101
|
Fu S, Pang A, Guo X, He Y, Song S, Ge J, Li J, Li W, Xiong Y, Wang L, Wang D, Tang BZ. Bioinspired Supramolecular Nanotoroids with Aggregation-Induced Emission Characteristics. ACS NANO 2022; 16:12720-12726. [PMID: 35959972 DOI: 10.1021/acsnano.2c04480] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Supramolecular toroids have attracted continuous attention because of their fascinating topological structure and important role in biological systems. However, it still remains a great challenge to construct supramolecular functional toroids and clarify the formation mechanism. Herein, we develop a strategy to prepare supramolecular helical fluorescent nanotoroids by cooperative self-assembly of an amino acid and a dendritic amphiphile (AIE-den-1) with aggregation-induced emission characteristics. Mechanistic investigation on the basis of fluorescence and circular dichroism analyses suggests that the toroid formation can be driven by the interactions of AIE-den-1 with amino acid and goes through a topological morphology transformation from nanofibers to left-handed nanotoroids by means of a twist-fused-loop process.
Collapse
Affiliation(s)
- Shuang Fu
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Aimin Pang
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Xiang Guo
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Youling He
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Shanliang Song
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jinyin Ge
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiangao Li
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Wei Li
- Science and Technology on Aerospace Chemical Power Laboratory, Hubei Institute of Aerospace Chemotechnology, Xiangyang 441003, China
| | - Yu Xiong
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Lei Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Dong Wang
- Center for AIE Research, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong-Shenzhen, Shenzhen 518172, China
| |
Collapse
|
102
|
Zhang Z, He W, Deng Z, Liu Y, Wen H, Wang Y, Ye Z, Kin Kwok RT, Qiu Z, Zhao Z, Tang BZ. A clickable AIEgen for visualization of macrophage-microbe interaction. Biosens Bioelectron 2022; 216:114614. [PMID: 35995026 DOI: 10.1016/j.bios.2022.114614] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2022] [Revised: 07/27/2022] [Accepted: 07/29/2022] [Indexed: 11/02/2022]
Abstract
Visualization of immunocyte-microbe interaction is of great importance to reveal the physiological role and working mechanism of innate and adaptive immune system. The lack of rapid and stable microbial labeling platform and insufficient understanding of macrophage-microbe interaction may delay precautions that could be made. In this contribution, a clickable AIEgen, CDPP-NCS, containing a cationic pyridinium moiety for targeting bacteria and an isothiocyanate moiety for covalently bonding with amine groups, is successfully developed. With the advantages of excellent photostability and rapid bioconjugation with amine groups on the bacterial envelope, the processes of macrophage-bacterium interactions with subcellular resolution has been successfully captured using this clickable AIE probe. Therefore, the new clickable AIEgen is a powerful tool to study the interaction between cell and bacterium.
Collapse
Affiliation(s)
- Zicong Zhang
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Wei He
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China; HKUST-Shenzhen Research Institute, South Area Hi-Tech Park, Nanshan, Shenzhen, Guangdong Province, 518057, China
| | - Ziwei Deng
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yanling Liu
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Haifei Wen
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Yucheng Wang
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Ziyue Ye
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Ryan Tsz Kin Kwok
- Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Zijie Qiu
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zheng Zhao
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China; HKUST-Shenzhen Research Institute, South Area Hi-Tech Park, Nanshan, Shenzhen, Guangdong Province, 518057, China.
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Key Laboratory of Functional Aggregate Materials, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China; Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China.
| |
Collapse
|
103
|
Kim YT, Oh H, Seo MJ, Lee DH, Shin J, Bong S, Heo S, Hapsari ND, Jo K. 21 Fluorescent Protein-Based DNA Staining Dyes. Molecules 2022; 27:5248. [PMID: 36014487 PMCID: PMC9412447 DOI: 10.3390/molecules27165248] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Revised: 08/10/2022] [Accepted: 08/12/2022] [Indexed: 11/22/2022] Open
Abstract
Fluorescent protein-DNA-binding peptides or proteins (FP-DBP) are a powerful means to stain and visualize large DNA molecules on a fluorescence microscope. Here, we constructed 21 kinds of FP-DBPs using various colors of fluorescent proteins and two DNA-binding motifs. From the database of fluorescent proteins (FPbase.org), we chose bright FPs, such as RRvT, tdTomato, mNeonGreen, mClover3, YPet, and mScarlet, which are four to eight times brighter than original wild-type GFP. Additionally, we chose other FPs, such as mOrange2, Emerald, mTurquoise2, mStrawberry, and mCherry, for variations in emitting wavelengths. For DNA-binding motifs, we used HMG (high mobility group) as an 11-mer peptide or a 36 kDa tTALE (truncated transcription activator-like effector). Using 21 FP-DBPs, we attempted to stain DNA molecules and then analyzed fluorescence intensities. Most FP-DBPs successfully visualized DNA molecules. Even with the same DNA-binding motif, the order of FP and DBP affected DNA staining in terms of brightness and DNA stretching. The DNA staining pattern by FP-DBPs was also affected by the FP types. The data from 21 FP-DBPs provided a guideline to develop novel DNA-binding fluorescent proteins.
Collapse
Affiliation(s)
- Yurie Tehee Kim
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapogu, Seoul 04107, Korea
| | - Hyesoo Oh
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapogu, Seoul 04107, Korea
| | - Myung Jun Seo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapogu, Seoul 04107, Korea
| | - Dong Hyeun Lee
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapogu, Seoul 04107, Korea
| | - Jieun Shin
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapogu, Seoul 04107, Korea
| | - Serang Bong
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapogu, Seoul 04107, Korea
| | - Sujeong Heo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapogu, Seoul 04107, Korea
| | - Natalia Diyah Hapsari
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapogu, Seoul 04107, Korea
- Chemistry Education Program, Department of Mathematics and Science Education, Sanata Dharma University, Yogyakarta 55282, Indonesia
| | - Kyubong Jo
- Department of Chemistry, Sogang University, 35 Baekbeom-ro, Mapogu, Seoul 04107, Korea
| |
Collapse
|
104
|
Tan F, Xu J. Validation of the solution structure of dimerization domain of PRC1. PLoS One 2022; 17:e0270572. [PMID: 35930764 PMCID: PMC9355583 DOI: 10.1371/journal.pone.0270572] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 06/13/2022] [Indexed: 11/18/2022] Open
Abstract
Cell-cycle dependent proteins are indispensible for the accurate division of cells, a group of proteins called Microtubule-associated proteins (MAPs) are important to cell division as it bind microtubules and participate with other co-factors to form the spindle midbody, which works as the workhorse of cell-division. PRC1 is a distinguishing member of MAPs, as it is a human MAP and works as the key in mediating daughter cell segregation in ana-phase and telo-phase. The physiological significance of PRC1 calls for a high resolution three-dimensional structure. The crystal structure of PRC1 was published but has low resolution (>3 Å) and incomplete sidechains, placing hurdles to understanding the structure-function relationships of PRC1, therefore, we determined the high-resolution solution structure of PRC1’s dimerization domain using NMR spectroscopy. Significant differences between the crystal structure and the solution structure can be observed, the main differences center around the N terminus and the end of the alpha-Helix H2. Furthermore, detailed structure analyses revealed that the hydrophobic core packing of the solution and crystal structures are also different. To validate the solution structure, we used Hydrogen-deuterium exchange experiments that address the structural discrepancies between the crystal and solution structure; we also generated mutants that are key to the differences in the crystal and solution structures, measuring its structural or thermal stability by NMR spectroscopy and Fluorescence Thermal Shift Assays. These results suggest that N terminal residues are key to the integrity of the whole protein, and the solution structure of the dimerization domain better reflects the conformation PRC1 adopted in solution conditions.
Collapse
Affiliation(s)
- Fei Tan
- Peking University, Beijing, China
- * E-mail:
| | - Jin Xu
- Peking University, Beijing, China
| |
Collapse
|
105
|
Wang Q, Hou L, Li C, Zhou H, Gan X, Liu K, Xiao F, Zhao J. Toward high-performance refractive index sensor using single Au nanoplate-on-mirror nanocavity. NANOSCALE 2022; 14:10773-10779. [PMID: 35876278 DOI: 10.1039/d2nr02201j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Refractive index sensors based on the localized surface plasmon resonance (LSPR) have emerged as powerful tools in various chemosensing and biosensing applications. However, owing to their limited decay length and strong radiation damping, LSPR sensors always suffer from low sensitivity and small figure of merit (FOM). Here, we fabricate a plasmonic nanocavity sensor consisting of a hexagonal Au nanoplate positioned over an ultrasmooth Au film. The strong coupling between the nanoplate and the lower metal film allows for the formation of a plasmonic gap mode that enhances the interaction of the local field with the ambient glycerol solution to increase the sensitivity. Meanwhile, the plasmonic gap mode has a trait of an antiphase charge oscillation in the gap region, imparting a strongly reduced radiative damping and a subsequently promoted FOM. The performance of our proposed refractive index sensor is further boosted by decreasing the gap size of the nanocavity, yielding an outstanding FOM of 11.2 RIU-1 that is the highest yet reported for LSPR sensing in a single nanostructure.
Collapse
Affiliation(s)
- Qifa Wang
- Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Liping Hou
- Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Chenyang Li
- Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Hailin Zhou
- Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Xuetao Gan
- Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Kaihui Liu
- State Key Laboratory for Mesoscopic Physics, Collaborative Innovation Centre of Quantum Matter, School of Physics, Peking University, Beijing 100871, China
| | - Fajun Xiao
- Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
| | - Jianlin Zhao
- Key Laboratory of Light-Field Manipulation and Information Acquisition, Ministry of Industry and Information Technology, and Shaanxi Key Laboratory of Optical Information Technology, School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an 710129, China.
| |
Collapse
|
106
|
Lee LCC, Lo KKW. Luminescent and Photofunctional Transition Metal Complexes: From Molecular Design to Diagnostic and Therapeutic Applications. J Am Chem Soc 2022; 144:14420-14440. [PMID: 35925792 DOI: 10.1021/jacs.2c03437] [Citation(s) in RCA: 107] [Impact Index Per Article: 35.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
There has been emerging interest in the exploitation of the photophysical and photochemical properties of transition metal complexes for diagnostic and therapeutic applications. In this Perspective, we highlight the major recent advances in the development of luminescent and photofunctional transition metal complexes, in particular, those of rhenium(I), ruthenium(II), osmium(II), iridium(III), and platinum(II), as bioimaging reagents and phototherapeutic agents, with a focus on the molecular design strategies that harness and modulate the interesting photophysical and photochemical behavior of the complexes. We also discuss the current challenges and future outlook of transition metal complexes for both fundamental research and clinical applications.
