahepatic cholangiocarcinoma: diagnosis and response to therapy. FRONT BIOSCI-LANDMRK 2022; 27:85. [PMID: 35345317 DOI: 10.31083/j.fbl2703085] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2021] [Revised: 01/31/2022] [Accepted: 02/10/2022] [Indexed: 01/03/2025]
Abstract
Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer behind hepatocellular carcinoma (HCC) and carries a dismal prognosis. Improved genetic analysis has paved the way for a better understanding of the distinct somatic genomic landscapes of ICC. The use of next generation sequencing has paved the way for more personalized medicine through identifying unique mutations which may prove to be therapeutic targets. The ability to identify biomarkers specific to ICC will assist in establishing a diagnosis, monitoring response to therapy, as well as assist in identifying novel therapies and personalized medicine. Herein, we discuss potential biomarkers for ICC and how these markers can assist in diagnosis, monitor response to therapy, and potentially identify novel interventions for the treatment of ICC.
Collapse
Affiliation(s)
- Zachary J Brown
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - D Brock Hewitt
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| | - Timothy M Pawlik
- Division of Surgical Oncology, Department of Surgery, The Ohio State University Wexner Medical Center, Columbus, OH 43210, USA
| |
Collapse
|
150
|
Thol F, Gairing SJ, Czauderna C, Thomaidis T, Gamstätter T, Huber Y, Vollmar J, Lorenz J, Michel M, Bartsch F, Müller L, Kloeckner R, Galle PR, Wörns MA, Marquardt JU, Moehler M, Weinmann A, Foerster F. Outcomes in patients receiving palliative chemotherapy for advanced biliary tract cancer. JHEP REPORTS : INNOVATION IN HEPATOLOGY 2022; 4:100417. [PMID: 35141511 PMCID: PMC8792293 DOI: 10.1016/j.jhepr.2021.100417] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2021] [Revised: 11/24/2021] [Accepted: 11/30/2021] [Indexed: 11/04/2022]
Abstract
Background & Aims Advanced biliary tract cancer (ABTC) is associated with a poor prognosis. Real-world data on the outcome of patients with ABTC undergoing sequential chemotherapies remain scarce, and little is known about treatment options beyond the established first- and second-line treatments with gemcitabine + cisplatin and FOLFOX. This study aimed to evaluate the outcome of patients with regard to different oncological therapies and to identify prognostic factors. Methods From January 2010 until December 2019, 142 patients started palliative chemotherapy at our tertiary care liver center. Overall survival (OS) was calculated using Kaplan-Meier plots. Prognostic factors were evaluated using cox proportional-hazards. Results Patients received a median number of 2 lines of chemotherapy. Median OS was 6.7, 15.2 and 18.2 months for patients who received 1, 2 and 3 lines of chemotherapy, respectively. Patients treated with FOLFIRINOX had a significantly extended OS of 23.8 months (log-rank test: p = 0.018). The univariate cox regression analysis identified several clinical parameters associated with survival (e.g. albumin, bilirubin, carcinoembryonic antigen, carbohydrate antigen 19-9 levels). Conclusions Our study provides real-world data on the prognosis of ABTC including survival times for patients receiving third and later lines of chemotherapy. Lay summary Real-world data depicting the outcome of patients with advanced biliary tract cancer outside the framework of controlled trials remain rare despite being extremely important for clinical decision-making. This study therefore provides important real-world data on the established first- and second-line treatments with gemcitabine + cisplatin and FOLFOX, as well as on other chemotherapy regimens or later lines of chemotherapy. It further demonstrates that the use of FOLFIRINOX is associated with promising survival and that there is an association between various clinical parameters such as pre-therapeutic albumin, bilirubin or carbohydrate antigen 19-9 levels and survival. This study provides important real-world data on the clinical outcomes of patients with ABTC. Patients may benefit from later lines of chemotherapy beyond second line. The use of FOLFIRINOX was associated with a promising overall survival of 23.8 months in our study. Many prognostically relevant factors, such as pre-therapeutic albumin, bilirubin or CA19-9 levels, were identified. Targeted therapies will become an integral part of the standard of care for patients with ABTC.
Collapse
|