101
|
Shpakov AO. Structure-functional organization of adenylyl cyclases of unicellular eukaryotes and molecular mechanisms of their regulation. ACTA ACUST UNITED AC 2007. [DOI: 10.1134/s1990519x07020010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
102
|
Murphy SC, Harrison T, Hamm HE, Lomasney JW, Mohandas N, Haldar K. Erythrocyte G protein as a novel target for malarial chemotherapy. PLoS Med 2006; 3:e528. [PMID: 17194200 PMCID: PMC1716186 DOI: 10.1371/journal.pmed.0030528] [Citation(s) in RCA: 62] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/09/2006] [Accepted: 11/13/2006] [Indexed: 11/22/2022] Open
Abstract
BACKGROUND Malaria remains a serious health problem because resistance develops to all currently used drugs when their parasite targets mutate. Novel antimalarial drug targets are urgently needed to reduce global morbidity and mortality. Our prior results suggested that inhibiting erythrocyte Gs signaling blocked invasion by the human malaria parasite Plasmodium falciparum. METHODS AND FINDINGS We investigated the erythrocyte guanine nucleotide regulatory protein Gs as a novel antimalarial target. Erythrocyte "ghosts" loaded with a Gs peptide designed to block Gs interaction with its receptors, were blocked in beta-adrenergic agonist-induced signaling. This finding directly demonstrates that erythrocyte Gs is functional and that propranolol, an antagonist of G protein-coupled beta-adrenergic receptors, dampens Gs activity in erythrocytes. We subsequently used the ghost system to directly link inhibition of host Gs to parasite entry. In addition, we discovered that ghosts loaded with the peptide were inhibited in intracellular parasite maturation. Propranolol also inhibited blood-stage parasite growth, as did other beta2-antagonists. beta-blocker growth inhibition appeared to be due to delay in the terminal schizont stage. When used in combination with existing antimalarials in cell culture, propranolol reduced the 50% and 90% inhibitory concentrations for existing drugs against P. falciparum by 5- to 10-fold and was also effective in reducing drug dose in animal models of infection. CONCLUSIONS Together these data establish that, in addition to invasion, erythrocyte G protein signaling is needed for intracellular parasite proliferation and thus may present a novel antimalarial target. The results provide proof of the concept that erythrocyte Gs antagonism offers a novel strategy to fight infection and that it has potential to be used to develop combination therapies with existing antimalarials.
Collapse
Affiliation(s)
- Sean C Murphy
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Travis Harrison
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Heidi E Hamm
- Department of Pharmacology, Vanderbilt University Medical Center, Nashville, Tennessee, United States of America
| | - Jon W Lomasney
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Molecular Pharmacology and Biological Chemistry, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
| | - Narla Mohandas
- New York Blood Center, New York, New York, United States of America
| | - Kasturi Haldar
- Department of Pathology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- Department of Microbiology-Immunology, Feinberg School of Medicine, Northwestern University, Chicago, Illinois, United States of America
- * To whom correspondence should be addressed. E-mail:
| |
Collapse
|
103
|
Vaid A, Sharma P. PfPKB, a protein kinase B-like enzyme from Plasmodium falciparum: II. Identification of calcium/calmodulin as its upstream activator and dissection of a novel signaling pathway. J Biol Chem 2006; 281:27126-33. [PMID: 16809343 DOI: 10.1074/jbc.m601914200] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Intracellular cell signaling cascades of protozoan parasite Plasmodium falciparum are not clearly understood. We have reported previously (Kumar, A., Vaid, A., Syin, C., and Sharma, P. (2004) J. Biol. Chem. 279, 24255-24264) the identification and characterization of a protein kinase B-like enzyme in P. falciparum (PfPKB). PfPKB lacks the phosphoinositide-interacting pleckstrin homology domain present in mammalian protein kinase B. Therefore, the mechanism of PfPKB regulation was expected to be different from that of the host and had remained unknown. We have identified calmodulin (CaM) as the regulator of PfPKB activity. A CaM binding domain was mapped in the N-terminal region of PfPKB. CaM, in a calcium-dependent manner, interacts with this domain and activates PfPKB. CaM associates with PfPKB in the parasite and regulates its activity. Furthermore phospholipase C acts as an upstream regulator of this cascade as it facilitates the release of calcium from intracellular stores. This is one of the first multicomponent signaling pathways to be dissected in the malaria parasite.