Collapse
Affiliation(s)
- Lawrence Cho-Cheung Lee
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China.,Laboratory for Synthetic Chemistry and Chemical Biology Limited, Units 1503-1511, 15/F, Building 17W, Hong Kong Science Park, New Territories, Hong Kong, P.R. China
| | - Kenneth Kam-Wing Lo
- Department of Chemistry, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China.,State Key Laboratory of Terahertz and Millimeter Waves, City University of Hong Kong, Tat Chee Avenue, Kowloon, Hong Kong, P.R. China
| |
Collapse
|
107
|
Kim D, Aktalay A, Jensen N, Uno K, Bossi ML, Belov VN, Hell SW. Supramolecular Complex of Photochromic Diarylethene and Cucurbit[7]uril: Fluorescent Photoswitching System for Biolabeling and Imaging. J Am Chem Soc 2022; 144:14235-14247. [PMID: 35895999 PMCID: PMC9376957 DOI: 10.1021/jacs.2c05036] [Citation(s) in RCA: 40] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
![]()
Photoswitchable fluorophores—proteins and synthetic
dyes—whose
emission is reversibly switched on and off upon illumination, are
powerful probes for bioimaging, protein tracking, and super-resolution
microscopy. Compared to proteins, synthetic dyes are smaller and brighter,
but their photostability and the number of achievable switching cycles
in aqueous solutions are lower. Inspired by the robust photoswitching
system of natural proteins, we designed a supramolecular system based
on a fluorescent diarylethene (DAE) and cucurbit[7]uril
(CB7) (denoted as DAE@CB7). In this assembly, the photoswitchable DAE molecule is encapsulated by CB7 according to the host–guest
principle, so that DAE is protected from the environment
and its fluorescence brightness and fatigue resistance in pure water
improved. The fluorescence quantum yield (Φfl) increased
from 0.40 to 0.63 upon CB7 complexation. The photoswitching of the DAE@CB7 complex, upon alternating UV and visible light irradiations,
can be repeated 2560 times in aqueous solution before half-bleaching
occurs (comparable to fatigue resistance of the reversibly photoswitchable
proteins), while free DAE can be switched on and off
only 80 times. By incorporation of reactive groups [maleimide and N-hydroxysuccinimidyl (NHS) ester], we prepared bioconjugates
of DAE@CB7 with antibodies and demonstrated both specific
labeling of intracellular proteins in cells and the reversible on/off
switching of the probes in cellular environments under irradiations
with 355 nm/485 nm light. The bright emission and robust photoswitching
of DAE-Male3@CB7 and DAE-NHS@CB7 complexes
(without exclusion of air oxygen and addition of any stabilizing/antifading
reagents) enabled confocal and super-resolution RESOLFT (reversible
saturable optical fluorescence transitions) imaging with apparent
70–90 nm optical resolution.
Collapse
Affiliation(s)
- Dojin Kim
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), 37077 Göttingen, Germany
| | - Ayse Aktalay
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), 69120 Heidelberg, Germany
| | - Nickels Jensen
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), 37077 Göttingen, Germany
| | - Kakishi Uno
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), 37077 Göttingen, Germany
| | - Mariano L Bossi
- Department of Optical Nanoscopy, Max Planck Institute for Medical Research (MPI-MR), 69120 Heidelberg, Germany
| | - Vladimir N Belov
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), 37077 Göttingen, Germany
| | - Stefan W Hell
- Department of NanoBiophotonics, Max Planck Institute for Multidisciplinary Sciences (MPI-NAT), 37077 Göttingen, Germany
| |
Collapse
|
108
|
Biosensors and Microfluidic Biosensors: From Fabrication to Application. BIOSENSORS 2022; 12:bios12070543. [PMID: 35884346 PMCID: PMC9313327 DOI: 10.3390/bios12070543] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/30/2022] [Revised: 07/15/2022] [Accepted: 07/18/2022] [Indexed: 11/17/2022]
Abstract
Biosensors are ubiquitous in a variety of disciplines, such as biochemical, electrochemical, agricultural, and biomedical areas. They can integrate various point-of-care applications, such as in the food, healthcare, environmental monitoring, water quality, forensics, drug development, and biological domains. Multiple strategies have been employed to develop and fabricate miniaturized biosensors, including design, optimization, characterization, and testing. In view of their interactions with high-affinity biomolecules, they find application in the sensitive detection of analytes, even in small sample volumes. Among the many developed techniques, microfluidics have been widely explored; these use fluid mechanics to operate miniaturized biosensors. The currently used commercial devices are bulky, slow in operation, expensive, and require human intervention; thus, it is difficult to automate, integrate, and miniaturize the existing conventional devices for multi-faceted applications. Microfluidic biosensors have the advantages of mobility, operational transparency, controllability, and stability with a small reaction volume for sensing. This review addresses biosensor technologies, including the design, classification, advances, and challenges in microfluidic-based biosensors. The value chain for developing miniaturized microfluidic-based biosensor devices is critically discussed, including fabrication and other associated protocols for application in various point-of-care testing applications.
Collapse
|
109
|
Dong MJ, Li W, Xiang Q, Tan Y, Xing X, Wu C, Dong H, Zhang X. Engineering Metal-Organic Framework Hybrid AIEgens with Tumor-Activated Accumulation and Emission for the Image-Guided GSH Depletion ROS Therapy. ACS APPLIED MATERIALS & INTERFACES 2022; 14:29599-29612. [PMID: 35737456 DOI: 10.1021/acsami.2c05860] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Aggregation-induced emission (AIE)-active luminogens (AIEgens) have demonstrated exciting potential for the application in cancer phototheranostics. However, simultaneously achieving tumor-activated bright emission, enhanced reactive oxygen species (ROS) generation, high tumor accumulation, and minimized ROS depletion remains challenging. Here, a metal-organic framework (MOF) hybrid AIEgen theranostic platform is designed, termed A-NUiO@DCDA@ZIF-Cu, composed of an AIEgen-loaded hydrophobic UiO-66 (A-NUiO@DCDA) core and a Cu-doped hydrophilic ZIF-8 (ZIF-Cu) shell. The fluorescence emission and therapeutic ROS activity of AIEgens are restrained during delivery. After uptake by tumor tissues, ZIF-Cu decomposition occurs in response to an acidic tumor microenvironment (TME), and the hydrophobic A-NUiO@DCDA cores self-assemble into large particles, extremely increasing the tumor accumulation of AIEgens. This results in enhanced fluorescence imaging (FLI) and highly improved 1O2 generation ability during photodynamic therapy (PDT). Meanwhile, the released Cu2+ reacts to glutathione (GSH) to generate Cu+, which provides an extra chemodynamic therapy (CDT) function through Fenton-like reactions with overexpressed H2O2, resulting in the GSH depletion-enhanced ROS therapy. As a result of these characteristics, the MOF hybrid AIEgens can selectively kill tumors with excellent efficacy.
Collapse
Affiliation(s)
- Ming-Jie Dong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Weiqun Li
- School of Science, Harbin Institute of Technology, Shenzhen 518055, China
| | - Qin Xiang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Yan Tan
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xiaotong Xing
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Chaoxiong Wu
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Haifeng Dong
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| | - Xueji Zhang
- Guangdong Key Laboratory for Biomedical Measurements and Ultrasound Imaging, Marshall Laboratory of Biomedical Engineering, Research Center for Biosensor and Nanotheranostic, School of Biomedical Engineering, Shenzhen University Health Science Center, Shenzhen 518060, China
| |
Collapse
|
110
|
Cui Y, Pu Y, Li Z, Liang B, Li C, Wang Y. Structures and Photoluminescence Properties of Bis(aromatic amino)‐Based Isomers with Biphenyl as Bridge. ChemistrySelect 2022. [DOI: 10.1002/slct.202201389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Affiliation(s)
- Yuanyuan Cui
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Yexuan Pu
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
| | - Zhiqiang Li
- Jihua Hengye (Foshan) Electronic Materials Co. Ltd. Foshan 528200 China
| | - Baoyan Liang
- Jihua Hengye (Foshan) Electronic Materials Co. Ltd. Foshan 528200 China
| | - Chenglong Li
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
- Jihua Hengye (Foshan) Electronic Materials Co. Ltd. Foshan 528200 China
| | - Yue Wang
- State Key Laboratory of Supramolecular Structure and Materials College of Chemistry Jilin University Changchun 130012 China
- Jihua Hengye (Foshan) Electronic Materials Co. Ltd. Foshan 528200 China
| |
Collapse
|
111
|
Dai X, Shen L. Advances and Trends in Omics Technology Development. Front Med (Lausanne) 2022; 9:911861. [PMID: 35860739 PMCID: PMC9289742 DOI: 10.3389/fmed.2022.911861] [Citation(s) in RCA: 149] [Impact Index Per Article: 49.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Accepted: 05/09/2022] [Indexed: 12/11/2022] Open
Abstract
The human history has witnessed the rapid development of technologies such as high-throughput sequencing and mass spectrometry that led to the concept of “omics” and methodological advancement in systematically interrogating a cellular system. Yet, the ever-growing types of molecules and regulatory mechanisms being discovered have been persistently transforming our understandings on the cellular machinery. This renders cell omics seemingly, like the universe, expand with no limit and our goal toward the complete harness of the cellular system merely impossible. Therefore, it is imperative to review what has been done and is being done to predict what can be done toward the translation of omics information to disease control with minimal cell perturbation. With a focus on the “four big omics,” i.e., genomics, transcriptomics, proteomics, metabolomics, we delineate hierarchies of these omics together with their epiomics and interactomics, and review technologies developed for interrogation. We predict, among others, redoxomics as an emerging omics layer that views cell decision toward the physiological or pathological state as a fine-tuned redox balance.
Collapse
|
112
|
Heiligenstein X, Lucas MS. One for All, All for One: A Close Look at In-Resin Fluorescence Protocols for CLEM. Front Cell Dev Biol 2022; 10:866472. [PMID: 35846358 PMCID: PMC9280628 DOI: 10.3389/fcell.2022.866472] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Accepted: 06/13/2022] [Indexed: 11/13/2022] Open
Abstract
Sample preparation is the novel bottleneck for high throughput correlative light and electron microscopy (CLEM). Protocols suitable for both imaging methods must therefore balance the requirements of each technique. For fluorescence light microscopy, a structure of interest can be targeted using: 1) staining, which is often structure or tissue specific rather than protein specific, 2) dye-coupled proteins or antibodies, or 3) genetically encoded fluorescent proteins. Each of these three methods has its own advantages. For ultrastructural investigation by electron microscopy (EM) resin embedding remains a significant sample preparation approach, as it stabilizes the sample such that it withstands the vacuum conditions of the EM, and enables long-term storage. Traditionally, samples are treated with heavy metal salts prior to resin embedding, in order to increase imaging contrast for EM. This is particularly important for volume EM (vEM) techniques. Yet, commonly used contrasting agents (e.g., osmium tetroxide, uranyl acetate) tend to impair fluorescence. The discovery that fluorescence can be preserved in resin-embedded specimens after mild heavy metal staining was a game changer for CLEM. These so-called in-resin fluorescence protocols present a significant leap forward for CLEM approaches towards high precision localization of a fluorescent signal in (volume) EM data. Integrated microscopy approaches, combining LM and EM detection into a single instrument certainly require such an “all in one” sample preparation. Preserving, or adding, dedicated fluorescence prior to resin embedding requires a compromise, which often comes at the expense of EM imaging contrast and membrane visibility. Especially vEM can be strongly hampered by a lack of heavy metal contrasting. This review critically reflects upon the fundamental aspects of resin embedding with regard to 1) specimen fixation and the physics and chemistry underlying the preservation of protein structure with respect to fluorescence and antigenicity, 2) optimization of EM contrast for transmission or scanning EM, and 3) the choice of embedding resin. On this basis, various existing workflows employing in-resin fluorescence are described, highlighting their common features, discussing advantages and disadvantages of the respective approach, and finally concluding with promising future developments for in-resin CLEM.
Collapse
Affiliation(s)
| | - Miriam S. Lucas
- Scientific Center for Light and Electron Microscopy (ScopeM), ETH Zurich, Zurich, Switzerland
- *Correspondence: Miriam S. Lucas,
| |
Collapse
|
113
|
Near-Infrared-Emissive AIE Bioconjugates: Recent Advances and Perspectives. Molecules 2022; 27:molecules27123914. [PMID: 35745035 PMCID: PMC9229065 DOI: 10.3390/molecules27123914] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 06/13/2022] [Accepted: 06/16/2022] [Indexed: 02/04/2023] Open
Abstract
Near-infrared (NIR) fluorescence materials have exhibited formidable power in the field of biomedicine, benefiting from their merits of low autofluorescence background, reduced photon scattering, and deeper penetration depth. Fluorophores possessing planar conformation may confront the shortcomings of aggregation-caused quenching effects at the aggregate level. Fortunately, the concept of aggregation-induced emission (AIE) thoroughly reverses this dilemma. AIE bioconjugates referring to the combination of luminogens showing an AIE nature with biomolecules possessing specific functionalities are generated via the covalent conjugation between AIEgens and functional biological species, covering carbohydrates, peptides, proteins, DNA, and so on. This perfect integration breeds unique superiorities containing high brightness, good water solubility, versatile functionalities, and prominent biosafety. In this review, we summarize the recent progresses of NIR-emissive AIE bioconjugates focusing on their design principles and biomedical applications. Furthermore, a brief prospect of the challenges and opportunities of AIE bioconjugates for a wide range of biomedical applications is presented.
