101
|
Bayly PV, Clayton EH, Genin GM. Quantitative imaging methods for the development and validation of brain biomechanics models. Annu Rev Biomed Eng 2012; 14:369-96. [PMID: 22655600 PMCID: PMC3711121 DOI: 10.1146/annurev-bioeng-071811-150032] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Rapid deformation of brain tissue in response to head impact or acceleration can lead to numerous pathological changes, both immediate and delayed. Modeling and simulation hold promise for illuminating the mechanisms of traumatic brain injury (TBI) and for developing preventive devices and strategies. However, mathematical models have predictive value only if they satisfy two conditions. First, they must capture the biomechanics of the brain as both a material and a structure, including the mechanics of brain tissue and its interactions with the skull. Second, they must be validated by direct comparison with experimental data. Emerging imaging technologies and recent imaging studies provide important data for these purposes. This review describes these techniques and data, with an emphasis on magnetic resonance imaging approaches. In combination, these imaging tools promise to extend our understanding of brain biomechanics and improve our ability to study TBI in silico.
Collapse
Affiliation(s)
- Philip V. Bayly
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130
- Department of Biomedical Engineering, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Erik H. Clayton
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130
| | - Guy M. Genin
- Department of Mechanical Engineering and Materials Science, Washington University in St. Louis, St. Louis, Missouri 63130
| |
Collapse
|
102
|
Neuropsychological outcome from blast versus non-blast: mild traumatic brain injury in U.S. military service members. J Int Neuropsychol Soc 2012; 18:595-605. [PMID: 22459022 DOI: 10.1017/s1355617712000239] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
The purpose of this study was to compare the neuropsychological outcome from blast-related versus non-blast related mild traumatic brain injury (MTBI). Participants were 56 U.S. military service members who sustained an MTBI, divided into two groups based on mechanism of injury: (a) non-blast related (Non-blast; n = 21), and (b) blast plus secondary blunt trauma (Blast Plus; n = 35). All participants had sustained their injury in theatre whilst deployed during Operation Iraqi Freedom or Operation Enduring Freedom. Patients had been seen for neuropsychological evaluation at Walter Reed Army Medical Center on average 4.4 months (SD = 4.1) post-injury. Measures included 14 clinical scales from the Personality Assessment Inventory (PAI) and 12 common neurocognitive measures. For the PAI, there were no significant differences between groups on all scales (p > .05). However, medium effect sizes were found for the Depression (d = .49) and Stress (d = .47) scales (i.e., Blast Plus > Non-blast). On the neurocognitive measures, after controlling for the influence of psychological distress (i.e., Depression, Stress), there were no differences between the Non-blast and Blast Plus groups on all measures. These findings provide little evidence to suggest that blast exposure plus secondary blunt trauma results in worse cognitive or psychological recovery than blunt trauma alone. (JINS, 2012, 18, 595-605).
Collapse
|
103
|
Abstract
In vitro models of traumatic brain injury (TBI) are helping elucidate the pathobiological mechanisms responsible for dysfunction and delayed cell death after mechanical stimulation of the brain. Researchers have identified compounds that have the potential to break the chain of molecular events set in motion by traumatic injury. Ultimately, the utility of in vitro models in identifying novel therapeutics will be determined by how closely the in vitro cascades recapitulate the sequence of cellular events that play out in vivo after TBI. Herein, the major in vitro models are reviewed, and a discussion of the physical injury mechanisms and culture preparations is employed. A comparison between the efficacy of compounds tested in vitro and in vivo is presented as a critical evaluation of the fidelity of in vitro models to the complex pathobiology that is TBI. We conclude that in vitro models were greater than 88% predictive of in vivo results.
Collapse
Affiliation(s)
- Barclay Morrison
- Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
| | | | | | | |
Collapse
|
104
|
Dolan S, Martindale S, Robinson J, Kimbrel NA, Meyer EC, Kruse MI, Morissette SB, Young KA, Gulliver SB. Neuropsychological sequelae of PTSD and TBI following war deployment among OEF/OIF veterans. Neuropsychol Rev 2012; 22:21-34. [PMID: 22350690 PMCID: PMC5032645 DOI: 10.1007/s11065-012-9190-5] [Citation(s) in RCA: 88] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2011] [Accepted: 01/31/2012] [Indexed: 10/28/2022]
Abstract
Posttraumatic stress disorder (PTSD) and mild traumatic brain injury (mTBI) are highly prevalent among Veterans of the conflicts in Iraq and Afghanistan. These conditions are associated with common and unique neuropsychological and neuroanatomical changes. This review synthesizes neuropsychological and neuroimaging studies for both of these disorders and studies examining their co-occurrence. Recommendations for future research, including use of combined neuropsychological and advanced neuroimaging techniques to study these disorders alone and in concert, are presented. It is clear from the dearth of literature that addiitonal studies are required to examine and understand the impact of specific factors on neurocognitive outcome. Of particular relevance are temporal relationships between PTSD and mTBI, risk and resilience factors associated with both disorders and their co-occurrence, and mTBI-specific factors such as time since injury and severity of injury, utilizing comprehensive, yet targeted cognitive tasks.