Collapse
Affiliation(s)
- Ankush Vaid
- Eukaryotic Gene Expression Laboratory, National Institute of Immunology, New Delhi 110067, India
| | | |
Collapse
|
104
|
Frankland S, Adisa A, Horrocks P, Taraschi TF, Schneider T, Elliott SR, Rogerson SJ, Knuepfer E, Cowman AF, Newbold CI, Tilley L. Delivery of the malaria virulence protein PfEMP1 to the erythrocyte surface requires cholesterol-rich domains. EUKARYOTIC CELL 2006; 5:849-60. [PMID: 16682462 PMCID: PMC1459682 DOI: 10.1128/ec.5.5.849-860.2006] [Citation(s) in RCA: 55] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The particular virulence of the human malaria parasite Plasmodium falciparum derives from export of parasite-encoded proteins to the surface of the mature erythrocytes in which it resides. The mechanisms and machinery for the export of proteins to the erythrocyte membrane are largely unknown. In other eukaryotic cells, cholesterol-rich membrane microdomains or "rafts" have been shown to play an important role in the export of proteins to the cell surface. Our data suggest that depletion of cholesterol from the erythrocyte membrane with methyl-beta-cyclodextrin significantly inhibits the delivery of the major virulence factor P. falciparum erythrocyte membrane protein 1 (PfEMP1). The trafficking defect appears to lie at the level of transfer of PfEMP1 from parasite-derived membranous structures within the infected erythrocyte cytoplasm, known as the Maurer's clefts, to the erythrocyte membrane. Thus our data suggest that delivery of this key cytoadherence-mediating protein to the host erythrocyte membrane involves insertion of PfEMP1 at cholesterol-rich microdomains. GTP-dependent vesicle budding and fusion events are also involved in many trafficking processes. To determine whether GTP-dependent events are involved in PfEMP1 trafficking, we have incorporated non-membrane-permeating GTP analogs inside resealed erythrocytes. Although these nonhydrolyzable GTP analogs reduced erythrocyte invasion efficiency and partially retarded growth of the intracellular parasite, they appeared to have little direct effect on PfEMP1 trafficking.
Collapse
Affiliation(s)
- Sarah Frankland
- Department of Biochemistry, La Trobe University, Melbourne 3086, Australia
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
105
|
Hernández FT, Zapater P, De-Madaria E, Palazón JM, Pascual S, Irurzun J, Such J, Perez-Mateo M, Horga JF. Functional status of beta-2-adrenoceptor in isolated membranes of mature erythrocytes from patients with cirrhosis and oesophageal varices. Vascul Pharmacol 2006; 44:464-8. [PMID: 16624626 DOI: 10.1016/j.vph.2006.03.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2005] [Accepted: 03/08/2006] [Indexed: 01/07/2023]
Abstract
Propranolol is a widely used drug for prophylaxis of variceal bleeding in patients with cirrhosis, but not all patients show an adequate clinical response. This variability may be in relation to beta adrenoceptor activity, but no information is available in this setting. Thirty-nine patients with advanced cirrhosis and presence of oesophageal varices were sequentially included. We studied the function of beta-2-adrenoceptor in isolated membranes of mature erythrocytes obtained from patients by measuring cyclic AMP (cAMP) production before and after isoproterenol. Blood samples obtained from 11 healthy volunteers were used as control. Patients showed a six-fold increase in the mean basal cAMP production as compared to healthy volunteers. Isoproterenol produced a small, non-significantly and highly variable increase in the AC activity in patients compared with controls. cAMP values remain stable after three months of continuous treatment with oral beta-blockers in both groups. Patients without antecedent of variceal bleeding or with an active alcohol intake showed a significantly higher isoproterenol effect. In conclusion, beta-receptor function in human erythrocytes membranes is altered in patients with cirrhosis and oesophageal varices.