Collapse
|
114
|
Baggett DW, Medyukhina A, Tripathi S, Shirnekhi HK, Wu H, Pounds SB, Khairy K, Kriwacki R. An Image Analysis Pipeline for Quantifying the Features of Fluorescently-Labeled Biomolecular Condensates in Cells. FRONTIERS IN BIOINFORMATICS 2022; 2:897238. [PMID: 36304323 PMCID: PMC9580871 DOI: 10.3389/fbinf.2022.897238] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/12/2022] [Indexed: 11/13/2022] Open
Abstract
Biomolecular condensates are cellular organelles formed through liquid-liquid phase separation (LLPS) that play critical roles in cellular functions including signaling, transcription, translation, and stress response. Importantly, condensate misregulation is associated with human diseases, including neurodegeneration and cancer among others. When condensate-forming biomolecules are fluorescently-labeled and examined with fluorescence microscopy they appear as illuminated foci, or puncta, in cells. Puncta features such as number, volume, shape, location, and concentration of biomolecular species within them are influenced by the thermodynamics of biomolecular interactions that underlie LLPS. Quantification of puncta features enables evaluation of the thermodynamic driving force for LLPS and facilitates quantitative comparisons of puncta formed under different cellular conditions or by different biomolecules. Our work on nucleoporin 98 (NUP98) fusion oncoproteins (FOs) associated with pediatric leukemia inspired us to develop an objective and reliable computational approach for such analyses. The NUP98-HOXA9 FO forms hundreds of punctate transcriptional condensates in cells, leading to hematopoietic cell transformation and leukemogenesis. To quantify the features of these puncta and derive the associated thermodynamic parameters, we developed a live-cell fluorescence microscopy image processing pipeline based on existing methodologies and open-source tools. The pipeline quantifies the numbers and volumes of puncta and fluorescence intensities of the fluorescently-labeled biomolecule(s) within them and generates reports of their features for hundreds of cells. Using a standard curve of fluorescence intensity versus protein concentration, the pipeline determines the apparent molar concentration of fluorescently-labeled biomolecules within and outside of puncta and calculates the partition coefficient (Kp) and Gibbs free energy of transfer (ΔGTr), which quantify the favorability of a labeled biomolecule partitioning into puncta. In addition, we provide a library of R functions for statistical analysis of the extracted measurements for certain experimental designs. The source code, analysis notebooks, and test data for the Punctatools pipeline are available on GitHub: https://github.com/stjude/punctatools. Here, we provide a protocol for applying our Punctatools pipeline to extract puncta features from fluorescence microscopy images of cells.
Collapse
Affiliation(s)
- David W. Baggett
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Anna Medyukhina
- Center for Bioimage Informatics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Swarnendu Tripathi
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Hazheen K. Shirnekhi
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Huiyun Wu
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Stanley B. Pounds
- Department of Biostatistics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Khaled Khairy
- Center for Bioimage Informatics, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Richard Kriwacki
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, United States
- Integrated Biomedical Sciences Program, The University of Tennessee Science Center, Memphis, TN, United States
| |
Collapse
|
115
|
Faraj N, Duinkerken BHP, Carroll EC, Giepmans BNG. Microscopic modulation and analysis of islets of Langerhans in living zebrafish larvae. FEBS Lett 2022; 596:2497-2512. [DOI: 10.1002/1873-3468.14411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 04/22/2022] [Accepted: 05/20/2022] [Indexed: 11/08/2022]
Affiliation(s)
- Noura Faraj
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| | - B. H. Peter Duinkerken
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| | - Elizabeth C. Carroll
- Department of Imaging Physics Delft University of Technology Delft, 2628 CJ The Netherlands
| | - Ben N. G. Giepmans
- Department of Biomedical Sciences of Cells and Systems, University of Groningen University Medical Center Groningen Groningen 9713AV The Netherlands
| |
Collapse
|
116
|
Li S, Chen Y, He P, Ma Y, Cai Y, Hou X, Zhang G, Zhang X, Wang Z. Aggregation-Induced Emission (AIE) Photosensitizer Combined Polydopamine Nanomaterials for Organelle-Targeting Photodynamic and Photothermal Therapy by the Recognition of Sialic Acid. Adv Healthc Mater 2022; 11:e2200242. [PMID: 35613621 DOI: 10.1002/adhm.202200242] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 04/22/2022] [Indexed: 12/13/2022]
Abstract
The construction of organelle-targeting nanomaterials is an effective way to improve tumor imaging and treatment. Here, a new type of composite nanomaterial named as PTTPB is developed. PTTPB is composed of organelle-targeting aggregation-induced emission photosensitizer TTPB and polydopamine nanomaterials. With the functional modification of TTPB, PTTPB can recognize sialic acid on the cell membrane and present mitochondrial targeted capabilities. The intake of PTTPB in cancerous cells can be increased by the recognition process of cell membrane. PTTPB can generate singlet oxygen for photodynamic therapy (PDT), and present good photothermal conversion ability with irradiation. The PTTPB with organelle-targeting imaging-guided can realize the tumor ablation with the synergistic effect of PDT and photothermal therapy.
Collapse
Affiliation(s)
- Shuo Li
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Yuzhi Chen
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Peinan He
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Yufan Ma
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Yajie Cai
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Xinhui Hou
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Guoyang Zhang
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Xin Zhang
- State Key Laboratory of Chemical Resource Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| | - Zhuo Wang
- State Key Laboratory of Chemical Resource Engineering Beijing Advanced Innovation Center for Soft Matter Science and Engineering College of Chemistry Beijing University of Chemical Technology Beijing 100029 P. R. China
| |
Collapse
|
117
|
Tajima S, Nakata E, Sakaguchi R, Saimura M, Mori Y, Morii T. A two-step screening to optimize the signal response of an auto-fluorescent protein-based biosensor. RSC Adv 2022; 12:15407-15419. [PMID: 35693243 PMCID: PMC9121230 DOI: 10.1039/d2ra02226e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 05/15/2022] [Indexed: 11/21/2022] Open
Abstract
Auto-fluorescent protein (AFP)-based biosensors transduce the structural change in their embedded recognition modules induced by recognition/reaction events to fluorescence signal changes of AFP. The lack of detailed structural information on the recognition module often makes it difficult to optimize AFP-based biosensors. To enhance the signal response derived from detecting the putative structural change in the nitric oxide (NO)-sensing segment of transient receptor potential canonical 5 (TRPC5) fused to enhanced green fluorescent protein (EGFP), EGFP-TRPC5, a facile two-step screening strategy, in silico first and in vitro second, was applied to variants of EGFP-TRPC5 deletion-mutated within the recognition module. In in silico screening, the structural changes of the recognition modules were evaluated as root-mean-square-deviation (RMSD) values, and 10 candidates were efficiently selected from 47 derivatives. Through in vitro screening, four mutants were identified that showed a larger change in signal response than the parent EGFP-TRPC5. One mutant in particular, 551-575, showed four times larger change upon reaction with NO and H2O2. Furthermore, mutant 551-575 also showed a signal response upon reaction with H2O2 in mammalian HEK293 cells, indicating that the mutant has the potential to be applied as a biosensor for cell measurement. Therefore, this two-step screening method effectively allows the selection of AFP-based biosensors with sufficiently enhanced signal responses for application in mammalian cells. A two-step screening procedure allows optimization of the optical response of an auto-fluorescent protein-based biosensor for nitric oxide without structural information.![]()
Collapse
Affiliation(s)
- Shunsuke Tajima
- Institute of Advanced Energy, Kyoto University Uji Kyoto 611-0011 Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University Uji Kyoto 611-0011 Japan
| | - Reiko Sakaguchi
- School of Medicine, University of Occupational and Environmental Health 1-1 Iseigaoka, Yahatanishi-ku Kitakyushu Fukuoka 807-8555 Japan
| | - Masayuki Saimura
- Institute of Advanced Energy, Kyoto University Uji Kyoto 611-0011 Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University Kyotodaigakukatsura, Nishikyo-ku Kyoto 615-8510 Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University Uji Kyoto 611-0011 Japan
| |
Collapse
|
118
|
N-Terminus-Mediated Solution Structure of Dimerization Domain of PRC1. Curr Issues Mol Biol 2022; 44:1626-1645. [PMID: 35723369 PMCID: PMC9164050 DOI: 10.3390/cimb44040111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/01/2022] [Accepted: 04/06/2022] [Indexed: 11/30/2022] Open
Abstract
Microtubule-associated proteins (MAPs) are essential for the accurate division of a cell into two daughter cells. These proteins target specific microtubules to be incorporated into the spindle midzone, which comprises a special array of microtubules that initiate cytokinesis during anaphase. A representative member of the MAPs is Protein Regulator of Cytokinesis 1 (PRC1), which self-multimerizes to cross-link microtubules, the malfunction of which might result in cancerous cells. The importance of PRC1 multimerization makes it a popular target for structural studies. The available crystal structure of PRC1 has low resolution (>3 Å) and accuracy, limiting a better understanding of the structure-related functions of PRC1. Therefore, we used NMR spectroscopy to better determine the structure of the dimerization domain of PRC1. The NMR structure shows that the PRC1 N terminus is crucial to the overall structure integrity, but the crystal structure bespeaks otherwise. We systematically addressed the role of the N terminus by generating a series of mutants in which N-terminal residues methionine (Met1) and arginine (Arg2) were either deleted, extended or substituted with other rationally selected amino acids. Each mutant was subsequently analyzed by NMR spectroscopy or fluorescence thermal shift assays for its structural or thermal stability; we found that N-terminal perturbations indeed affected the overall protein structure and that the solution structure better reflects the conformation of PRC1 under solution conditions. These results reveal that the structure of PRC1 is governed by its N terminus through hydrophobic interactions with other core residues, such hitherto unidentified N-terminal conformations might shed light on the structure−function relationships of PRC1 or other proteins. Therefore, our study is of major importance in terms of identifying a novel structural feature and can further the progress of protein folding and protein engineering.
Collapse
|
119
|
Kaliammal R, Parvathy G, Maheshwaran G, Devi VK, Kumar MK, Sankaranarayanan K, Sudhahar S. Experimental and theoretical studies on new 2-amino-6-methylpyridinium 2,4-dihydroxybenzoate monohydrate organic single crystal for second order nonlinear optical applications. J Mol Struct 2022. [DOI: 10.1016/j.molstruc.2022.132330] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
120
|
Wen Y, Xie D, Liu Z. Advances in protein analysis in single live cells: principle, instrumentation and applications. Trends Analyt Chem 2022. [DOI: 10.1016/j.trac.2022.116619] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
121
|
Niu P, Liu J, Xu F, Yang L, Li Y, Sun A, Wei L, Liu X, Song X. Dual-Ratiometric Fluorescent Probe for H 2O 2 and HClO in Living Cells and Zebrafish and Application in Alcoholic Liver Injury Monitoring. ACS APPLIED BIO MATERIALS 2022; 5:1683-1691. [PMID: 35358386 DOI: 10.1021/acsabm.2c00058] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
Reactive oxygen species (ROS) are an important component for maintaining normal physiological activities in organisms, and abnormal changes in their level are often accompanied by many diseases. As the two most representative components of ROS, HClO and H2O2 play vital roles in many physiological and pathological processes and are interdependent and mutually transformable. Although there is a lot of work that has specifically detected HClO or H2O2, there are few reports on the simultaneous differential detection of HClO and H2O2. Here, we report a ratio-based fluorescent probe capable of simultaneously distinguishing HClO and H2O2 based on making the best use of the untapped potential of coumarin derivatives. This probe was triumphantly put into use in the discriminative identification of HClO and H2O2 in aqueous media with high sensitivity and selectivity, and the probe was appropriate in a wide pH range. Furthermore, the imaging experiment for HClO and H2O2 in cells and zebrafish was eventually proven to be feasible. Importantly, this probe was qualified for monitoring the variation of HClO and H2O2 levels in organisms with alcoholic liver injury.
