101
|
Fairweather R, Bradbury IR, Helyar SJ, de Bruyn M, Therkildsen NO, Bentzen P, Hemmer‐Hansen J, Carvalho GR. Range-wide genomic data synthesis reveals transatlantic vicariance and secondary contact in Atlantic cod. Ecol Evol 2018; 8:12140-12152. [PMID: 30598806 PMCID: PMC6303715 DOI: 10.1002/ece3.4672] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2018] [Revised: 09/20/2018] [Accepted: 09/24/2018] [Indexed: 11/11/2022] Open
Abstract
Recent advances in genetic and genomic analysis have greatly improved our understanding of spatial population structure in marine species. However, studies addressing phylogeographic patterns at oceanic spatial scales remain rare. In Atlantic cod (Gadus morhua), existing range-wide examinations suggest significant transatlantic divergence, although the fine-scale contemporary distribution of populations and potential for secondary contact are largely unresolved. Here, we explore transatlantic phylogeography in Atlantic cod using a data-synthesis approach, integrating multiple genome-wide single-nucleotide polymorphism (SNP) datasets representative of different regions to create a single range-wide dataset containing 1,494 individuals from 54 locations and genotyped at 796 common loci. Our analysis highlights significant transatlantic divergence and supports the hypothesis of westward post-glacial colonization of Greenland from the East Atlantic. Accordingly, our analysis suggests the presence of transatlantic secondary contact off eastern North America and supports existing perspectives on the phylogeographic history of Atlantic cod with an unprecedented combination of genetic and geographic resolution. Moreover, we demonstrate the utility of integrating distinct SNP databases of high comparability.
Collapse
Affiliation(s)
- Robert Fairweather
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
- School of Biological SciencesBangor UniversityBangorUK
| | - Ian R. Bradbury
- Science Branch, Department of FisheriesSt John’s, Newfoundland and LabradorCanada
| | - Sarah J. Helyar
- Institute of Global Food SecurityQueen’s University BelfastBelfastUK
| | - Mark de Bruyn
- School of Biological SciencesBangor UniversityBangorUK
- School of Life and Environmental SciencesThe University of SydneySydneyNew South WalesAustralia
| | | | - Paul Bentzen
- Department of BiologyDalhousie UniversityHalifaxNova ScotiaCanada
| | - Jakob Hemmer‐Hansen
- Section for Marine Living Resources, National Institute for Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | | |
Collapse
|
102
|
Hooper DM, Griffith SC, Price TD. Sex chromosome inversions enforce reproductive isolation across an avian hybrid zone. Mol Ecol 2018; 28:1246-1262. [PMID: 30230092 DOI: 10.1111/mec.14874] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2018] [Revised: 08/23/2018] [Accepted: 08/27/2018] [Indexed: 12/11/2022]
Abstract
Across hybrid zones, the sex chromosomes are often more strongly differentiated than the autosomes. This is regularly attributed to the greater frequency of reproductive incompatibilities accumulating on sex chromosomes and their exposure in the heterogametic sex. Working within an avian hybrid zone, we explore the possibility that chromosome inversions differentially accumulate on the Z chromosome compared to the autosomes and thereby contribute to Z chromosome differentiation. We analyse the northern Australian hybrid zone between two subspecies of the long-tailed finch (Poephila acuticauda), first described based on differences in bill colour, using reduced-representation genomic sequencing for 293 individuals over a 1,530-km transect. Autosomal differentiation between subspecies is minimal. In contrast, 75% of the Z chromosome is highly differentiated and shows a steep genomic cline, which is displaced 350 km to the west of the cline in bill colour. Differentiation is associated with two or more putative chromosomal inversions, each predominating in one subspecies. If inversions reduce recombination between hybrid incompatibilities, they are selectively favoured and should therefore accumulate in hybrid zones. We argue that this predisposes inversions to differentially accumulate on the Z chromosome. One genomic region affecting bill colour is on the Z, but the main candidates are on chromosome 8. This and the displacement of the bill colour and Z chromosome cline centres suggest that bill colour has not strongly contributed to inversion accumulation. Based on cline width, however, the Z chromosome and bill colour both contribute to reproductive isolation established between this pair of subspecies.
Collapse
Affiliation(s)
- Daniel M Hooper
- Cornell Lab of Ornithology, Cornell University, Ithaca, New York.,Committe on Evolutionary Biology, University of Chicago, Chicago, Illinois
| | - Simon C Griffith
- Department of Biological Sciences, Macquarie University, Sydney, New South Wales, Australia
| | - Trevor D Price
- Department of Ecology and Evolution, University of Chicago, Chicago, Illinois
| |
Collapse
|
103
|
Knutsen H, Jorde PE, Hutchings JA, Hemmer‐Hansen J, Grønkjær P, Jørgensen KM, André C, Sodeland M, Albretsen J, Olsen EM. Stable coexistence of genetically divergent Atlantic cod ecotypes at multiple spatial scales. Evol Appl 2018; 11:1527-1539. [PMID: 30344625 PMCID: PMC6183466 DOI: 10.1111/eva.12640] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Accepted: 03/09/2018] [Indexed: 12/15/2022] Open
Abstract
Coexistence in the same habitat of closely related yet genetically different populations is a phenomenon that challenges our understanding of local population structure and adaptation. Identifying the underlying mechanisms for such coexistence can yield new insight into adaptive evolution, diversification and the potential for organisms to adapt and persist in response to a changing environment. Recent studies have documented cryptic, sympatric populations of Atlantic cod (Gadus morhua) in coastal areas. We analysed genetic origin of 6,483 individual cod sampled annually over 14 years from 125 locations along the Norwegian Skagerrak coast and document stable coexistence of two genetically divergent Atlantic cod ecotypes throughout the study area and study period. A "fjord" ecotype dominated in numbers deep inside fjords while a "North Sea" ecotype was the only type found in offshore North Sea. Both ecotypes coexisted in similar proportions throughout coastal habitats at all spatial scales. The size-at-age of the North Sea ecotype on average exceeded that of the fjord ecotype by 20% in length and 80% in weight across all habitats. Different growth and size among individuals of the two types might be one of several ecologically significant variables that allow for stable coexistence of closely related populations within the same habitat. Management plans, biodiversity initiatives and other mitigation strategies that do not account for the mixture of species ecotypes are unlikely to meet objectives related to the sustainability of fish and fisheries.