Collapse
Affiliation(s)
- F T Hernández
- Clinical Pharmacology Unit, Hospital General Universitario, and Departamento de Farmacología and Terapéutica, Facultad de Medicina, Universidad Miguel Hernández, San Juan de Alicante, Spain
| | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Abstract
The malaria parasite is the most important member of the Apicomplexa, a large and highly successful phylum of intracellular parasites. Invasion of host cells allows apicomplexan parasites access to a rich source of nutrients in a niche that is largely protected from host defenses. All Apicomplexa adopt a common mode of host-cell entry, but individual species incorporate unique features and utilize a specific set of ligand-receptor interactions. These adhesins ultimately connect to a parasite actin-based motor, which provides the power for invasion. While some Apicomplexa can invade many different host cells, the disease-associated blood-stage form of the malaria parasite is restricted to erythrocytes.
Collapse
Affiliation(s)
- Alan F Cowman
- The Walter and Eliza Hall Institute of Medical Research, Melbourne 3050, Australia.
| | | |
Collapse
|
107
|
Pucadyil TJ, Chattopadhyay A. Role of cholesterol in the function and organization of G-protein coupled receptors. Prog Lipid Res 2006; 45:295-333. [PMID: 16616960 DOI: 10.1016/j.plipres.2006.02.002] [Citation(s) in RCA: 229] [Impact Index Per Article: 12.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Cholesterol is an essential component of eukaryotic membranes and plays a crucial role in membrane organization, dynamics and function. The modulatory role of cholesterol in the function of a number of membrane proteins is well established. This effect has been proposed to occur either due to a specific molecular interaction between cholesterol and membrane proteins or due to alterations in the membrane physical properties induced by the presence of cholesterol. The contemporary view regarding heterogeneity in cholesterol distribution in membrane domains that sequester certain types of membrane proteins while excluding others has further contributed to its significance in membrane protein function. The seven transmembrane domain G-protein coupled receptors (GPCRs) are among the largest protein families in mammals and represent approximately 2% of the total proteins coded by the human genome. Signal transduction events mediated by this class of proteins are the primary means by which cells communicate with and respond to their external environment. GPCRs therefore represent major targets for the development of novel drug candidates in all clinical areas. In view of their importance in cellular signaling, the interaction of cholesterol with such receptors represents an important determinant in functional studies of such receptors. This review focuses on the effect of cholesterol on the membrane organization and function of GPCRs from a variety of sources, with an emphasis on the more contemporary role of cholesterol in maintaining a domain-like organization of such receptors on the cell surface. Importantly, the recently reported role of cholesterol in the function and organization of the neuronal serotonin(1A) receptor, a representative of the GPCR family which is present endogenously in the hippocampal region of the brain, will be highlighted.
Collapse
Affiliation(s)
- Thomas J Pucadyil
- Centre for Cellular and Molecular Biology, Uppal Road, Hyderabad 500007, India
| | | |
Collapse
|
108
|
Abstract
To survive within erythrocytes, Plasmodium parasites have to put into place different membrane and sub-cellular compartments in order to import different nutrients and to export proteins/antigens. Infected cells pose not only a major world health risk by killing two million people per year, but also a very interesting cell biology problem, as within the erythrocyte the parasite resides inside a vacuole called the parasitophorous vacuole and as a consequence, it is separated from the blood stream by three membrane barriers, its own plasma membrane, the parasitophorous vacuole membrane and the erythrocyte plasma membrane. In spite of these three barriers the parasite is capable of secreting antigens and importing nutrients, and to do this, it has developed a complex vesicular system that extends into the red blood cell cytoplasm to the plasma membrane. Understanding how the parasite controls this extensive vesicular traffic has driven research into Plasmodium Rabs, whose potential role is discussed.