Collapse
Affiliation(s)
- Peixin Niu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001 Henan Province, China
| | - Jiaojiao Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001 Henan Province, China
| | - Feifei Xu
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Lei Yang
- Shandong Provincial Key Laboratory of Detection Technology for Tumor Markers, College of Chemistry and Chemical Engineering, Linyi University, Linyi 276005, China
| | - Yuhan Li
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001 Henan Province, China
| | - Ailing Sun
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001 Henan Province, China
| | - Liuhe Wei
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001 Henan Province, China
| | - Xingjiang Liu
- Green Catalysis Center, College of Chemistry, Zhengzhou University, Zhengzhou, 450001 Henan Province, China
| | - Xiangzhi Song
- College of Chemistry & Chemical Engineering, Central South University, Changsha, 410083 Hunan Province, China
| |
Collapse
|
122
|
Eustáquio R, Prates Ramalho JP, Caldeira AT, Pereira A. Development of new 2-piperidinium-4-styrylcoumarin derivatives with large Stokes shifts as potential fluorescent labels for biomolecules. RSC Adv 2022; 12:8477-8484. [PMID: 35424831 PMCID: PMC8984815 DOI: 10.1039/d2ra00716a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 03/03/2022] [Indexed: 11/21/2022] Open
Abstract
A series of novel 2-piperidinium-4-styrylcoumarin derivatives, with large Stokes shifts and high fluorescence quantum yields, were synthesized using an efficient and low-cost synthetic strategy as potential fluorescent labels for biomolecules. Density functional theory and time-dependent density functional theory calculations were performed in order to rationalize the observed photophysical properties.
Collapse
Affiliation(s)
- Raquel Eustáquio
- HERCULES Laboratory, City University of Macau Chair in Sustainable Heritage, University of Évora Largo Marquês de Marialva 8 7000-809 Évora Portugal
| | - João P Prates Ramalho
- Chemistry Department, School of Sciences and Technology, University of Évora Rua Romão Ramalho 59 7000-671 Évora Portugal
- LAQV-REQUIMTE, University of Évora Rua Romão Ramalho 59 7000-671 Évora Portugal
| | - Ana T Caldeira
- HERCULES Laboratory, City University of Macau Chair in Sustainable Heritage, University of Évora Largo Marquês de Marialva 8 7000-809 Évora Portugal
- Chemistry Department, School of Sciences and Technology, University of Évora Rua Romão Ramalho 59 7000-671 Évora Portugal
| | - António Pereira
- HERCULES Laboratory, City University of Macau Chair in Sustainable Heritage, University of Évora Largo Marquês de Marialva 8 7000-809 Évora Portugal
- Chemistry Department, School of Sciences and Technology, University of Évora Rua Romão Ramalho 59 7000-671 Évora Portugal
| |
Collapse
|
123
|
Zhang L, Zhao W, Yuan S, Yang Y, Ge P, Sun W, Ji X. Tailoring MS x Quantum Dots (M = Co, Ni, Cu, Zn) for Advanced Energy Storage Materials with Strong Interfacial Engineering. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2022; 18:e2106593. [PMID: 35044075 DOI: 10.1002/smll.202106593] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/06/2021] [Indexed: 06/14/2023]
Abstract
Metal sulfides, as vital members of electrodes materials, still suffer from serious volume expansion and polysulfides shuttling. Herein, through inexpensive and high efficiency chemical-bonding/hydrophobic-association methods, a series of metal-sulfides quantum dots (QDs) with large-scale synthesis (≈100 g) is successfully prepared, further forming low-dimensional composites with high redox activity. For the derived electrodes samples, with the increasing of outer electron numbers (Co2+ /Ni2+ /Cu2+ /Zn2+ ), interfacial coupling is significantly modified. Among them, nanoscale ZnS@double carbon with rich interfacial Zn-O/S-C bonds displays remarkable electrochemical activity, with the capacity of ≈1000 mAh g-1 after 100 loops. Through tailoring double carbons and interfacial merits, in situ sulfur formation is stabilized, and the cycling stability of Zn-based samples can increase up to 4000 cycles. Even at 5.0 A g-1 after 1500 cycles, the full-cells capacity can reach up to ≈380 mAh g-1 . Supported by detailed kinetic analysis and ex situ technologies, the enhanced interfacial capacitances and ions moving are confirmed for the improved electrochemical properties. Given this, the work is expected to boost future developments of mineral processing, and QDs preparation, whilst providing effective strategies for advanced electrode materials.
Collapse
Affiliation(s)
- Liming Zhang
- School of Resource Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Wenqing Zhao
- School of Resource Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Shaohui Yuan
- School of Resource Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Yue Yang
- School of Resource Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Peng Ge
- School of Resource Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Wei Sun
- School of Resource Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Xiaobo Ji
- State Key Laboratory of Powder Metallurgy, College of Chemistry and Chemical Engineering, Central South University, Changsha, 410083, China
| |
Collapse
|
124
|
Mogensen DJ, Etzerodt M, Ogilby PR. Photoinduced Bleaching in an Efficient Singlet Oxygen Photosensitizing Protein: Identifying a Culprit in the Flavin-Binding LOV-Based Protein SOPP3. J Photochem Photobiol A Chem 2022. [DOI: 10.1016/j.jphotochem.2022.113894] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
125
|
Eustáquio R, Ramalho JPP, Caldeira AT, Pereira A. New Red-Shifted 4-Styrylcoumarin Derivatives as Potential Fluorescent Labels for Biomolecules. Molecules 2022; 27:1461. [PMID: 35268562 PMCID: PMC8912076 DOI: 10.3390/molecules27051461] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Revised: 02/15/2022] [Accepted: 02/16/2022] [Indexed: 11/30/2022] Open
Abstract
Important scientific areas, such as cellular biology, medicine, pharmacy, and environmental sciences, are dependent on very sensitive analytical techniques to track and detect biomolecules. In this work, we develop a simple, low-cost and effective synthetic strategy to produce new red-shifted 4-styrylcoumarin derivatives as promising inexpensive fluorescent labels for biomolecules. The extension of the delocalized π-electron system results in bathochromic shifts in these new coumarin derivatives, which also present large Stokes shifts. In addition, density functional theory and time-dependent density functional theory calculations helped to rationalize the photophysical properties observed by the experimental results.
Collapse
Affiliation(s)
- Raquel Eustáquio
- Hercules Laboratory, University of Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal; (R.E.); (A.T.C.)
| | - João P. Prates Ramalho
- Chemistry Department, School of Sciences and Technology, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal;
- Laqv-Requimte, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal
| | - Ana T. Caldeira
- Hercules Laboratory, University of Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal; (R.E.); (A.T.C.)
- Chemistry Department, School of Sciences and Technology, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal;
| | - António Pereira
- Hercules Laboratory, University of Évora, Largo Marquês de Marialva 8, 7000-809 Évora, Portugal; (R.E.); (A.T.C.)
- Chemistry Department, School of Sciences and Technology, University of Évora, Rua Romão Ramalho 59, 7000-671 Évora, Portugal;
| |
Collapse
|
126
|
Rudinskiy M, Bergmann TJ, Molinari M. Quantitative and Time-Resolved Monitoring of Organelle and Protein Delivery to the Lysosome with A Tandem Fluorescent Halo-GFP reporter. Mol Biol Cell 2022; 33:ar57. [PMID: 35108065 PMCID: PMC9265146 DOI: 10.1091/mbc.e21-10-0526] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Lysosomal degradative compartments hydrolyze macromolecules to generate basic building blocks that fuel metabolic pathways in our cells. They also remove misfolded proteins and control size, function, and number of cytoplasmic organelles via constitutive and regulated autophagy. These catabolic processes attract interest because their defective functioning is linked to human disease and their molecular components are promising pharmacologic targets. The capacity to quantitatively assess them is highly sought-after. Here we present a tandem-fluorescent reporter consisting of a HaloTag-GFP chimera appended at the C- or at the N-terminus of select polypeptides to monitor protein and organelle delivery to the lysosomal compartment. The Halo-GFP changes color on fluorescent pulse with cell-permeable HaloTag ligands and, again, on delivery to acidic, degradative lysosomal compartments, where the fluorescent ligand-associated HaloTag is relatively stable, whereas the GFP portion is not, as testified by loss of the green fluorescence and generation of a protease-resistant, fluorescent HaloTag fragment. The Halo-GFP tandem fluorescent reporter presented in our study allows quantitative and, crucially, time-resolved analyses of protein and organelle transport to the lysosomal compartment by high resolution confocal laser scanning microscopy, antibody-free electrophoretic techniques and flow cytometry.
Collapse
Affiliation(s)
- M Rudinskiy
- Università della Svizzera italiana, CH-6900 Lugano, Switzerland; Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland.,Department of Biology, Swiss Federal Institute of Technology, CH-8093 Zurich, Switzerland
| | - T J Bergmann
- Università della Svizzera italiana, CH-6900 Lugano, Switzerland; Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland
| | - M Molinari
- Università della Svizzera italiana, CH-6900 Lugano, Switzerland; Institute for Research in Biomedicine, CH-6500 Bellinzona, Switzerland.,School of Life Sciences, École Polytechnique Fédérale de Lausanne, CH-1015 Lausanne, Switzerland
| |
Collapse
|
127
|
Lane R, Wolters AHG, Giepmans BNG, Hoogenboom JP. Integrated Array Tomography for 3D Correlative Light and Electron Microscopy. Front Mol Biosci 2022; 8:822232. [PMID: 35127826 PMCID: PMC8809480 DOI: 10.3389/fmolb.2021.822232] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2021] [Accepted: 12/15/2021] [Indexed: 12/22/2022] Open
Abstract
Volume electron microscopy (EM) of biological systems has grown exponentially in recent years due to innovative large-scale imaging approaches. As a standalone imaging method, however, large-scale EM typically has two major limitations: slow rates of acquisition and the difficulty to provide targeted biological information. We developed a 3D image acquisition and reconstruction pipeline that overcomes both of these limitations by using a widefield fluorescence microscope integrated inside of a scanning electron microscope. The workflow consists of acquiring large field of view fluorescence microscopy (FM) images, which guide to regions of interest for successive EM (integrated correlative light and electron microscopy). High precision EM-FM overlay is achieved using cathodoluminescent markers. We conduct a proof-of-concept of our integrated workflow on immunolabelled serial sections of tissues. Acquisitions are limited to regions containing biological targets, expediting total acquisition times and reducing the burden of excess data by tens or hundreds of GBs.
Collapse
Affiliation(s)
- Ryan Lane
- Imaging Physics, Delft University of Technology, Delft, Netherlands
| | - Anouk H. G. Wolters
- Department of Biomedical Sciences of Cells and Systems, University Groningen, University Medical Center Groningen, Groningen, Netherlands
| | - Ben N. G. Giepmans
- Department of Biomedical Sciences of Cells and Systems, University Groningen, University Medical Center Groningen, Groningen, Netherlands
| | | |
Collapse
|
128
|
Glymenaki E, Kandyli M, Apostolidou CP, Kokotidou C, Charalambidis G, Nikoloudakis E, Panagiotakis S, Koutserinaki E, Klontza V, Michail P, Charisiadis A, Yannakopoulou K, Mitraki A, Coutsolelos AG. Design and Synthesis of Porphyrin-Nitrilotriacetic Acid Dyads with Potential Applications in Peptide Labeling through Metallochelate Coupling. ACS OMEGA 2022; 7:1803-1818. [PMID: 35071874 PMCID: PMC8771699 DOI: 10.1021/acsomega.1c05013] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 11/30/2021] [Indexed: 05/31/2023]
Abstract
The need to detect and monitor biomolecules, especially within cells, has led to the emerging growth of fluorescent probes. One of the most commonly used labeling techniques for this purpose is reversible metallochelate coupling via a nitrilotriacetic acid (NTA) moiety. In this study, we focus on the synthesis and characterization of three new porphyrin-NTA dyads, TPP-Lys-NTA, TPP-CC-Lys-NTA, and Py 3 P-Lys-NTA composed of a porphyrin derivative covalently connected with a modified nitrilotriacetic acid chelate ligand (NTA), for possible metallochelate coupling with Ni2+ ions and histidine sequences. Emission spectroscopy studies revealed that all of the probes are able to coordinate with Ni2+ ions and consequently can be applied as fluorophores in protein/peptide labeling applications. Using two different histidine-containing peptides as His6-tag mimic, we demonstrated that the porphyrin-NTA hybrids are able to coordinate efficiently with the peptides through the metallochelate coupling process. Moving one step forward, we examined the ability of these porphyrin-peptide complexes to penetrate and accumulate in cancer cells, exploring the potential utilization of our system as anticancer agents.