Collapse
Affiliation(s)
- Halvor Knutsen
- Institute of Marine ResearchFlødevigenHisNorway
- Department of BiosciencesCentre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernOsloNorway
- Centre for Coastal ResearchUniversity of AgderKristiansandNorway
| | - Per Erik Jorde
- Institute of Marine ResearchFlødevigenHisNorway
- Department of BiosciencesCentre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernOsloNorway
| | - Jeffrey A. Hutchings
- Institute of Marine ResearchFlødevigenHisNorway
- Department of BiosciencesCentre for Ecological and Evolutionary Synthesis (CEES)University of OsloBlindernOsloNorway
- Department of BiologyDalhousie UniversityHalifaxNSCanada
| | - Jakob Hemmer‐Hansen
- Section for Marine Living ResourcesNational Institute of Aquatic ResourcesTechnical University of DenmarkSilkeborgDenmark
| | - Peter Grønkjær
- Department for BioscienceAarhus UniversityAquatic BiologyAarhusDenmark
| | | | - Carl André
- Department of Marine Sciences – TjärnöUniversity of GothenburgStrömstadSweden
| | - Marte Sodeland
- Centre for Coastal ResearchUniversity of AgderKristiansandNorway
| | | | - Esben M. Olsen
- Institute of Marine ResearchFlødevigenHisNorway
- Centre for Coastal ResearchUniversity of AgderKristiansandNorway
| |
Collapse
|
104
|
Dahle G, Quintela M, Johansen T, Westgaard JI, Besnier F, Aglen A, Jørstad KE, Glover KA. Analysis of coastal cod (Gadus morhua L.) sampled on spawning sites reveals a genetic gradient throughout Norway's coastline. BMC Genet 2018; 19:42. [PMID: 29986643 PMCID: PMC6036686 DOI: 10.1186/s12863-018-0625-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 05/18/2018] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Atlantic cod (Gadus morhua L.) has formed the basis of many economically significant fisheries in the North Atlantic, and is one of the best studied marine fishes, but a legacy of overexploitation has depleted populations and collapsed fisheries in several regions. Previous studies have identified considerable population genetic structure for Atlantic cod. However, within Norway, which is the country with the largest remaining catch in the Atlantic, the population genetic structure of coastal cod (NCC) along the entire coastline has not yet been investigated. We sampled > 4000 cod from 55 spawning sites. All fish were genotyped with 6 microsatellite markers and Pan I (Dataset 1). A sub-set of the samples (1295 fish from 17 locations) were also genotyped with an additional 9 microsatellites (Dataset 2). Otoliths were read in order to exclude North East Arctic Cod (NEAC) from the analyses, as and where appropriate. RESULTS We found no difference in genetic diversity, measured as number of alleles, allelic richness, heterozygosity nor effective population sizes, in the north-south gradient. In both data sets, weak but significant population genetic structure was revealed (Dataset 1: global FST = 0.008, P < 0.0001. Dataset 2: global FST = 0.004, P < 0.0001). While no clear genetic groups were identified, genetic differentiation increased among geographically-distinct samples. Although the locus Gmo132 was identified as a candidate for positive selection, possibly through linkage with a genomic region under selection, overall trends remained when this locus was excluded from the analyses. The most common allele in loci Gmo132 and Gmo34 showed a marked frequency change in the north-south gradient, increasing towards the frequency observed in NEAC in the north. CONCLUSION We conclude that Norwegian coastal cod displays significant population genetic structure throughout its entire range, that follows a trend of isolation by distance. Furthermore, we suggest that a gradient of genetic introgression between NEAC and NCC contributes to the observed population genetic structure. The current management regime for coastal cod in Norway, dividing it into two stocks at 62°N, represents a simplification of the level of genetic connectivity among coastal cod in Norway, and needs revision.
Collapse
Affiliation(s)
- Geir Dahle
- Institute of Marine Research (IMR), Postbox 1870, N-5817 Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| | - María Quintela
- Institute of Marine Research (IMR), Postbox 1870, N-5817 Bergen, Norway
| | - Torild Johansen
- Institute of Marine Research (IMR), Postbox 6404, N-9019 Tromsø, Norway
| | | | - François Besnier
- Institute of Marine Research (IMR), Postbox 1870, N-5817 Bergen, Norway
| | - Asgeir Aglen
- Institute of Marine Research (IMR), Postbox 1870, N-5817 Bergen, Norway
| | - Knut E. Jørstad
- Institute of Marine Research (IMR), Postbox 1870, N-5817 Bergen, Norway
| | - Kevin A. Glover
- Institute of Marine Research (IMR), Postbox 1870, N-5817 Bergen, Norway
- Department of Biology, University of Bergen, Bergen, Norway
| |
Collapse
|
105
|
Jørgensen TE, Karlsen BO, Emblem Å, Breines R, Andreassen M, Rounge TB, Nederbragt AJ, Jakobsen KS, Nymark M, Ursvik A, Coucheron DH, Jakt LM, Nordeide JT, Moum T, Johansen SD. Mitochondrial genome variation of Atlantic cod. BMC Res Notes 2018; 11:397. [PMID: 29921324 PMCID: PMC6009815 DOI: 10.1186/s13104-018-3506-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 06/15/2018] [Indexed: 11/10/2022] Open
Abstract
OBJECTIVE The objective of this study was to analyse intraspecific sequence variation of Atlantic cod mitochondrial DNA, based on a comprehensive collection of completely sequenced mitochondrial genomes. RESULTS We determined the complete mitochondrial DNA sequence of 124 cod specimens from the eastern and western part of the species' distribution range in the North Atlantic Ocean. All specimens harboured a unique mitochondrial DNA haplotype. Nine hundred and fifty-two polymorphic sites were identified, including 109 non-synonymous sites within protein coding regions. Eighteen variable sites were identified as indels, exclusively distributed in structural RNA genes and non-coding regions. Phylogeographic analyses based on 156 available cod mitochondrial genomes did not reveal a clear structure. There was a lack of mitochondrial genetic differentiation between two ecotypes of cod in the eastern North Atlantic, but eastern and western cod were differentiated and mitochondrial genome diversity was higher in the eastern than the western Atlantic, suggesting deviating population histories. The geographic distribution of mitochondrial genome variation seems to be governed by demographic processes and gene flow among ecotypes that are otherwise characterized by localized genomic divergence associated with chromosomal inversions.