Collapse
Affiliation(s)
- Françoise Baunaure
- Laboratoire de biologie comparative des apicomplexes, UMR 8104 CNRS-Inserm U.567, Département maladies infectieuses, Hôpital Cochin, Bâtiment Gustave Roussy, Institut Cochin, 27, rue du Faubourg-Saint-Jacques, 75014 Paris, France
| | | |
Collapse
|
109
|
Lang PA, Kempe DS, Akel A, Klarl BA, Eisele K, Podolski M, Hermle T, Niemoeller OM, Attanasio P, Huber SM, Wieder T, Lang F, Duranton C. Inhibition of erythrocyte "apoptosis" by catecholamines. Naunyn Schmiedebergs Arch Pharmacol 2005; 372:228-35. [PMID: 16247607 DOI: 10.1007/s00210-005-0009-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2005] [Accepted: 08/23/2005] [Indexed: 12/16/2022]
Abstract
Osmotic shock, oxidative stress and Cl- removal activate a non-selective Ca2+-permeable cation conductance in human erythrocytes. The entry of Ca2+ leads to activation of a scramblase with subsequent exposure of phosphatidylserine at the cell surface. Phosphatidylserine mediates binding to phosphatidylserine receptors on macrophages which engulf and degrade phosphatidylserine exposing cells. Moreover, phosphatidylserine exposure may lead to adherence of erythrocytes to the vascular wall. In the present study, we explored whether activation of the non-selective cation conductance and subsequent phosphatidylserine exposure might be influenced by catecholamines. Phosphatidylserine exposure has been determined by FITC-annexin V binding while cell volume was estimated from forward scatter in FACS analysis. Removal of Cl- enhanced annexin binding and decreased forward scatter, an effect significantly blunted by the beta agonist isoproterenol (IC50 approx. 1 microM). Fluo-3 fluorescence measurements revealed an increase of cytosolic Ca2+ activity following Cl- removal, an effect again significantly blunted by isoproterenol exposure (10 microM). Whole-cell patch-clamp experiments performed in Cl- free bath solution indeed disclosed a time-dependent inactivation of a non-selective cation conductance following isoproterenol exposure (10 microM). Phenylephrine (IC50<10 microM), dobutamine (IC50 approx. 1 microM) and dopamine (IC50 approx. 3 microM) similarly inhibited the effect of Cl- removal on annexin binding and forward scatter. In conclusion, several catecholamines inhibit the Cl- removal-activated Ca2+ entry into erythrocytes, thus preventing increase of cytosolic Ca2+ activity, subsequent cell shrinkage and activation of erythrocyte scramblase. The catecholamines thus counteract erythrocyte phosphatidylserine exposure and subsequent clearance of erythrocytes from circulating blood.
Collapse
Affiliation(s)
- Philipp A Lang
- Department of Physiology, University of Tübingen, Tübingen, Germany
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
110
|
Doerig C, Billker O, Pratt D, Endicott J. Protein kinases as targets for antimalarial intervention: Kinomics, structure-based design, transmission-blockade, and targeting host cell enzymes. BIOCHIMICA ET BIOPHYSICA ACTA-PROTEINS AND PROTEOMICS 2005; 1754:132-50. [PMID: 16271522 DOI: 10.1016/j.bbapap.2005.08.027] [Citation(s) in RCA: 71] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2005] [Revised: 08/20/2005] [Accepted: 08/25/2005] [Indexed: 12/31/2022]
Abstract
The surge of interest in protein kinases as targets for chemotherapeutic intervention in a number of diseases such as cancer and neurodegenerative disorders has stimulated research aimed at determining whether enzymes of this class might also be considered as targets in the context of diseases caused by parasitic protists. Here, we present an overview of recent developments in this field, concentrating (i) on the benefits gained from the availability of genomic databases for a number of parasitic protozoa, (ii) on the emerging field of structure-aided design of inhibitors targeting protein kinases of parasitic protists, (iii) on the concept known as transmission-blockade, whereby kinases implicated in the development of the parasite in their arthropod vector might be targeted to interfere with disease transmission, and (iv) on the possibility of controlling parasitic diseases through the inhibition of host cell protein kinases that are required for the establishment of infection by the parasites.
