101
|
Genome sequence of the progenitor of the wheat D genome Aegilops tauschii. Nature 2017; 551:498-502. [PMID: 29143815 PMCID: PMC7416625 DOI: 10.1038/nature24486] [Citation(s) in RCA: 427] [Impact Index Per Article: 53.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2016] [Accepted: 10/09/2017] [Indexed: 12/20/2022]
Abstract
A combination of advanced sequencing and mapping techniques is used to produce a reference genome of Aegilops tauschii, progenitor of the wheat D genome, providing a valuable resource for comparative genetic studies. Sequencing the genomes of crops plants provides useful resources for crop improvement and breeding. Jan Dvořák, Katrien Devos, Steven Salzberg and colleagues report a reference genome for Aegilops tauschii, the diploid progenitor of the D genome of hexaploid wheat. They use a combination of ordered-clone genome sequencing, whole-genome shotgun sequencing and BioNano optical genome mapping to assemble this large and highly repetitive genome. This provides a useful resource for comparative genomics studies of wheat. Aegilops tauschii is the diploid progenitor of the D genome of hexaploid wheat1 (Triticum aestivum, genomes AABBDD) and an important genetic resource for wheat2,3,4. The large size and highly repetitive nature of the Ae. tauschii genome has until now precluded the development of a reference-quality genome sequence5. Here we use an array of advanced technologies, including ordered-clone genome sequencing, whole-genome shotgun sequencing, and BioNano optical genome mapping, to generate a reference-quality genome sequence for Ae. tauschii ssp. strangulata accession AL8/78, which is closely related to the wheat D genome. We show that compared to other sequenced plant genomes, including a much larger conifer genome, the Ae. tauschii genome contains unprecedented amounts of very similar repeated sequences. Our genome comparisons reveal that the Ae. tauschii genome has a greater number of dispersed duplicated genes than other sequenced genomes and its chromosomes have been structurally evolving an order of magnitude faster than those of other grass genomes. The decay of colinearity with other grass genomes correlates with recombination rates along chromosomes. We propose that the vast amounts of very similar repeated sequences cause frequent errors in recombination and lead to gene duplications and structural chromosome changes that drive fast genome evolution.
Collapse
|
102
|
Nishijima R, Ikeda TM, Takumi S. Genetic mapping reveals a dominant awn-inhibiting gene related to differentiation of the variety anathera in the wild diploid wheat Aegilops tauschii. Genetica 2017; 146:75-84. [PMID: 29101627 DOI: 10.1007/s10709-017-9998-2] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2017] [Accepted: 10/30/2017] [Indexed: 11/24/2022]
Abstract
Aegilops tauschii, a wild wheat relative, is the D-genome donor of common wheat. Subspecies and varieties of Ae. tauschii are traditionally classified based on differences in their inflorescence architecture. However, the genetic information for their diversification has been quite limited in the wild wheat relatives. The variety anathera has no awn on the lemma, but the genetic basis for this diagnostic character is unknown. Wide variations in awn length traits at the top and middle spikes were found in the Ae. tauschii core collection, and the awn length at the middle spike was significantly smaller in the eastward-dispersed sublineage than in those in other sublineages. To clarify loci controlling the awnless phenotype of var. anathera, we measured awn length of an intervariety F2 mapping population, and found that the F2 individuals could be divided into two groups mainly based on the awn length at the middle of spike, namely short and long awn groups, significantly fitting a 3:1 segregation ratio, which indicated that a single locus controls the awnless phenotype. The awnless locus, Anathera (Antr), was assigned to the distal region of the short arm of chromosome 5D. Quantitative trait locus analysis using the awn length data of each F2 individual showed that only one major locus was at the same chromosomal position as Antr. These results suggest that a single dominant allele determines the awnless diagnostic character in the variety anathera. The Antr dominant allele is a novel gene inhibiting awn elongation in wheat and its relatives.
Collapse
Affiliation(s)
- Ryo Nishijima
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan
| | - Tatsuya M Ikeda
- Western Region Agricultural Research Center of the National Agriculture and Food Research Organization, 6-12-1 Nishi-fukatsucho, Fukuyama, Hiroshima, 721-8514, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501, Japan.
| |
Collapse
|
103
|
Jorgensen C, Luo MC, Ramasamy R, Dawson M, Gill BS, Korol AB, Distelfeld A, Dvorak J. A High-Density Genetic Map of Wild Emmer Wheat from the Karaca Dağ Region Provides New Evidence on the Structure and Evolution of Wheat Chromosomes. FRONTIERS IN PLANT SCIENCE 2017; 8:1798. [PMID: 29104581 PMCID: PMC5655018 DOI: 10.3389/fpls.2017.01798] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Accepted: 10/03/2017] [Indexed: 05/05/2023]
Abstract
Wild emmer (Triticum turgidum ssp. dicoccoides) is a progenitor of all cultivated wheat grown today. It has been hypothesized that emmer was domesticated in the Karaca Dağ region in southeastern Turkey. A total of 445 recombinant inbred lines of T. turgidum ssp. durum cv. 'Langdon' x wild emmer accession PI 428082 from this region was developed and genotyped with the Illumina 90K single nucleotide polymorphism Infinium assay. A genetic map comprising 2,650 segregating markers was constructed. The order of the segregating markers and an additional 8,264 co-segregating markers in the Aegilops tauschii reference genome sequence was used to compare synteny of the tetraploid wheat with the Brachypodium distachyon, rice, and sorghum. These comparisons revealed the presence of 15 structural chromosome rearrangements, in addition to the already known 4A-5A-7B rearrangements. The most common type was an intra-chromosomal translocation in which the translocated segment was short and was translocated only a short distance along the chromosome. A large reciprocal translocation, one small non-reciprocal translocation, and three large and one small paracentric inversions were also discovered. The use of inversions for a phylogeny reconstruction in the Triticum-Aegilops alliance was illustrated. The genetic map was inconsistent with the current model of evolution of the rearranged chromosomes 4A-5A-7B. Genetic diversity in the rearranged chromosome 4A showed that the rearrangements might have been contemporary with wild emmer speciation. A selective sweep was found in the centromeric region of chromosome 4A in Karaca Dağ wild emmer but not in 4A of T. aestivum. The absence of diversity from a large portion of chromosome 4A of wild emmer, believed to be ancestral to all domesticated wheat, is puzzling.
Collapse
Affiliation(s)
- Chad Jorgensen
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Ramesh Ramasamy
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| | - Mathew Dawson
- Department of Statistics, University of California, Davis, Davis, CA, United States
| | - Bikram S. Gill
- Department of Plant Pathology, Kansas State University, Manhattan, KS, United States
| | | | - Assaf Distelfeld
- Institute for Cereal Crops Improvement, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv, Israel
| | - Jan Dvorak
- Department of Plant Sciences, University of California, Davis, Davis, CA, United States
| |
Collapse
|
104
|
Lin Y, Liu S, Liu Y, Liu Y, Chen G, Xu J, Deng M, Jiang Q, Wei Y, Lu Y, Zheng Y. Genome-wide association study of pre-harvest sprouting resistance in Chinese wheat founder parents. Genet Mol Biol 2017; 40:620-629. [PMID: 28696481 PMCID: PMC5596365 DOI: 10.1590/1678-4685-gmb-2016-0207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2016] [Accepted: 02/28/2017] [Indexed: 12/23/2022] Open
Abstract
Pre-harvest sprouting (PHS) is a major abiotic factor affecting grain weight and
quality, and is caused by an early break in seed dormancy. Association mapping (AM)
is used to detect correlations between phenotypes and genotypes based on linkage
disequilibrium (LD) in wheat breeding programs. We evaluated seed dormancy in 80
Chinese wheat founder parents in five environments and performed a genome-wide
association study using 6,057 markers, including 93 simple sequence repeat (SSR),
1,472 diversity array technology (DArT), and 4,492 single nucleotide polymorphism
(SNP) markers. The general linear model (GLM) and the mixed linear model (MLM) were
used in this study, and two significant markers (tPt-7980 and
wPt-6457) were identified. Both markers were located on
Chromosome 1B, with wPt-6457 having been identified in a previously
reported chromosomal position. The significantly associated loci contain essential
information for cloning genes related to resistance to PHS and can be used in wheat
breeding programs.
Collapse
Affiliation(s)
- Yu Lin
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Shihang Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Yujiao Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Guoyue Chen
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Jie Xu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Qiantao Jiang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, P.R. China
| |
Collapse
|
105
|
Majka M, Kwiatek MT, Majka J, Wiśniewska H. Aegilops tauschii Accessions with Geographically Diverse Origin Show Differences in Chromosome Organization and Polymorphism of Molecular Markers Linked to Leaf Rust and Powdery Mildew Resistance Genes. FRONTIERS IN PLANT SCIENCE 2017; 8:1149. [PMID: 28702048 PMCID: PMC5487464 DOI: 10.3389/fpls.2017.01149] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/15/2017] [Indexed: 06/02/2023]
Abstract
Aegilops tauschii (2n = 2x = 14) is a diploid wild species which is reported as a donor of the D-genome of cultivated bread wheat. The main goal of this study was to examine the differences and similarities in chromosomes organization among accessions of Ae. tauschii with geographically diversed origin, which is believed as a potential source of genes, especially determining resistance to fungal diseases (i.e., leaf rust and powdery mildew) for breeding of cereals. We established and compared the fluorescence in situ hybridization patterns of 21 accessions of Ae. tauschii using various repetitive sequences mainly from the BAC library of wheat cultivar Chinese Spring. Results obtained for Ae. tauschii chromosomes revealed many similarities between analyzed accessions, however, some hybridization patterns were specific for accessions, which become from cognate regions of the World. The most noticeable differences were observed for accessions from China which were characterized by presence of distinct signals of pTa-535 in the interstitial region of chromosome 3D, less intensity of pTa-86 signals in chromosome 2D, as well as lack of additional signals of pTa-86 in chromosomes 1D, 5D, or 6D. Ae. tauschii of Chinese origin appeared homogeneous and separate from landraces that originated in western Asia. Ae. tauschii chromosomes showed similar hybridization patterns to wheat D-genome chromosomes, but some differences were also observed among both species. What is more, we identified reciprocal translocation between short arm of chromosome 1D and long arm of chromosome 7D in accession with Iranian origin. High polymorphism between analyzed accessions and extensive allelic variation were revealed using molecular markers associated with resistance genes. Majority of the markers localized in chromosomes 1D and 2D showed the diversity of banding patterns between accessions. Obtained results imply, that there is a moderate or high level of polymorphism in the genome of Ae. tauschii determined by a geographical origin, which we proved by cytogenetic and molecular markers analysis. Therefore, selected accessions might constitute an accessible source of variation for improvement of Triticeae species like wheat and triticale.
Collapse
Affiliation(s)
- Maciej Majka
- Cereal Genomics Team, Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznań, Poland
| | - Michał T. Kwiatek
- Cereal Genomics Team, Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznań, Poland
| | - Joanna Majka
- Plant Molecular Physiology and Cytogenetics Team, Department of Environmental Stress Biology, Institute of Plant Genetics, Polish Academy of SciencesPoznań, Poland
| | - Halina Wiśniewska
- Cereal Genomics Team, Department of Genomics, Institute of Plant Genetics, Polish Academy of SciencesPoznań, Poland
| |
Collapse
|
106
|
Abdollahi Mandoulakani B, Nasri S, Dashchi S, Arzhang S, Bernousi I, Abbasi Holasou H. Preliminary evidence for associations between molecular markers and quantitative traits in a set of bread wheat (Triticum aestivum L.) cultivars and breeding lines. C R Biol 2017; 340:307-313. [PMID: 28619368 DOI: 10.1016/j.crvi.2017.05.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2017] [Revised: 04/21/2017] [Accepted: 05/07/2017] [Indexed: 10/19/2022]
Abstract
The identification of polymorphic markers associated with various quantitative traits allows us to test their performance for the exploitation of the extensive quantitative variation maintained in gene banks. In the current study, a set of 97 wheat germplasm accessions including 48 cultivars and 49 breeding lines were evaluated for 18 agronomic traits. The accessions were also genotyped with 23 ISSR, nine IRAP and 20 REMAP markers, generating a total of 658 clear and scorable bands, 86% of which were polymorphic. Both neighbor-joining dendrogram and Bayesian analysis of clustering of individuals revealed that the accessions could be divided into four genetically distinct groups, indicating the presence of a population structure in current wheat germplasm. Associations between molecular markers and 18 agronomic traits were analyzed using the mixed linear model (MLM) approach. A total of 94 loci were found to be significantly associated with agronomic traits (P≤0.01). The highest number of bands significantly associated with the 18 traits varied from 11 for number of spikelets spike-1 (NSS) to two for grain yield in row (GRY). Loci ISSR16-9 and REMAP13-10 were associated with three different traits. The results of the current study provide useful information about the performance of retrotransposon-based and ISSR molecular markers that could be helpful in selecting potentially elite gene bank samples for wheat-breeding programs.
Collapse
Affiliation(s)
- Babak Abdollahi Mandoulakani
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University, Urmia, Iran; Department of Agricultural Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran.
| | - Shilan Nasri
- Department of Life Science Engineering, Faculty of New Sciences and Technologies, University of Tehran, Tehran, Iran
| | - Sahar Dashchi
- Department of Agronomy and Plant Breeding, Razi University, Kermanshah, Iran
| | - Sorour Arzhang
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University, Urmia, Iran
| | - Iraj Bernousi
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Urmia University, Urmia, Iran; Department of Agricultural Biotechnology, Institute of Biotechnology, Urmia University, Urmia, Iran
| | - Hossein Abbasi Holasou
- Department of Plant Breeding and Biotechnology, Faculty of Agriculture, Tabriz University, Tabriz, Iran
| |
Collapse
|
107
|
Li YG, Liang HH, Bai SL, Zhou Y, Sun G, Su YR, Gao AL, Zhang DL, Li SP. Molecular Characterization and Variation of the Celiac Disease Epitope Domains among α-Gliadin Genes in Aegilops tauschii. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2017; 65:3422-3429. [PMID: 28391694 DOI: 10.1021/acs.jafc.7b00338] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
To explore the distribution and quantity of toxic epitopes in α-gliadins from Aegilops tauschii, a total of 133 complete α-gliadin coding sequences were obtained, including 69 pseudogenes with at least one premature stop codon and 64 genes with complete open reading frames (ORFs). Plenty of deletions and single amino acid substitutions were found in the 4 celiac disease (CD) toxic epitope domains through multiple alignments, in which the sequence of DQ2.5-glia-α2 demonstrated the most significant changes. Interestingly, 7 of the 59 α-gliadins were free of any kind of intact CD toxic epitopes, providing potential gene resources for low CD toxicity breeding of common wheat. Analysis of the neighbor-joining tree demonstrates that 2 of the totally 7 α-gliadins cluster within the homologues of Triticum (A genome), and the other 5 group with those of Aegilops Sitopsis (B genome). This result implies that the 7 α-gliadin genes may be originated from the ancestor species of Ae. tauschii, evolved by the homoploid hybrid of Triticum and Aegilops Sitopsis. The remaining 52 α-gliadins form a separate clade from other homologues of A and B genomes, suggesting a recent rapid gene expansion by gene duplication associated with the species adaptation.
