101
|
Soto F, Karshalev E, Zhang F, Esteban Fernandez de Avila B, Nourhani A, Wang J. Smart Materials for Microrobots. Chem Rev 2021; 122:5365-5403. [DOI: 10.1021/acs.chemrev.0c00999] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Fernando Soto
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Emil Karshalev
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Fangyu Zhang
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Berta Esteban Fernandez de Avila
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| | - Amir Nourhani
- Department of Mechanical Engineering, Department of Mathematics, Biology, Biomimicry Research and Innovation Center, University of Akron, Akron, Ohio 44325, United States
| | - Joseph Wang
- Department of Nanoengineering, Chemical Engineering Program and Contextual Robotics Institute, University of California San Diego, La Jolla, California 92093, United States
| |
Collapse
|
102
|
Su Y, Qiu T, Song W, Han X, Sun M, Wang Z, Xie H, Dong M, Chen M. Melt Electrospinning Writing of Magnetic Microrobots. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2021; 8:2003177. [PMID: 33552871 PMCID: PMC7856894 DOI: 10.1002/advs.202003177] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2020] [Revised: 09/26/2020] [Indexed: 05/05/2023]
Abstract
The magnetic microrobots actuated by an external magnetic field can access distant, enclosed, and small spaces under fuel-free conditions, which is apromising technology for manipulation and delivery under microenvironment; however, the complicated fabrication method limits their applications. Herein, three techniques including melt electrospinning writing (MEW), micromolding, and skiving process are combined to successfully mass-produce tadpole-like magnetic polycaprolactone/Fe3O4 (PCL/Fe3O4) microrobot. Importantly, the tadpole-like microrobots under an external magnetic field can achieve two locomotions: rolling mode and propulsion mode. The rolling motion can approach the working destination quickly with a speed of ≈2 mm s-1. The propulsion motion (0-340 µm s-1) can handle a microcargo. Such a simple and cost-effective production method shows a great potential for scale-up fabrication of advanced shape-design, mass-production, and multifunctionality microrobot.
Collapse
Affiliation(s)
- Yingchun Su
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
- Interdisciplinary Nanoscience Center (iNANO) Sino-Danish Center for Education and Research (SDC) Aarhus University Aarhus C DK-8000 Denmark
- Department of Engineering Aarhus University Aarhus C DK-8000 Denmark
| | - Tian Qiu
- Max Planck Institute for Intelligent Systems Heisenbergstr. 3 Stuttgart 70569 Germany
- Institute of Physical Chemistry University of Stuttgart Pfaffenwaldring 55 Stuttgart 70569 Germany
| | - Wen Song
- State Key Laboratory of Military Stomatology and National Clinical Research Center for Oral Diseases and Shaanxi Key Laboratory of Oral Diseases Department of Prosthodontics School of Stomatology The Fourth Military Medical University Xi'an 710032 China
| | - Xiaojun Han
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Mengmeng Sun
- State Key Laboratory of Robotics and Systems Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education) Harbin Institute of Technology Harbin 150080 China
| | - Zhao Wang
- State Key Laboratory of Urban Water Resource and Environment School of Chemistry and Chemical Engineering Harbin Institute of Technology Harbin 150001 China
| | - Hui Xie
- State Key Laboratory of Robotics and Systems Key Laboratory of Microsystems and Microstructures Manufacturing (Ministry of Education) Harbin Institute of Technology Harbin 150080 China
| | - Mingdong Dong
- Interdisciplinary Nanoscience Center (iNANO) Sino-Danish Center for Education and Research (SDC) Aarhus University Aarhus C DK-8000 Denmark
| | - Menglin Chen
- Interdisciplinary Nanoscience Center (iNANO) Sino-Danish Center for Education and Research (SDC) Aarhus University Aarhus C DK-8000 Denmark
- Department of Engineering Aarhus University Aarhus C DK-8000 Denmark
| |
Collapse
|
103
|
|
104
|
Li YH, Chen SC. Propulsion Mechanism of Flexible Microbead Swimmers in the Low Reynolds Number Regime. MICROMACHINES 2020; 11:mi11121107. [PMID: 33333847 PMCID: PMC7765260 DOI: 10.3390/mi11121107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Revised: 12/10/2020] [Accepted: 12/12/2020] [Indexed: 11/16/2022]
Abstract
A propulsion mechanism for a flexible microswimmer constructed from superparamagnetic microbeads with different diameters and subjected to an oscillating field was studied experimentally and theoretically herein. Various types of artificial swimmers with different bending patterns were fabricated to determine the flexibility and an effective waveform for a planar beating flagellum. Waveform evolutions for various swimmer configurations were studied to determine the flexible mechanism of the swimmers. A one-armed microswimmer can propel itself only if the friction of its wavelike body is anisotropic. A swimmer with a larger head and a stronger magnetic dipole moment with a flexible tail allows the bending wave to propagate from the head toward the tail to generate forward thrust. The oscillating head and tail do not simultaneously generate positive thrust all the time within a period of oscillation. To increase the propulsion for a bending swimmer, this study proposes a novel configuration for a microbead swimmer that ensures better swimming efficiency. The ratio of the oscillation amplitude of the head to the length of the swimmer (from 0.26 to 0.28) produces a faster swimmer. On the other hand, the swimmer is propelled more effectively if the ratio of the oscillation amplitude of the tail to the length of the swimmer is from 0.29 to 0.33. This study determined the optimal configuration for a flexible microbead swimmer that generates the greatest propulsion in a low Reynolds number environment.