Collapse
Affiliation(s)
- Christian Doerig
- INSERM U609, Wellcome Centre for Molecular Parasitology, University of Glasgow, 120 Glasgow University Place, Glasgow G12 8TA, Scotland, UK.
| | | | | | | |
Collapse
|
111
|
Mandal D, Mazumder A, Das P, Kundu M, Basu J. Fas-, caspase 8-, and caspase 3-dependent signaling regulates the activity of the aminophospholipid translocase and phosphatidylserine externalization in human erythrocytes. J Biol Chem 2005; 280:39460-7. [PMID: 16179347 DOI: 10.1074/jbc.m506928200] [Citation(s) in RCA: 140] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Apoptosis and erythrocyte senescence share the common feature of exposure of phosphatidylserine (PS) in the outer leaflet of the cells. Western analysis showed that mature red cells contain Fas, FasL, Fas-associated death domain (FADD), caspase 8, and caspase 3. Circulating, aged cells showed colocalization of Fas with the raft marker proteins Galpha(s) and CD59; the existence of Fas-associated FasL, FADD and caspase 8; and caspase 8 and caspase 3 activity. Aged red cells had significantly lower aminophospholipid translocase activity and higher levels of PS externalization in comparison with young cells. In support of our contention that caspases play a functional role in the mature red cell, the oxidatively stressed red cell recapitulated apoptotic events, including translocation of Fas into rafts, formation of a Fas-associated complex, and activation of caspases 8 and 3. These events were independent of calpain but dependent on reactive oxygen species (ROS) as evident from the effects of the ROS scavenger N-acetylcysteine. Caspase activation was associated with loss of aminophospholipid translocase activity and with PS externalization. ROS was not generated by treatment of cells with t-butyl hydroperoxide at 10 degrees C, and Fas did not translocate into rafts. Concomitantly, neither formation of a Fas-associated signaling complex nor caspase activation could be observed, supporting the view that translocation of Fas into rafts was the trigger for the chain of events leading to caspase 3 activation. Our data demonstrate for the first time the novel involvement of Fas/caspase 8/caspase 3-dependent signaling in an enucleated cell leading to PS externalization, a central feature of erythrophagocytosis and erythrocyte biology.
Collapse
Affiliation(s)
- Debabrata Mandal
- Department of Chemistry, Bose Institute 93/1 Acharya Prafulla Chandra Road, Kolkata-700009, India
| | | | | | | | | |
Collapse
|
112
|
Gaur D, Mayer DCG, Miller LH. Parasite ligand–host receptor interactions during invasion of erythrocytes by Plasmodium merozoites. Int J Parasitol 2004; 34:1413-29. [PMID: 15582519 DOI: 10.1016/j.ijpara.2004.10.010] [Citation(s) in RCA: 172] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2004] [Revised: 10/11/2004] [Accepted: 10/11/2004] [Indexed: 11/19/2022]
Abstract
Malaria parasites must recognise and invade different cells during their life cycle. The efficiency with which Plasmodium falciparum invades erythrocytes of all ages is an important virulence factor, since the ability of the parasite to reach high levels of parasitemia is often associated with severe pathology and morbidity. The merozoite invasion of erythrocytes is a highly complex, multi-step process that is dependent on a cascade of specific molecular interactions. Although many proteins are known to play an important role in invasion, their functional characteristics remain unclear. Therefore, a complete understanding of the molecular interactions that are the basis of the invasion process is absolutely crucial, not only in improving our knowledge about the basic biology of the malarial parasite, but also for the development of intervention strategies to counter the disease. Here we review the current state of knowledge about the receptor-ligand interactions that mediate merozoite invasion of erythrocytes.
Collapse
Affiliation(s)
- Deepak Gaur
- Laboratory of Malaria and Vector Research, National Institutes of Allergy and Infectious Diseases, National Institutes of Health, 12735 Twinbrook Parkway, Building Twinbrook III/Room 3E-32D, Bethesda, MD 20892-8132, USA
| | | | | |
Collapse
|
113
|
Abstract
Malaria is the most serious and widespread parasitic disease of humans and is arguably the commonest disease of red blood cells (RBCs). Malaria has exerted a powerful effect on human evolution and selection for resistance has led to the appearance and persistence of a number of inherited diseases. After parasite invasion, RBCs are progressively and dramatically modified. New structures appear inside the RBC and novel parasite proteins are exported to the erythrocyte cytoplasm and membrane skeleton. Radical biochemical, morphological, and rheological alterations manifest as increased membrane rigidity, reduced cell deformability, and greater adhesiveness for the vascular endothelium and other blood cells. Numerous protein-protein interactions between the malaria-parasite and the host RBC are important for many aspects of parasite biology and the pathogenesis of malaria. In addition, there are many other parasite proteins located within the infected red cell and at the membrane skeleton, for which no precise functional roles have yet been elucidated. Sequencing and annotation of the complete genome of Plasmodium falciparum, the production of proteomic and transcriptomic profiles of parasites, and the development of a transfection system for the asexual stage of the parasite are all recent achievements that should advance understanding of the molecular mechanisms that underlie the parasite-induced functional alterations in red cells.