Collapse
Affiliation(s)
- Eleni Glymenaki
- Department
of Chemistry, University of Crete, Laboratory
of Bioinorganic Chemistry, Voutes Campus, Heraklion 70013, Crete, Greece
| | - Maria Kandyli
- Department
of Chemistry, University of Crete, Laboratory
of Bioinorganic Chemistry, Voutes Campus, Heraklion 70013, Crete, Greece
| | - Chrysanthi Pinelopi Apostolidou
- Department
of Materials Science and Technology and Institute of Electronic Structure
and Laser (I.E.S.L.), Foundation for Research and Technology-Hellas
(FO.R.T.H.), University of Crete, Vassilika Vouton, Heraklion 70013, Crete, Greece
| | - Chrysoula Kokotidou
- Department
of Materials Science and Technology and Institute of Electronic Structure
and Laser (I.E.S.L.), Foundation for Research and Technology-Hellas
(FO.R.T.H.), University of Crete, Vassilika Vouton, Heraklion 70013, Crete, Greece
| | - Georgios Charalambidis
- Department
of Chemistry, University of Crete, Laboratory
of Bioinorganic Chemistry, Voutes Campus, Heraklion 70013, Crete, Greece
| | - Emmanouil Nikoloudakis
- Department
of Chemistry, University of Crete, Laboratory
of Bioinorganic Chemistry, Voutes Campus, Heraklion 70013, Crete, Greece
| | - Stylianos Panagiotakis
- Department
of Chemistry, University of Crete, Laboratory
of Bioinorganic Chemistry, Voutes Campus, Heraklion 70013, Crete, Greece
- Institute
of Nanoscience and Nanotechnology, National
Center for Scientific Research “Demokritos”, Aghia Paraskevi, Attiki 15341, Greece
| | - Eleftheria Koutserinaki
- Department
of Chemistry, University of Crete, Laboratory
of Bioinorganic Chemistry, Voutes Campus, Heraklion 70013, Crete, Greece
| | - Vithleem Klontza
- Department
of Chemistry, University of Crete, Laboratory
of Bioinorganic Chemistry, Voutes Campus, Heraklion 70013, Crete, Greece
| | - Panagiota Michail
- Department
of Chemistry, University of Crete, Laboratory
of Bioinorganic Chemistry, Voutes Campus, Heraklion 70013, Crete, Greece
| | - Asterios Charisiadis
- Department
of Chemistry, University of Crete, Laboratory
of Bioinorganic Chemistry, Voutes Campus, Heraklion 70013, Crete, Greece
| | - Konstantina Yannakopoulou
- Institute
of Nanoscience and Nanotechnology, National
Center for Scientific Research “Demokritos”, Aghia Paraskevi, Attiki 15341, Greece
| | - Anna Mitraki
- Department
of Materials Science and Technology and Institute of Electronic Structure
and Laser (I.E.S.L.), Foundation for Research and Technology-Hellas
(FO.R.T.H.), University of Crete, Vassilika Vouton, Heraklion 70013, Crete, Greece
| | - Athanassios G. Coutsolelos
- Department
of Chemistry, University of Crete, Laboratory
of Bioinorganic Chemistry, Voutes Campus, Heraklion 70013, Crete, Greece
| |
Collapse
|
129
|
List NH, Jones CM, Martínez TJ. Internal conversion of the anionic GFP chromophore: in and out of the I-twisted S 1/S 0 conical intersection seam. Chem Sci 2022; 13:373-385. [PMID: 35126970 PMCID: PMC8729814 DOI: 10.1039/d1sc05849e] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2021] [Accepted: 11/11/2021] [Indexed: 11/21/2022] Open
Abstract
The functional diversity of the green fluorescent protein (GFP) family is intimately connected to the interplay between competing photo-induced transformations of the chromophore motif, anionic p-hydroxybenzylidene-2,3-dimethylimidazolinone (HBDI-). Its ability to undergo Z/E-isomerization is of particular importance for super-resolution microscopy and emerging opportunities in optogenetics. Yet, key dynamical features of the underlying internal conversion process in the native HBDI- chromophore remain largely elusive. We investigate the intrinsic excited-state behavior of isolated HBDI- to resolve competing decay pathways and map out the factors governing efficiency and the stereochemical outcome of photoisomerization. Based on non-adiabatic dynamics simulations, we demonstrate that non-selective progress along the two bridge-torsional (i.e., phenolate, P, or imidazolinone, I) pathways accounts for the three decay constants reported experimentally, leading to competing ultrafast relaxation primarily along the I-twisted pathway and S1 trapping along the P-torsion. The majority of the population (∼70%) is transferred to S0 in the vicinity of two approximately enantiomeric minima on the I-twisted intersection seam (MECI-Is). Despite their sloped, reactant-biased topographies (suggesting low photoproduct yields), we find that decay through these intersections leads to products with a surprisingly high quantum yield of ∼30%. This demonstrates that E-isomer generation results at least in part from direct isomerization on the excited state. A photoisomerization committor analysis reveals a difference in intrinsic photoreactivity of the two MECI-Is and that the observed photoisomerization is the combined result of two effects: early, non-statistical dynamics around the less reactive intersection followed by later, near-statistical behavior around the more reactive MECI-I. Our work offers new insight into internal conversion of HBDI- that both establishes the intrinsic properties of the chromophore and enlightens principles for the design of chromophore derivatives and protein variants with improved photoswitching properties.
Collapse
Affiliation(s)
- Nanna H List
- Department of Chemistry and the PULSE Institute, Stanford University Stanford CA 94305 USA .,SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Chey M Jones
- Department of Chemistry and the PULSE Institute, Stanford University Stanford CA 94305 USA .,SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| | - Todd J Martínez
- Department of Chemistry and the PULSE Institute, Stanford University Stanford CA 94305 USA .,SLAC National Accelerator Laboratory 2575 Sand Hill Road Menlo Park CA 94025 USA
| |
Collapse
|
130
|
Xin X, Zhang Y, Gaetani M, Lundström SL, Zubarev RA, Zhou Y, Corkery DP, Wu YW. Ultrafast and Selective Labeling of Endogenous Proteins Using Affinity-based Benzotriazole Chemistry. Chem Sci 2022; 13:7240-7246. [PMID: 35799822 PMCID: PMC9214888 DOI: 10.1039/d1sc05974b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2021] [Accepted: 05/27/2022] [Indexed: 11/21/2022] Open
Abstract
Chemical modification of proteins is enormously useful for characterizing protein function in complex biological systems and for drug development. Selective labeling of native or endogenous proteins is challenging owing to the existence of distinct functional groups in proteins and in living systems. Chemistry for rapid and selective labeling of proteins remains in high demand. Here we have developed novel affinity labeling probes using benzotriazole (BTA) chemistry. We showed that affinity-based BTA probes selectively and covalently label a lysine residue in the vicinity of the ligand binding site of a target protein with a reaction half-time of 28 s. The reaction rate constant is comparable to the fastest biorthogonal chemistry. This approach was used to selectively label different cytosolic and membrane proteins in vitro and in live cells. BTA chemistry could be widely useful for labeling of native/endogenous proteins, target identification and development of covalent inhibitors. Affinity-based benzotriazole (BTA) probes selectively and covalently label native proteins or endogenous proteins in cells with a fast reaction rate. It is enormously useful for characterizing protein function in biological systems and for drug development.![]()
Collapse
Affiliation(s)
- Xiaoyi Xin
- Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University Umeå 90187 Sweden
| | - Yu Zhang
- Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University Umeå 90187 Sweden
| | - Massimiliano Gaetani
- Division of Physiological Chemistry I, Chemical Proteomics Core Facility, Department of Medical Biochemistry and Biophysics, Karolinska Institute Stockholm 17177 Sweden
- Chemical Proteomics, Science for Life Laboratory (SciLifeLab) Stockholm 17177 Sweden
| | - Susanna L Lundström
- Division of Physiological Chemistry I, Chemical Proteomics Core Facility, Department of Medical Biochemistry and Biophysics, Karolinska Institute Stockholm 17177 Sweden
- Chemical Proteomics, Science for Life Laboratory (SciLifeLab) Stockholm 17177 Sweden
| | - Roman A Zubarev
- Division of Physiological Chemistry I, Chemical Proteomics Core Facility, Department of Medical Biochemistry and Biophysics, Karolinska Institute Stockholm 17177 Sweden
- Chemical Proteomics, Science for Life Laboratory (SciLifeLab) Stockholm 17177 Sweden
| | - Yuan Zhou
- School of Medical Technology, Xuzhou Medical University Xuzhou 221004 China
| | - Dale P Corkery
- Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University Umeå 90187 Sweden
| | - Yao-Wen Wu
- Department of Chemistry, Umeå Centre for Microbial Research (UCMR), Umeå University Umeå 90187 Sweden
| |
Collapse
|
131
|
Fatima A, Younas I, Ali MW. An Overview on Recent Advances in Biosensor Technology and its Future Application. ARCHIVES OF PHARMACY PRACTICE 2022. [DOI: 10.51847/ltogi43jil] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
|
132
|
Yin Z, Peng J, Qiao Z, Zhang Y, Wei N. A fluorogenic probe for TRPA1 channel imaging based on a molecular rotation mechanism. NEW J CHEM 2022. [DOI: 10.1039/d2nj01728h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
A fluorescent probe for selectively visualizing the TRPA1 channel and rapidly screening its regulators.
Collapse
Affiliation(s)
- Zhengji Yin
- Department of Pharmaceutical Analysis and Pharmacology, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, Qingdao 266073, China
| | - Junli Peng
- Department of Pharmaceutical Analysis and Pharmacology, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, Qingdao 266073, China
| | - Zhen Qiao
- Department of Pharmaceutical Analysis and Pharmacology, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, Qingdao 266073, China
| | - Yanru Zhang
- Department of Pharmaceutical Analysis and Pharmacology, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, Qingdao 266073, China
| | - Ningning Wei
- Department of Pharmaceutical Analysis and Pharmacology, School of Pharmacy, Qingdao University Medical College, No. 1 Ningde Road, Qingdao 266073, China
| |
Collapse
|
133
|
Xu Y, Lv Z, Yao C, Yang D. Construction of rolling circle amplification-based DNA nanostructures for biomedical applications. Biomater Sci 2022; 10:3054-3061. [DOI: 10.1039/d2bm00445c] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
DNA-based materials exhibit great potential in biomedical applications due to the excellent sequence programmability and unique functional designability. Rolling circle amplification (RCA) is an efficient isothermal enzymatic amplification strategy to...
Collapse
|
134
|
An S, Parajuli P, Kennedy EL, Kyoung M. Multi-dimensional Fluorescence Live-Cell Imaging for Glucosome Dynamics in Living Human Cells. Methods Mol Biol 2022; 2487:15-26. [PMID: 35687227 PMCID: PMC9191769 DOI: 10.1007/978-1-0716-2269-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Fluorescence live-cell imaging that has contributed to our understanding of cell biology is now at the frontline of studying quantitative biochemistry in a cell. Particularly, technological advancements of fluorescence live-cell imaging and associated strategies in recent years have allowed us to discover various subcellular macromolecular assemblies in living human cells. Here we describe how real-time dynamics of a multienzyme metabolic assembly, the "glucosome," that is responsible for regulating glucose flux at subcellular levels, has been investigated in both 2- and 3-dimensional space of single human cells. We envision that such multi-dimensional fluorescence live-cell imaging will continue to revolutionize our understanding of how intracellular metabolic pathways and their network are functionally orchestrated at single-cell levels.
