101
|
Goel A, Wortel MT, Molenaar D, Teusink B. Metabolic shifts: a fitness perspective for microbial cell factories. Biotechnol Lett 2012; 34:2147-60. [PMID: 22936303 PMCID: PMC3487007 DOI: 10.1007/s10529-012-1038-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2012] [Accepted: 08/16/2012] [Indexed: 04/28/2023]
Abstract
Performance of industrial microorganisms as cell factories is limited by the capacity to channel nutrients to desired products, of which optimal production usually requires careful manipulation of process conditions, or strain improvement. The focus in process improvement is often on understanding and manipulating the regulation of metabolism. Nonetheless, one encounters situations where organisms are remarkably resilient to further optimization or their properties become unstable. Therefore it is important to understand the origin of these apparent limitations to find whether and how they can be improved. We argue that by considering fitness effects of regulation, a more generic explanation for certain behaviour can be obtained. In this view, apparent process limitations arise from trade-offs that cells faced as they evolved to improve fitness. A deeper understanding of such trade-offs using a systems biology approach can ultimately enhance performance of cell factories.
Collapse
Affiliation(s)
- Anisha Goel
- Systems Bioinformatics IBIVU, Vrije Universiteit Amsterdam, Amsterdam, The Netherlands.
| | | | | | | |
Collapse
|
102
|
Rovinskiy N, Agbleke AA, Chesnokova O, Pang Z, Higgins NP. Rates of gyrase supercoiling and transcription elongation control supercoil density in a bacterial chromosome. PLoS Genet 2012; 8:e1002845. [PMID: 22916023 PMCID: PMC3420936 DOI: 10.1371/journal.pgen.1002845] [Citation(s) in RCA: 86] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2012] [Accepted: 06/07/2012] [Indexed: 12/23/2022] Open
Abstract
Gyrase catalyzes negative supercoiling of DNA in an ATP-dependent reaction that helps condense bacterial chromosomes into a compact interwound "nucleoid." The supercoil density (σ) of prokaryotic DNA occurs in two forms. Diffusible supercoil density (σ(D)) moves freely around the chromosome in 10 kb domains, and constrained supercoil density (σ(C)) results from binding abundant proteins that bend, loop, or unwind DNA at many sites. Diffusible and constrained supercoils contribute roughly equally to the total in vivo negative supercoil density of WT cells, so σ = σ(C)+σ(D). Unexpectedly, Escherichia coli chromosomes have a 15% higher level of σ compared to Salmonella enterica. To decipher critical mechanisms that can change diffusible supercoil density of chromosomes, we analyzed strains of Salmonella using a 9 kb "supercoil sensor" inserted at ten positions around the genome. The sensor contains a complete Lac operon flanked by directly repeated resolvase binding sites, and the sensor can monitor both supercoil density and transcription elongation rates in WT and mutant strains. RNA transcription caused (-) supercoiling to increase upstream and decrease downstream of highly expressed genes. Excess upstream supercoiling was relaxed by Topo I, and gyrase replenished downstream supercoil losses to maintain an equilibrium state. Strains with TS gyrase mutations growing at permissive temperature exhibited significant supercoil losses varying from 30% of WT levels to a total loss of σ(D) at most chromosome locations. Supercoil losses were influenced by transcription because addition of rifampicin (Rif) caused supercoil density to rebound throughout the chromosome. Gyrase mutants that caused dramatic supercoil losses also reduced the transcription elongation rates throughout the genome. The observed link between RNA polymerase elongation speed and gyrase turnover suggests that bacteria with fast growth rates may generate higher supercoil densities than slow growing species.
Collapse
Affiliation(s)
- Nikolay Rovinskiy
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Andrews Akwasi Agbleke
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Olga Chesnokova
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
| | - Zhenhua Pang
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- Cathay Industrial Biotech, Shanghai, China
| | - N. Patrick Higgins
- Department of Biochemistry and Molecular Genetics, University of Alabama at Birmingham, Birmingham, Alabama, United States of America
- * E-mail:
| |
Collapse
|
103
|
Abstract
Metabolism generates oxygen radicals, which contribute to oncogenic mutations. Activated oncogenes and loss of tumor suppressors in turn alter metabolism and induce aerobic glycolysis. Aerobic glycolysis or the Warburg effect links the high rate of glucose fermentation to cancer. Together with glutamine, glucose via glycolysis provides the carbon skeletons, NADPH, and ATP to build new cancer cells, which persist in hypoxia that in turn rewires metabolic pathways for cell growth and survival. Excessive caloric intake is associated with an increased risk for cancers, while caloric restriction is protective, perhaps through clearance of mitochondria or mitophagy, thereby reducing oxidative stress. Hence, the links between metabolism and cancer are multifaceted, spanning from the low incidence of cancer in large mammals with low specific metabolic rates to altered cancer cell metabolism resulting from mutated enzymes or cancer genes.