Collapse
Affiliation(s)
- Yu-Ge Li
- School of Life Science, Henan University , Kaifeng, 475004, Henan, People's Republic of China
- Institute of Plant Stress Biology, Henan University , Kaifeng, 475004, People's Republic of China
| | - Hui-Hui Liang
- School of Life Science, Henan University , Kaifeng, 475004, Henan, People's Republic of China
- Institute of Plant Stress Biology, Henan University , Kaifeng, 475004, People's Republic of China
| | - Sheng-Long Bai
- Institute of Plant Stress Biology, Henan University , Kaifeng, 475004, People's Republic of China
| | - Yun Zhou
- School of Life Science, Henan University , Kaifeng, 475004, Henan, People's Republic of China
- Institute of Plant Stress Biology, Henan University , Kaifeng, 475004, People's Republic of China
| | - Guiling Sun
- School of Life Science, Henan University , Kaifeng, 475004, Henan, People's Republic of China
- Institute of Plant Stress Biology, Henan University , Kaifeng, 475004, People's Republic of China
| | - Ya-Rui Su
- School of Life Science, Henan University , Kaifeng, 475004, Henan, People's Republic of China
| | - An-Li Gao
- School of Life Science, Henan University , Kaifeng, 475004, Henan, People's Republic of China
| | - Da-Le Zhang
- School of Life Science, Henan University , Kaifeng, 475004, Henan, People's Republic of China
- Institute of Plant Stress Biology, Henan University , Kaifeng, 475004, People's Republic of China
| | - Suo-Ping Li
- School of Life Science, Henan University , Kaifeng, 475004, Henan, People's Republic of China
- Institute of Plant Stress Biology, Henan University , Kaifeng, 475004, People's Republic of China
| |
Collapse
|
108
|
Jouanin A, Gilissen LJWJ, Boyd LA, Cockram J, Leigh FJ, Wallington EJ, van den Broeck HC, van der Meer IM, Schaart JG, Visser RGF, Smulders MJM. Food processing and breeding strategies for coeliac-safe and healthy wheat products. Food Res Int 2017; 110:11-21. [PMID: 30029701 DOI: 10.1016/j.foodres.2017.04.025] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/18/2017] [Accepted: 04/24/2017] [Indexed: 01/01/2023]
Abstract
A strict gluten-free diet is currently the only treatment for the 1-2% of the world population who suffer from coeliac disease (CD). However, due to the presence of wheat and wheat derivatives in many food products, avoiding gluten consumption is difficult. Gluten-free products, made without wheat, barley or rye, typically require the inclusion of numerous additives, resulting in products that are often less healthy than gluten-based equivalents. Here, we present and discuss two broad approaches to decrease wheat gluten immunogenicity for CD patients. The first approach is based on food processing strategies, which aim to remove gliadins or all gluten from edible products. We find that several of the candidate food processing techniques to produce low gluten-immunogenic products from wheat already exist. The second approach focuses on wheat breeding strategies to remove immunogenic epitopes from the gluten proteins, while maintaining their food-processing properties. A combination of breeding strategies, including mutation breeding and possibly genome editing, will be necessary to produce coeliac-safe wheat. Individuals suffering from CD and people genetically susceptible who may develop CD after prolonged gluten consumption would benefit from reduced CD-immunogenic wheat. Although the production of healthy and less CD-toxic wheat varieties and food products will be challenging, increasing global demand may require these issues to be addressed in the near future by food processing and cereal breeding companies.
Collapse
Affiliation(s)
- Aurélie Jouanin
- Wageningen University & Research, Wageningen, The Netherlands; NIAB, Cambridge CB3 0LE, UK
| | | | | | | | | | | | | | | | - Jan G Schaart
- Wageningen University & Research, Wageningen, The Netherlands
| | | | | |
Collapse
|
109
|
Nishijima R, Okamoto Y, Hatano H, Takumi S. Quantitative trait locus analysis for spikelet shape-related traits in wild wheat progenitor Aegilops tauschii: Implications for intraspecific diversification and subspecies differentiation. PLoS One 2017; 12:e0173210. [PMID: 28264068 PMCID: PMC5338802 DOI: 10.1371/journal.pone.0173210] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 02/16/2017] [Indexed: 11/19/2022] Open
Abstract
Wild diploid wheat Aegilops tauschii, the D-genome progenitor of common wheat, carries large genetic variation in spikelet and grain morphology. Two differentiated subspecies of Ae. tauschii, subspecies tauschii and strangulata, have been traditionally defined based on differences in spikelet morphology. Here, we first assessed six spikelet shape-related traits among 199 Ae. tauschii accessions, and found that the accessions belonging to TauL1major lineage produced significantly longer spikes, higher spikelet density, and shorter, narrower spikelets than another major lineage, TauL2, in which the strangulata accessions are included. Next, we performed quantitative trait locus (QTL) analysis of the spikelet and grain shape using three mapping populations derived from interlineage crosses between TauL1 and TauL2 to identify the genetic loci for the morphological variations of the spikelet and grain shape in Ae. tauschii. Three major QTL regions for the examined traits were detected on chromosomes 3D, 4D and 7D. The 3D and 4D QTL regions for several spikelet shape-related traits were conserved in the three mapping populations, which indicated that the 3D and 4D QTLs contribute to divergence of the two major lineages. The 7D QTLs were found only in a mapping population from a cross of the two subspecies, suggesting that these 7D QTLs may be closely related to subspecies differentiation in Ae. tauschii. Thus, QTL analysis for spikelet and grain morphology may provide useful information to elucidate the evolutionary processes of intraspecific differentiation.
Collapse
Affiliation(s)
- Ryo Nishijima
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada, Kobe, Japan
| | - Yuki Okamoto
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada, Kobe, Japan
| | - Hitoshi Hatano
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada, Kobe, Japan
| | - Shigeo Takumi
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada, Kobe, Japan
| |
Collapse
|
110
|
Arora S, Singh N, Kaur S, Bains NS, Uauy C, Poland J, Chhuneja P. Genome-Wide Association Study of Grain Architecture in Wild Wheat Aegilops tauschii. FRONTIERS IN PLANT SCIENCE 2017; 8:886. [PMID: 28620398 PMCID: PMC5450224 DOI: 10.3389/fpls.2017.00886] [Citation(s) in RCA: 52] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Accepted: 05/11/2017] [Indexed: 05/18/2023]
Abstract
Aegilops tauschii, the D-genome progenitor of Triticum aestivum, encompasses huge diversity for various traits of potential economic importance such as yield, biotic and abiotic stress tolerance, quality and nutrition. In the present study, variation for grain size in Ae. tauschii germplasm was studied and its genetic basis dissected using genome-wide association study (GWAS). Grain length, width, and weight evaluated in 177 Ae. tauschii accessions over 3 years showed near normal distribution with 1.74-, 1.75-, and 2.82-fold variation, respectively. These lines were genetically characterized using genotyping-by-sequencing (GBS) protocol that produced 11,489 single nucleotide polymorphic (SNP) markers. Genetic diversity analysis revealed the presence of two distinct subgroups (designated as lineage 1 and 2) in Ae. tauschii. Based on GBS markers, the genetic similarity was calculated between the accessions and GWAS was conducted using 114 non-redundant accessions and 5,249 SNP markers. A total of 17 SNPs associated with grain size traits distributed over all the seven chromosomes were revealed with 6D, 5D, and 2D harboring most significant marker-trait associations. Some of the chromosomal regions such as 6D_66.4-71.1 cM, 1D_143.5-156.7 cM, and 2D_89.9-92.5 cM had associations with multiple traits. Candidate genes associated with cell division and differentiation were identified for some of the associated SNP markers. Further efforts to validate these loci will help to understand their role in determining grain size and allelic diversity in current germplasm and its effect on grain size upon transfer to bread wheat background.
Collapse
Affiliation(s)
- Sanu Arora
- School of Agricultural Biotechnology, Punjab Agricultural UniversityLudhiana, India
- Crop Genetics, John Innes CentreNorwich, United Kingdom
| | - Narinder Singh
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, ManhattanKS, United States
| | - Satinder Kaur
- School of Agricultural Biotechnology, Punjab Agricultural UniversityLudhiana, India
| | - Navtej S. Bains
- School of Agricultural Biotechnology, Punjab Agricultural UniversityLudhiana, India
- Department of Plant Breeding and Genetics, Punjab Agricultural UniversityLudhiana, India
| | | | - Jesse Poland
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, ManhattanKS, United States
| | - Parveen Chhuneja
- School of Agricultural Biotechnology, Punjab Agricultural UniversityLudhiana, India
- *Correspondence: Parveen Chhuneja,
| |
Collapse
|
111
|
Quraishi UM, Pont C, Ain QU, Flores R, Burlot L, Alaux M, Quesneville H, Salse J. Combined Genomic and Genetic Data Integration of Major Agronomical Traits in Bread Wheat ( Triticum aestivum L.). FRONTIERS IN PLANT SCIENCE 2017; 8:1843. [PMID: 29184557 PMCID: PMC5694560 DOI: 10.3389/fpls.2017.01843] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2017] [Accepted: 10/10/2017] [Indexed: 05/18/2023]
Abstract
The high resolution integration of bread wheat genetic and genomic resources accumulated during the last decades offers the opportunity to unveil candidate genes driving major agronomical traits to an unprecedented scale. We combined 27 public quantitative genetic studies and four genetic maps to deliver an exhaustive consensus map consisting of 140,315 molecular markers hosting 221, 73, and 82 Quantitative Trait Loci (QTL) for respectively yield, baking quality, and grain protein content (GPC) related traits. Projection of the consensus genetic map and associated QTLs onto the wheat syntenome made of 99,386 genes ordered on the 21 chromosomes delivered a complete and non-redundant repertoire of 18, 8, 6 metaQTLs for respectively yield, baking quality and GPC, altogether associated to 15,772 genes (delivering 28,630 SNP-based makers) including 37 major candidates. Overall, this study illustrates a translational research approach in transferring information gained from grass relatives to dissect the genomic regions hosting major loci governing key agronomical traits in bread wheat, their flanking markers and associated candidate genes to be now considered as a key resource for breeding programs.
Collapse
Affiliation(s)
- Umar M. Quraishi
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
- Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Clermont-Ferrand, France
- *Correspondence: Umar M. Quraishi ;
| | - Caroline Pont
- Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Clermont-Ferrand, France
| | - Qurat-ul Ain
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Raphael Flores
- Institut National de la Recherche Agronomique UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, France
| | - Laura Burlot
- Institut National de la Recherche Agronomique UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, France
| | - Michael Alaux
- Institut National de la Recherche Agronomique UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, France
| | - Hadi Quesneville
- Institut National de la Recherche Agronomique UR1164 URGI (Research Unit in Genomics-Info), Université Paris-Saclay, Versailles, France
| | - Jerome Salse
- Institut National de la Recherche Agronomique, Université Clermont Auvergne, UMR 1095 Génétique, Diversité et Ecophysiologie des Céréales, Clermont-Ferrand, France
- Jerome Salse
| |
Collapse
|
112
|
Identification and Analysis of RNA Editing Sites in the Chloroplast Transcripts of Aegilops tauschii L. Genes (Basel) 2016; 8:genes8010013. [PMID: 28042823 PMCID: PMC5295008 DOI: 10.3390/genes8010013] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 12/09/2016] [Accepted: 12/20/2016] [Indexed: 11/17/2022] Open
Abstract
RNA editing is an important way to convert cytidine (C) to uridine (U) at specific sites within RNA molecules at a post-transcriptional level in the chloroplasts of higher plants. Although it has been systematically studied in many plants, little is known about RNA editing in the wheat D genome donor Aegilops tauschii L. Here, we investigated the chloroplast RNA editing of Ae. tauschii and compared it with other wheat relatives to trace the evolution of wheat. Through bioinformatics prediction, a total of 34 C-to-U editing sites were identified, 17 of which were validated using RT-PCR product sequencing. Furthermore, 60 sites were found by the RNA-Seq read mapping approach, 24 of which agreed with the prediction and six were validated experimentally. The editing sites were biased toward tCn or nCa trinucleotides and 5′-pyrimidines, which were consistent with the flanking bases of editing sites of other seed plants. Furthermore, the editing events could result in the alteration of the secondary structures and topologies of the corresponding proteins, suggesting that RNA editing might impact the function of target genes. Finally, comparative analysis found some evolutionarily conserved editing sites in wheat and two species-specific sites were also obtained. This study is the first to report on RNA editing in Aegilops tauschii L, which not only sheds light on the evolution of wheat from the point of view of RNA editing, but also lays a foundation for further studies to identify the mechanisms of C-to-U alterations.
Collapse
|
113
|
Salt tolerance during germination and seedling growth of wild wheat Aegilops tauschii and its impact on the species range expansion. Sci Rep 2016; 6:38554. [PMID: 27929044 PMCID: PMC5143976 DOI: 10.1038/srep38554] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Accepted: 11/09/2016] [Indexed: 11/12/2022] Open
Abstract
Adaptation to edaphic stress may have a key role in plant species range expansion. Aegilops tauschii Coss., the common wheat’s D-genome progenitor native to the Transcaucasus-Middle East region, is a good model to study the relationships between soil salinity and plant distributions: one of its intraspecific sublineages, TauL1b, drove the long-distance eastward expansion of this species range reaching semi-arid-central Asia. Salt tolerance during germination and seedling growth was evaluated in 206 Ae. tauschii accessions by treating seeds with NaCl solutions differing in concentrations. Differences in natural variation patterns were analyzed between sublineages and associated with natural edaphic condition variables, and then compared with reproductive trait variation patterns. The natural variations observed in NaCl-induced-stress tolerance had clear geographic and genetic structure. Seedling growth significantly increased in the TauL1b accessions that were collected from salt-affected soil habitats, whereas germinability did not. Principal component analysis suggested that the NaCl-induced-stress tolerances and reproductive traits might have had a similar degree of influence on Ae. tauschii’s eastward range expansion. Adaptation to salt-affected soils through increased seedling growth was an important factor for the species’ successful colonization of the semi-arid central Asian habitats. TauL1b accessions might provide useful genetic resources for salt-tolerant wheat breeds.
Collapse
|
114
|
Akpinar BA, Lucas S, Budak H. A large-scale chromosome-specific SNP discovery guideline. Funct Integr Genomics 2016; 17:97-105. [PMID: 27900504 DOI: 10.1007/s10142-016-0536-6] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 11/06/2016] [Accepted: 11/09/2016] [Indexed: 12/01/2022]
Abstract
Single-nucleotide polymorphisms (SNPs) are the most prevalent type of variation in genomes that are increasingly being used as molecular markers in diversity analyses, mapping and cloning of genes, and germplasm characterization. However, only a few studies reported large-scale SNP discovery in Aegilops tauschii, restricting their potential use as markers for the low-polymorphic D genome. Here, we report 68,592 SNPs found on the gene-related sequences of the 5D chromosome of Ae. tauschii genotype MvGB589 using genomic and transcriptomic sequences from seven Ae. tauschii accessions, including AL8/78, the only genotype for which a draft genome sequence is available at present. We also suggest a workflow to compare SNP positions in homologous regions on the 5D chromosome of Triticum aestivum, bread wheat, to mark single nucleotide variations between these closely related species. Overall, the identified SNPs define a density of 4.49 SNPs per kilobyte, among the highest reported for the genic regions of Ae. tauschii so far. To our knowledge, this study also presents the first chromosome-specific SNP catalog in Ae. tauschii that should facilitate the association of these SNPs with morphological traits on chromosome 5D to be ultimately targeted for wheat improvement.