Collapse
|
105
|
Liang Y, Xie J, Yu J, Zheng Z, Liu F, Yang A. Recent advances of high performance magnetic iron oxide nanoparticles: Controlled synthesis, properties tuning and cancer theranostics. NANO SELECT 2020. [DOI: 10.1002/nano.202000169] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Affiliation(s)
- Yi‐Jun Liang
- School of Medical Engineering Foshan University Foshan 528000 P.R. China
| | - Jun Xie
- School of Life Science Jiangsu Normal University Xuzhou 221116 P.R. China
| | - Jing Yu
- College of Materials Science and Engineering Zhejiang University of Technology Hangzhou 310014 P.R. China
| | - Zhaoguang Zheng
- School of Medical Engineering Foshan University Foshan 528000 P.R. China
| | - Fang Liu
- School of Medical Engineering Foshan University Foshan 528000 P.R. China
| | - Anping Yang
- School of Medical Engineering Foshan University Foshan 528000 P.R. China
| |
Collapse
|
106
|
Wang J, Ahmed R, Zeng Y, Fu K, Soto F, Sinclair B, Soh HT, Demirci U. Engineering the Interaction Dynamics between Nano-Topographical Immunocyte-Templated Micromotors across Scales from Ions to Cells. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2020; 16:e2005185. [PMID: 33174334 DOI: 10.1002/smll.202005185] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2020] [Revised: 10/10/2020] [Indexed: 06/11/2023]
Abstract
Manufacturing mobile artificial micromotors with structural design factors, such as morphology nanoroughness and surface chemistry, can improve the capture efficiency through enhancing contact interactions with their surrounding targets. Understanding the interplay of such parameters targeting high locomotion performance and high capture efficiency at the same time is of paramount importance, yet, has so far been overlooked. Here, an immunocyte-templated nano-topographical micromotor is engineered and their interactions with various targets across multiple scales, from ions to cells are investigated. The macrophage templated nanorough micromotor demonstrates significantly increased surface interactions and significantly improved and highly efficient removal of targets from complex aqueous solutions, including in plasma and diluted blood, when compared to smooth synthetic material templated micromotors with the same size and surface chemistry. These results suggest that the surface nanoroughness of the micromotors for the locomotion performance and interactions with the multiscale targets should be considered simultaneously, for they are highly interconnected in design considerations impacting applications across scales.