Collapse
Affiliation(s)
- Chi V Dang
- Abramson Cancer Center, Abramson Family Cancer Research Institute, Division of Hematology-Oncology, Department of Medicine, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA.
| |
Collapse
|
104
|
Machné R, Murray DB. The yin and yang of yeast transcription: elements of a global feedback system between metabolism and chromatin. PLoS One 2012; 7:e37906. [PMID: 22685547 PMCID: PMC3369881 DOI: 10.1371/journal.pone.0037906] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 04/30/2012] [Indexed: 11/19/2022] Open
Abstract
When grown in continuous culture, budding yeast cells tend to synchronize their respiratory activity to form a stable oscillation that percolates throughout cellular physiology and involves the majority of the protein-coding transcriptome. Oscillations in batch culture and at single cell level support the idea that these dynamics constitute a general growth principle. The precise molecular mechanisms and biological functions of the oscillation remain elusive. Fourier analysis of transcriptome time series datasets from two different oscillation periods (0.7 h and 5 h) reveals seven distinct co-expression clusters common to both systems (34% of all yeast ORF), which consolidate into two superclusters when correlated with a compilation of 1,327 unrelated transcriptome datasets. These superclusters encode for cell growth and anabolism during the phase of high, and mitochondrial growth, catabolism and stress response during the phase of low oxygen uptake. The promoters of each cluster are characterized by different nucleotide contents, promoter nucleosome configurations, and dependence on ATP-dependent nucleosome remodeling complexes. We show that the ATP:ADP ratio oscillates, compatible with alternating metabolic activity of the two superclusters and differential feedback on their transcription via activating (RSC) and repressive (Isw2) types of promoter structure remodeling. We propose a novel feedback mechanism, where the energetic state of the cell, reflected in the ATP:ADP ratio, gates the transcription of large, but functionally coherent groups of genes via differential effects of ATP-dependent nucleosome remodeling machineries. Besides providing a mechanistic hypothesis for the delayed negative feedback that results in the oscillatory phenotype, this mechanism may underpin the continuous adaptation of growth to environmental conditions.
Collapse
Affiliation(s)
- Rainer Machné
- Institute for Theoretical Chemistry, University of Vienna, Vienna, Austria.
| | | |
Collapse
|
105
|
Abstract
For unicellular organisms, the decision to enter the cell cycle can be viewed most fundamentally as a metabolic problem. A cell must assess its nutritional and metabolic status to ensure it can synthesize sufficient biomass to produce a new daughter cell. The cell must then direct the appropriate metabolic outputs to ensure completion of the division process. Herein, we discuss the changes in metabolism that accompany entry to, and exit from, the cell cycle for the unicellular eukaryote Saccharomyces cerevisiae. Studies of budding yeast under continuous, slow-growth conditions have provided insights into the essence of these metabolic changes at unprecedented temporal resolution. Some of these mechanisms by which cell growth and proliferation are coordinated with metabolism are likely to be conserved in multicellular organisms. An improved understanding of the metabolic basis of cell cycle control promises to reveal fundamental principles governing tumorigenesis, metazoan development, niche expansion, and many additional aspects of cell and organismal growth control.
Collapse
Affiliation(s)
- Ling Cai
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas 75390-9038, USA.
| | | |
Collapse
|
106
|
LeGrand EK, Alcock J. Turning up the heat: immune brinksmanship in the acute-phase response. QUARTERLY REVIEW OF BIOLOGY 2012; 87:3-18. [PMID: 22518930 DOI: 10.1086/663946] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
The acutephase response (APR) is a systemic response to severe trauma, infection, and cancer, although many of the numerous cytokine-mediated components of the APR are incompletely understood. Some of these components, such as fever, reduced availability of iron and zinc, and nutritional restriction due to anorexia, appear to be stressors capable of causing harm to both the pathogen and the host. We review how the host benefits from differences in susceptibility to stress between pathogens and the host. Pathogens, infected host cells, and neoplastic cells are generally more stressed or vulnerable to additional stress than the host because: (a) targeted local inflammation works in synergy with APR stressors; (b) proliferation/growth increases vulnerability to stress; (c) altered pathogen physiology results in pathogen stress or vulnerability; and (d) protective heat shock responses are partially abrogated in pathogens since their responses are utilized by the host to enhance immune responses. Therefore, the host utilizes a coordinated system of endogenous stressors to provide additional levels of defense against pathogens. This model of immune brinksmanship can explain the evolutionary basis for the mutually stressful components of the APR.
Collapse
Affiliation(s)
- Edmund Kenwood LeGrand
- Department of Biomedical and Diagnostic Sciences, College of Veterinary Medicine, University of Tennessee Knoxville, Tennessee 37996, USA.
| | | |
Collapse
|
107
|
Abstract
Ageing leads to a functional deterioration of many brain systems, including the circadian clock--an internal time-keeping system that generates ∼24-hour rhythms in physiology and behaviour. Numerous clinical studies have established a direct correlation between abnormal circadian clock functions and the severity of neurodegenerative and sleep disorders. Latest data from experiments in model organisms, gene expression studies and clinical trials imply that dysfunctions of the circadian clock contribute to ageing and age-associated pathologies, thereby suggesting a functional link between the circadian clock and age-associated decline of brain functions. Potential molecular mechanisms underlying this link include the circadian control of physiological processes such as brain metabolism, reactive oxygen species homeostasis, hormone secretion, autophagy and stem cell proliferation.