Collapse
Affiliation(s)
- Bala Ani Akpinar
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Orhanlı, 34956, Tuzla, Istanbul, Turkey
| | - Stuart Lucas
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Orhanlı, 34956, Tuzla, Istanbul, Turkey
| | - Hikmet Budak
- Sabanci University Nanotechnology Research and Application Center (SUNUM), Sabanci University, Orhanlı, 34956, Tuzla, Istanbul, Turkey. .,Cereal Genomics Lab, Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
115
|
Xie J, Huo N, Zhou S, Wang Y, Guo G, Deal KR, Ouyang S, Liang Y, Wang Z, Xiao L, Zhu T, Hu T, Tiwari V, Zhang J, Li H, Ni Z, Yao Y, Peng H, Zhang S, Anderson OD, McGuire PE, Dvorak J, Luo MC, Liu Z, Gu YQ, Sun Q. Sequencing and comparative analyses of Aegilops tauschii chromosome arm 3DS reveal rapid evolution of Triticeae genomes. J Genet Genomics 2016; 44:51-61. [PMID: 27765484 DOI: 10.1016/j.jgg.2016.09.005] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Revised: 09/26/2016] [Accepted: 09/27/2016] [Indexed: 11/18/2022]
Abstract
Bread wheat (Triticum aestivum, AABBDD) is an allohexaploid species derived from two rounds of interspecific hybridizations. A high-quality genome sequence assembly of diploid Aegilops tauschii, the donor of the wheat D genome, will provide a useful platform to study polyploid wheat evolution. A combined approach of BAC pooling and next-generation sequencing technology was employed to sequence the minimum tiling path (MTP) of 3176 BAC clones from the short arm of Ae. tauschii chromosome 3 (At3DS). The final assembly of 135 super-scaffolds with an N50 of 4.2 Mb was used to build a 247-Mb pseudomolecule with a total of 2222 predicted protein-coding genes. Compared with the orthologous regions of rice, Brachypodium, and sorghum, At3DS contains 38.67% more genes. In comparison to At3DS, the short arm sequence of wheat chromosome 3B (Ta3BS) is 95-Mb large in size, which is primarily due to the expansion of the non-centromeric region, suggesting that transposable element (TE) bursts in Ta3B likely occurred there. Also, the size increase is accompanied by a proportional increase in gene number in Ta3BS. We found that in the sequence of short arm of wheat chromosome 3D (Ta3DS), there was only less than 0.27% gene loss compared to At3DS. Our study reveals divergent evolution of grass genomes and provides new insights into sequence changes in the polyploid wheat genome.
Collapse
Affiliation(s)
- Jingzhong Xie
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Naxin Huo
- USDA-ARS West Regional Research Center, Albany, CA 94710, USA; Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Shenghui Zhou
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Yi Wang
- USDA-ARS West Regional Research Center, Albany, CA 94710, USA
| | - Guanghao Guo
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Karin R Deal
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Shuhong Ouyang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Yong Liang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Zhenzhong Wang
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Lichan Xiao
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Tingting Zhu
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Tiezhu Hu
- USDA-ARS West Regional Research Center, Albany, CA 94710, USA
| | - Vijay Tiwari
- Department of Plant Pathology, Kansas State University, Manhattan, KS 66506, USA
| | - Jianwei Zhang
- Arizona Genomics Institute, School of Plant Science, University of Arizona, Tucson, AZ 85721, USA
| | - Hongxia Li
- USDA-ARS West Regional Research Center, Albany, CA 94710, USA
| | - Zhongfu Ni
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Yingyin Yao
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Huiru Peng
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Shengli Zhang
- USDA-ARS West Regional Research Center, Albany, CA 94710, USA
| | - Olin D Anderson
- USDA-ARS West Regional Research Center, Albany, CA 94710, USA
| | - Patrick E McGuire
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA
| | - Jan Dvorak
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA.
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California at Davis, Davis, CA 95616, USA.
| | - Zhiyong Liu
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China.
| | - Yong Q Gu
- USDA-ARS West Regional Research Center, Albany, CA 94710, USA.
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology, China Agricultural University, Beijing 100193, China.
| |
Collapse
|
116
|
Genome-wide characterization of microsatellites in Triticeae species: abundance, distribution and evolution. Sci Rep 2016; 6:32224. [PMID: 27561724 PMCID: PMC4999822 DOI: 10.1038/srep32224] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2016] [Accepted: 07/20/2016] [Indexed: 11/08/2022] Open
Abstract
Microsatellites are an important constituent of plant genome and distributed across entire genome. In this study, genome-wide analysis of microsatellites in 8 Triticeae species and 9 model plants revealed that microsatellite characteristics were similar among the Triticeae species. Furthermore, genome-wide microsatellite markers were designed in wheat and then used to analyze the evolutionary relationship of wheat and other Triticeae species. Results displayed that Aegilops tauschii was found to be the closest species to Triticum aestivum, followed by Triticum urartu, Triticum turgidum and Aegilops speltoides, while Triticum monococcum, Aegilops sharonensis and Hordeum vulgare showed a relatively lower PCR amplification effectivity. Additionally, a significantly higher PCR amplification effectivity was found in chromosomes at the same subgenome than its homoeologous when these markers were subjected to search against different chromosomes in wheat. After a rigorous screening process, a total of 20,666 markers showed high amplification and polymorphic potential in wheat and its relatives, which were integrated with the public available wheat markers and then anchored to the genome of wheat (CS). This study not only provided the useful resource for SSR markers development in Triticeae species, but also shed light on the evolution of polyploid wheat from the perspective of microsatellites.
Collapse
|
117
|
Bulli P, Zhang J, Chao S, Chen X, Pumphrey M. Genetic Architecture of Resistance to Stripe Rust in a Global Winter Wheat Germplasm Collection. G3 (BETHESDA, MD.) 2016; 6:2237-53. [PMID: 27226168 PMCID: PMC4978880 DOI: 10.1534/g3.116.028407] [Citation(s) in RCA: 71] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 05/16/2016] [Indexed: 12/30/2022]
Abstract
Virulence shifts in populations of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, are a major challenge to resistance breeding. The majority of known resistance genes are already ineffective against current races of Pst, necessitating the identification and introgression of new sources of resistance. Germplasm core collections that reflect the range of genetic and phenotypic diversity of crop species are ideal platforms for examining the genetic architecture of complex traits such as resistance to stripe rust. We report the results of genetic characterization and genome-wide association analysis (GWAS) for resistance to stripe rust in a core subset of 1175 accessions in the National Small Grains Collection (NSGC) winter wheat germplasm collection, based on genotyping with the wheat 9K single nucleotide polymorphism (SNP) iSelect assay and phenotyping of seedling and adult plants under natural disease epidemics in four environments. High correlations among the field data translated into high heritability values within and across locations. Population structure was evident when accessions were grouped by stripe rust reaction. GWAS identified 127 resistance loci that were effective across at least two environments, including 20 with significant genome-wide adjusted P-values. Based on relative map positions of previously reported genes and QTL, five of the QTL with significant genome-wide adjusted P-values in this study represent potentially new loci. This study provides an overview of the diversity of Pst resistance in the NSGC winter wheat germplasm core collection, which can be exploited for diversification of stripe rust resistance in breeding programs.
Collapse
Affiliation(s)
- Peter Bulli
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164-6420
| | - Junli Zhang
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Shiaoman Chao
- USDA-ARS Genotyping Laboratory, Biosciences Research Laboratory, Fargo, North Dakota 58102
| | - Xianming Chen
- USDA-ARS, Wheat Health, Genetics and Quality Research Unit, Washington State University, Pullman, Washington 99164 Department of Plant Pathology, Washington State University, Pullman, Washington 99164
| | - Michael Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164-6420
| |
Collapse
|
118
|
Sakaguchi K, Nishijima R, Iehisa JCM, Takumi S. Fine mapping and genetic association analysis of Net2, the causative D-genome locus of low temperature-induced hybrid necrosis in interspecific crosses between tetraploid wheat and Aegilops tauschii. Genetica 2016; 144:523-533. [PMID: 27502693 DOI: 10.1007/s10709-016-9920-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2016] [Accepted: 08/02/2016] [Indexed: 12/20/2022]
Abstract
Hybrid necrosis has been observed in many interspecific hybrids from crosses between tetraploid wheat and the wheat D-genome donor Aegilops tauschii. Type II necrosis is a kind of hybrid incompatibility that is specifically characterized by low-temperature induction and growth suppression. Two complementary genes, Net1 on the AB genome and Net2 on the D genome, putatively control type II necrosis in ABD triploids and synthetic hexaploid wheat. Toward map-based cloning of Net2, a fine map around the Net2 region on 2DS was constructed in this study. Using the draft genome sequence of Ae. tauschii and the physical map of the barley genome, the Net2 locus was mapped within a 0.6 cM interval between two closely linked markers. Although local chromosomal rearrangements were observed in the Net2-corresponding region between the barley/Brachypodium and Ae. tauschii genomes, the two closely linked markers were significantly associated with type II necrosis in Ae. tauschii. These results suggest that these markers will aid efficient selection of Net2 non-carrier individuals from the Ae. tauschii population and intraspecific progeny, and could help with introgression of agriculturally important genes from Ae. tauschii to common wheat.
Collapse
Affiliation(s)
- Kouhei Sakaguchi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan
| | - Ryo Nishijima
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan
| | - Julio Cesar Masaru Iehisa
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan
| | - Shigeo Takumi
- Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada-ku, Kobe, 657-8501, Japan.
| |
Collapse
|
119
|
Qin P, Lin Y, Hu Y, Liu K, Mao S, Li Z, Wang J, Liu Y, Wei Y, Zheng Y. Genome-wide association study of drought-related resistance traits in Aegilops tauschii. Genet Mol Biol 2016; 39:398-407. [PMID: 27560650 PMCID: PMC5004832 DOI: 10.1590/1678-4685-gmb-2015-0232] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2015] [Accepted: 12/15/2015] [Indexed: 01/09/2023] Open
Abstract
The D-genome progenitor of wheat (Triticum aestivum), Aegilops tauschii, possesses numerous genes for resistance to abiotic stresses, including drought. Therefore, information on the genetic architecture of A. tauschii can aid the development of drought-resistant wheat varieties. Here, we evaluated 13 traits in 373 A. tauschii accessions grown under normal and polyethylene glycol-simulated drought stress conditions and performed a genome-wide association study using 7,185 single nucleotide polymorphism (SNP) markers. We identified 208 and 28 SNPs associated with all traits using the general linear model and mixed linear model, respectively, while both models detected 25 significant SNPs with genome-wide distribution. Public database searches revealed several candidate/flanking genes related to drought resistance that were grouped into three categories according to the type of encoded protein (enzyme, storage protein, and drought-induced protein). This study provided essential information for SNPs and genes related to drought resistance in A. tauschii and wheat, and represents a foundation for breeding drought-resistant wheat cultivars using marker-assisted selection.
Collapse
Affiliation(s)
- Peng Qin
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China.,College of Agronomy and Biotechnology, Yunnan Agricultural University, Kunming, China
| | - Yu Lin
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Yaodong Hu
- Institute of Animal Genetics and Breeding, College of Animal Science and Technology, Sichuan Agricultural University, Chengdu, China.,Farm Animal Genetic Resources Exploration and Innovation Key Laboratory of Sichuan Province, Sichuan Agricultural University, Chengdu, China
| | - Kun Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Shuangshuang Mao
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Zhanyi Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, China
| |
Collapse
|
120
|
Nguyen AT, Nishijima R, Kajimura T, Murai K, Takumi S. Quantitative trait locus analysis for flowering-related traits using two F2 populations derived from crosses between Japanese common wheat cultivars and synthetic hexaploids. Genes Genet Syst 2016; 90:89-98. [PMID: 26399768 DOI: 10.1266/ggs.90.89] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Flowering time is an important trait for Japanese wheat breeding. Aegilops tauschii, the D-genome donor of hexaploid wheat, is a useful resource to enlarge the D-genome diversity of common wheat. Previously, we identified flowering-related QTLs in F2 populations of synthetic hexaploid wheat lines between the tetraploid wheat cultivar Langdon and Ae. tauschii accessions. Here, to evaluate the usefulness of the early-flowering alleles from Ae. tauschii for Japanese wheat breeding, QTL analyses were conducted in two F2 populations derived from crosses between Japanese wheat cultivars and early-flowering lines of synthetic hexaploid wheat. Only two chromosomal regions controlling flowering-related traits were identified, on chromosomes 2DS and 5AL in the mapping populations, and no previously identified QTLs were found in the synthetic hexaploid lines. The strong effect of the 2DS QTL, putatively corresponding to Ppd-D1, was considered to hide any significant expression of other QTLs with small effects on flowering-related traits. When F2 individuals carrying Ae. tauschii-homozygous alleles around the 2DS QTL region were selected, the Ae. tauschii-derived alleles of the previously identified flowering QTLs partly showed an early-flowering phenotype compared with the Japanese wheat-derived alleles. Thus, some early-flowering alleles from Ae. tauschii may be useful for production of early-flowering Japanese wheat cultivars.
Collapse
Affiliation(s)
- Anh T Nguyen
- Graduate School of Agricultural Science, Kobe University
| | | | | | | | | |
Collapse
|
121
|
Genome-Wide Mapping of Growth-Related Quantitative Trait Loci in Orange-Spotted Grouper (Epinephelus coioides) Using Double Digest Restriction-Site Associated DNA Sequencing (ddRADseq). Int J Mol Sci 2016; 17:501. [PMID: 27058532 PMCID: PMC4848957 DOI: 10.3390/ijms17040501] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2016] [Revised: 03/28/2016] [Accepted: 03/29/2016] [Indexed: 12/19/2022] Open
Abstract
Mapping of quantitative trait loci (QTL) is essential for the discovery of genetic structures that related to complex quantitative traits. In this study, we identified 264,072 raw SNPs (single-nucleotide polymorphisms) by double digest restriction site associated DNA sequencing (ddRADseq), and utilized 3029 of these SNPs to construct a genetic linkage map in orange-spotted grouper (Epinephelus coioides) using a regression mapping algorithm. The genetic map contained 24 linkage groups (LGs) spanning a total genetic distance of 1231.98 cM. Twenty-seven significant growth-related QTLs were identified. Furthermore, we identified 17 genes (fez2, alg3, ece2, arvcf, sla27a4, sgk223, camk2, prrc2b, mchr1, sardh, pappa, syk, tert, wdrcp91, ftz-f1, mate1 and notch1) including three (tert, ftz-f1 and notch1) that have been reported to be involved in fish growth. To summarize, we mapped growth-related QTLs in the orange-spotted grouper. These QTLs will be useful in marker-assisted selection (MAS) efforts to improve growth-related traits in this economically important fish.