Collapse
Affiliation(s)
- Sara Dolan
- Department of Psychology and Neuroscience, Baylor University, Waco, TX, USA.
| | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Development of a Finite Element Model for Blast Brain Injury and the Effects of CSF Cavitation. Ann Biomed Eng 2012; 40:1530-44. [DOI: 10.1007/s10439-012-0519-2] [Citation(s) in RCA: 122] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2011] [Accepted: 01/19/2012] [Indexed: 01/13/2023]
|
106
|
Clinical relevance of blast-related traumatic brain injury. Acta Neurochir (Wien) 2012; 154:131-4; discussion 134. [PMID: 22037982 DOI: 10.1007/s00701-011-1210-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2011] [Accepted: 10/12/2011] [Indexed: 10/15/2022]
|
107
|
|
108
|
Mild Neurotrauma Indicates a Range-Specific Pressure Response to Low Level Shock Wave Exposure. Ann Biomed Eng 2011; 40:227-36. [DOI: 10.1007/s10439-011-0420-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2011] [Accepted: 09/24/2011] [Indexed: 10/16/2022]
|
109
|
Mediavilla Varas J, Philippens M, Meijer SR, van den Berg AC, Sibma PC, van Bree JLMJ, de Vries DVWM. Physics of IED Blast Shock Tube Simulations for mTBI Research. Front Neurol 2011; 2:58. [PMID: 21960984 PMCID: PMC3177142 DOI: 10.3389/fneur.2011.00058] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2011] [Accepted: 08/28/2011] [Indexed: 11/30/2022] Open
Abstract
Shock tube experiments and simulations are conducted with a spherical gelatin filled skull–brain surrogate, in order to study the mechanisms leading to blast induced mild traumatic brain injury. A shock tube including sensor system is optimized to simulate realistic improvised explosive device blast profiles obtained from full scale field tests. The response of the skull–brain surrogate is monitored using pressure and strain measurements. Fluid–structure interaction is modeled using a combination of computational fluid dynamics (CFD) simulations for the air blast, and a finite element model for the structural response. The results help to understand the physics of wave propagation, from air blast into the skull–brain. The presence of openings on the skull and its orientation does have a strong effect on the internal pressure. A parameter study reveals that when there is an opening in the skull, the skull gives little protection and the internal pressure is fairly independent on the skull stiffness; the gelatin shear stiffness has little effect on the internal pressure. Simulations show that the presence of pressure sensors in the gelatin hardly disturbs the pressure field.
Collapse
Affiliation(s)
- Jesus Mediavilla Varas
- Physical Protection and Survivability, Netherlands Organization for Applied Scientific Research Rijswijk, Netherlands
| | | | | | | | | | | | | |
Collapse
|
110
|
Bolander R, Mathie B, Bir C, Ritzel D, VandeVord P. Skull flexure as a contributing factor in the mechanism of injury in the rat when exposed to a shock wave. Ann Biomed Eng 2011; 39:2550-9. [PMID: 21735320 DOI: 10.1007/s10439-011-0343-0] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2011] [Accepted: 06/23/2011] [Indexed: 11/24/2022]
Abstract
The manner in which energy from an explosion is transmitted into the brain is currently a highly debated topic within the blast injury community. This study was conducted to investigate the injury biomechanics causing blast-related neurotrauma in the rat. Biomechanical responses of the rat head under shock wave loading were measured using strain gauges on the skull surface and a fiber optic pressure sensor placed within the cortex. MicroCT imaging techniques were applied to quantify skull bone thickness. The strain gauge results indicated that the response of the rat skull is dependent on the intensity of the incident shock wave; greater intensity shock waves cause greater deflections of the skull. The intracranial pressure (ICP) sensors indicated that the peak pressure developed within the brain was greater than the peak side-on external pressure and correlated with surface strain. The bone plates between the lambda, bregma, and midline sutures are probable regions for the greatest flexure to occur. The data provides evidence that skull flexure is a likely candidate for the development of ICP gradients within the rat brain. This dependency of transmitted stress on particular skull dynamics for a given species should be considered by those investigating blast-related neurotrauma using animal models.