Collapse
Affiliation(s)
- Tor Erik Jørgensen
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Bård Ove Karlsen
- Research Laboratory and Department of Laboratory Medicine, Nordland Hospital, Bodø, Norway
| | - Åse Emblem
- Department of Medical Biology, Faculty of Health Sciences, UiT-Arctic University of Norway, Tromsø, Norway
| | - Ragna Breines
- Department of Medical Biology, Faculty of Health Sciences, UiT-Arctic University of Norway, Tromsø, Norway
| | - Morten Andreassen
- Department of Medical Biology, Faculty of Health Sciences, UiT-Arctic University of Norway, Tromsø, Norway
| | - Trine B Rounge
- Centre for Ecological and Evolutionary Syntheses (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Alexander J Nederbragt
- Centre for Ecological and Evolutionary Syntheses (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Kjetill S Jakobsen
- Centre for Ecological and Evolutionary Syntheses (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Marianne Nymark
- Department of Medical Biology, Faculty of Health Sciences, UiT-Arctic University of Norway, Tromsø, Norway
| | - Anita Ursvik
- Department of Medical Biology, Faculty of Health Sciences, UiT-Arctic University of Norway, Tromsø, Norway
| | - Dag H Coucheron
- Department of Medical Biology, Faculty of Health Sciences, UiT-Arctic University of Norway, Tromsø, Norway
| | - Lars Martin Jakt
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Jarle T Nordeide
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Truls Moum
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway
| | - Steinar D Johansen
- Genomics Group, Faculty of Biosciences and Aquaculture, Nord University, 8049, Bodø, Norway.
| |
Collapse
|
106
|
Roesti M. Varied Genomic Responses to Maladaptive Gene Flow and Their Evidence. Genes (Basel) 2018; 9:E298. [PMID: 29899287 PMCID: PMC6027369 DOI: 10.3390/genes9060298] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Revised: 05/17/2018] [Accepted: 05/30/2018] [Indexed: 12/02/2022] Open
Abstract
Adaptation to a local environment often occurs in the face of maladaptive gene flow. In this perspective, I discuss several ideas on how a genome may respond to maladaptive gene flow during adaptation. On the one hand, selection can build clusters of locally adaptive alleles at fortuitously co-localized loci within a genome, thereby facilitating local adaptation with gene flow ('allele-only clustering'). On the other hand, the selective pressure to link adaptive alleles may drive co-localization of the actual loci relevant for local adaptation within a genome through structural genome changes or an evolving intra-genomic crossover rate ('locus clustering'). While the expected outcome is, in both cases, a higher frequency of locally adaptive alleles in some genome regions than others, the molecular units evolving in response to gene flow differ (i.e., alleles versus loci). I argue that, although making this distinction is important, we commonly lack the critical empirical evidence to do so. This is mainly because many current approaches are biased towards detecting local adaptation in genome regions with low crossover rates. The importance of low-crossover genome regions for adaptation with gene flow, such as in co-localizing relevant loci within a genome, thus remains unclear. Future empirical investigations should address these questions by making use of comparative genomics, where multiple de novo genome assemblies from species evolved under different degrees of genetic exchange are compared. This research promises to advance our understanding of how a genome adapts to maladaptive gene flow, thereby promoting adaptive divergence and reproductive isolation.
Collapse
Affiliation(s)
- Marius Roesti
- Biodiversity Research Centre and Zoology Department, University of British Columbia, Vancouver, BC, V6T 1Z4, Canada.
| |
Collapse
|
107
|
Campbell CR, Poelstra JW, Yoder AD. What is Speciation Genomics? The roles of ecology, gene flow, and genomic architecture in the formation of species. Biol J Linn Soc Lond 2018. [DOI: 10.1093/biolinnean/bly063] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
| | - J W Poelstra
- Department of Biology, Duke University, Durham, NC, USA
| | - Anne D Yoder
- Department of Biology, Duke University, Durham, NC, USA
| |
Collapse
|
108
|
Eco-Evolutionary Genomics of Chromosomal Inversions. Trends Ecol Evol 2018; 33:427-440. [DOI: 10.1016/j.tree.2018.04.002] [Citation(s) in RCA: 274] [Impact Index Per Article: 39.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2018] [Revised: 04/03/2018] [Accepted: 04/05/2018] [Indexed: 01/17/2023]
|
109
|
Kirubakaran TG, Grove H, Kent MP, Sandve SR, Baranski M, Nome T, De Rosa MC, Righino B, Johansen T, Otterå H, Sonesson A, Lien SR, Andersen Ø. Erratum. Mol Ecol 2018; 27:1520. [DOI: 10.1111/mec.14530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
110
|
Symonová R, Howell WM. Vertebrate Genome Evolution in the Light of Fish Cytogenomics and rDNAomics. Genes (Basel) 2018; 9:genes9020096. [PMID: 29443947 PMCID: PMC5852592 DOI: 10.3390/genes9020096] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2017] [Revised: 01/25/2018] [Accepted: 01/29/2018] [Indexed: 12/19/2022] Open
Abstract
To understand the cytogenomic evolution of vertebrates, we must first unravel the complex genomes of fishes, which were the first vertebrates to evolve and were ancestors to all other vertebrates. We must not forget the immense time span during which the fish genomes had to evolve. Fish cytogenomics is endowed with unique features which offer irreplaceable insights into the evolution of the vertebrate genome. Due to the general DNA base compositional homogeneity of fish genomes, fish cytogenomics is largely based on mapping DNA repeats that still represent serious obstacles in genome sequencing and assembling, even in model species. Localization of repeats on chromosomes of hundreds of fish species and populations originating from diversified environments have revealed the biological importance of this genomic fraction. Ribosomal genes (rDNA) belong to the most informative repeats and in fish, they are subject to a more relaxed regulation than in higher vertebrates. This can result in formation of a literal 'rDNAome' consisting of more than 20,000 copies with their high proportion employed in extra-coding functions. Because rDNA has high rates of transcription and recombination, it contributes to genome diversification and can form reproductive barrier. Our overall knowledge of fish cytogenomics grows rapidly by a continuously increasing number of fish genomes sequenced and by use of novel sequencing methods improving genome assembly. The recently revealed exceptional compositional heterogeneity in an ancient fish lineage (gars) sheds new light on the compositional genome evolution in vertebrates generally. We highlight the power of synergy of cytogenetics and genomics in fish cytogenomics, its potential to understand the complexity of genome evolution in vertebrates, which is also linked to clinical applications and the chromosomal backgrounds of speciation. We also summarize the current knowledge on fish cytogenomics and outline its main future avenues.