Collapse
|
122
|
Alptekin B, Budak H. Wheat miRNA ancestors: evident by transcriptome analysis of A, B, and D genome donors. Funct Integr Genomics 2016; 17:171-187. [PMID: 27032785 DOI: 10.1007/s10142-016-0487-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2016] [Revised: 03/06/2016] [Accepted: 03/14/2016] [Indexed: 12/24/2022]
Abstract
MicroRNAs are critical players of post-transcriptional gene regulation with profound effects on the fundamental processes of cellular life. Their identification and characterization, together with their targets, hold great significance in exploring and exploiting their roles on a functional context, providing valuable clues into the regulation of important biological processes, such as stress tolerance or environmental adaptation. Wheat is a hardy crop, extensively harvested in temperate regions, and is a major component of the human diet. With the advent of the next generation sequencing technologies considerably decreasing sequencing costs per base-pair, genomic, and transcriptomic data from several wheat species, including the progenitors and wild relatives have become available. In this study, we performed in silico identification and comparative analysis of microRNA repertoires of bread wheat (Triticum aestivum L.) and its diploid progenitors and relatives, Aegilops sharonensis, Aegilops speltoides, Aegilops tauschii, Triticum monococcum, and Triticum urartu through the utilization of publicly available transcriptomic data. Over 200 miRNA families were identified, majority of which have not previously been reported. Ancestral relationships expanded our understanding of wheat miRNA evolution, while T. monococcum miRNAs delivered important clues on the effects of domestication on miRNA expression. Comparative analyses on wild Ae. sharonensis accessions highlighted candidate miRNAs that can be linked to stress tolerance. The miRNA repertoires of bread wheat and its diploid progenitors and relatives provide important insight into the diversification and distribution of miRNA genes, which should contribute to the elucidation of miRNA evolution of Poaceae family. A thorough understanding of the convergent and divergent expression profiles of miRNAs in different genetic backgrounds can provide unique opportunities to modulation of gene regulation for better crop performance.
Collapse
Affiliation(s)
- Burcu Alptekin
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956, Istanbul, Turkey
| | - Hikmet Budak
- Molecular Biology, Genetics and Bioengineering Program, Sabanci University, 34956, Istanbul, Turkey.
- Department of Plant Sciences and Plant Pathology, Montana State University, Bozeman, MT, 59717, USA.
| |
Collapse
|
123
|
Zhou Z, Zhang C, Zhou Y, Hao Z, Wang Z, Zeng X, Di H, Li M, Zhang D, Yong H, Zhang S, Weng J, Li X. Genetic dissection of maize plant architecture with an ultra-high density bin map based on recombinant inbred lines. BMC Genomics 2016; 17:178. [PMID: 26940065 PMCID: PMC4778306 DOI: 10.1186/s12864-016-2555-z] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2015] [Accepted: 02/29/2016] [Indexed: 11/21/2022] Open
Abstract
Background Plant architecture attributes, such as plant height, ear height, and internode number, have played an important role in the historical increases in grain yield, lodging resistance, and biomass in maize (Zea mays L.). Analyzing the genetic basis of variation in plant architecture using high density QTL mapping will be of benefit for the breeding of maize for many traits. However, the low density of molecular markers in existing genetic maps has limited the efficiency and accuracy of QTL mapping. Genotyping by sequencing (GBS) is an improved strategy for addressing a complex genome via next-generation sequencing technology. GBS has been a powerful tool for SNP discovery and high-density genetic map construction. The creation of ultra-high density genetic maps using large populations of advanced recombinant inbred lines (RILs) is an efficient way to identify QTL for complex agronomic traits. Results A set of 314 RILs derived from inbreds Ye478 and Qi319 were generated and subjected to GBS. A total of 137,699,000 reads with an average of 357,376 reads per individual RIL were generated, which is equivalent to approximately 0.07-fold coverage of the maize B73 RefGen_V3 genome for each individual RIL. A high-density genetic map was constructed using 4183 bin markers (100-Kb intervals with no recombination events). The total genetic distance covered by the linkage map was 1545.65 cM and the average distance between adjacent markers was 0.37 cM with a physical distance of about 0.51 Mb. Our results demonstrated a relatively high degree of collinearity between the genetic map and the B73 reference genome. The quality and accuracy of the bin map for QTL detection was verified by the mapping of a known gene, pericarp color 1 (P1), which controls the color of the cob, with a high LOD value of 80.78 on chromosome 1. Using this high-density bin map, 35 QTL affecting plant architecture, including 14 for plant height, 14 for ear height, and seven for internode number were detected across three environments. Interestingly, pQTL10, which influences all three of these traits, was stably detected in three environments on chromosome 10 within an interval of 14.6 Mb. Two MYB transcription factor genes, GRMZM2G325907 and GRMZM2G108892, which might regulate plant cell wall metabolism are the candidate genes for qPH10. Conclusions Here, an ultra-high density accurate linkage map for a set of maize RILs was constructed using a GBS strategy. This map will facilitate identification of genes and exploration of QTL for plant architecture in maize. It will also be helpful for further research into the mechanisms that control plant architecture while also providing a basis for marker-assisted selection. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2555-z) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Zhiqiang Zhou
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Chaoshu Zhang
- College of Agronomy, Northeast Agricultural University, Mucai Street, XiangFang District, Harbin, Heilongjiang, 150030, China.
| | - Yu Zhou
- College of Agronomy, Northeast Agricultural University, Mucai Street, XiangFang District, Harbin, Heilongjiang, 150030, China.
| | - Zhuanfang Hao
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Zhenhua Wang
- College of Agronomy, Northeast Agricultural University, Mucai Street, XiangFang District, Harbin, Heilongjiang, 150030, China.
| | - Xing Zeng
- College of Agronomy, Northeast Agricultural University, Mucai Street, XiangFang District, Harbin, Heilongjiang, 150030, China.
| | - Hong Di
- College of Agronomy, Northeast Agricultural University, Mucai Street, XiangFang District, Harbin, Heilongjiang, 150030, China.
| | - Mingshun Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Degui Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Hongjun Yong
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Shihuang Zhang
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Jianfeng Weng
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| | - Xinhai Li
- Institute of Crop Science, Chinese Academy of Agricultural Sciences, Zhongguancun South Street, Haidian District, Beijing, 100081, China.
| |
Collapse
|
124
|
Gogniashvili M, Jinjikhadze T, Maisaia I, Akhalkatsi M, Kotorashvili A, Kotaria N, Beridze T, Dudnikov AJ. Complete chloroplast genomes of Aegilops tauschii Coss. and Ae. cylindrica Host sheds light on plasmon D evolution. Curr Genet 2016; 62:791-798. [PMID: 26923563 DOI: 10.1007/s00294-016-0583-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 02/11/2016] [Accepted: 02/13/2016] [Indexed: 10/22/2022]
Abstract
Hexaploid wheat (Triticum aestivum L., genomes AABBDD) originated in South Caucasus by allopolyploidization of the cultivated Emmer wheat T. dicoccum (genomes AABB) with the Caucasian Ae. tauschii ssp strangulata (genomes DD). Genetic variation of Ae. tauschii is an important natural resource, that is why it is of particular importance to investigate how this variation was formed during Ae. tauschii evolutionary history and how it is presented through the species area. The D genome is also found in tetraploid Ae. cylindrica Host (2n = 28, CCDD). The plasmon diversity that exists in Triticum and Aegilops species is of great significance for understanding the evolution of these genera. In the present investigation the complete nucleotide sequence of plasmon D (chloroplast DNA) of nine accessions of Ae. tauschii and two accessions of Ae. cylindrica are presented. Twenty-eight SNPs are characteristic for both TauL1 and TauL2 accessions of Ae. tauschii using TauL3 as a reference. Four SNPs are additionally observed for TauL2 lineage. The longest (27 bp) indel is located in the intergenic spacer Rps15-ndhF of SSC. This indel can be used for simple determination of TauL3 lineage among Ae. tauschii accessions. In the case of Ae. cylindrica additionally 7 SNPs were observed. The phylogeny tree shows that chloroplast DNA of TauL1 and TauL2 diverged from the TauL3 lineage. TauL1 lineage is relatively older then TauL2. The position of Ae. cylindrica accessions on Ae. tauschii phylogeny tree constructed on chloroplast DNA variation data is intermediate between TauL1 and TauL2. The complete nucleotide sequence of chloroplast DNA of Ae. tauschii and Ae. cylindrica allows to refine the origin and evolution of D plasmon of genus Aegilops.
Collapse
Affiliation(s)
- Mari Gogniashvili
- Institute of Molecular Genetics, Agricultural University of Georgia, #240 D. Agmashenebeli Alley, 0159, Tbilisi, Georgia.
| | | | - Inesa Maisaia
- Institute of Botany, Ilia State University, Tbilisi, Georgia
| | - Maia Akhalkatsi
- Institute of Botany, Ilia State University, Tbilisi, Georgia
| | - Adam Kotorashvili
- National Centre for Disease Control and Public Health, Tbilisi, Georgia
| | - Nato Kotaria
- National Centre for Disease Control and Public Health, Tbilisi, Georgia
| | - Tengiz Beridze
- Institute of Molecular Genetics, Agricultural University of Georgia, #240 D. Agmashenebeli Alley, 0159, Tbilisi, Georgia
| | | |
Collapse
|
125
|
Shaaf S, Sharma R, Baloch FS, Badaeva ED, Knüpffer H, Kilian B, Özkan H. The grain Hardness locus characterized in a diverse wheat panel (Triticum aestivum L.) adapted to the central part of the Fertile Crescent: genetic diversity, haplotype structure, and phylogeny. Mol Genet Genomics 2016; 291:1259-75. [DOI: 10.1007/s00438-016-1180-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2015] [Accepted: 02/03/2016] [Indexed: 12/27/2022]
|
126
|
Hill CB, Li C. Genetic Architecture of Flowering Phenology in Cereals and Opportunities for Crop Improvement. FRONTIERS IN PLANT SCIENCE 2016; 7:1906. [PMID: 28066466 PMCID: PMC5165254 DOI: 10.3389/fpls.2016.01906] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/06/2016] [Accepted: 12/01/2016] [Indexed: 05/21/2023]
Abstract
Cereal crop species including bread wheat (Triticum aestivum L.), barley (Hordeum vulgare L.), rice (Oryza sativa L.), and maize (Zea mays L.) provide the bulk of human nutrition and agricultural products for industrial use. These four cereals are central to meet future demands of food supply for an increasing world population under a changing climate. A prerequisite for cereal crop production is the transition from vegetative to reproductive and grain-filling phases starting with flower initiation, a key developmental switch tightly regulated in all flowering plants. Although studies in the dicotyledonous model plant Arabidopsis thaliana build the foundations of our current understanding of plant phenology genes and regulation, the availability of genome assemblies with high-confidence sequences for rice, maize, and more recently bread wheat and barley, now allow the identification of phenology-associated gene orthologs in monocots. Together with recent advances in next-generation sequencing technologies, QTL analysis, mutagenesis, complementation analysis, and RNA interference, many phenology genes have been functionally characterized in cereal crops and conserved as well as functionally divergent genes involved in flowering were found. Epigenetic and other molecular regulatory mechanisms that respond to environmental and endogenous triggers create an enormous plasticity in flowering behavior among cereal crops to ensure flowering is only induced under optimal conditions. In this review, we provide a summary of recent discoveries of flowering time regulators with an emphasis on four cereal crop species (bread wheat, barley, rice, and maize), in particular, crop-specific regulatory mechanisms and genes. In addition, pleiotropic effects on agronomically important traits such as grain yield, impact on adaptation to new growing environments and conditions, genetic sequence-based selection and targeted manipulation of phenology genes, as well as crop growth simulation models for predictive crop breeding, are discussed.
Collapse
Affiliation(s)
- Camilla B. Hill
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, PerthWA, Australia
- *Correspondence: Chengdao Li, Camilla B. Hill,
| | - Chengdao Li
- Western Barley Genetics Alliance, Western Australian State Agricultural Biotechnology Centre, School of Veterinary and Life Sciences, Murdoch University, PerthWA, Australia
- Department of Agriculture and Food Western Australia, South PerthWA, Australia
- *Correspondence: Chengdao Li, Camilla B. Hill,
| |
Collapse
|
127
|
Application of Population Sequencing (POPSEQ) for Ordering and Imputing Genotyping-by-Sequencing Markers in Hexaploid Wheat. G3-GENES GENOMES GENETICS 2015; 5:2547-53. [PMID: 26530417 PMCID: PMC4683627 DOI: 10.1534/g3.115.020362] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
The advancement of next-generation sequencing technologies in conjunction with new bioinformatics tools enabled fine-tuning of sequence-based, high-resolution mapping strategies for complex genomes. Although genotyping-by-sequencing (GBS) provides a large number of markers, its application for association mapping and genomics-assisted breeding is limited by a large proportion of missing data per marker. For species with a reference genomic sequence, markers can be ordered on the physical map. However, in the absence of reference marker order, the use and imputation of GBS markers is challenging. Here, we demonstrate how the population sequencing (POPSEQ) approach can be used to provide marker context for GBS in wheat. The utility of a POPSEQ-based genetic map as a reference map to create genetically ordered markers on a chromosome for hexaploid wheat was validated by constructing an independent de novo linkage map of GBS markers from a Synthetic W7984 × Opata M85 recombinant inbred line (SynOpRIL) population. The results indicated that there is strong agreement between the independent de novo linkage map and the POPSEQ mapping approach in mapping and ordering GBS markers for hexaploid wheat. After ordering, a large number of GBS markers were imputed, thus providing a high-quality reference map that can be used for QTL mapping for different traits. The POPSEQ-based reference map and whole-genome sequence assemblies are valuable resources that can be used to order GBS markers and enable the application of highly accurate imputation methods to leverage the application GBS markers in wheat.
Collapse
|
128
|
Liu Y, Wang L, Deng M, Li Z, Lu Y, Wang J, Wei Y, Zheng Y. Genome-wide association study of phosphorus-deficiency-tolerance traits in Aegilops tauschii. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:2203-12. [PMID: 26187748 DOI: 10.1007/s00122-015-2578-x] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2015] [Accepted: 07/01/2015] [Indexed: 05/19/2023]
Abstract
Using GWAS, 13 significant SNPs distributed on six of the seven Aegilops tauschii chromosomes (all but 5D) were identified, and several candidate P-deficiency-responsive genes were proposed from searches of public databases. Aegilops tauschii, the wheat (Triticum aestivum) D-genome progenitor, possesses numerous genes for stress resistance, including genes for tolerance of phosphorus (P) deficiency. Investigation of the genetic architecture of A. tauschii will help in developing P-deficiency-tolerant varieties of wheat. We evaluated nine traits in a population of 380 A. tauschii specimens under conditions with and without P application, and we performed genome-wide association studies for these traits using single nucleotide polymorphism (SNP) chips containing 7185 markers. Using a general linear model, we identified 119 SNPs that were significantly associated with all nine traits, and a mixed linear model revealed 18 SNPs associated with all traits. Both models detected 13 significant markers distributed on six of the seven A. tauschii chromosomes (all but 5D). Searches of public databases revealed several candidate/flanking genes related to P-deficiency tolerance. These genes were grouped in five categories by the types of proteins they encoded: defense response proteins, enzymes, promoters and transcription factors, storage proteins, or proteins triggered by P deficiency. The identified SNPs and genes contain essential information for cloning genes related to P-deficiency tolerance in A. tauschii and wheat, and they provide a foundation for breeding P-deficiency tolerant wheat cultivars.