Collapse
Affiliation(s)
- Richard Bolander
- Department of Biomedical Engineering, Wayne State University, Detroit, MI 48201, USA.
| | | | | | | | | |
Collapse
|
111
|
Mac Donald CL, Johnson AM, Cooper D, Nelson EC, Werner NJ, Shimony JS, Snyder AZ, Raichle ME, Witherow JR, Fang R, Flaherty SF, Brody DL. Detection of blast-related traumatic brain injury in U.S. military personnel. N Engl J Med 2011; 364:2091-100. [PMID: 21631321 PMCID: PMC3146351 DOI: 10.1056/nejmoa1008069] [Citation(s) in RCA: 441] [Impact Index Per Article: 31.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
BACKGROUND Blast-related traumatic brain injuries have been common in the Iraq and Afghanistan wars, but fundamental questions about the nature of these injuries remain unanswered. METHODS We tested the hypothesis that blast-related traumatic brain injury causes traumatic axonal injury, using diffusion tensor imaging (DTI), an advanced form of magnetic resonance imaging that is sensitive to axonal injury. The subjects were 63 U.S. military personnel who had a clinical diagnosis of mild, uncomplicated traumatic brain injury. They were evacuated from the field to the Landstuhl Regional Medical Center in Landstuhl, Germany, where they underwent DTI scanning within 90 days after the injury. All the subjects had primary blast exposure plus another, blast-related mechanism of injury (e.g., being struck by a blunt object or injured in a fall or motor vehicle crash). Controls consisted of 21 military personnel who had blast exposure and other injuries but no clinical diagnosis of traumatic brain injury. RESULTS Abnormalities revealed on DTI were consistent with traumatic axonal injury in many of the subjects with traumatic brain injury. None had detectable intracranial injury on computed tomography. As compared with DTI scans in controls, the scans in the subjects with traumatic brain injury showed marked abnormalities in the middle cerebellar peduncles (P<0.001), in cingulum bundles (P=0.002), and in the right orbitofrontal white matter (P=0.007). In 18 of the 63 subjects with traumatic brain injury, a significantly greater number of abnormalities were found on DTI than would be expected by chance (P<0.001). Follow-up DTI scans in 47 subjects with traumatic brain injury 6 to 12 months after enrollment showed persistent abnormalities that were consistent with evolving injuries. CONCLUSIONS DTI findings in U.S. military personnel support the hypothesis that blast-related mild traumatic brain injury can involve axonal injury. However, the contribution of primary blast exposure as compared with that of other types of injury could not be determined directly, since none of the subjects with traumatic brain injury had isolated primary blast injury. Furthermore, many of these subjects did not have abnormalities on DTI. Thus, traumatic brain injury remains a clinical diagnosis. (Funded by the Congressionally Directed Medical Research Program and the National Institutes of Health; ClinicalTrials.gov number, NCT00785304.).
Collapse
|
112
|
Zhu F, Wagner C, Dal Cengio Leonardi A, Jin X, VandeVord P, Chou C, Yang KH, King AI. Using a gel/plastic surrogate to study the biomechanical response of the head under air shock loading: a combined experimental and numerical investigation. Biomech Model Mechanobiol 2011; 11:341-53. [DOI: 10.1007/s10237-011-0314-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2010] [Accepted: 05/03/2011] [Indexed: 11/24/2022]
|
113
|
Nakagawa A, Manley GT, Gean AD, Ohtani K, Armonda R, Tsukamoto A, Yamamoto H, Takayama K, Tominaga T. Mechanisms of primary blast-induced traumatic brain injury: insights from shock-wave research. J Neurotrauma 2011; 28:1101-19. [PMID: 21332411 DOI: 10.1089/neu.2010.1442] [Citation(s) in RCA: 163] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Traumatic brain injury caused by explosive or blast events is traditionally divided into four phases: primary, secondary, tertiary, and quaternary blast injury. These phases of blast-induced traumatic brain injury (bTBI) are biomechanically distinct and can be modeled in both in vivo and in vitro systems. The primary bTBI injury phase represents the response of brain tissue to the initial blast wave. Among the four phases of bTBI, there is a remarkable paucity of information about the cause of primary bTBI. On the other hand, 30 years of research on the medical application of shockwaves (SW) has given us insight into the mechanisms of tissue and cellular damage in bTBI, including both air-mediated and underwater SW sources. From a basic physics perspective, the typical blast wave consists of a lead SW followed by supersonic flow. The resultant tissue injury includes several features observed in bTBI, such as hemorrhage, edema, pseudoaneurysm formation, vasoconstriction, and induction of apoptosis. These are well-described pathological findings within the SW literature. Acoustic impedance mismatch, penetration of tissue by shock/bubble interaction, geometry of the skull, shear stress, tensile stress, and subsequent cavitation formation, are all important factors in determining the extent of SW-induced tissue and cellular injury. Herein we describe the requirements for the adequate experimental set-up when investigating blast-induced tissue and cellular injury; review SW physics, research, and the importance of engineering validation (visualization/pressure measurement/numerical simulation); and, based upon our findings of SW-induced injury, discuss the potential underlying mechanisms of primary bTBI.