Collapse
Affiliation(s)
- Songon An
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250,Program in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201,Corresponding authors: &
| | - Prakash Parajuli
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250
| | - Erin L. Kennedy
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250
| | - Minjoung Kyoung
- Department of Chemistry and Biochemistry, University of Maryland Baltimore County (UMBC), 1000 Hilltop Circle, Baltimore, MD 21250,Program in Oncology, Marlene and Stewart Greenebaum Comprehensive Cancer Center, University of Maryland, Baltimore, MD 21201,Corresponding authors: &
| |
Collapse
|
135
|
Li D, Zhang Z, Wang X, Wang Y, Gao X, Li Y. A direct method for detecting proteins in body fluids by Surface-Enhanced Raman Spectroscopy under native conditions. Biosens Bioelectron 2021; 200:113907. [PMID: 34968858 DOI: 10.1016/j.bios.2021.113907] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2021] [Revised: 11/22/2021] [Accepted: 12/20/2021] [Indexed: 11/30/2022]
Abstract
Surface enhanced Raman spectroscopy (SERS) is widely used in biomolecular detection. However, maintaining the native structure of proteins while obtaining sensitive and reproducible SERS signals of unlabeled proteins remains a challenge. In this study, dichloromethane (DCM) and CaCl2 were used to optimize the aggregation of Ag nanoparticles (AgNPs), and several proteins were analyzed comprehensively. Calcium ions removed citrate ions outside AgNPs, inducing hot spots and achieving high-sensitivity SERS signals of proteins. Furthermore, 20 random samples of 0.5 μg/mL hemoglobin were analyzed by this method. The obtained spectra showed good repeatability and a high quality. Using the peak intensity of DCM as internal parameter, the differences in peak intensities at the same position were analyzed to distinguish different proteins and evaluate changes in protein structure. Subsequently, the protein content in protein mixtures and serum was quantified and a good linear relationship between peak intensity and protein concentration was obtained. This method shows great promise in the fields of food testing and clinical diagnosis.
Collapse
Affiliation(s)
- Dan Li
- College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China; Institute of Physics, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City, Guizhou Province, China
| | - Zhe Zhang
- College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China; Department of Hygienic Microbiology, College of Public Health, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Xiaotong Wang
- College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Yunpeng Wang
- College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China
| | - Xin Gao
- Institute of Physics, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City, Guizhou Province, China
| | - Yang Li
- College of Pharmacy, Harbin Medical University, No. 157, Baojian Road, Nangang District, Harbin City, Heilongjiang Province, China; Institute of Physics, Guizhou University, No. 2708, South Section of Huaxi Avenue, Guiyang City, Guizhou Province, China.
| |
Collapse
|
136
|
Iqbal Z, Sadaf S. Forty Years of Directed Evolution and its Continuously Evolving Technology Toolbox - A Review of the Patent Landscape. Biotechnol Bioeng 2021; 119:693-724. [PMID: 34923625 DOI: 10.1002/bit.28009] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Revised: 11/28/2021] [Accepted: 11/29/2021] [Indexed: 11/10/2022]
Abstract
Generating functional protein variants with novel or improved characteristics has been a goal of the biotechnology industry and life sciences, for decades. Rational design and directed evolution are two major pathways to achieve the desired ends. Whilst rational protein design approach has made substantial progress, the idea of using a method based on cycles of mutagenesis and natural selection to develop novel binding proteins, enzymes and structures has attracted great attention. Laboratory evolution of proteins/enzymes requires new tools and analytical approaches to create genetic diversity and identifying variants with desired traits. In this pursuit, construction of sufficiently large libraries of target molecules to search for improved variants and the need for new protocols to alter the properties of target molecules has been a continuing challenge in the directed evolution experiments. This review will discuss the in vivo and in vitro gene diversification tools, library screening or selection approaches, and artificial intelligence/machine-learning-based strategies to mutagenesis developed in the last forty years to accelerate the natural process of evolution in creating new functional protein variants, optimization of microbial strains and transformation of enzymes into industrial machines. Analyzing patent position over these techniques and mechanisms also constitutes an integral and distinctive part of this review. The aim is to provide an up-to-date resource/technology toolbox for research-based and pharmaceutical companies to discover the boundaries of competitor's intellectual property (IP) portfolio, their freedom-to-operate in the relevant IP landscape, and the need for patent due diligence analysis to rule out whether use of a particular patented mutagenesis method, library screening/selection technique falls outside the safe harbor of experimental use exemption. While so doing, we have referred to some recent cases that emphasize the significance of selecting a suitable gene diversification strategy in directed evolution experiments. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Zarina Iqbal
- PakPat World Intellectual Property Protection Services, Lahore, 54000, Pakistan
| | - Saima Sadaf
- School of Biochemistry and Biotechnology, University of the Punjab, Lahore, 54590, Pakistan
| |
Collapse
|
137
|
Wu Z, He K, Chen Y, Li H, Pan S, Li B, Liu T, Xi F, Deng F, Wang H, Du J, Jing M, Li Y. A sensitive GRAB sensor for detecting extracellular ATP in vitro and in vivo. Neuron 2021; 110:770-782.e5. [PMID: 34942116 DOI: 10.1016/j.neuron.2021.11.027] [Citation(s) in RCA: 100] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2021] [Revised: 08/31/2021] [Accepted: 11/22/2021] [Indexed: 12/13/2022]
Abstract
The purinergic transmitter ATP (adenosine 5'-triphosphate) plays an essential role in both the central and peripheral nervous systems, and the ability to directly measure extracellular ATP in real time will increase our understanding of its physiological functions. Here, we developed a sensitive GPCR activation-based ATP sensor called GRABATP1.0, with a robust fluorescence response to extracellular ATP when expressed in several cell types. This sensor has sub-second kinetics, has ATP affinity in the range of tens of nanomolar, and can be used to localize ATP release with subcellular resolution. Using this sensor, we monitored ATP release under a variety of in vitro and in vivo conditions, including stimuli-induced and spontaneous ATP release in primary hippocampal cultures, injury-induced ATP release in a zebrafish model, and lipopolysaccharides-induced ATP-release events in individual astrocytes in the mouse cortex. Thus, the GRABATP1.0 sensor is a sensitive, versatile tool for monitoring ATP release and dynamics under both physiological and pathophysiological conditions.
Collapse
Affiliation(s)
- Zhaofa Wu
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China.
| | - Kaikai He
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Yue Chen
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Hongyu Li
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Sunlei Pan
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China
| | - Bohan Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Tingting Liu
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Fengxue Xi
- Chinese Institute for Brain Research, Beijing 102206, China; School of Basic Medical Sciences, Capital Medical University, Beijing 100069, China
| | - Fei Deng
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Huan Wang
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China
| | - Jiulin Du
- Institute of Neuroscience, State Key Laboratory of Neuroscience, Center for Excellence in Brain Science and Intelligence Technology, Chinese Academy of Sciences, 320 Yue-Yang Road, Shanghai 200031, China
| | - Miao Jing
- Chinese Institute for Brain Research, Beijing 102206, China
| | - Yulong Li
- State Key Laboratory of Membrane Biology, Peking University School of Life Sciences, Beijing 100871, China; PKU-IDG/McGovern Institute for Brain Research, Beijing 100871, China; Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, Peking University, Beijing 100871, China; Chinese Institute for Brain Research, Beijing 102206, China.
| |
Collapse
|
138
|
Bošnjak B, Do KTH, Förster R, Hammerschmidt SI. Imaging dendritic cell functions. Immunol Rev 2021; 306:137-163. [PMID: 34859450 DOI: 10.1111/imr.13050] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 12/14/2022]
Abstract
Dendritic cells (DCs) are crucial for the appropriate initiation of adaptive immune responses. During inflammation, DCs capture antigens, mature, and migrate to lymphoid tissues to present foreign material to naïve T cells. These cells get activated and differentiate either into pathogen-specific cytotoxic CD8+ T cells that destroy infected cells or into CD4+ T helper cells that, among other effector functions, orchestrate antibody production by B cells. DC-mediated antigen presentation is equally important in non-inflammatory conditions. Here, DCs mediate induction of tolerance by presenting self-antigens or harmless environmental antigens and induce differentiation of regulatory T cells or inactivation of self-reactive immune cells. Detailed insights into the biology of DCs are, therefore, crucial for the development of novel vaccines as well as the prevention of autoimmune diseases. As in many other life science areas, our understanding of DC biology would be extremely restricted without bioimaging, a compilation of methods that visualize biological processes. Spatiotemporal tracking of DCs relies on various imaging tools, which not only enable insights into their positioning and migration within tissues or entire organs but also allow visualization of subcellular and molecular processes. This review aims to provide an overview of the imaging toolbox and to provide examples of diverse imaging techniques used to obtain fundamental insights into DC biology.
Collapse
Affiliation(s)
- Berislav Bošnjak
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Kim Thi Hoang Do
- Institute of Immunology, Hannover Medical School, Hannover, Germany
| | - Reinhold Förster
- Institute of Immunology, Hannover Medical School, Hannover, Germany.,Cluster of Excellence RESIST (EXC 2155) Hannover Medical School, Hannover, Germany.,German Centre for Infection Research (DZIF), Hannover, Germany
| | | |
Collapse
|
139
|
Stepanenko OV, Sulatsky MI, Mikhailova EV, Kuznetsova IM, Turoverov KK, Stepanenko OV, Sulatskaya AI. New findings on GFP-like protein application as fluorescent tags: Fibrillogenesis, oligomerization, and amorphous aggregation. Int J Biol Macromol 2021; 192:1304-1310. [PMID: 34687761 DOI: 10.1016/j.ijbiomac.2021.10.107] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 09/19/2021] [Accepted: 10/14/2021] [Indexed: 10/20/2022]
Abstract
Green fluorescent proteins (GFP) are commonly used as fluorescent tags and biosensors in cell biology and medicine. However, the propensity of GFP-like proteins to aggregate and the consequence of intermolecular interaction for their application have not been thoroughly examined. In this work, alternative aggregation pathways of superfolder green fluorescent protein (sfGFP) were demonstrated using a spectroscopic and microscopic study of the samples prepared by equilibrium microdialysis. Besides oligomerization of native monomers, we showed for the first time the condition-specific formation by sfGFP of either amyloid fibrils (at increased temperature or acidity) or amorphous aggregates (at physiological conditions). Both types of sfGFP aggregates had lost green fluorescence and were toxic to cells. Thus, when using GFP-like proteins as fluorescent tags, one should take into account their high ability to form aggregates with lost unique visible fluorescence in the cellular environment, which affects cell viability. Moreover, the results of this work cast doubt on the correctness of the data on the fibrillogenesis of various amyloidogenic proteins obtained using their fusion with GFP-like proteins.
Collapse
Affiliation(s)
- Olga V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Maksim I Sulatsky
- Laboratory of Cell Morphology, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Ekaterina V Mikhailova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Irina M Kuznetsova
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| | - Konstantin K Turoverov
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia.
| | - Olesya V Stepanenko
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia.
| | - Anna I Sulatskaya
- Laboratory of Structural Dynamics, Stability and Folding of Proteins, Institute of Cytology, Russian Academy of Sciences, St. Petersburg 194064, Russia
| |
Collapse
|
140
|
Wang B, Liu S, Liu X, Hu R, Qin A, Tang BZ. Aggregation-Induced Emission Materials that Aid in Pharmaceutical Research. Adv Healthc Mater 2021; 10:e2101067. [PMID: 34418328 DOI: 10.1002/adhm.202101067] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2021] [Revised: 07/19/2021] [Indexed: 12/14/2022]
Abstract
The in situ visualization of drugs can improve the understanding of their pharmacokinetics and mechanisms. Aggregation-induced emission (AIE) materials, which can aid in the visualization of drugs, are gradually being employed in pharmaceutical research due to their excellent fluorescence properties, good biocompatibility, and extremely high sensitivity. Herein, the progress of AIE materials in pharmaceutical research, including AIE carriers for drug delivery, AIE multifunctional prodrugs, and AIE compounds as bioactive reagents for theranostics is briefly described. Moreover, the opportunities and challenges of AIE materials in pharmaceutical research are discussed in depth. It is believed that versatile AIE materials hold great promise for the promotion of pharmacological research and can facilitate significant advancements in clinical fields.