Collapse
Affiliation(s)
- Radka Symonová
- Faculty of Science, Department of Biology, University of Hradec Králové, 500 03 Hradec Králové, Czech Republic.
| | - W Mike Howell
- Department of Biological and Environmental Sciences, Samford University, Birmingham, AL 35229, USA.
| |
Collapse
|
111
|
Valen R, Karlsen R, Helvik JV. Environmental, population and life-stage plasticity in the visual system of Atlantic cod. ACTA ACUST UNITED AC 2018; 221:jeb.165191. [PMID: 29146770 DOI: 10.1242/jeb.165191] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 11/12/2017] [Indexed: 02/03/2023]
Abstract
The visual system is for many fishes essential in guiding behaviors, such as foraging, predator avoidance and mate choice. The marine environment is characterized by large spatio-temporal fluctuations in light intensity and spectral composition. However, visual capabilities are restricted by both space limitations set by eye size and by the genomic content of light-absorbing opsin genes. The rich array of visual opsins in teleosts may be used differentially to tune vision towards specific needs during ontogeny and to changing light. Yet, to what extent visual plasticity is a pre-programmed developmental event, or is triggered by photic environment, is unclear. Our previous studies on Atlantic cod revealed an evolutionary genomic loss of UV-sensitive sws1 and red-sensitive lws opsin families, while blue-sensitive sws2 and green-sensitive rh2 opsins had duplicated. The current study has taken an opsin expression approach to characterize visual plasticity in cod towards different spectral light during the larval stage, to maturation and extreme seasonal changes in the Barents Sea. Our data suggest that opsin plasticity in cod larvae is controlled by developmental programme rather than immediate light environment. The lack of expressional changes during maturation suggests a less important role for visual modulation related to mate choice. Although no seasonal effects on visual opsins were detected in migratory Northeast Arctic cod, the expressed opsin subset differed from the more stationary Norwegian coastal cod described in previous studies. Interestingly, these data provide the first indications of a population difference in actively used visual opsins associated with cod ecotypes.
Collapse
Affiliation(s)
- Ragnhild Valen
- Department of Biology, University of Bergen, NO-5020 Bergen, Norway
| | - Rita Karlsen
- Department of Biology, University of Bergen, NO-5020 Bergen, Norway
| | - Jon Vidar Helvik
- Department of Biology, University of Bergen, NO-5020 Bergen, Norway
| |
Collapse
|
112
|
Sinclair-Waters M, Bradbury IR, Morris CJ, Lien S, Kent MP, Bentzen P. Ancient chromosomal rearrangement associated with local adaptation of a postglacially colonized population of Atlantic Cod in the northwest Atlantic. Mol Ecol 2017; 27:339-351. [PMID: 29193392 DOI: 10.1111/mec.14442] [Citation(s) in RCA: 53] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 10/19/2017] [Accepted: 11/13/2017] [Indexed: 12/28/2022]
Abstract
Intraspecific diversity is central to the management and conservation of exploited species, yet knowledge of how this diversity is distributed and maintained in the genome of many marine species is lacking. Recent advances in genomic analyses allow for genome-wide surveys of intraspecific diversity and offer new opportunities for exploring genomic patterns of divergence. Here, we analysed genome-wide polymorphisms to measure genetic differentiation between an offshore migratory and a nonmigratory population and to define conservation units of Atlantic Cod (Gadus morhua) in coastal Labrador. A total of 141 individuals, collected from offshore sites and from a coastal site within Gilbert Bay, Labrador, were genotyped using an ~11k single nucleotide polymorphism array. Analyses of population structure revealed strong genetic differentiation between migratory offshore cod and nonmigratory Gilbert Bay cod. Genetic differentiation was elevated for loci within a chromosomal rearrangement found on linkage group 1 (LG1) that coincides with a previously found double inversion associated with migratory and nonmigratory ecotype divergence of cod in the northeast Atlantic. This inverted region includes several genes potentially associated with adaptation to differences in salinity and temperature, as well as influencing migratory behaviour. Our work provides evidence that a chromosomal rearrangement on LG1 is associated with parallel patterns of divergence between migratory and nonmigratory ecotypes on both sides of the Atlantic Ocean.
Collapse
Affiliation(s)
| | - Ian R Bradbury
- Biology Department, Dalhousie University, Halifax, NS, Canada.,Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, NL, Canada
| | - Corey J Morris
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St. John's, NL, Canada
| | - Sigbjørn Lien
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre for Integrative Genetics, Norwegian University of Life Sciences, Ås, Norway
| | - Matthew P Kent
- Department of Animal and Aquacultural Sciences, Faculty of Biosciences, Centre for Integrative Genetics, Norwegian University of Life Sciences, Ås, Norway
| | - Paul Bentzen
- Biology Department, Dalhousie University, Halifax, NS, Canada
| |
Collapse
|
113
|
Berner D, Roesti M. Genomics of adaptive divergence with chromosome-scale heterogeneity in crossover rate. Mol Ecol 2017; 26:6351-6369. [PMID: 28994152 DOI: 10.1111/mec.14373] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 09/15/2017] [Accepted: 09/18/2017] [Indexed: 12/17/2022]
Abstract
Genetic differentiation between divergent populations is often greater in chromosome centres than peripheries. Commonly overlooked, this broadscale differentiation pattern is sometimes ascribed to heterogeneity in crossover rate and hence linked selection within chromosomes, but the underlying mechanisms remain incompletely understood. A literature survey across 46 organisms reveals that most eukaryotes indeed exhibit a reduced crossover rate in chromosome centres relative to the peripheries. Using simulations of populations diverging into ecologically different habitats through sorting of standing genetic variation, we demonstrate that such chromosome-scale heterogeneity in crossover rate, combined with polygenic divergent selection, causes stronger hitchhiking and especially barriers to gene flow across chromosome centres. Without requiring selection on new mutations, this rapidly leads to elevated population differentiation in the low-crossover centres relative to the high-crossover peripheries of chromosomes ("Chromosome Centre-Biased Differentiation", CCBD). Using simulated and empirical data, we then show that strong CCBD between populations can provide evidence of polygenic adaptive divergence with a phase of gene flow. We further demonstrate that chromosome-scale heterogeneity in crossover rate impacts analyses beyond that of population differentiation, including the inference of phylogenies and parallel adaptive evolution among populations, the detection of genetic loci under selection, and the interpretation of the strength of selection on genomic regions. Overall, our results call for a greater appreciation of chromosome-scale heterogeneity in crossover rate in evolutionary genomics.