Collapse
Affiliation(s)
- Yaxi Liu
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| | - Lang Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| | - Mei Deng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| | - Zhanyi Li
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| | - Yanli Lu
- Maize Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| | - Jirui Wang
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| | - Yuming Wei
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| | - Youliang Zheng
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, 611130, China.
| |
Collapse
|
129
|
Genome-wide association study of 29 morphological traits in Aegilops tauschii. Sci Rep 2015; 5:15562. [PMID: 26503608 PMCID: PMC4622089 DOI: 10.1038/srep15562] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2015] [Accepted: 09/29/2015] [Indexed: 11/08/2022] Open
Abstract
Aegilops tauschii is the D-genome progenitor of hexaploid wheat (Triticum aestivum). It is considered to be an important source of genetic variation for wheat breeding, and its genome is an invaluable reference for wheat genomics. We conducted a genome-wide association study using 7,185 single nucleotide polymorphism (SNP) markers across 322 diverse accessions of Ae. tauschii that were systematically phenotyped for 29 morphological traits in order to identify marker-trait associations and candidate genes, assess genetic diversity, and classify the accessions based on phenotypic data and genotypic comparison. Using the general linear model and mixed linear model, we identified a total of 18 SNPs significantly associated with 10 morphological traits. Systematic search of the flanking sequences of trait-associated SNPs in public databases identified several genes that may be linked to variations in phenotypes. Cluster analysis using phenotypic data grouped accessions into four clusters, while accessions in the same cluster were not from the same Ae. tauschii subspecies or from the same area of origin. This work establishes a fundamental research platform for association studies in Ae. tauschii and also provides useful information for understanding the genetic mechanism of agronomic traits in wheat.
Collapse
|
130
|
Qin P, Wang L, Liu K, Mao S, Li Z, Gao S, Shi H, Liu Y. Genomewide association study of Aegilops tauschii traits under seedling-stage cadmium stress. ACTA ACUST UNITED AC 2015. [DOI: 10.1016/j.cj.2015.04.005] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
|
131
|
Matsuoka Y, Takumi S, Kawahara T. Intraspecific lineage divergence and its association with reproductive trait change during species range expansion in central Eurasian wild wheat Aegilops tauschii Coss. (Poaceae). BMC Evol Biol 2015; 15:213. [PMID: 26419628 PMCID: PMC4589133 DOI: 10.1186/s12862-015-0496-9] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2015] [Accepted: 09/22/2015] [Indexed: 11/20/2022] Open
Abstract
Background How species ranges form in landscapes is a matter of long-standing evolutionary interest. However, little is known about how natural phenotypic variations of ecologically important traits contribute to species range expansion. In this study, we examined the phylogeographic patterns of phenotypic changes in life history (seed production) and phenological (flowering time) traits during the range expansion of Aegilops tauschii Coss. from the Transcaucasus and Middle East to central Asia. Results Our comparative analyses of the patterns of natural variations for those traits and their association with the intraspecific lineage structure showed that (1) the eastward expansion to Asia was driven by an intraspecific sublineage (named TauL1b), (2) high seed production ability likely had an important role at the initial dispersal stage of TauL1b’s expansion to Asia, and (3) the phenological change to early flowering phenotypes was one of the key adaptation events for TauL1b to further expand its range in Asia. Conclusions This study provides for the first time a broad picture of the process of Ae. tauschii’s eastward range expansion in which life history and phenological traits may have had respective roles in its dispersal and adaptation in Asia. The clear association of seed production and flowering time patterns with the intraspecific lineage divergence found in this study invites further genetic research to bring the mechanistic understanding of the changes in these key functional traits during range expansion within reach. Electronic supplementary material The online version of this article (doi:10.1186/s12862-015-0496-9) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | - Shigeo Takumi
- Laboratory of Plant Genetics, Graduate School of Agricultural Science, Kobe University, Nada-ku, Kobe, Japan.
| | - Taihachi Kawahara
- Laboratory of Crop Evolution, Plant Germ-plasm Institute, Graduate School of Agriculture, Kyoto University, Mozume, Muko, Kyoto, Japan.
| |
Collapse
|
132
|
Jung Y, Kawaura K, Kishii M, Sakuma S, Ogihara Y. Comparison of genome-wide gene expression patterns in the seedlings of nascent allohexaploid wheats produced by two combinations of hybrids. Genes Genet Syst 2015; 90:79-88. [PMID: 26399767 DOI: 10.1266/ggs.90.79] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
Allopolyploidization in plants is an important event that enhances heterosis and environmental adaptation. Common wheat, Triticum aestivum (AABBDD), which is an allohexaploid that evolved from an allopolyploidization event between T. turgidum (AABB) and Aegilops tauschii (DD), shows more growth vigor and wider adaptation than tetraploid wheats. To better understand the molecular basis for the heterosis of hexaploid wheat, we systematically analyzed the genome-wide gene expression patterns of two combinations of newly hybridized triploids (ABD), their chromosome-doubled hexaploids (AABBDD), stable synthetic hexaploids (AABBDD) and natural hexaploids, in addition to their parents, T. turgidum (AABB) and Ae. tauschii (DD), using a microarray to reconstruct the events of allopolyploidization and genome stabilization. Overall comparisons of gene expression profiles showed that the newly generated hexaploids exhibited gene expression patterns similar to those of their maternal tetraploids, irrespective of hybrid combination. With successive generations, the gene expression profiles of nascent hexaploids became less similar to the maternal profiles, and belonged to a separate cluster from the natural hexaploids. Triploids revealed characteristic expression patterns, suggesting endosperm effects. In the newly hybridized triploids (ABD) of two independent synthetic lines, approximately one-fifth of expressed genes displayed non-additive expression; the number of these genes decreased with polyploidization and genome stabilization. Approximately 20% of the non-additively expressed genes were transmitted across generations throughout allopolyploidization and successive self-pollinations, and 43 genes overlapped between the two combinations, indicating that shared gene expression patterns can be seen during allohexaploidization. Furthermore, four of these 43 genes were involved in starch and sucrose metabolism, suggesting that these metabolic events play key roles in the hybrid vigor of hexaploid wheat.
Collapse
Affiliation(s)
- Yeonju Jung
- Department of Life and Environmental System Science, Kihara Institute for Biological Research, Yokohama City University
| | | | | | | | | |
Collapse
|
133
|
Identification of the VERNALIZATION 4 gene reveals the origin of spring growth habit in ancient wheats from South Asia. Proc Natl Acad Sci U S A 2015; 112:E5401-10. [PMID: 26324889 DOI: 10.1073/pnas.1514883112] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Wheat varieties with a winter growth habit require long exposures to low temperatures (vernalization) to accelerate flowering. Natural variation in four vernalization genes regulating this requirement has favored wheat adaptation to different environments. The first three genes (VRN1-VRN3) have been cloned and characterized before. Here we show that the fourth gene, VRN-D4, originated by the insertion of a ∼290-kb region from chromosome arm 5AL into the proximal region of chromosome arm 5DS. The inserted 5AL region includes a copy of VRN-A1 that carries distinctive mutations in its coding and regulatory regions. Three lines of evidence confirmed that this gene is VRN-D4: it cosegregated with VRN-D4 in a high-density mapping population; it was expressed earlier than other VRN1 genes in the absence of vernalization; and induced mutations in this gene resulted in delayed flowering. VRN-D4 was found in most accessions of the ancient subspecies Triticum aestivum ssp. sphaerococcum from South Asia. This subspecies showed a significant reduction of genetic diversity and increased genetic differentiation in the centromeric region of chromosome 5D, suggesting that VRN-D4 likely contributed to local adaptation and was favored by positive selection. Three adjacent SNPs in a regulatory region of the VRN-D4 first intron disrupt the binding of GLYCINE-RICH RNA-BINDING PROTEIN 2 (TaGRP2), a known repressor of VRN1 expression. The same SNPs were identified in VRN-A1 alleles previously associated with reduced vernalization requirement. These alleles can be used to modulate vernalization requirements and to develop wheat varieties better adapted to different or changing environments.
Collapse
|
134
|
Zhang Z, Zhu H, Gill BS, Li W. Fine mapping of shattering locus Br2 reveals a putative chromosomal inversion polymorphism between the two lineages of Aegilops tauschii. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2015; 128:745-755. [PMID: 25656150 DOI: 10.1007/s00122-015-2469-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2014] [Accepted: 01/26/2015] [Indexed: 06/04/2023]
Abstract
This work laid the foundation for cloning of shattering gene Br2 and provided first line of evidence that two major Aegilops tauschii lineages are differentiated by an inversion polymorphism. Chromosome inversions often accompany population differentiation and capture local adaptation during speciation. Aegilops tauschii, the D-genome donor species of hexaploid wheat, consists of two genetically isolated lineages, L1 and L2, but little is known about the genetic mechanisms underlying the population differentiation in this diploid species. During fine mapping of the shattering gene Br2 using a large F2 population derived from a cross between TA1604 (an L1 accession) and AL8/78 (an L2 accession), we found contrasting patterns of crossover distribution in the Br2 interval and neighboring regions despite the high local gene synteny with Brachypodium distachyon and rice. Br2 was localized in a 0.08-cM interval, and 13 marker loci formed a block, where single-crossovers were completely suppressed, but double-crossovers were enriched with a recombination rate of ~11 cM/Mb. In contrast, in a neighboring region no double-crossover was recovered, but single-crossover rate reached 24 cM/Mb, which is much higher than the genome-wide average. This result suggests a putative inversion polymorphism between the parental lines in the Br2 region. Genotyping using the markers from the Br2 region divided a collection of 55 randomly sampled A. tauschii accessions into two major groups, and they are largely genetically isolated. The two groups correspond to the L1 and L2 lineages based on their geographic distribution patterns. This provides first evidence that inversions may underlie the evolution of A. tauschii lineages. The presence of inter-lineage inversions may complicate map-based cloning in A. tauschii and transfer of useful traits to wheat.
Collapse
Affiliation(s)
- Zhengzhi Zhang
- Department of Biology and Microbiology, South Dakota State University, Brookings, SD, 57007, USA
| | | | | | | |
Collapse
|
135
|
Jordan KW, Wang S, Lun Y, Gardiner LJ, MacLachlan R, Hucl P, Wiebe K, Wong D, Forrest KL, Sharpe AG, Sidebottom CH, Hall N, Toomajian C, Close T, Dubcovsky J, Akhunova A, Talbert L, Bansal UK, Bariana HS, Hayden MJ, Pozniak C, Jeddeloh JA, Hall A, Akhunov E. A haplotype map of allohexaploid wheat reveals distinct patterns of selection on homoeologous genomes. Genome Biol 2015; 16:48. [PMID: 25886949 PMCID: PMC4389885 DOI: 10.1186/s13059-015-0606-4] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2014] [Accepted: 02/04/2015] [Indexed: 12/21/2022] Open
Abstract
Background Bread wheat is an allopolyploid species with a large, highly repetitive genome. To investigate the impact of selection on variants distributed among homoeologous wheat genomes and to build a foundation for understanding genotype-phenotype relationships, we performed population-scale re-sequencing of a diverse panel of wheat lines. Results A sample of 62 diverse lines was re-sequenced using the whole exome capture and genotyping-by-sequencing approaches. We describe the allele frequency, functional significance, and chromosomal distribution of 1.57 million single nucleotide polymorphisms and 161,719 small indels. Our results suggest that duplicated homoeologous genes are under purifying selection. We find contrasting patterns of variation and inter-variant associations among wheat genomes; this, in addition to demographic factors, could be explained by differences in the effect of directional selection on duplicated homoeologs. Only a small fraction of the homoeologous regions harboring selected variants overlapped among the wheat genomes in any given wheat line. These selected regions are enriched for loci associated with agronomic traits detected in genome-wide association studies. Conclusions Evidence suggests that directional selection in allopolyploids rarely acted on multiple parallel advantageous mutations across homoeologous regions, likely indicating that a fitness benefit could be obtained by a mutation at any one of the homoeologs. Additional advantageous variants in other homoelogs probably either contributed little benefit, or were unavailable in populations subjected to directional selection. We hypothesize that allopolyploidy may have increased the likelihood of beneficial allele recovery by broadening the set of possible selection targets. Electronic supplementary material The online version of this article (doi:10.1186/s13059-015-0606-4) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Katherine W Jordan
- Department Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
| | - Shichen Wang
- Department Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
| | - Yanni Lun
- Department Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA. .,Integrated Genomics Facility, Kansas State University, Manhattan, KS, 66506, USA.
| | - Laura-Jayne Gardiner
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Ron MacLachlan
- Department Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | - Pierre Hucl
- Department Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | - Krysta Wiebe
- Department Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | - Debbie Wong
- Department Environment and Primary Industries, Bundoora, VIC, 3083, Australia.
| | - Kerrie L Forrest
- Department Environment and Primary Industries, Bundoora, VIC, 3083, Australia.
| | | | - Andrew G Sharpe
- National Research Council Canada, 110 Gymnasium Place, Saskatoon, SK, S7N 0 W9, Canada.
| | | | - Neil Hall
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | | | - Timothy Close
- Department Botany & Plant Sciences, University of California, Riverside, CA, 92521, USA.
| | - Jorge Dubcovsky
- Department Plant Sciences, University of California, Davis, CA, 95616, USA. .,Howard Hughes Medical Institute, Chevy Chase, MD, 20815, USA.
| | - Alina Akhunova
- Department Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA. .,Integrated Genomics Facility, Kansas State University, Manhattan, KS, 66506, USA.
| | - Luther Talbert
- Department Plant Sciences & Plant Pathology, Montana State University, Bozeman, MT, 59717, USA.
| | - Urmil K Bansal
- Plant Breeding Institute-Cobbitty, The University of Sydney, PMB4011, Narellan, NSW, 2567, Australia.
| | - Harbans S Bariana
- Plant Breeding Institute-Cobbitty, The University of Sydney, PMB4011, Narellan, NSW, 2567, Australia.
| | - Matthew J Hayden
- Department Environment and Primary Industries, Bundoora, VIC, 3083, Australia.
| | - Curtis Pozniak
- Department Plant Sciences, University of Saskatchewan, Saskatoon, SK, S7N 5A8, Canada.
| | | | - Anthony Hall
- Institute of Integrative Biology, University of Liverpool, Liverpool, L69 7ZB, UK.
| | - Eduard Akhunov
- Department Plant Pathology, Kansas State University, Manhattan, KS, 66506, USA.
| |
Collapse
|
136
|
Wu QH, Chen YX, Zhou SH, Fu L, Chen JJ, Xiao Y, Zhang D, Ouyang SH, Zhao XJ, Cui Y, Zhang DY, Liang Y, Wang ZZ, Xie JZ, Qin JX, Wang GX, Li DL, Huang YL, Yu MH, Lu P, Wang LL, Wang L, Wang H, Dang C, Li J, Zhang Y, Peng HR, Yuan CG, You MS, Sun QX, Wang JR, Wang LX, Luo MC, Han J, Liu ZY. High-density genetic linkage map construction and QTL mapping of grain shape and size in the wheat population Yanda1817 × Beinong6. PLoS One 2015; 10:e0118144. [PMID: 25675376 PMCID: PMC4326355 DOI: 10.1371/journal.pone.0118144] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/04/2015] [Indexed: 12/11/2022] Open
Abstract
High-density genetic linkage maps are necessary for precisely mapping quantitative trait loci (QTLs) controlling grain shape and size in wheat. By applying the Infinium iSelect 9K SNP assay, we have constructed a high-density genetic linkage map with 269 F 8 recombinant inbred lines (RILs) developed between a Chinese cornerstone wheat breeding parental line Yanda1817 and a high-yielding line Beinong6. The map contains 2431 SNPs and 128 SSR & EST-SSR markers in a total coverage of 3213.2 cM with an average interval of 1.26 cM per marker. Eighty-eight QTLs for thousand-grain weight (TGW), grain length (GL), grain width (GW) and grain thickness (GT) were detected in nine ecological environments (Beijing, Shijiazhuang and Kaifeng) during five years between 2010–2014 by inclusive composite interval mapping (ICIM) (LOD≥2.5). Among which, 17 QTLs for TGW were mapped on chromosomes 1A, 1B, 2A, 2B, 3A, 3B, 3D, 4A, 4D, 5A, 5B and 6B with phenotypic variations ranging from 2.62% to 12.08%. Four stable QTLs for TGW could be detected in five and seven environments, respectively. Thirty-two QTLs for GL were mapped on chromosomes 1B, 1D, 2A, 2B, 2D, 3B, 3D, 4A, 4B, 4D, 5A, 5B, 6B, 7A and 7B, with phenotypic variations ranging from 2.62% to 44.39%. QGl.cau-2A.2 can be detected in all the environments with the largest phenotypic variations, indicating that it is a major and stable QTL. For GW, 12 QTLs were identified with phenotypic variations range from 3.69% to 12.30%. We found 27 QTLs for GT with phenotypic variations ranged from 2.55% to 36.42%. In particular, QTL QGt.cau-5A.1 with phenotypic variations of 6.82–23.59% was detected in all the nine environments. Moreover, pleiotropic effects were detected for several QTL loci responsible for grain shape and size that could serve as target regions for fine mapping and marker assisted selection in wheat breeding programs.