Collapse
Affiliation(s)
- Brian M Cooke
- Department of Microbiology, Monash University, Victoria 3800, Australia
| | | | | |
Collapse
|
114
|
Affiliation(s)
- David A Baker
- Department of Infectious and Tropical Diseases, London School of Hygiene and Tropical Medicine, Keppel Street, London WC1E 7HT, UK.
| | | |
Collapse
|
115
|
Abstract
Intracellular parasites use various strategies to invade cells and to subvert cellular signaling pathways and, thus, to gain a foothold against host defenses. Efficient cell entry, ability to exploit intracellular niches, and persistence make these parasites treacherous pathogens. Most intracellular parasites gain entry via host-mediated processes, but apicomplexans use a system of adhesion-based motility called "gliding" to actively penetrate host cells. Actin polymerization-dependent motility facilitates parasite migration across cellular barriers, enables dissemination within tissues, and powers invasion of host cells. Efficient invasion has brought widespread success to this group, which includes Toxoplasma, Plasmodium, and Cryptosporidium.
Collapse
Affiliation(s)
- L D Sibley
- Department of Molecular Microbiology, Center for Infectious Diseases, Washington University School of Medicine, St. Louis, MO 63110, USA.
| |
Collapse
|
116
|
Langsley G. [How Plasmodium gets into an erythrocyte]. Med Sci (Paris) 2004; 20:11-2. [PMID: 14770356 DOI: 10.1051/medsci/200420111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
|
117
|
Inviting malaria in. Nat Rev Microbiol 2003. [DOI: 10.1038/nrmicro761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
|
118
|
Murphy SC, Samuel BU, Harrison T, Speicher KD, Speicher DW, Reid ME, Prohaska R, Low PS, Tanner MJ, Mohandas N, Haldar K. Erythrocyte detergent-resistant membrane proteins: their characterization and selective uptake during malarial infection. Blood 2003; 103:1920-8. [PMID: 14592818 DOI: 10.1182/blood-2003-09-3165] [Citation(s) in RCA: 112] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Infection of human erythrocytes by the apicomplexan malaria parasite Plasmodium falciparum results in endovacuolar uptake of 4 host proteins that reside in erythrocyte detergent-resistant membranes (DRMs). Whether this vacuolar transport reflects selective uptake of host DRM proteins remains unknown. A further complication is that DRMs of vastly different protein and cholesterol contents have been isolated from erythrocytes. Here we show that isolated DRMs containing the highest cholesterol-to-protein ratio have low protein mass. Liquid chromatography, mass spectrometry, and antibody-based studies reveal that the major DRM proteins are band 3, flotillin-1 and -2, peroxiredoxin-2, and stomatin. Band 3 and stomatin, which reflect the bulk mass of erythrocyte DRM proteins, and all tested non-DRM proteins are excluded from the vacuolar parasite. In contrast, flotillin-1 and -2 and 8 minor DRM proteins are recruited to the vacuole. These data suggest that DRM association is necessary but not sufficient for vacuolar recruitment and there is active, vacuolar uptake of a subset of host DRM proteins. Finally, the 10 internalized DRM proteins show varied lipid and peptidic anchors indicating that, contrary to the prevailing model of apicomplexan vacuole formation, DRM association, rather than lipid anchors, provides the preferred criteria for protein recruitment to the malarial vacuole.
Collapse
Affiliation(s)
- Sean C Murphy
- Department of Pathology, Northwestern University Feinberg School of Medicine, Chicago, IL 60611, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|