Collapse
Affiliation(s)
- Daniel Berner
- Zoological Institute, University of Basel, Basel, Switzerland
| | - Marius Roesti
- Zoological Institute, University of Basel, Basel, Switzerland.,Department of Zoology, University of British Columbia, Vancouver, BC, Canada
| |
Collapse
|
114
|
Jeffery NW, Stanley RRE, Wringe BF, Guijarro-Sabaniel J, Bourret V, Bernatchez L, Bentzen P, Beiko RG, Gilbey J, Clément M, Bradbury IR. Range-wide parallel climate-associated genomic clines in Atlantic salmon. ROYAL SOCIETY OPEN SCIENCE 2017; 4:171394. [PMID: 29291123 PMCID: PMC5717698 DOI: 10.1098/rsos.171394] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/14/2017] [Accepted: 10/13/2017] [Indexed: 05/02/2023]
Abstract
Clinal variation across replicated environmental gradients can reveal evidence of local adaptation, providing insight into the demographic and evolutionary processes that shape intraspecific diversity. Using 1773 genome-wide single nucleotide polymorphisms we evaluated latitudinal variation in allele frequency for 134 populations of North American and European Atlantic salmon (Salmo salar). We detected 84 (4.74%) and 195 (11%) loci showing clinal patterns in North America and Europe, respectively, with 12 clinal loci in common between continents. Clinal single nucleotide polymorphisms were evenly distributed across the salmon genome and logistic regression revealed significant associations with latitude and seasonal temperatures, particularly average spring temperature in both continents. Loci displaying parallel clines were associated with several metabolic and immune functions, suggesting a potential basis for climate-associated adaptive differentiation. These climate-based clines collectively suggest evidence of large-scale environmental associated differences on either side of the North Atlantic. Our results support patterns of parallel evolution on both sides of the North Atlantic, with evidence of both similar and divergent underlying genetic architecture. The identification of climate-associated genomic clines illuminates the role of selection and demographic processes on intraspecific diversity in this species and provides a context in which to evaluate the impacts of climate change.
Collapse
Affiliation(s)
- Nicholas W. Jeffery
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St John's, Newfoundland and Labrador, CanadaA1C 5X1
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4R2
- Author for correspondence: Nicholas W. Jeffery e-mail:
| | - Ryan R. E. Stanley
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, CanadaB2Y 4A2
| | - Brendan F. Wringe
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St John's, Newfoundland and Labrador, CanadaA1C 5X1
| | - Javier Guijarro-Sabaniel
- Fisheries and Oceans Canada, Bedford Institute of Oceanography, Dartmouth, Nova Scotia, CanadaB2Y 4A2
| | - Vincent Bourret
- Laboratoire d'expertise biolégale, MFFP, Québec, Québec, CanadaG1P 3W8
| | - Louis Bernatchez
- Department of Biology, Université Laval, Québec, Québec, CanadaG1 V 0A6
| | - Paul Bentzen
- Department of Biology, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4R2
| | - Robert G. Beiko
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4R2
| | - John Gilbey
- Marine Scotland, Freshwater Fisheries Laboratory, Faskally, Pitlochry PH16 5LB, UK
| | - Marie Clément
- Centre for Fisheries Ecosystems Research, Fisheries and Marine Institute, Memorial University of Newfoundland, St John's, NL, Canada
- Labrador Institute, Memorial University of Newfoundland, Happy Valley-Goose Bay, NL, Canada
| | - Ian R. Bradbury
- Fisheries and Oceans Canada, Northwest Atlantic Fisheries Centre, St John's, Newfoundland and Labrador, CanadaA1C 5X1
- Faculty of Computer Science, Dalhousie University, Halifax, Nova Scotia, CanadaB3H 4R2
| |
Collapse
|
115
|
Samuk K. Inversions and the origin of behavioral differences in cod. Mol Ecol 2017; 25:2111-3. [PMID: 27213696 DOI: 10.1111/mec.13624] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2016] [Accepted: 03/21/2016] [Indexed: 11/27/2022]
Abstract
How does adaptation manage to occur in the face of overwhelming gene flow? One popular idea is that the suppression of recombination, for example the fixation of a chromosomal inversion, can maintain linkage disequilibrium between groups of locally adapted alleles that would otherwise be degraded by gene flow. This idea has captured the imagination of many geneticists and evolutionary biologists, but we still have only a basic understanding of its general importance. In this issue of Molecular Ecology, Kirubakaran et al. () examine the role of recombination suppression in a particularly fascinating example of adaptation in the face of gene flow: the evolution of migratory differences between interbreeding populations of cod. Along the north coast of Norway, two types of cod breed in the near-shore waters: a 'stationary' form that lives near the coast year round, and a 'migratory' form that lives far offshore and only returns to the coast to breed. Using a combination of approaches, Kirubakaran et al. () deftly demonstrate that the migratory form has completely fixed two adjacent inversions containing a suite of genes closely connected to migratory behaviour and feeding differences. This work provides an excellent example of how recombination suppression can facilitate adaptive divergence, and helps us understand the geographic and temporal scales over which genomic structural variation evolves.
Collapse
Affiliation(s)
- Kieran Samuk
- Department of Zoology, University of British Columbia, 6270 University Boulevard, Vancouver, British Columbia, V6T1Z4, Canada
| |
Collapse
|
116
|
Trans-oceanic genomic divergence of Atlantic cod ecotypes is associated with large inversions. Heredity (Edinb) 2017; 119:418-428. [PMID: 28930288 PMCID: PMC5677996 DOI: 10.1038/hdy.2017.54] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2017] [Revised: 07/13/2017] [Accepted: 08/05/2017] [Indexed: 01/03/2023] Open
Abstract
Chromosomal rearrangements such as inversions can play a crucial role in maintaining polymorphism underlying complex traits and contribute to the process of speciation. In Atlantic cod (Gadus morhua), inversions of several megabases have been identified that dominate genomic differentiation between migratory and nonmigratory ecotypes in the Northeast Atlantic. Here, we show that the same genomic regions display elevated divergence and contribute to ecotype divergence in the Northwest Atlantic as well. The occurrence of these inversions on both sides of the Atlantic Ocean reveals a common evolutionary origin, predating the >100 000-year-old trans-Atlantic separation of Atlantic cod. The long-term persistence of these inversions indicates that they are maintained by selection, possibly facilitated by coevolution of genes underlying complex traits. Our data suggest that migratory behaviour is derived from more stationary, ancestral ecotypes. Overall, we identify several large genomic regions—each containing hundreds of genes—likely involved in the maintenance of genomic divergence in Atlantic cod on both sides of the Atlantic Ocean.