Collapse
Affiliation(s)
- Qiu-Hong Wu
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Yong-Xing Chen
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Sheng-Hui Zhou
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Lin Fu
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Jiao-Jiao Chen
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Yao Xiao
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Dong Zhang
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Shu-Hong Ouyang
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Xiao-Jie Zhao
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Yu Cui
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - De-Yun Zhang
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Yong Liang
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Zhen-Zhong Wang
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Jing-Zhong Xie
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Jin-Xia Qin
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Guo-Xin Wang
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - De-Lin Li
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Yin-Lian Huang
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Mei-Hua Yu
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Ping Lu
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Li-Li Wang
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Ling Wang
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Hao Wang
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Chen Dang
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Jie Li
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Yan Zhang
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Hui-Ru Peng
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Cheng-Guo Yuan
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Ming-Shan You
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Qi-Xin Sun
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
| | - Ji-Rui Wang
- Department of Plant Sciences, University of California at Davis, Davis 95616, United States of America
- Triticeae Research Institute, Sichuan Agricultural University, Wenjiang, Chengdu, Sichuan 611130, China
| | - Li-Xin Wang
- Beijing Academy of Agriculture and Forestry Sciences, Beijing 100197, China
| | - Ming-Cheng Luo
- Department of Plant Sciences, University of California at Davis, Davis 95616, United States of America
| | - Jun Han
- Beijing University of Agriculture, Beijing 102206, China
- * E-mail: (ZYL); (JH)
| | - Zhi-Yong Liu
- State Key Laboratory for Agrobiotechnology / Department of Plant Genetics & Breeding, China Agricultural University, Beijing 100193, China
- * E-mail: (ZYL); (JH)
| |
Collapse
|
137
|
Chapman JA, Mascher M, Buluç A, Barry K, Georganas E, Session A, Strnadova V, Jenkins J, Sehgal S, Oliker L, Schmutz J, Yelick KA, Scholz U, Waugh R, Poland JA, Muehlbauer GJ, Stein N, Rokhsar DS. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biol 2015. [PMID: 25637298 DOI: 10.1186/s13059‐015‐0582‐8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Polyploid species have long been thought to be recalcitrant to whole-genome assembly. By combining high-throughput sequencing, recent developments in parallel computing, and genetic mapping, we derive, de novo, a sequence assembly representing 9.1 Gbp of the highly repetitive 16 Gbp genome of hexaploid wheat, Triticum aestivum, and assign 7.1 Gb of this assembly to chromosomal locations. The genome representation and accuracy of our assembly is comparable or even exceeds that of a chromosome-by-chromosome shotgun assembly. Our assembly and mapping strategy uses only short read sequencing technology and is applicable to any species where it is possible to construct a mapping population.
Collapse
Affiliation(s)
- Jarrod A Chapman
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA.
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Stadt Seeland, Germany.
| | - Aydın Buluç
- Computational Research Division and National Energy Research Supercomputing Center (NERSC), Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA.
| | - Evangelos Georganas
- Computational Research Division and National Energy Research Supercomputing Center (NERSC), Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Department of Electrical Engineering and Computer Science, Computer Science Division, University of California, Berkeley, CA, 94720, USA.
| | - Adam Session
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
| | - Veronika Strnadova
- Department of Computer Science, University of California, Santa Barbara, CA, 93106, USA.
| | - Jerry Jenkins
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA. .,HudsonAlpha Institute of Biotechnology, Huntsville, AL, 35806, USA.
| | - Sunish Sehgal
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 65506, USA. .,Present address: Department of Plant Science, South Dakota State University, Brookings, SD, 57007, USA.
| | - Leonid Oliker
- Computational Research Division and National Energy Research Supercomputing Center (NERSC), Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA. .,HudsonAlpha Institute of Biotechnology, Huntsville, AL, 35806, USA.
| | - Katherine A Yelick
- Computational Research Division and National Energy Research Supercomputing Center (NERSC), Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Department of Electrical Engineering and Computer Science, Computer Science Division, University of California, Berkeley, CA, 94720, USA.
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Stadt Seeland, Germany.
| | - Robbie Waugh
- Division of Plant Sciences, University of Dundee & The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| | - Jesse A Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 65506, USA.
| | - Gary J Muehlbauer
- Departments of Agronomy and Plant Genetics, and Plant Biology, University of Minnesota, St Paul, MN, 55108, USA.
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Stadt Seeland, Germany.
| | - Daniel S Rokhsar
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA. .,Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
138
|
Chapman JA, Mascher M, Buluç A, Barry K, Georganas E, Session A, Strnadova V, Jenkins J, Sehgal S, Oliker L, Schmutz J, Yelick KA, Scholz U, Waugh R, Poland JA, Muehlbauer GJ, Stein N, Rokhsar DS. A whole-genome shotgun approach for assembling and anchoring the hexaploid bread wheat genome. Genome Biol 2015; 16:26. [PMID: 25637298 PMCID: PMC4373400 DOI: 10.1186/s13059-015-0582-8] [Citation(s) in RCA: 165] [Impact Index Per Article: 16.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2014] [Accepted: 01/06/2015] [Indexed: 11/10/2022] Open
Abstract
Polyploid species have long been thought to be recalcitrant to whole-genome assembly. By combining high-throughput sequencing, recent developments in parallel computing, and genetic mapping, we derive, de novo, a sequence assembly representing 9.1 Gbp of the highly repetitive 16 Gbp genome of hexaploid wheat, Triticum aestivum, and assign 7.1 Gb of this assembly to chromosomal locations. The genome representation and accuracy of our assembly is comparable or even exceeds that of a chromosome-by-chromosome shotgun assembly. Our assembly and mapping strategy uses only short read sequencing technology and is applicable to any species where it is possible to construct a mapping population.
Collapse
Affiliation(s)
- Jarrod A Chapman
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA.
| | - Martin Mascher
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Stadt Seeland, Germany.
| | - Aydın Buluç
- Computational Research Division and National Energy Research Supercomputing Center (NERSC), Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Kerrie Barry
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA.
| | - Evangelos Georganas
- Computational Research Division and National Energy Research Supercomputing Center (NERSC), Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Department of Electrical Engineering and Computer Science, Computer Science Division, University of California, Berkeley, CA, 94720, USA.
| | - Adam Session
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
| | - Veronika Strnadova
- Department of Computer Science, University of California, Santa Barbara, CA, 93106, USA.
| | - Jerry Jenkins
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA. .,HudsonAlpha Institute of Biotechnology, Huntsville, AL, 35806, USA.
| | - Sunish Sehgal
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 65506, USA. .,Present address: Department of Plant Science, South Dakota State University, Brookings, SD, 57007, USA.
| | - Leonid Oliker
- Computational Research Division and National Energy Research Supercomputing Center (NERSC), Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA.
| | - Jeremy Schmutz
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA. .,HudsonAlpha Institute of Biotechnology, Huntsville, AL, 35806, USA.
| | - Katherine A Yelick
- Computational Research Division and National Energy Research Supercomputing Center (NERSC), Lawrence Berkeley National Laboratory, Berkeley, CA, 94720, USA. .,Department of Electrical Engineering and Computer Science, Computer Science Division, University of California, Berkeley, CA, 94720, USA.
| | - Uwe Scholz
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Stadt Seeland, Germany.
| | - Robbie Waugh
- Division of Plant Sciences, University of Dundee & The James Hutton Institute, Invergowrie, Dundee, DD2 5DA, UK.
| | - Jesse A Poland
- Department of Plant Pathology, Kansas State University, Manhattan, KS, 65506, USA.
| | - Gary J Muehlbauer
- Departments of Agronomy and Plant Genetics, and Plant Biology, University of Minnesota, St Paul, MN, 55108, USA.
| | - Nils Stein
- Leibniz Institute of Plant Genetics and Crop Plant Research (IPK) Gatersleben, 06466, Stadt Seeland, Germany.
| | - Daniel S Rokhsar
- Department of Energy Joint Genome Institute, 2800 Mitchell Drive, Walnut Creek, CA, 94598, USA. .,Department of Molecular and Cell Biology, University of California, Berkeley, CA, 94720, USA.
| |
Collapse
|
139
|
Maccaferri M, Zhang J, Bulli P, Abate Z, Chao S, Cantu D, Bossolini E, Chen X, Pumphrey M, Dubcovsky J. A genome-wide association study of resistance to stripe rust (Puccinia striiformis f. sp. tritici) in a worldwide collection of hexaploid spring wheat (Triticum aestivum L.). G3 (BETHESDA, MD.) 2015; 5:449-65. [PMID: 25609748 PMCID: PMC4349098 DOI: 10.1534/g3.114.014563] [Citation(s) in RCA: 177] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Accepted: 01/17/2015] [Indexed: 02/01/2023]
Abstract
New races of Puccinia striiformis f. sp. tritici (Pst), the causal pathogen of wheat stripe rust, show high virulence to previously deployed resistance genes and are responsible for large yield losses worldwide. To identify new sources of resistance we performed a genome-wide association study (GWAS) using a worldwide collection of 1000 spring wheat accessions. Adult plants were evaluated under field conditions in six environments in the western United States, and seedlings were tested with four Pst races. A single-nucleotide polymorphism (SNP) Infinium 9K-assay provided 4585 SNPs suitable for GWAS. High correlations among environments and high heritabilities were observed for stripe rust infection type and severity. Greater levels of Pst resistance were observed in a subpopulation from Southern Asia than in other groups. GWAS identified 97 loci that were significant for at least three environments, including 10 with an experiment-wise adjusted Bonferroni probability < 0.10. These 10 quantitative trait loci (QTL) explained 15% of the phenotypic variation in infection type, a percentage that increased to 45% when all QTL were considered. Three of these 10 QTL were mapped far from previously identified Pst resistance genes and QTL, and likely represent new resistance loci. The other seven QTL mapped close to known resistance genes and allelism tests will be required to test their relationships. In summary, this study provides an integrated view of stripe rust resistance resources in spring wheat and identifies new resistance loci that will be useful to diversify the current set of resistance genes deployed to control this devastating disease.
Collapse
Affiliation(s)
- Marco Maccaferri
- Department of Plant Sciences, University of California, Davis, California 95616 Department of Agricultural Sciences (DipSA), University of Bologna, Bologna 40127, Italy
| | - Junli Zhang
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Peter Bulli
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164-6420
| | - Zewdie Abate
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Shiaoman Chao
- USDA-ARS, 1605 Albrecht Blvd, Fargo, North Dakota 58105
| | - Dario Cantu
- Department of Viticulture and Enology, University of California, Davis, California 95616
| | - Eligio Bossolini
- Department of Plant Sciences, University of California, Davis, California 95616
| | - Xianming Chen
- USDA-ARS, Wheat Genetics, Quality Physiology, and Disease Research Unit, and Department of Plant Pathology, Washington State University, Pullman, Washington 99164
| | - Michael Pumphrey
- Department of Crop and Soil Sciences, Washington State University, Pullman, Washington 99164-6420
| | - Jorge Dubcovsky
- Department of Plant Sciences, University of California, Davis, California 95616 Howard Hughes Medical Institute, Chevy Chase, Maryland 20815
| |
Collapse
|
140
|
Ain QU, Rasheed A, Anwar A, Mahmood T, Imtiaz M, Mahmood T, Xia X, He Z, Quraishi UM. Genome-wide association for grain yield under rainfed conditions in historical wheat cultivars from Pakistan. FRONTIERS IN PLANT SCIENCE 2015; 6:743. [PMID: 26442056 PMCID: PMC4585131 DOI: 10.3389/fpls.2015.00743] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2015] [Accepted: 08/31/2015] [Indexed: 05/18/2023]
Abstract
Genome-wide association studies (GWAS) were undertaken to identify SNP markers associated with yield and yield-related traits in 123 Pakistani historical wheat cultivars evaluated during 2011-2014 seasons under rainfed field conditions. The population was genotyped by using high-density Illumina iSelect 90K single nucleotide polymorphism (SNP) assay, and finally 14,960 high quality SNPs were used in GWAS. Population structure examined using 1000 unlinked markers identified seven subpopulations (K = 7) that were representative of different breeding programs in Pakistan, in addition to local landraces. Forty four stable marker-trait associations (MTAs) with -log p > 4 were identified for nine yield-related traits. Nine multi-trait MTAs were found on chromosomes 1AL, 1BS, 2AL, 2BS, 2BL, 4BL, 5BL, 6AL, and 6BL, and those on 5BL and 6AL were stable across two seasons. Gene annotation and syntey identified that 14 trait-associated SNPs were linked to genes having significant importance in plant development. Favorable alleles for days to heading (DH), plant height (PH), thousand grain weight (TGW), and grain yield (GY) showed minor additive effects and their frequencies were slightly higher in cultivars released after 2000. However, no selection pressure on any favorable allele was identified. These genomic regions identified have historically contributed to achieve yield gains from 2.63 million tons in 1947 to 25.7 million tons in 2015. Future breeding strategies can be devised to initiate marker assisted breeding to accumulate these favorable alleles of SNPs associated with yield-related traits to increase grain yield. Additionally, in silico identification of 454-contigs corresponding to MTAs will facilitate fine mapping and subsequent cloning of candidate genes and functional marker development.