Collapse
Affiliation(s)
- Atsuhiro Nakagawa
- Department of Neurosurgery, Tohoku University Graduate School of Medicine, Sendai, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
114
|
Wright RM, Ramesh KT. An axonal strain injury criterion for traumatic brain injury. Biomech Model Mechanobiol 2011; 11:245-60. [DOI: 10.1007/s10237-011-0307-1] [Citation(s) in RCA: 125] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 03/22/2011] [Indexed: 11/28/2022]
|
115
|
Harvey DJR, Hardman JG. Computational modelling of lung injury: is there potential for benefit? Philos Trans R Soc Lond B Biol Sci 2011; 366:300-5. [PMID: 21149367 DOI: 10.1098/rstb.2010.0250] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
State-of-the-art medical care of the victims of current conflicts is generating large quantities of quality clinical data as a by-product. Observational research based on these data is beginning to have a profound influence on the clinical management of both military and civilian trauma patients. Computational modelling based on these datasets may offer the ability to investigate clinical treatment strategies that are practically, ethically or scientifically impossible to investigate on the front line. This article reviews the potential of this novel technology to aid development of treatment for blast lung and other unresolved medical scenarios.
Collapse
Affiliation(s)
- Daniel J R Harvey
- Division of Anaesthesia and Intensive Care, University of Nottingham and Nottingham University Hospitals NHS Trust, Nottingham, UK
| | | |
Collapse
|
116
|
|
117
|
Working toward exposure thresholds for blast-induced traumatic brain injury: Thoracic and acceleration mechanisms. Neuroimage 2011; 54 Suppl 1:S55-61. [DOI: 10.1016/j.neuroimage.2010.05.025] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2009] [Revised: 05/10/2010] [Accepted: 05/11/2010] [Indexed: 12/28/2022] Open
|
118
|
Abstract
Traumatic brain injury (TBI) has been a major cause of mortality and morbidity in the wars in Iraq and Afghanistan. Blast exposure has been the most common cause of TBI, occurring through multiple mechanisms. What is less clear is whether the primary blast wave causes brain damage through mechanisms that are distinct from those common in civilian TBI and whether multiple exposures to low-level blast can lead to long-term sequelae. Complicating TBI in soldiers is the high prevalence of posttraumatic stress disorder. At present, the relationship is unclear. Resolution of these issues will affect both treatment strategies and strategies for the protection of troops in the field.
Collapse
Affiliation(s)
- Gregory A Elder
- Neurology Service, James J. Peters Department of Veterans Affairs Medical Center, 130 West Kingsbridge Road, Bronx, NY 10468, USA.
| | | | | | | |
Collapse
|
119
|
In silico investigation of intracranial blast mitigation with relevance to military traumatic brain injury. Proc Natl Acad Sci U S A 2010; 107:20703-8. [PMID: 21098257 DOI: 10.1073/pnas.1014786107] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Blast-induced traumatic brain injury is the most prevalent military injury in Iraq and Afghanistan, yet little is known about the mechanical effects of blasts on the human head, and still less is known about how personal protective equipment affects the brain's response to blasts. In this study we investigated the effect of the Advanced Combat Helmet (ACH) and a conceptual face shield on the propagation of stress waves within the brain tissue following blast events. We used a sophisticated computational framework for simulating coupled fluid-solid dynamic interactions and a three-dimensional biofidelic finite element model of the human head and intracranial contents combined with a detailed model of the ACH and a conceptual face shield. Simulations were conducted in which the unhelmeted head, head with helmet, and head with helmet and face shield were exposed to a frontal blast wave with incident overpressure of 10 atm. Direct transmission of stress waves into the intracranial cavity was observed in the unprotected head and head with helmet simulations. Compared to the unhelmeted head, the head with helmet experienced slight mitigation of intracranial stresses. This suggests that the existing ACH does not significantly contribute to mitigating blast effects, but does not worsen them either. By contrast, the helmet and face shield combination impeded direct transmission of stress waves to the face, resulting in a delay in the transmission of stresses to the intracranial cavity and lower intracranial stresses. This suggests a possible strategy for mitigating blast waves often associated with military concussion.