Collapse
|
117
|
Bernatchez L, Wellenreuther M, Araneda C, Ashton DT, Barth JMI, Beacham TD, Maes GE, Martinsohn JT, Miller KM, Naish KA, Ovenden JR, Primmer CR, Young Suk H, Therkildsen NO, Withler RE. Harnessing the Power of Genomics to Secure the Future of Seafood. Trends Ecol Evol 2017; 32:665-680. [PMID: 28818341 DOI: 10.1016/j.tree.2017.06.010] [Citation(s) in RCA: 112] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 06/16/2017] [Accepted: 06/20/2017] [Indexed: 11/15/2022]
Abstract
Best use of scientific knowledge is required to maintain the fundamental role of seafood in human nutrition. While it is acknowledged that genomic-based methods allow the collection of powerful data, their value to inform fisheries management, aquaculture, and biosecurity applications remains underestimated. We review genomic applications of relevance to the sustainable management of seafood resources, illustrate the benefits of, and identify barriers to their integration. We conclude that the value of genomic information towards securing the future of seafood does not need to be further demonstrated. Instead, we need immediate efforts to remove structural roadblocks and focus on ways that support integration of genomic-informed methods into management and production practices. We propose solutions to pave the way forward.
Collapse
Affiliation(s)
- Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada.
| | - Maren Wellenreuther
- The New Zealand Institute for Plant & Food Research Limited, Port Nelson, Nelson 7043, New Zealand; Department of Biology, Lund University, Lund, Sweden
| | - Cristián Araneda
- Universidad de Chile, Facultad de Ciencias Agronómicas Departamento de Producción Animal, Avda. Santa Rosa 11315, La Pintana 8820808, Santiago, Chile
| | - David T Ashton
- The New Zealand Institute for Plant & Food Research Limited, Port Nelson, Nelson 7043, New Zealand
| | - Julia M I Barth
- Centre for Ecological and Evolutionary Synthesis (CEES), Department of Biosciences, University of Oslo, Oslo, Norway
| | - Terry D Beacham
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | - Gregory E Maes
- Centre for Sustainable Tropical Fisheries and Aquaculture, Comparative Genomics Centre, College of Science and Engineering, James Cook University, Townsville, 4811 QLD, Australia; Laboratory of Biodiversity and Evolutionary Genomics, University of Leuven (KU Leuven), B-3000 Leuven, Belgium; Genomics Core, UZ Leuven, Herestraat 49, 3000 Leuven, Belgium
| | - Jann T Martinsohn
- European Commission, Joint Research Centre (JRC), Directorate D - Sustainable Resources, Unit D2 - Water and Marine Resources, Via Enrico Fermi 2749, 21027 Ispra, Italy
| | - Kristina M Miller
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| | - Kerry A Naish
- School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA 98105, USA
| | - Jennifer R Ovenden
- Molecular Fisheries Laboratory, School of Biomedical Sciences, The University of Queensland, St Lucia, QLD, 4072, Australia
| | - Craig R Primmer
- Department of Biosciences, Institute of Biotechnology, 00014, University of Helsinki, Finland
| | - Ho Young Suk
- Department of Life Sciences, Yeungnam University, 280 Daehak-ro, Gyeongsan, Gyeongsangbuk-do 38541, South Korea
| | | | - Ruth E Withler
- Fisheries and Oceans Canada, Pacific Biological Station, 3190 Hammond Bay Road, Nanaimo, BC V9T 6N7, Canada
| |
Collapse
|
118
|
Ancient DNA reveals the Arctic origin of Viking Age cod from Haithabu, Germany. Proc Natl Acad Sci U S A 2017; 114:9152-9157. [PMID: 28784790 DOI: 10.1073/pnas.1710186114] [Citation(s) in RCA: 56] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Knowledge of the range and chronology of historic trade and long-distance transport of natural resources is essential for determining the impacts of past human activities on marine environments. However, the specific biological sources of imported fauna are often difficult to identify, in particular if species have a wide spatial distribution and lack clear osteological or isotopic differentiation between populations. Here, we report that ancient fish-bone remains, despite being porous, brittle, and light, provide an excellent source of endogenous DNA (15-46%) of sufficient quality for whole-genome reconstruction. By comparing ancient sequence data to that of modern specimens, we determine the biological origin of 15 Viking Age (800-1066 CE) and subsequent medieval (1066-1280 CE) Atlantic cod (Gadus morhua) specimens from excavation sites in Germany, Norway, and the United Kingdom. Archaeological context indicates that one of these sites was a fishing settlement for the procurement of local catches, whereas the other localities were centers of trade. Fish from the trade sites show a mixed ancestry and are statistically differentiated from local fish populations. Moreover, Viking Age samples from Haithabu, Germany, are traced back to the North East Arctic Atlantic cod population that has supported the Lofoten fisheries of Norway for centuries. Our results resolve a long-standing controversial hypothesis and indicate that the marine resources of the North Atlantic Ocean were used to sustain an international demand for protein as far back as the Viking Age.