Collapse
Affiliation(s)
- Qurat-ul Ain
- Molecular Plant Breeding, Department of Plant Sciences, Quaid-i-Azam UniversityIslamabad, Pakistan
| | - Awais Rasheed
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- International Maize and Wheat Improvement Center (CIMMYT), C/O Chinese Academy of Agricultural SciencesBeijing, China
| | - Alia Anwar
- Molecular Plant Breeding, Department of Plant Sciences, Quaid-i-Azam UniversityIslamabad, Pakistan
| | - Tariq Mahmood
- Higher Education Commission, Research and DevelopmentIslamabad, Pakistan
| | - Muhammad Imtiaz
- International Maize and Wheat Improvement Center (CIMMYT), C/O National Agriculture Research CenterIslamabad, Pakistan
| | - Tariq Mahmood
- Molecular Plant Breeding, Department of Plant Sciences, Quaid-i-Azam UniversityIslamabad, Pakistan
| | - Xianchun Xia
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | - Zhonghu He
- National Wheat Improvement Center, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
- International Maize and Wheat Improvement Center (CIMMYT), C/O Chinese Academy of Agricultural SciencesBeijing, China
| | - Umar M. Quraishi
- Molecular Plant Breeding, Department of Plant Sciences, Quaid-i-Azam UniversityIslamabad, Pakistan
- *Correspondence: Umar M. Quraishi, Department of Plant Sciences, Faculty of Biological Sciences, Quaid-i-Azam University, Islamabad 45320, Pakistan
| |
Collapse
|
141
|
Wei Q, Wang Y, Qin X, Zhang Y, Zhang Z, Wang J, Li J, Lou Q, Chen J. An SNP-based saturated genetic map and QTL analysis of fruit-related traits in cucumber using specific-length amplified fragment (SLAF) sequencing. BMC Genomics 2014; 15:1158. [PMID: 25534138 PMCID: PMC4367881 DOI: 10.1186/1471-2164-15-1158] [Citation(s) in RCA: 94] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2014] [Accepted: 12/11/2014] [Indexed: 11/29/2022] Open
Abstract
Background Cucumber, Cucumis sativus L., is an economically important vegetable crop which is processed or consumed fresh worldwide. However, the narrow genetic base in cucumber makes it difficult for constructing high-density genetic maps. The development of massively parallel genotyping methods and next-generation sequencing (NGS) technologies provides an excellent opportunity for developing single nucleotide polymorphisms (SNPs) for linkage map construction and QTL analysis of horticultural traits. Specific-length amplified fragment sequencing (SLAF-seq) is a recent marker development technology that allows large-scale SNP discovery and genotyping at a reasonable cost. In this study, we constructed a high-density SNP map for cucumber using SLAF-seq and detected fruit-related QTLs. Results An F2 population of 148 individuals was developed from an intra-varietal cross between CC3 and NC76. Genomic DNAs extracted from two parents and 148 F2 individuals were subjected to high-throughput sequencing and SLAF library construction. A total of 10.76 Gb raw data and 75,024,043 pair-end reads were generated to develop 52,684 high-quality SLAFs, out of which 5,044 were polymorphic. 4,817 SLAFs were encoded and grouped into different segregation patterns. A high-resolution genetic map containing 1,800 SNPs was constructed for cucumber spanning 890.79 cM. The average distance between adjacent markers was 0.50 cM. 183 scaffolds were anchored to the SNP-based genetic map covering 46% (168.9 Mb) of the cucumber genome (367 Mb). Nine QTLs for fruit length and weight were detected, a QTL designated fl3.2 explained 44.60% of the phenotypic variance. Alignment of the SNP markers to draft genome scaffolds revealed two mis-assembled scaffolds that were validated by fluorescence in situ hybridization (FISH). Conclusions We report herein the development of evenly dispersed SNPs across cucumber genome, and for the first time an SNP-based saturated linkage map. This 1,800-locus map would likely facilitate genetic mapping of complex QTL loci controlling fruit yield, and the orientation of draft genome scaffolds. Electronic supplementary material The online version of this article (doi:10.1186/1471-2164-15-1158) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Qunfeng Lou
- State Key Laboratory of Crop Genetics and Germplasm Enhancement, College of Horticulture, Nanjing Agricultural University, Weigang Street No,1, Nanjing 210095, China.
| | | |
Collapse
|
142
|
Gong W, Li G, Zhou J, Li G, Liu C, Huang C, Zhao Z, Yang Z. Cytogenetic and molecular markers for detecting Aegilops uniaristata chromosomes in a wheat background. Genome 2014; 57:489-97. [PMID: 25486537 DOI: 10.1139/gen-2014-0111] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Aegilops uniaristata has many agronomically useful traits that can be used for wheat breeding. So far, a Triticum turgidum - Ae. uniaristata amphiploid and one set of Chinese Spring (CS) - Ae. uniaristata addition lines have been produced. To guide Ae. uniaristata chromatin transformation from these lines into cultivated wheat through chromosome engineering, reliable cytogenetic and molecular markers specific for Ae. uniaristata chromosomes need to be developed. Standard C-banding shows that C-bands mainly exist in the centromeric regions of Ae. uniaristata but rarely at the distal ends. Fluorescence in situ hybridization (FISH) using (GAA)8 as a probe showed that the hybridization signal of chromosomes 1N-7N are different, thus (GAA)8 can be used to identify all Ae. uniaristata chromosomes in wheat background simultaneously. Moreover, a total of 42 molecular markers specific for Ae. uniaristata chromosomes were developed by screening expressed sequence tag - sequence tagged site (EST-STS), expressed sequence tag - simple sequence repeat (EST-SSR), and PCR-based landmark unique gene (PLUG) primers. The markers were subsequently localized using the CS - Ae. uniaristata addition lines and different wheat cultivars as controls. The cytogenetic and molecular markers developed herein will be helpful for screening and identifying wheat - Ae. uniaristata progeny.
Collapse
Affiliation(s)
- Wenping Gong
- a School of Life Science and Technology, University of Electronic Science and Technology of China, Chengdu 610054, China
| | | | | | | | | | | | | | | |
Collapse
|
143
|
Gornicki P, Zhu H, Wang J, Challa GS, Zhang Z, Gill BS, Li W. The chloroplast view of the evolution of polyploid wheat. THE NEW PHYTOLOGIST 2014; 204:704-714. [PMID: 25059383 DOI: 10.1111/nph.12931] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2014] [Accepted: 06/07/2014] [Indexed: 05/20/2023]
Abstract
Polyploid wheats comprise four species: Triticum turgidum (AABB genomes) and T. aestivum (AABBDD) in the Emmer lineage, and T. timopheevii (AAGG) and T. zhukovskyi (AAGGA(m) A(m) ) in the Timopheevi lineage. Genetic relationships between chloroplast genomes were studied to trace the evolutionary history of the species. Twenty-five chloroplast genomes were sequenced, and 1127 plant accessions were genotyped, representing 13 Triticum and Aegilops species. The A. speltoides (SS genome) diverged before the divergence of T. urartu (AA), A. tauschii (DD) and the Aegilops species of the Sitopsis section. Aegilops speltoides forms a monophyletic clade with the polyploid Emmer and Timopheevi wheats, which originated within the last 0.7 and 0.4 Myr, respectively. The geographic distribution of chloroplast haplotypes of the wild tetraploid wheats and A. speltoides illustrates the possible geographic origin of the Emmer lineage in the southern Levant and the Timopheevi lineage in northern Iraq. Aegilops speltoides is the closest relative of the diploid donor of the chloroplast (cytoplasm), as well as the B and G genomes to Timopheevi and Emmer lineages. Chloroplast haplotypes were often shared by species or subspecies within major lineages and between the lineages, indicating the contribution of introgression to the evolution and domestication of polyploid wheats.
Collapse
Affiliation(s)
- Piotr Gornicki
- Department of Molecular Genetics and Cell Biology, University of Chicago, 920 E 58th St, Chicago, IL, 60637, USA
| | - Huilan Zhu
- Department of Biology and Microbiology, South Dakota State University, 252 North Plain Biostress, Brookings, SD, 57007, USA
| | - Junwei Wang
- Department of Biology and Microbiology, South Dakota State University, 252 North Plain Biostress, Brookings, SD, 57007, USA
| | - Ghana S Challa
- Department of Biology and Microbiology, South Dakota State University, 252 North Plain Biostress, Brookings, SD, 57007, USA
| | - Zhengzhi Zhang
- Department of Biology and Microbiology, South Dakota State University, 252 North Plain Biostress, Brookings, SD, 57007, USA
| | - Bikram S Gill
- Wheat Genetics Resource Center, Department of Plant Pathology, Kansas State University, 4024 Throckmorton Hall, Manhattan, KS, 66506, USA
- Biotechnology Section, Faculty of Sciences, King Abdulaziz University, Jeddeh, Saudi Arabia
| | - Wanlong Li
- Department of Biology and Microbiology, South Dakota State University, 252 North Plain Biostress, Brookings, SD, 57007, USA
- Department of Plant Science, South Dakota State University, 247 North Plain Biostress, Brookings, SD, 57007, USA
| |
Collapse
|
144
|
Shavrukov Y, Suchecki R, Eliby S, Abugalieva A, Kenebayev S, Langridge P. Application of next-generation sequencing technology to study genetic diversity and identify unique SNP markers in bread wheat from Kazakhstan. BMC PLANT BIOLOGY 2014; 14:258. [PMID: 25928569 PMCID: PMC4180858 DOI: 10.1186/s12870-014-0258-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2014] [Accepted: 09/23/2014] [Indexed: 05/30/2023]
Abstract
BACKGROUND New SNP marker platforms offer the opportunity to investigate the relationships between wheat cultivars from different regions and assess the mechanism and processes that have led to adaptation to particular production environments. Wheat breeding has a long history in Kazakhstan and the aim of this study was to explore the relationship between key varieties from Kazakhstan and germplasm from breeding programs for other regions. RESULTS The study revealed 5,898 polymorphic markers amongst ten cultivars, of which 2,730 were mapped in the consensus genetic map. Mapped SNP markers were distributed almost equally across the A and B genomes, with between 279 and 484 markers assigned to each chromosome. Marker coverage was approximately 10-fold lower in the D genome. There were 863 SNP markers identified as unique to specific cultivars, and clusters of these markers (regions containing more than three closely mapped unique SNPs) showed specific patterns on the consensus genetic map for each cultivar. Significant intra-varietal genetic polymorphism was identified in three cultivars (Tzelinnaya 3C, Kazakhstanskaya rannespelaya and Kazakhstanskaya 15). Phylogenetic analysis based on inter-varietal polymorphism showed that the very old cultivar Erythrospermum 841 was the most genetically distinct from the other nine cultivars from Kazakhstan, falling in a clade together with the American cultivar Sonora and genotypes from Central and South Asia. The modern cultivar Kazakhstanskaya 19 also fell into a separate clade, together with the American cultivar Thatcher. The remaining eight cultivars shared a single sub-clade but were categorised into four clusters. CONCLUSION The accumulated data for SNP marker polymorphisms amongst bread wheat genotypes from Kazakhstan may be used for studying genetic diversity in bread wheat, with potential application for marker-assisted selection and the preparation of a set of genotype-specific markers.
Collapse
Affiliation(s)
- Yuri Shavrukov
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Radoslaw Suchecki
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Serik Eliby
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
| | - Aigul Abugalieva
- Kazakh Research Institute of Agriculture and Crop Production, Almalybak, Kazakhstan.
| | - Serik Kenebayev
- Kazakh Research Institute of Agriculture and Crop Production, Almalybak, Kazakhstan.
| | - Peter Langridge
- Australian Centre for Plant Functional Genomics, University of Adelaide, Waite Campus, Urrbrae, SA 5064, Australia.
| |
Collapse
|
145
|
Nishijima R, Iehisa JCM, Matsuoka Y, Takumi S. The cuticular wax inhibitor locus Iw2 in wild diploid wheat Aegilops tauschii: phenotypic survey, genetic analysis, and implications for the evolution of common wheat. BMC PLANT BIOLOGY 2014; 14:246. [PMID: 25224598 PMCID: PMC4172845 DOI: 10.1186/s12870-014-0246-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Accepted: 09/10/2014] [Indexed: 06/03/2023]
Abstract
BACKGROUND Cuticular wax production on plant surfaces confers a glaucous appearance and plays important roles in plant stress tolerance. Most common wheat cultivars, which are hexaploid, and most tetraploid wheat cultivars are glaucous; in contrast, a wild wheat progenitor, Aegilops tauschii, can be glaucous or non-glaucous. A dominant non-glaucous allele, Iw2, resides on the short arm of chromosome 2D, which was inherited from Ae. tauschii through polyploidization. Iw2 is one of the major causal genes related to variation in glaucousness among hexaploid wheat. Detailed genetic and phylogeographic knowledge of the Iw2 locus in Ae. tauschii may provide important information and lead to a better understanding of the evolution of common wheat. RESULTS Glaucous Ae. tauschii accessions were collected from a broad area ranging from Armenia to the southwestern coastal part of the Caspian Sea. Linkage analyses with five mapping populations showed that the glaucous versus non-glaucous difference was mainly controlled by the Iw2 locus in Ae. tauschii. Comparative genomic analysis of barley and Ae. tauschii was then used to develop molecular markers tightly linked with Ae. tauschii Iw2. Chromosomal synteny around the orthologous Iw2 regions indicated that some chromosomal rearrangement had occurred during the genetic divergence leading to Ae. tauschii, barley, and Brachypodium. Genetic associations between specific Iw2-linked markers and respective glaucous phenotypes in Ae. tauschii indicated that at least two non-glaucous accessions might carry other glaucousness-determining loci outside of the Iw2 locus. CONCLUSION Allelic differences at the Iw2 locus were the main contributors to the phenotypic difference between the glaucous and non-glaucous accessions of Ae. tauschii. Our results supported the previous assumption that the D-genome donor of common wheat could have been any Ae. tauschii variant that carried the recessive iw2 allele.