Collapse
Affiliation(s)
- Bingnan Wang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation‐Induced Emission South China University of Technology Guangzhou 510640 China
| | - Shanshan Liu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation‐Induced Emission South China University of Technology Guangzhou 510640 China
| | - Xiaolin Liu
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction Institute for Advanced Study and Department of Chemical and Biological Engineering The Hong Kong University of Science & Technology Clear Water Bay Kowloon Hong Kong 999077 China
| | - Rong Hu
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation‐Induced Emission South China University of Technology Guangzhou 510640 China
| | - Anjun Qin
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation‐Induced Emission South China University of Technology Guangzhou 510640 China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates Center for Aggregation‐Induced Emission South China University of Technology Guangzhou 510640 China
- Department of Chemistry Hong Kong Branch of Chinese National Engineering Research Centre for Tissue Restoration and Reconstruction Institute for Advanced Study and Department of Chemical and Biological Engineering The Hong Kong University of Science & Technology Clear Water Bay Kowloon Hong Kong 999077 China
- Shenzhen Institute of Molecular Aggregate Science and Engineering School of Science and Engineering The Chinese University of Hong Kong, Shenzhen 2001 Longxiang Boulevard, Longgang District Shenzhen City Guangdong 518172 China
| |
Collapse
|
141
|
Zhang D, Peng R, Liu W, Donovan MJ, Wang L, Ismail I, Li J, Li J, Qu F, Tan W. Engineering DNA on the Surface of Upconversion Nanoparticles for Bioanalysis and Therapeutics. ACS NANO 2021; 15:17257-17274. [PMID: 34766752 DOI: 10.1021/acsnano.1c08036] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Surface modification of inorganic nanomaterials with biomolecules has enabled the development of composites integrated with extensive properties. Lanthanide ion-doped upconversion nanoparticles (UCNPs) are one class of inorganic nanomaterials showing optical properties that convert photons of lower energy into higher energy. Additionally, DNA oligonucleotides have exhibited powerful capabilities for organizing various nanomaterials with versatile topological configurations. Through rational design and nanotechnology, DNA-based UCNPs offer predesigned functionality and potential. To fully harness the capabilities of UCNPs integrated with DNA, various DNA-UCNP composites have been developed for diagnosis and therapeutics. In this review, beginning with the introduction of the UCNPs and the conjugation of DNA strands on the surface of UCNPs, we present an overview of the recent progress of DNA-UCNP composites while focusing on their applications for bioanalysis and therapeutics.
Collapse
Affiliation(s)
- Dailiang Zhang
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Ruizi Peng
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Wenfei Liu
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, California 90095, United States
| | - Michael J Donovan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Linlin Wang
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
| | - Ismail Ismail
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Jin Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Juan Li
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Fengli Qu
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
| | - Weihong Tan
- The Cancer Hospital of the University of Chinese Academy of Sciences (Zhejiang Cancer Hospital), Institute of Basic Medicine and Cancer (IBMC), Chinese Academy of Sciences, Hangzhou, Zhejiang 310022, China
- Molecular Science and Biomedicine Laboratory (MBL), State Key Laboratory of Chemo/Bio-Sensing and Chemometrics, College of Chemistry and Chemical Engineering, College of Biology, Aptamer Engineering Center of Hunan Province, Hunan University, Changsha, Hunan 410082, China
- Institute of Molecular Medicine (IMM), Renji Hospital, and College of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
142
|
Bekdash R, Quejada JR, Ueno S, Kawano F, Morikawa K, Klein AD, Matsumoto K, Lee TC, Nakanishi K, Chalan A, Lee TM, Liu R, Homma S, Lin CS, Yelshanskaya MV, Sobolevsky AI, Goda K, Yazawa M. GEM-IL: A highly responsive fluorescent lactate indicator. CELL REPORTS METHODS 2021; 1:100092. [PMID: 35475001 PMCID: PMC9017230 DOI: 10.1016/j.crmeth.2021.100092] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/04/2021] [Revised: 07/26/2021] [Accepted: 09/15/2021] [Indexed: 12/22/2022]
Abstract
Lactate metabolism has been shown to have increasingly important implications in cellular functions as well as in the development and pathophysiology of disease. The various roles as a signaling molecule and metabolite have led to interest in establishing a new method to detect lactate changes in live cells. Here we report our development of a genetically encoded metabolic indicator specifically for probing lactate (GEM-IL) based on superfolder fluorescent proteins and mutagenesis. With improvements in its design, specificity, and sensitivity, GEM-IL allows new applications compared with the previous lactate indicators, Laconic and Green Lindoblum. We demonstrate the functionality of GEM-IL to detect differences in lactate changes in human oncogenic neural progenitor cells and mouse primary ventricular myocytes. The development and application of GEM-IL show promise for enhancing our understanding of lactate dynamics and roles.
Collapse
Affiliation(s)
- Ramsey Bekdash
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 650 West 168th Street, BB1108/BB1109D, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Jose R. Quejada
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 650 West 168th Street, BB1108/BB1109D, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Shunnosuke Ueno
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 650 West 168th Street, BB1108/BB1109D, New York, NY 10032, USA
- Department of Chemistry, University of Tokyo, Tokyo 113-0033, Japan
| | - Fuun Kawano
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 650 West 168th Street, BB1108/BB1109D, New York, NY 10032, USA
| | - Kumi Morikawa
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 650 West 168th Street, BB1108/BB1109D, New York, NY 10032, USA
| | - Alison D. Klein
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 650 West 168th Street, BB1108/BB1109D, New York, NY 10032, USA
| | - Kenji Matsumoto
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Tetz C. Lee
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Koki Nakanishi
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Amy Chalan
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 650 West 168th Street, BB1108/BB1109D, New York, NY 10032, USA
| | - Teresa M. Lee
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Pediatrics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Rui Liu
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Shunichi Homma
- Division of Cardiology, Department of Medicine, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Chyuan-Sheng Lin
- Department of Pathology and Cell Biology, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
- Transgenic Mouse Shared Resource, Herbert Irving Comprehensive Cancer Center, Columbia University, New York, NY 10032, USA
| | - Maria V. Yelshanskaya
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Alexander I. Sobolevsky
- Department of Biochemistry and Molecular Biophysics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| | - Keisuke Goda
- Department of Chemistry, University of Tokyo, Tokyo 113-0033, Japan
- Department of Bioengineering, University of California, Los Angeles, CA 90095, USA
- Institute of Technological Sciences, Wuhan University, Hubei 430072, China
| | - Masayuki Yazawa
- Columbia Stem Cell Initiative, Columbia University, New York, NY 10032, USA
- Department of Rehabilitation and Regenerative Medicine, Vagelos College of Physicians and Surgeons, Columbia University, 650 West 168th Street, BB1108/BB1109D, New York, NY 10032, USA
- Department of Molecular Pharmacology and Therapeutics, Vagelos College of Physicians and Surgeons, Columbia University, New York, NY 10032, USA
| |
Collapse
|
143
|
Parlanti P, Cappello V. Microscopes, tools, probes, and protocols: A guide in the route of correlative microscopy for biomedical investigation. Micron 2021; 152:103182. [PMID: 34801960 DOI: 10.1016/j.micron.2021.103182] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 11/12/2021] [Accepted: 11/14/2021] [Indexed: 12/11/2022]
Abstract
In the last decades, the advancements of microscopes technology, together with the development of new imaging approaches, are trying to address some biological questions that have been unresolved in the past: the need to combine in the same analysis temporal, functional and morphological information on the biological sample has become pressing. For this reason, the use of correlative microscopy, in which two or more imaging techniques are combined in the same analysis, is getting increasingly widespread. In fact, correlative microscopy can overcome limitations of a single imaging method, giving access to a larger amount of information from the same specimen. However, correlative microscopy can be challenging, and appropriate protocols for sample preparation and imaging methods must be selected. Here we review the state of the art of correlating electron microscopy with different imaging methods, focusing on sample preparation, tools, and labeling methods, with the aim to provide a comprehensive guide for those scientists who are approaching the field of correlative methods.
Collapse
Affiliation(s)
- Paola Parlanti
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, I-56025, Pontedera (PI), Italy.
| | - Valentina Cappello
- Istituto Italiano di Tecnologia, Center for Materials Interfaces, Electron Crystallography, Viale Rinaldo Piaggio 34, I-56025, Pontedera (PI), Italy.
| |
Collapse
|
144
|
Wagner TR, Rothbauer U. Nanobodies - Little helpers unravelling intracellular signaling. Free Radic Biol Med 2021; 176:46-61. [PMID: 34536541 DOI: 10.1016/j.freeradbiomed.2021.09.005] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Revised: 08/26/2021] [Accepted: 09/08/2021] [Indexed: 11/21/2022]
Abstract
The identification of diagnostic and therapeutic targets requires a comprehensive understanding of cellular processes, for which advanced technologies in biomedical research are needed. The emergence of nanobodies (Nbs) derived from antibody fragments of camelid heavy chain-only antibodies as intracellular research tools offers new possibilities to study and modulate target antigens in living cells. Here we summarize this rapidly changing field, beginning with a brief introduction of Nbs, followed by an overview of how target-specific Nbs can be generated, and introduce the selection of intrabodies as research tools. Intrabodies, by definition, are intracellular functional Nbs that target ectopic or endogenous intracellular antigens within living cells. Such binders can be applied in various formats, e.g. as chromobodies for live cell microscopy or as biosensors to decipher complex intracellular signaling pathways. In addition, protein knockouts can be achieved by target-specific Nbs, while modulating Nbs have the potential as future therapeutics. The development of fine-tunable and switchable Nb-based systems that simultaneously provide spatial and temporal control has recently taken the application of these binders to the next level.
Collapse
Affiliation(s)
- Teresa R Wagner
- Pharmaceutical Biotechnology, Eberhard Karls University, Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany
| | - Ulrich Rothbauer
- Pharmaceutical Biotechnology, Eberhard Karls University, Tübingen, Germany; NMI Natural and Medical Sciences Institute at the University of Tübingen, Reutlingen, Germany; Cluster of Excellence iFIT (EXC2180) "Image-Guided and Functionally Instructed Tumor Therapies", Eberhard Karls University, Tübingen, Germany.
| |
Collapse
|
145
|
Antimicrobial Effects of Inula viscosa Extract on the In Situ Initial Oral Biofilm. Nutrients 2021; 13:nu13114029. [PMID: 34836285 PMCID: PMC8622444 DOI: 10.3390/nu13114029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/07/2021] [Accepted: 11/08/2021] [Indexed: 01/08/2023] Open
Abstract
Given the undesirable side effects of commercially used mouth rinses that include chemically synthesized antimicrobial compounds such as chlorhexidine, it is essential to discover novel antimicrobial substances based on plant extracts. The aim of this study was to examine the antimicrobial effect of Inula viscosa extract on the initial microbial adhesion in the oral cavity. Individual test splints were manufactured for the participants, on which disinfected bovine enamel samples were attached. After the initial microbial adhesion, the biofilm-covered oral samples were removed and treated with different concentrations (10, 20, and 30 mg/mL) of an I. viscosa extract for 10 min. Positive and negative controls were also sampled. Regarding the microbiological parameters, the colony-forming units (CFU) and vitality testing (live/dead staining) were examined in combination with fluorescence microscopy. An I. viscosa extract with a concentration of 30 mg/mL killed the bacteria of the initial adhesion at a rate of 99.99% (log10 CFU value of 1.837 ± 1.54). Compared to the negative control, no killing effects were determined after treatment with I. viscosa extract at concentrations of 10 mg/mL (log10 CFU value 3.776 ± 0.831; median 3.776) and 20 mg/mL (log10 CFU value 3.725 ± 0.300; median 3.711). The live/dead staining revealed a significant reduction (p < 0.0001) of vital adherent bacteria after treatment with 10 mg/mL of I. viscosa extract. After treatment with an I. viscosa extract with a concentration of 30 mg/mL, no vital bacteria could be detected. For the first time, significant antimicrobial effects on the initial microbial adhesion in in situ oral biofilms were reported for an I. viscosa extract.