Collapse
|
119
|
Barth JMI, Berg PR, Jonsson PR, Bonanomi S, Corell H, Hemmer-Hansen J, Jakobsen KS, Johannesson K, Jorde PE, Knutsen H, Moksnes PO, Star B, Stenseth NC, Svedäng H, Jentoft S, André C. Genome architecture enables local adaptation of Atlantic cod despite high connectivity. Mol Ecol 2017. [DOI: 10.1111/mec.14207] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Julia M. I. Barth
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
| | - Paul R. Berg
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
- Faculty of Medicine; Centre for Molecular Medicine Norway (NCMM); University of Oslo; Oslo Norway
| | - Per R. Jonsson
- Department of Marine Sciences - Tjärnö; University of Gothenburg; Strömstad Sweden
| | - Sara Bonanomi
- Section for Marine Living Resources; National Institute of Aquatic Resources; Technical University of Denmark; Silkeborg Denmark
- National Research Council (CNR); Fisheries Section; Institute of Marine Sciences (ISMAR); Ancona Italy
| | - Hanna Corell
- Department of Marine Sciences - Tjärnö; University of Gothenburg; Strömstad Sweden
| | - Jakob Hemmer-Hansen
- Section for Marine Living Resources; National Institute of Aquatic Resources; Technical University of Denmark; Silkeborg Denmark
| | - Kjetill S. Jakobsen
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
| | - Kerstin Johannesson
- Department of Marine Sciences - Tjärnö; University of Gothenburg; Strömstad Sweden
| | - Per Erik Jorde
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
| | - Halvor Knutsen
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
- Institute of Marine Research; Flødevigen; His Norway
- Department of Natural Sciences; Centre for Coastal Research; University of Agder; Kristiansand Norway
| | - Per-Olav Moksnes
- Department of Marine Sciences; University of Gothenburg; Gothenburg Sweden
| | - Bastiaan Star
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
| | - Nils Chr. Stenseth
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
- Department of Natural Sciences; Centre for Coastal Research; University of Agder; Kristiansand Norway
| | - Henrik Svedäng
- Swedish Institute for the Marine Environment (SIME); Gothenburg Sweden
| | - Sissel Jentoft
- Department of Biosciences; Centre for Ecological and Evolutionary Synthesis (CEES); University of Oslo; Oslo Norway
- Department of Natural Sciences; Centre for Coastal Research; University of Agder; Kristiansand Norway
| | - Carl André
- Department of Marine Sciences - Tjärnö; University of Gothenburg; Strömstad Sweden
| |
Collapse
|
120
|
Teterina AA, Zhivotovsky LA. DNА markers for identification of stationary and migratory ecotypes of Atlantic cod Gadus morhua. RUSS J GENET+ 2017. [DOI: 10.1134/s1022795417070122] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
|
121
|
Lundberg M, Liedvogel M, Larson K, Sigeman H, Grahn M, Wright A, Åkesson S, Bensch S. Genetic differences between willow warbler migratory phenotypes are few and cluster in large haplotype blocks. Evol Lett 2017; 1:155-168. [PMID: 30283646 PMCID: PMC6121796 DOI: 10.1002/evl3.15] [Citation(s) in RCA: 58] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2016] [Accepted: 05/02/2017] [Indexed: 12/14/2022] Open
Abstract
It is well established that differences in migratory behavior between populations of songbirds have a genetic basis but the actual genes underlying these traits remains largely unknown. In an attempt to identify such candidate genes we de novo assembled the genome of the willow warbler Phylloscopus trochilus, and used whole‐genome resequencing and a SNP array to associate genomic variation with migratory phenotypes across two migratory divides around the Baltic Sea that separate SW migrating P. t. trochilus wintering in western Africa and SSE migrating P. t. acredula wintering in eastern and southern Africa. We found that the genomes of the two migratory phenotypes lack clear differences except for three highly differentiated regions located on chromosomes 1, 3, and 5 (containing 146, 135, and 53 genes, respectively). Within each migratory phenotype we found virtually no differences in allele frequencies for thousands of SNPs, even when comparing geographically distant populations breeding in Scandinavia and Far East Russia (>6000 km). In each of the three differentiated regions, multidimensional scaling‐based clustering of SNP genotypes from more than 1100 individuals demonstrates the presence of distinct haplotype clusters that are associated with each migratory phenotype. In turn, this suggests that recombination is absent or rare between haplotypes, which could be explained by inversion polymorphisms. Whereas SNP alleles on chromosome 3 correlate with breeding altitude and latitude, the allele distribution within the regions on chromosomes 1 and 5 perfectly matches the geographical distribution of the migratory phenotypes. The most differentiated 10 kb windows and missense mutations within these differentiated regions are associated with genes involved in fatty acid synthesis, possibly representing physiological adaptations to the different migratory strategies. The ∼200 genes in these regions, of which several lack described function, will direct future experimental and comparative studies in the search for genes that underlie important migratory traits.
Collapse
Affiliation(s)
- Max Lundberg
- Department of Biology Lund University SE 22362 Lund Sweden
| | - Miriam Liedvogel
- Department of Biology Lund University SE 22362 Lund Sweden.,Max Planck Institute for Evolutionary Biology MPRG Behavioural Genomics August-Thienemann-Straße 2 24306 Plön Germany
| | - Keith Larson
- Climate Impacts Research Centre, Department of Ecology and Environmental Sciences Umeå University SE 90187 Umeå Sweden
| | - Hanna Sigeman
- Department of Biology Lund University SE 22362 Lund Sweden
| | - Mats Grahn
- School of Natural Sciences, Technology and Environmental Studies Södertörn University Huddinge SE 141 89 Sweden
| | - Anthony Wright
- Department of Laboratory Medicine, Clinical Research Center, Karolinska Institute Karolinska University Hospital Huddinge SE 14186 Sweden
| | | | - Staffan Bensch
- Department of Biology Lund University SE 22362 Lund Sweden
| |
Collapse
|
122
|
Wellenreuther M, Rosenquist H, Jaksons P, Larson KW. Local adaptation along an environmental cline in a species with an inversion polymorphism. J Evol Biol 2017; 30:1068-1077. [DOI: 10.1111/jeb.13064] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Revised: 03/02/2017] [Accepted: 03/03/2017] [Indexed: 12/28/2022]
Affiliation(s)
- M. Wellenreuther
- Molecular Ecology; Microbial Ecology and Evolutionary Genetics; Biology Department; Lund University; Lund Sweden
- The New Zealand Institute for Plant & Food Research Ltd; Auckland New Zealand
| | - H. Rosenquist
- Molecular Ecology; Microbial Ecology and Evolutionary Genetics; Biology Department; Lund University; Lund Sweden
| | - P. Jaksons
- The New Zealand Institute for Plant & Food Research Ltd; Auckland New Zealand
| | - K. W. Larson
- Department of Ecology and Environmental Sciences; Climate Impacts Research Centre; Umeå University; Umeå Sweden
| |
Collapse
|
123
|
Ingvaldsen RB, Gjøsæter H, Ona E, Michalsen K. Atlantic cod (Gadus morhua) feeding over deep water in the high Arctic. Polar Biol 2017. [DOI: 10.1007/s00300-017-2115-2] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
124
|
|
125
|
Larson WA, Limborg MT, McKinney GJ, Schindler DE, Seeb JE, Seeb LW. Genomic islands of divergence linked to ecotypic variation in sockeye salmon. Mol Ecol 2016; 26:554-570. [PMID: 27864910 DOI: 10.1111/mec.13933] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2015] [Revised: 10/14/2016] [Accepted: 10/25/2016] [Indexed: 12/14/2022]
Abstract
Regions of the genome displaying elevated differentiation (genomic islands of divergence) are thought to play an important role in local adaptation, especially in populations experiencing high gene flow. However, the characteristics of these islands as well as the functional significance of genes located within them remain largely unknown. Here, we used data from thousands of SNPs aligned to a linkage map to investigate genomic islands of divergence in three ecotypes of sockeye salmon (Oncorhynchus nerka) from a single drainage in southwestern Alaska. We found ten islands displaying high differentiation among ecotypes. Conversely, neutral structure observed throughout the rest of the genome was low and not partitioned by ecotype. One island on linkage group So13 was particularly large and contained six SNPs with FST > 0.14 (average FST of neutral SNPs = 0.01). Functional annotation revealed that the peak of this island contained a nonsynonymous mutation in a gene involved in growth in other species (TULP4). The islands that we discovered were relatively small (80-402 Kb), loci found in islands did not show reduced levels of diversity, and loci in islands displayed slightly elevated linkage disequilibrium. These attributes suggest that the islands discovered here were likely generated by divergence hitchhiking; however, we cannot rule out the possibility that other mechanisms may have produced them. Our results suggest that islands of divergence serve an important role in local adaptation with gene flow and represent a significant advance towards understanding the genetic basis of ecotypic differentiation.