Collapse
Affiliation(s)
- Ryo Nishijima
- />Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501 Japan
| | - Julio C M Iehisa
- />Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501 Japan
| | - Yoshihiro Matsuoka
- />Department of Bioscience, Fukui Prefectural University, Matsuoka, Eiheiji, Yoshida, Fukui 910-1195 Japan
| | - Shigeo Takumi
- />Graduate School of Agricultural Science, Kobe University, Rokkodai 1-1, Nada, Kobe, 657-8501 Japan
| |
Collapse
|
146
|
Zegeye H, Rasheed A, Makdis F, Badebo A, Ogbonnaya FC. Genome-wide association mapping for seedling and adult plant resistance to stripe rust in synthetic hexaploid wheat. PLoS One 2014; 9:e105593. [PMID: 25153126 PMCID: PMC4143293 DOI: 10.1371/journal.pone.0105593] [Citation(s) in RCA: 118] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2014] [Accepted: 07/23/2014] [Indexed: 01/08/2023] Open
Abstract
Use of genetic diversity from related wild and domesticated species has made a significant contribution to improving wheat productivity. Synthetic hexaploid wheats (SHWs) exhibit natural genetic variation for resistance and/or tolerance to biotic and abiotic stresses. Stripe rust caused by (Puccinia striiformis f. sp. tritici; Pst), is an important disease of wheat worldwide. To characterise loci conferring resistance to stripe rust in SHWs, we conducted a genome-wide association study (GWAS) with a panel of 181 SHWs using the wheat 9 K SNP iSelect array. The SHWs were evaluated for their response to the prevailing races of Pst at the seedling and adult plant stages, the latter in replicated field trials at two sites in Ethiopia in 2011. About 28% of the SHWs exhibited immunity at the seedling stage while 56% and 83% were resistant to Pst at the adult plant stage at Meraro and Arsi Robe, respectively. A total of 27 SNPs in nine genomic regions (1 BS, 2 AS, 2 BL, 3 BL, 3 DL, 5A, 5 BL, 6DS and 7A) were linked with resistance to Pst at the seedling stage, while 38 SNPs on 18 genomic regions were associated with resistance at the adult plant stage. Six genomic regions were commonly detected at both locations using a mixed linear model corrected for population structure, kinship relatedness and adjusted for false discovery rate (FDR). The loci on chromosome regions 1 AS, 3 DL, 6 DS and 7 AL appeared to be novel QTL; our results confirm that resynthesized wheat involving its progenitor species is a rich source of new stripe (yellow) rust resistance that may be useful in choosing SHWs and incorporating diverse yellow rust (YR) resistance loci into locally adapted wheat cultivars.
Collapse
Affiliation(s)
| | - Awais Rasheed
- Crop Science Research Institute/National Wheat Improvement Centre, Chinese Academy of Agricultural Sciences (CAAS), Beijing, China
- Department of Plant Sciences, Quaid-i-Azam University, Islamabad, Pakistan
| | - Farid Makdis
- Department of Field Crops, Faculty of Agriculture, University of Aleppo, Aleppo, Syria
- Research Program, Grains Research and Development Corporation, Barton, Australian Capital Territory, Canberra, Australia
| | - Ayele Badebo
- Ethiopian Institute of Agricultural Research, Addis Ababa, Ethiopia
| | - Francis C. Ogbonnaya
- International Centre for Agricultural Research in the Dry Areas (ICARDA), Aleppo, Syria
- Research Program, Grains Research and Development Corporation, Barton, Australian Capital Territory, Canberra, Australia
| |
Collapse
|
147
|
Wang S, Wong D, Forrest K, Allen A, Chao S, Huang BE, Maccaferri M, Salvi S, Milner SG, Cattivelli L, Mastrangelo AM, Whan A, Stephen S, Barker G, Wieseke R, Plieske J, Lillemo M, Mather D, Appels R, Dolferus R, Brown‐Guedira G, Korol A, Akhunova AR, Feuillet C, Salse J, Morgante M, Pozniak C, Luo M, Dvorak J, Morell M, Dubcovsky J, Ganal M, Tuberosa R, Lawley C, Mikoulitch I, Cavanagh C, Edwards KJ, Hayden M, Akhunov E, International Wheat Genome Sequencing Consortium. Characterization of polyploid wheat genomic diversity using a high‐density 90 000 single nucleotide polymorphism array. PLANT BIOTECHNOLOGY JOURNAL 2014; 12:787-96. [PMID: 24646323 PMCID: PMC4265271 DOI: 10.1111/pbi.12183] [Citation(s) in RCA: 1133] [Impact Index Per Article: 103.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Revised: 01/29/2014] [Accepted: 02/05/2014] [Indexed: 05/18/2023]
Affiliation(s)
- Shichen Wang
- Department of Plant Pathology Kansas State University Manhattan KS USA
| | - Debbie Wong
- Department of Environment and Primary Industry AgriBioSciences La Trobe R&D Park Bundoora Vic. Australia
| | - Kerrie Forrest
- Department of Environment and Primary Industry AgriBioSciences La Trobe R&D Park Bundoora Vic. Australia
| | - Alexandra Allen
- School of Biological Sciences University of Bristol Bristol UK
| | - Shiaoman Chao
- US Department of Agriculture–Agricultural Research Service Biosciences Research Laboratory Fargo ND USA
| | - Bevan E. Huang
- Commonwealth Scientific and Industrial Research Organization Computational Informatics and Food Futures National Research Flagship Dutton Park Qld Australia
| | - Marco Maccaferri
- Department of Agricultural Sciences University of Bologna Bologna Italy
| | - Silvio Salvi
- Department of Agricultural Sciences University of Bologna Bologna Italy
| | - Sara G. Milner
- Department of Agricultural Sciences University of Bologna Bologna Italy
| | - Luigi Cattivelli
- Consiglio per la Ricerca e la sperimentazione in Agricoltura Genomics Research Centre Fiorenzuola d'arda Italy
| | - Anna M. Mastrangelo
- Consiglio per la Ricerca e la sperimentazione in Agricoltura Cereal Research Centre Foggia Italy
| | - Alex Whan
- Commonwealth Scientific and Industrial Research Organization Plant Industry and Food Futures National Research Flagship Canberra ACT Australia
| | - Stuart Stephen
- Commonwealth Scientific and Industrial Research Organization Plant Industry and Food Futures National Research Flagship Canberra ACT Australia
| | - Gary Barker
- School of Biological Sciences University of Bristol Bristol UK
| | | | | | - Morten Lillemo
- Department of Plant Sciences Norwegian University of Life Sciences Ås Norway
| | - Diane Mather
- Waite Research Institute School of Agriculture, Food and Wine University of Adelaide Urrbrae SA Australia
| | | | - Rudy Dolferus
- Commonwealth Scientific and Industrial Research Organization Plant Industry and Food Futures National Research Flagship Canberra ACT Australia
| | - Gina Brown‐Guedira
- US Department of Agriculture–Agricultural Research Service Eastern Regional Small Grains Genotyping Laboratory Raleigh NC USA
| | - Abraham Korol
- Department of Evolutionary and Environmental Biology and Institute of Evolution University of Haifa Mount Carmel Haifa Israel
| | - Alina R. Akhunova
- K‐State Integrated Genomics Facility Kansas State University Manhattan KS USA
| | - Catherine Feuillet
- INRA – Université Blaise Pascal, UMR 1095 Genetics Diversity and Ecophysiology of Cereals Clermont‐Ferrand France
| | - Jerome Salse
- INRA – Université Blaise Pascal, UMR 1095 Genetics Diversity and Ecophysiology of Cereals Clermont‐Ferrand France
| | - Michele Morgante
- Department of Crop and Environmental Sciences University of Udine Via delle Scienze Udine Italy
| | - Curtis Pozniak
- Crop Development Centre and Department of Plant Sciences University of Saskatchewan Saskatoon SK Canada
| | - Ming‐Cheng Luo
- Department of Plant Sciences University of California Davis CA USA
| | - Jan Dvorak
- Department of Plant Sciences University of California Davis CA USA
| | - Matthew Morell
- Commonwealth Scientific and Industrial Research Organization Plant Industry and Food Futures National Research Flagship Canberra ACT Australia
| | - Jorge Dubcovsky
- Department of Plant Sciences University of California Davis CA USA
- Howard Hughes Medical Institute Chevy Chase MD USA
| | | | - Roberto Tuberosa
- Department of Agricultural Sciences University of Bologna Bologna Italy
| | | | | | - Colin Cavanagh
- Commonwealth Scientific and Industrial Research Organization Plant Industry and Food Futures National Research Flagship Canberra ACT Australia
| | | | - Matthew Hayden
- Department of Environment and Primary Industry AgriBioSciences La Trobe R&D Park Bundoora Vic. Australia
| | - Eduard Akhunov
- Department of Plant Pathology Kansas State University Manhattan KS USA
| | | |
Collapse
|
148
|
Tavakol E, Sardaro MLS, Shariati JV, Rossini L, Porceddu E. Isolation, promoter analysis and expression profile of Dreb2 in response to drought stress in wheat ancestors. Gene 2014; 549:24-32. [PMID: 25017054 DOI: 10.1016/j.gene.2014.07.020] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Revised: 06/25/2014] [Accepted: 07/09/2014] [Indexed: 11/18/2022]
Abstract
Drought is one of the most important abiotic stresses, constraining crop production seriously. The dehydration responsive element binding proteins (DREBs) are important plant-specific transcription factors that respond to various abiotic stresses and consequently induce abiotic stress-related genes that impart stress endurance in plants. Wild species are naturally exposed to various abiotic stresses and potentially harbor suitable alleles through natural selection. In this study we isolated and characterized Dreb2 from Triticum urartu (GenBank: KF731664), Aegilops speltoides (GenBank: KF731665) and Aegilops tauschii (GenBank: KF731663), the A, B and D genome ancestors of bread wheat, respectively. Analysis of over 1.3 kb upstream region of the gene revealed the presence of several conserved cis-acting regulatory elements including ABA-responsive elements, low temperature responsive elements, and several light and environmental signaling related motifs potentially vindicate Dreb2 responses to environmental signals. Moreover, the gene exhibited an alternative splicing, conserved among orthologous genes in grasses, and produced a non-functional isoform due to splicing in an exon resulted frame-shift creating an early stop codon before the functional domain. The expression analysis of Dreb2 under normal and different levels of dehydration stress conditions indicated that the two active spliced isoforms are upregulated when the plant exposed to drought stress whereas the non-functional isoform is downregulated in severe drought.
Collapse
Affiliation(s)
- Elahe Tavakol
- Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy.
| | - Maria Luisa Savo Sardaro
- University of Parma, Department of Food Science, Parco Area delle Scienze 49A, 43124 Parma, Italy
| | - J Vahid Shariati
- National Institute of Genetic Engineering and Biotechnology (NIGEB), 14965/161, Tehran, Iran
| | - Laura Rossini
- Università degli Studi di Milano, DISAA, Via Celoria 2, 20133 Milan
| | - Enrico Porceddu
- Scuola Superiore Sant'Anna, Piazza Martiri della Libertà 33, 56127 Pisa, Italy; University of Tuscia, Department of Agrobiology and Agrochemistry, Viterbo
| |
Collapse
|
149
|
Valluru R, Reynolds MP, Salse J. Genetic and molecular bases of yield-associated traits: a translational biology approach between rice and wheat. TAG. THEORETICAL AND APPLIED GENETICS. THEORETISCHE UND ANGEWANDTE GENETIK 2014; 127:1463-89. [PMID: 24913362 DOI: 10.1007/s00122-014-2332-9] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2013] [Accepted: 05/15/2014] [Indexed: 05/21/2023]
Abstract
Transferring the knowledge bases between related species may assist in enlarging the yield potential of crop plants. Being cereals, rice and wheat share a high level of gene conservation; however, they differ at metabolic levels as a part of the environmental adaptation resulting in different yield capacities. This review focuses on the current understanding of genetic and molecular regulation of yield-associated traits in both crop species, highlights the similarities and differences and presents the putative knowledge gaps. We focus on the traits associated with phenology, photosynthesis, and assimilate partitioning and lodging resistance; the most important drivers of yield potential. Currently, there are large knowledge gaps in the genetic and molecular control of such major biological processes that can be filled in a translational biology approach in transferring genomics and genetics informations between rice and wheat.
Collapse
Affiliation(s)
- Ravi Valluru
- Wheat Physiology, Global Wheat Program, International Maize and Wheat Improvement Center (CIMMYT), 56130, Mexico DF, Mexico,
| | | | | |
Collapse
|
150
|
Ouyang S, Zhang D, Han J, Zhao X, Cui Y, Song W, Huo N, Liang Y, Xie J, Wang Z, Wu Q, Chen YX, Lu P, Zhang DY, Wang L, Sun H, Yang T, Keeble-Gagnere G, Appels R, Doležel J, Ling HQ, Luo M, Gu Y, Sun Q, Liu Z. Fine physical and genetic mapping of powdery mildew resistance gene MlIW172 originating from wild emmer (Triticum dicoccoides). PLoS One 2014; 9:e100160. [PMID: 24955773 PMCID: PMC4067302 DOI: 10.1371/journal.pone.0100160] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2014] [Accepted: 05/22/2014] [Indexed: 11/18/2022] Open
Abstract
Powdery mildew, caused by Blumeria graminis f. sp. tritici, is one of the most important wheat diseases in the world. In this study, a single dominant powdery mildew resistance gene MlIW172 was identified in the IW172 wild emmer accession and mapped to the distal region of chromosome arm 7AL (bin7AL-16-0.86-0.90) via molecular marker analysis. MlIW172 was closely linked with the RFLP probe Xpsr680-derived STS marker Xmag2185 and the EST markers BE405531 and BE637476. This suggested that MlIW172 might be allelic to the Pm1 locus or a new locus closely linked to Pm1. By screening genomic BAC library of durum wheat cv. Langdon and 7AL-specific BAC library of hexaploid wheat cv. Chinese Spring, and after analyzing genome scaffolds of Triticum urartu containing the marker sequences, additional markers were developed to construct a fine genetic linkage map on the MlIW172 locus region and to delineate the resistance gene within a 0.48 cM interval. Comparative genetics analyses using ESTs and RFLP probe sequences flanking the MlIW172 region against other grass species revealed a general co-linearity in this region with the orthologous genomic regions of rice chromosome 6, Brachypodium chromosome 1, and sorghum chromosome 10. However, orthologous resistance gene-like RGA sequences were only present in wheat and Brachypodium. The BAC contigs and sequence scaffolds that we have developed provide a framework for the physical mapping and map-based cloning of MlIW172.
Collapse
Affiliation(s)
- Shuhong Ouyang
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Dong Zhang
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Jun Han
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
- Agriculture University of Beijing, Beijing, China
| | - Xiaojie Zhao
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Yu Cui
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Wei Song
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
- Maize Research Center, Beijing Academy of Agricultural and Forestry Sciences, Beijing, China
| | - Naxin Huo
- USDA-ARS West Regional Research Center, Albany, California, United States of America
| | - Yong Liang
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Jingzhong Xie
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Zhenzhong Wang
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Qiuhong Wu
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Yong-Xing Chen
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Ping Lu
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - De-Yun Zhang
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Lili Wang
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Hua Sun
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institutes of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Tsomin Yang
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | | | - Rudi Appels
- Murdoch University, Perth, Western Australia, Australia
| | - Jaroslav Doležel
- Institute of Experimental Botany, Centre of Plant Structural and Functional Genomics, Olomouc, Czech Republic
| | - Hong-Qing Ling
- State Key Laboratory of Plant Cell and Chromosome Engineering, Institutes of Genetics & Developmental Biology, Chinese Academy of Sciences, Beijing, China
| | - Mingcheng Luo
- Department of Plant Sciences, University of California, Davis, Davis, California, United States of America
| | - Yongqiang Gu
- USDA-ARS West Regional Research Center, Albany, California, United States of America
| | - Qixin Sun
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| | - Zhiyong Liu
- State Key Laboratory for Agrobiotechnology/Beijing Key Laboratory of Crop Genetic Improvement/Key Laboratory of Crop Heterosis Research & Utilization, Ministry of Education, China Agricultural University, Beijing, China
| |
Collapse
|