Collapse
Affiliation(s)
- Jie Wang
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Rajib Ahmed
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Yitian Zeng
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305-4034, USA
| | - Kaiyu Fu
- Department of Electrical Engineering and Department of Radiology, Stanford University, Stanford, CA, 94305-4034, USA
| | - Fernando Soto
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| | - Bob Sinclair
- Department of Materials Science and Engineering, Stanford University, Stanford, CA, 94305-4034, USA
| | - Hyongsok Tom Soh
- Department of Electrical Engineering and Department of Radiology, Stanford University, Stanford, CA, 94305-4034, USA
| | - Utkan Demirci
- Bio-Acoustic MEMS in Medicine (BAMM) Laboratory, Canary Center at Stanford for Cancer Early Detection, Department of Radiology, Stanford School of Medicine, Palo Alto, CA, 94304, USA
| |
Collapse
|
107
|
Bunea AI, Taboryski R. Recent Advances in Microswimmers for Biomedical Applications. MICROMACHINES 2020; 11:E1048. [PMID: 33261101 PMCID: PMC7760273 DOI: 10.3390/mi11121048] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 11/24/2020] [Accepted: 11/26/2020] [Indexed: 12/14/2022]
Abstract
Microswimmers are a rapidly developing research area attracting enormous attention because of their many potential applications with high societal value. A particularly promising target for cleverly engineered microswimmers is the field of biomedical applications, where many interesting examples have already been reported for e.g., cargo transport and drug delivery, artificial insemination, sensing, indirect manipulation of cells and other microscopic objects, imaging, and microsurgery. Pioneered only two decades ago, research studies on the use of microswimmers in biomedical applications are currently progressing at an incredibly fast pace. Given the recent nature of the research, there are currently no clinically approved microswimmer uses, and it is likely that several years will yet pass before any clinical uses can become a reality. Nevertheless, current research is laying the foundation for clinical translation, as more and more studies explore various strategies for developing biocompatible and biodegradable microswimmers fueled by in vivo-friendly means. The aim of this review is to provide a summary of the reported biomedical applications of microswimmers, with focus on the most recent advances. Finally, the main considerations and challenges for clinical translation and commercialization are discussed.
Collapse
Affiliation(s)
- Ada-Ioana Bunea
- National Centre for Nano Fabrication and Characterization (DTU Nanolab), Technical University of Denmark, Ørsted Plads 347, 2800 Lyngby, Denmark;
| | | |
Collapse
|
108
|
Soto F, Wang J, Ahmed R, Demirci U. Medical Micro/Nanorobots in Precision Medicine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002203. [PMID: 33173743 PMCID: PMC7610261 DOI: 10.1002/advs.202002203] [Citation(s) in RCA: 152] [Impact Index Per Article: 30.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 08/09/2020] [Indexed: 05/15/2023]
Abstract
Advances in medical robots promise to improve modern medicine and the quality of life. Miniaturization of these robotic platforms has led to numerous applications that leverages precision medicine. In this review, the current trends of medical micro and nanorobotics for therapy, surgery, diagnosis, and medical imaging are discussed. The use of micro and nanorobots in precision medicine still faces technical, regulatory, and market challenges for their widespread use in clinical settings. Nevertheless, recent translations from proof of concept to in vivo studies demonstrate their potential toward precision medicine.
Collapse
Affiliation(s)
- Fernando Soto
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Jie Wang
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Rajib Ahmed
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| | - Utkan Demirci
- Bio‐Acoustic MEMS in Medicine (BAMM) LaboratoryCanary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of Medicine Stanford UniversityPalo AltoCA94304‐5427USA
- Canary Center at Stanford for Cancer Early DetectionDepartment of RadiologySchool of MedicineStanford UniversityPalo AltoCA94304‐5427USA
| |
Collapse
|
109
|
Koleoso M, Feng X, Xue Y, Li Q, Munshi T, Chen X. Micro/nanoscale magnetic robots for biomedical applications. Mater Today Bio 2020; 8:100085. [PMID: 33299981 PMCID: PMC7702192 DOI: 10.1016/j.mtbio.2020.100085] [Citation(s) in RCA: 46] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Revised: 10/21/2020] [Accepted: 10/25/2020] [Indexed: 12/15/2022] Open
Abstract
Magnetic small-scale robots are devices of great potential for the biomedical field because of the several benefits of this method of actuation. Recent work on the development of these devices has seen tremendous innovation and refinement toward improved performance for potential clinical applications. This review briefly details recent advancements in small-scale robots used for biomedical applications, covering their design, fabrication, applications, and demonstration of ability, and identifies the gap in studies and the difficulties that have persisted in the optimization of the use of these devices. In addition, alternative biomedical applications are also suggested for some of the technologies that show potential for other functions. This study concludes that although the field of small-scale robot research is highly innovative there is need for more concerted efforts to improve functionality and reliability of these devices particularly in clinical applications. Finally, further suggestions are made toward the achievement of commercialization for these devices.
Collapse
Affiliation(s)
- M. Koleoso
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - X. Feng
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Y. Xue
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - Q. Li
- School of Engineering, Institute for Energy Systems, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| | - T. Munshi
- School of Chemistry, University of Lincoln, Brayford Pool, Lincoln, Lincolnshire, LN6 7TS, UK
| | - X. Chen
- School of Engineering, Institute for Bioengineering, The University of Edinburgh, King's Buildings, Mayfield Road, Edinburgh EH9 3JL, UK
| |
Collapse
|