Collapse
|
146
|
Jia Y, Wang J, Li P, Ma X, Han K. Directionally Modified Fluorophores for Super-Resolution Imaging of Target Enzymes: A Case Study with Carboxylesterases. J Med Chem 2021; 64:16177-16186. [PMID: 34694804 DOI: 10.1021/acs.jmedchem.1c01469] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
In the need for improving the labeling quality of super-resolution imaging, multifarious fluorescent labeling strategies have sprang up. Among them, a small molecule inhibitor-probe (SMI-probe) shows its advancement in fine mapping due to its smaller size and its specific binding to a specific site. Herein, we report a novel protocol of mechanism-guided directional modification of fluorophores into fluorescent inhibitors for enzyme targeting, which could half the size of the SMI-probe. To confirm the feasibility of the strategy, carboxylesterase (hCE) inhibitors are designed and developed. Among the constructed molecule candidates, NIC-4 inhibited both isoforms of hCE1 and hCE2, with IC50 values of 4.56 and 4.11 μM. The CE-targeting specificity of NIC-4 was confirmed by colocalizing with an immunofluorescent probe in fixed-cell confocal imaging. Moreover, NIC-4 was used in live-cell super-resolution microscopy, which indicates dotlike structures instead of the larger staining with the immunofluorescent probe. Moreover, it enables the real-time tracking of dynamic flow of carboxylesterases in live cells.
Collapse
Affiliation(s)
- Yan Jia
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China
| | - Jiayue Wang
- Department of Pharmacy, Peking University Shenzhen Hospital, Shenzhen 518036, China.,College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Peng Li
- Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, China
| | - Xiaochi Ma
- College of Pharmacy, Academy of Integrative Medicine, Dalian Medical University, Dalian 116044, China
| | - Keli Han
- State Key Laboratory of Molecular Reaction Dynamics, Dalian Institute of Chemical Physics, Chinese Academy of Sciences (CAS), Dalian 116023, China.,Institute of Molecular Sciences and Engineering, Shandong University, Qingdao 266237, China
| |
Collapse
|
147
|
Xu X, He F, Yan H, Huo F, Dong H, Liu L, Zhang C, Zhao F. Nontraditional Luminescent Molecular Aggregates Encapsulated by Wormlike Silica Nanoparticles for Latent Fingerprint Detection. ACS APPLIED MATERIALS & INTERFACES 2021; 13:51695-51707. [PMID: 34669365 DOI: 10.1021/acsami.1c14677] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
The phenomenon of nontraditional luminescence has attracted wide attention and curiosity of researchers due to its inexplicable photoluminescence paradigm without aromatic or extended π-systems. The present work puts forward a neotype of a light-emitting nitrogenous small molecule, namely, N-stearoyl-hydroxyproline (L-C16-Hyp), which could emit weak light in aggregation states through the restriction mechanism of intramolecular motion, exhibiting properties comparable to those of AIEgens. Using these molecular aggregates as anionic surfactant micelles to incorporate within the silica matrix, we prepared fluorescent nanoparticles (FL-NPs) by a one-pot method for expedient visualization of latent fingerprints (LFPs). The FL-NPs exhibit an excitation range from 335 to 365 nm, resulting in nontraditional luminescence observed between 410 and 440 nm. The enhanced luminescent FL-NPs may derive from the collective entities or assemblies of restricted L-C16-Hyp, which can be reasonably explicated by an effect termed as cluster-triggered emission (CTE). Theoretical calculations demonstrated that this luminescence pattern belongs to partial charge transfer, which is mainly attributed to the close interaction between the tertiary amino and adjacent carboxyl in the L-C16-Hyp structure. Moreover, some merits of FL-NPs, such as wormlike nanomorphology, stable photophysical properties, low toxicity, great adhesion to multiple substrates, easy to get raw material, an inexpensive, simple process, and rapid detection without any further modification or assistance, provide the feasibility of efficacious LFP detection. Overall, this study will provide insights into the design and application of luminescent materials with unconventional groups.
Collapse
Affiliation(s)
- Xin Xu
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Fei He
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Hanwen Yan
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Feng Huo
- Beijing Key Laboratory of Ionic Liquids Clean Process, State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Hongxing Dong
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Lijia Liu
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Chunhong Zhang
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| | - Fangbo Zhao
- Key Laboratory of Superlight Materials & Surface Technology, Ministry of Education, Institute of Advanced Marine Materials, College of Materials Science and Chemical Engineering, Harbin Engineering University, Harbin 150001, P. R. China
| |
Collapse
|
148
|
Wang T, Wang S, Liu Z, He Z, Yu P, Zhao M, Zhang H, Lu L, Wang Z, Wang Z, Zhang W, Fan Y, Sun C, Zhao D, Liu W, Bünzli JCG, Zhang F. A hybrid erbium(III)-bacteriochlorin near-infrared probe for multiplexed biomedical imaging. NATURE MATERIALS 2021; 20:1571-1578. [PMID: 34326504 DOI: 10.1038/s41563-021-01063-7] [Citation(s) in RCA: 120] [Impact Index Per Article: 30.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2020] [Accepted: 06/24/2021] [Indexed: 05/27/2023]
Abstract
Spectrally distinct fluorophores are desired for multiplexed bioimaging. In particular, monitoring biological processes in living mammals needs fluorophores that operate in the 'tissue-transparent' near-infrared (NIR) window, that is, between 700 and 1,700 nm. Here we report a fluorophore system based on molecular erbium(III)-bacteriochlorin complexes with large Stokes shift (>750 nm) and narrowband NIR-to-NIR downconversion spectra (full-width at half-maximum ≤ 32 nm). We have found that the fast (2 × 109 s-¹) and near-unity energy transfer from bacteriochlorin triplets to the erbium(III) 4I13/2 level overcomes the notorious vibrational overtones quenching, resulting in bright and long-lived (1.73 μs) 1,530 nm luminescence in water. We demonstrate the excitation/emission-multiplexed capability of the complexes in the visualization of dynamic circulatory and metabolic processes in living mice, and through skull tracking of cancer cell metastases in mouse brain. This hybrid probe system facilitates robust multiplexed NIR imaging with high contrast and spatial resolution for applications ranging from fluorescence-guided surgery, diagnostics and intravital microscopy.
Collapse
Affiliation(s)
- Ting Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, People's Republic of China
| | - Shangfeng Wang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, People's Republic of China.
| | - Zhiyong Liu
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Zuyang He
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, People's Republic of China
| | - Peng Yu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, People's Republic of China
| | - Mengyao Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, People's Republic of China
| | - Hongxin Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, People's Republic of China
| | - Lingfei Lu
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, People's Republic of China
| | - Zhengxin Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, People's Republic of China
| | - Ziyu Wang
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, People's Republic of China
| | - Weian Zhang
- Shanghai Key Laboratory of Functional Materials Chemistry, School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, People's Republic of China.
| | - Yong Fan
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, People's Republic of China
| | - Caixia Sun
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, People's Republic of China
| | - Dongyuan Zhao
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, People's Republic of China
| | - Weimin Liu
- School of Physical Science and Technology, ShanghaiTech University, Shanghai, People's Republic of China
| | - Jean-Claude G Bünzli
- Institut des Sciences Chimiques et Ingénierie, École Polytechnique Fédérale de Lausanne, Lausanne, Switzerland
| | - Fan Zhang
- Department of Chemistry, State Key Laboratory of Molecular Engineering of Polymers, Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials and iChem, Fudan University, Shanghai, People's Republic of China.
| |
Collapse
|
149
|
Chen J, Li H, Wu Q, Zhao T, Xu H, Sun J, Liang F, Wang H. A multidrug-resistant P-glycoprotein assembly revealed by tariquidar-probe's super-resolution imaging. NANOSCALE 2021; 13:16995-17002. [PMID: 34617531 DOI: 10.1039/d1nr03980f] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
As an efflux pump, P-glycoproteins (P-gps) are over-expressed in many cancer cell types to confer them with multi-drug resistance. Many studies have focused on elucidating their molecular structure or protein expression; however, the relationship between the molecular assembly and dysfunction remains unclear. Super-resolution microscope is an excellent imaging tool to reveal the molecular biological details, but its high-quality imaging often suffers from the labeling method currently available. In this work, by exploiting its specificity and small size, tariquidar (specific inhibitor of P-gp) was modified by TAMRA to form a small chemical probe of P-gp. By direct stochastic optical reconstruction microscopic (dSTORM) imaging, tariquidar-TAMRA was first revealed to possess a higher labeling superiority and high binding specificity. Then, with the application of tariquidar-TAMRA labeling, we found that P-gps accumulate into larger and denser clusters on cancer cells and drug-resistant cells than on normal cells and drug-sensitive cells, indicating that P-gps can facilitate the pumping efficiency by aggregating together to form functional platforms. Moreover, these specific distribution patterns might serve as potential biomarkers for tumor and drug therapy screening.
Collapse
Affiliation(s)
- Junling Chen
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Hongru Li
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, 5625 Renmin Street, Changchun, Jilin 130022, China.
| | - Qiang Wu
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Tan Zhao
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, 5625 Renmin Street, Changchun, Jilin 130022, China.
| | - Haijiao Xu
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, 5625 Renmin Street, Changchun, Jilin 130022, China.
| | - Jiayin Sun
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, 5625 Renmin Street, Changchun, Jilin 130022, China.
| | - Feng Liang
- Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, College of Chemistry and Chemical Engineering, Wuhan University of Science and Technology, Wuhan 430081, P. R. China.
| | - Hongda Wang
- State Key Laboratory of Electroanalytical Chemistry, Changchun Institute of Applied Chemistry, Chinese Academy of Sciences, Research Center of Biomembranomics, 5625 Renmin Street, Changchun, Jilin 130022, China.
- Laboratory for Marine Biology and biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, Shandong 266237, China
| |
Collapse
|
150
|
Neto BAD, Correa JR, Spencer J. Fluorescent Benzothiadiazole Derivatives as Fluorescence Imaging Dyes: A Decade of New Generation Probes. Chemistry 2021; 28:e202103262. [PMID: 34643974 DOI: 10.1002/chem.202103262] [Citation(s) in RCA: 33] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Indexed: 01/13/2023]
Abstract
The current review describes advances in the use of fluorescent 2,1,3-benzothiadiazole (BTD) derivatives after nearly one decade since the first description of bioimaging experiments using this class of fluorogenic dyes. The review describes the use of BTD-containing fluorophores applied as, inter alia, bioprobes for imaging cell nuclei, mitochondria, lipid droplets, sensors, markers for proteins and related events, biological processes and activities, lysosomes, plasma membranes, multicellular models, and animals. A number of physicochemical and photophysical properties commonly observed for BTD fluorogenic structures are also described.
Collapse
Affiliation(s)
- Brenno A D Neto
- Laboratory of Medicinal and Technological Chemistry, Chemistry Institute (IQ-UnB), University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-900, Brazil
| | - Jose R Correa
- Laboratory of Medicinal and Technological Chemistry, Chemistry Institute (IQ-UnB), University of Brasília, Campus Universitário Darcy Ribeiro, Brasília, Distrito Federal, 70904-900, Brazil
| | - John Spencer
- Department of Chemistry, University of Sussex School of Life Sciences, Falmer, Brighton, BN1 9QJ, U.K
| |
Collapse
|