Collapse
|
120
|
Abstract
Over the last few years, thousands of soldiers and an even greater number of civilians have suffered traumatic injuries due to blast exposure, largely attributed to improvised explosive devices in terrorist and insurgent activities. The use of body armor is allowing soldiers to survive blasts that would otherwise be fatal due to systemic damage. Emerging evidence suggests that exposure to a blast can produce neurologic consequences in the brain but much remains unknown. To elucidate the current scientific basis for understanding blast-induced traumatic brain injury (bTBI), the NIH convened a workshop in April 2008. A multidisciplinary group of neuroscientists, engineers, and clinicians were invited to share insights on bTBI, specifically pertaining to: physics of blast explosions, acute clinical observations and treatments, preclinical and computational models, and lessons from the international community on civilian exposures. This report provides an overview of the state of scientific knowledge of bTBI, drawing from the published literature, as well as presentations, discussions, and recommendations from the workshop. One of the major recommendations from the workshop was the need to characterize the effects of blast exposure on clinical neuropathology. Clearer understanding of the human neuropathology would enable validation of preclinical and computational models, which are attempting to simulate blast wave interactions with the central nervous system. Furthermore, the civilian experience with bTBI suggests that polytrauma models incorporating both brain and lung injuries may be more relevant to the study of civilian countermeasures than considering models with a neurologic focus alone.
Collapse
|
121
|
Peskind ER, Petrie EC, Cross DJ, Pagulayan K, McCraw K, Hoff D, Hart K, Yu CE, Raskind MA, Cook DG, Minoshima S. Cerebrocerebellar hypometabolism associated with repetitive blast exposure mild traumatic brain injury in 12 Iraq war Veterans with persistent post-concussive symptoms. Neuroimage 2010; 54 Suppl 1:S76-82. [PMID: 20385245 DOI: 10.1016/j.neuroimage.2010.04.008] [Citation(s) in RCA: 190] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2009] [Revised: 04/01/2010] [Accepted: 04/04/2010] [Indexed: 11/16/2022] Open
Abstract
Disagreement exists regarding the extent to which persistent post-concussive symptoms (PCS) reported by Iraq combat Veterans with repeated episodes of mild traumatic brain injury (mTBI) from explosive blasts represent structural or functional brain damage or an epiphenomenon of comorbid depression or posttraumatic stress disorder (PTSD). Objective assessment of brain function in this population may clarify the issue. To this end, twelve Iraq war Veterans (32.0 ± 8.5 [mean ± standard deviation (SD)] years of age) reporting one or more blast exposures meeting American Congress of Rehabilitation Medicine criteria for mTBI and persistent PCS and 12 cognitively normal community volunteers (53.0 ± 4.6 years of age) without history of head trauma underwent brain fluorodeoxyglucose positron emission tomography (FDG-PET) and neuropsychological assessments and completed PCS and psychiatric symptom rating scales. Compared to controls, Veterans with mTBI (with or without PTSD) exhibited decreased cerebral metabolic rate of glucose in the cerebellum, vermis, pons, and medial temporal lobe. They also exhibited subtle impairments in verbal fluency, cognitive processing speed, attention, and working memory, similar to those reported in the literature for patients with cerebellar lesions. These FDG-PET imaging findings suggest that regional brain hypometabolism may constitute a neurobiological substrate for chronic PCS in Iraq combat Veterans with repetitive blast-trauma mTBI. Given the potential public health implications of these findings, further investigation of brain function in these Veterans appears warranted.
Collapse
Affiliation(s)
- Elaine R Peskind
- Northwest Network Mental Illness, Research, Education, and Clinical Center, Veterans Affairs Puget Sound Health Care System, Seattle, WA 98108, USA.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|