Collapse
Affiliation(s)
- Wesley A Larson
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle, WA, 98195-5020, USA
| | - Morten T Limborg
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle, WA, 98195-5020, USA
| | - Garrett J McKinney
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle, WA, 98195-5020, USA
| | - Daniel E Schindler
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle, WA, 98195-5020, USA
| | - James E Seeb
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle, WA, 98195-5020, USA
| | - Lisa W Seeb
- School of Aquatic and Fishery Sciences, University of Washington, 1122 NE Boat Street, Box 355020, Seattle, WA, 98195-5020, USA
| |
Collapse
|
126
|
Sutherland BJG, Gosselin T, Normandeau E, Lamothe M, Isabel N, Audet C, Bernatchez L. Salmonid Chromosome Evolution as Revealed by a Novel Method for Comparing RADseq Linkage Maps. Genome Biol Evol 2016; 8:3600-3617. [PMID: 28173098 PMCID: PMC5381510 DOI: 10.1093/gbe/evw262] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/25/2016] [Indexed: 12/13/2022] Open
Abstract
Whole genome duplication (WGD) can provide material for evolutionary innovation. Family Salmonidae is ideal for studying the effects of WGD as the ancestral salmonid underwent WGD relatively recently, ∼65 Ma, then rediploidized and diversified. Extensive synteny between homologous chromosome arms occurs in extant salmonids, but each species has both conserved and unique chromosome arm fusions and fissions. Assembly of large, outbred eukaryotic genomes can be difficult, but structural rearrangements within such taxa can be investigated using linkage maps. RAD sequencing provides unprecedented ability to generate high-density linkage maps for nonmodel species, but can result in low numbers of homologous markers between species due to phylogenetic distance or differences in library preparation. Here, we generate a high-density linkage map (3,826 markers) for the Salvelinus genera (Brook Charr S. fontinalis), and then identify corresponding chromosome arms among the other available salmonid high-density linkage maps, including six species of Oncorhynchus, and one species for each of Salmo, Coregonus, and the nonduplicated sister group for the salmonids, Northern Pike Esox lucius for identifying post-duplicated homeologs. To facilitate this process, we developed MapComp to identify identical and proximate (i.e. nearby) markers between linkage maps using a reference genome of a related species as an intermediate, increasing the number of comparable markers between linkage maps by 5-fold. This enabled a characterization of the most likely history of retained chromosomal rearrangements post-WGD, and several conserved chromosomal inversions. Analyses of RADseq-based linkage maps from other taxa will also benefit from MapComp, available at: https://github.com/enormandeau/mapcomp/
Collapse
Affiliation(s)
- Ben J. G. Sutherland
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Thierry Gosselin
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Eric Normandeau
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Manuel Lamothe
- Centre de Foresterie des Laurentides, Ressources Naturelles Canada, Québec, QC, Canada
| | - Nathalie Isabel
- Centre de Foresterie des Laurentides, Ressources Naturelles Canada, Québec, QC, Canada
| | - Céline Audet
- Institut des Sciences de la Mer de Rimouski, Université du Québec à Rimouski, Rimouski, QC, Canada
| | - Louis Bernatchez
- Institut de Biologie Intégrative et des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| |
Collapse
|
127
|
Pearse DE. Saving the spandrels? Adaptive genomic variation in conservation and fisheries management. JOURNAL OF FISH BIOLOGY 2016; 89:2697-2716. [PMID: 27723095 DOI: 10.1111/jfb.13168] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/13/2016] [Accepted: 09/06/2016] [Indexed: 06/06/2023]
Abstract
As highlighted by many of the papers in this issue, research on the genomic basis of adaptive phenotypic variation in natural populations has made spectacular progress in the past few years, largely due to the advances in sequencing technology and analysis. Without question, the resulting genomic data will improve the understanding of regions of the genome under selection and extend knowledge of the genetic basis of adaptive evolution. What is far less clear, but has been the focus of active discussion, is how such information can or should transfer into conservation practice to complement more typical conservation applications of genetic data. Before such applications can be realized, the evolutionary importance of specific targets of selection relative to the genome-wide diversity of the species as a whole must be evaluated. The key issues for the incorporation of adaptive genomic variation in conservation and management are discussed here, using published examples of adaptive genomic variation associated with specific phenotypes in salmonids and other taxa to highlight practical considerations for incorporating such information into conservation programmes. Scenarios are described in which adaptive genomic data could be used in conservation or restoration, constraints on its utility and the importance of validating inferences drawn from new genomic data before applying them in conservation practice. Finally, it is argued that an excessive focus on preserving the adaptive variation that can be measured, while ignoring the vast unknown majority that cannot, is a modern twist on the adaptationist programme that Gould and Lewontin critiqued almost 40 years ago.
Collapse
Affiliation(s)
- D E Pearse
- Fisheries Ecology Division, Southwest Fisheries Science Center, National Marine Fisheries Service, 110 Shaffer Road, Santa Cruz, CA, 95060, U.S.A
| |
Collapse
|
128
|
|
129
|
Dagilis AJ, Kirkpatrick M. Prezygotic isolation, mating preferences, and the evolution of chromosomal inversions. Evolution 2016; 70:1465-72. [PMID: 27174252 DOI: 10.1111/evo.12954] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2015] [Revised: 04/26/2016] [Accepted: 05/02/2016] [Indexed: 12/12/2022]
Abstract
Chromosomal inversions are frequently implicated in isolating species. Models have shown how inversions can evolve in the context of postmating isolation. Inversions are also frequently associated with mating preferences, a topic that has not been studied theoretically. Here, we show how inversions can spread by capturing a mating preference locus and one or more loci involved with epistatic incompatibilities. Inversions can be established under broad conditions ranging from near panmixis to nearly complete speciation. These results provide a hypothesis to explain the growing number of examples of inversions associated with premating isolating mechanisms.
Collapse
Affiliation(s)
- Andrius J Dagilis
- Department of Integrative Biology, University of Texas, Austin, Texas, 78712.
| | - Mark Kirkpatrick
- Department of Integrative Biology, University of Texas, Austin, Texas, 78712
| |
Collapse
|