Collapse
|
108
|
Chin SL, Marcus IM, Klevecz RR, Li CM. Dynamics of oscillatory phenotypes in Saccharomyces cerevisiae reveal a network of genome-wide transcriptional oscillators. FEBS J 2012; 279:1119-30. [PMID: 22289124 DOI: 10.1111/j.1742-4658.2012.08508.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
Abstract
Genetic and environmental factors are well-studied influences on phenotype; however, time is a variable that is rarely considered when studying changes in cellular phenotype. Time-resolved microarray data revealed genome-wide transcriptional oscillation in a yeast continuous culture system with ∼ 2 and ∼ 4 h periods. We mapped the global patterns of transcriptional oscillations into a 3D map to represent different cellular phenotypes of redox cycles. This map shows the dynamic nature of gene expression in that transcripts are ordered and coupled to each other through time and concentration space. Although cells differed in oscillation periods, transcripts involved in certain processes were conserved in a deterministic way. When oscillation period lengthened, the peak to trough ratio of transcripts increased and the fraction of cells in the unbudded (G0/G1) phase of the cell division cycle increased. Decreasing the glucose level in the culture medium was one way to increase the redox cycle, possibly from changes in metabolic flux. The period may be responding to lower glucose levels by increasing the fraction of cells in G1 and reducing S-phase gating so that cells can spend more time in catabolic processes. Our results support that gene transcripts are coordinated with metabolic functions and the cell division cycle.
Collapse
Affiliation(s)
- Shwe L Chin
- Dynamic Systems Group, Division of Biology, City of Hope Beckman Research Institute, Duarte, CA, USA
| | | | | | | |
Collapse
|
109
|
Simmons Kovacs LA, Mayhew MB, Orlando DA, Jin Y, Li Q, Huang C, Reed SI, Mukherjee S, Haase SB. Cyclin-dependent kinases are regulators and effectors of oscillations driven by a transcription factor network. Mol Cell 2012; 45:669-79. [PMID: 22306294 DOI: 10.1016/j.molcel.2011.12.033] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2011] [Revised: 10/12/2011] [Accepted: 12/31/2011] [Indexed: 01/11/2023]
Abstract
During embryonic cell cycles, B-cyclin-CDKs function as the core component of an autonomous oscillator. Current models for the cell-cycle oscillator in nonembryonic cells are slightly more complex, incorporating multiple G1, S phase, and mitotic cyclin-CDK complexes. However, periodic events persist in yeast cells lacking all S phase and mitotic B-cyclin genes, challenging the assertion that cyclin-CDK complexes are essential for oscillations. These and other results led to the proposal that a network of sequentially activated transcription factors functions as an underlying cell-cycle oscillator. Here we examine the individual contributions of a transcription factor network and cyclin-CDKs to the maintenance of cell-cycle oscillations. Our findings suggest that while cyclin-CDKs are not required for oscillations, they do contribute to oscillation robustness. A model emerges in which cyclin expression (thereby, CDK activity) is entrained to an autonomous transcriptional oscillator. CDKs then modulate oscillator function and serve as effectors of the oscillator.
Collapse
|
110
|
Voorhies WAV. Robust metabolic responses to varied carbon sources in natural and laboratory strains of Saccharomyces cerevisiae. PLoS One 2012; 7:e30053. [PMID: 22253874 PMCID: PMC3253814 DOI: 10.1371/journal.pone.0030053] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 12/08/2011] [Indexed: 11/18/2022] Open
Abstract
Understanding factors that regulate the metabolism and growth of an organism is of fundamental biologic interest. This study compared the influence of two different carbon substrates, dextrose and galactose, on the metabolic and growth rates of the yeast Saccharomyces cerevisiae. Yeast metabolic and growth rates varied widely depending on the metabolic substrate supplied. The metabolic and growth rates of a yeast strain maintained under long-term laboratory conditions was compared to strain isolated from natural condition when grown on different substrates. Previous studies had determined that there are numerous genetic differences between these two strains. However, the overall metabolic and growth rates of a wild isolate of yeast was very similar to that of a strain that had been maintained under laboratory conditions for many decades. This indicates that, at in least this case, metabolism and growth appear to be well buffered against genetic differences. Metabolic rate and cell number did not co-vary in a simple linear manner. When grown in either dextrose or galactose, both strains showed a growth pattern in which the number of cells continued to increase well after the metabolic rate began a sharp decline. Previous studied have reported that O₂ consumption in S. cerevisiae grown in reduced dextrose levels were elevated compared to higher levels. Low dextrose levels have been proposed to induce caloric restriction and increase life span in yeast. However, there was no evidence that reduced levels of dextrose increased metabolic rates, measured by either O₂ consumption or CO₂ production, in the strains used in this study.
Collapse
|
111
|
Radhakrishnan SK, Viollier P. Two-in-one: bifunctional regulators synchronizing developmental events in bacteria. Trends Cell Biol 2012; 22:14-21. [DOI: 10.1016/j.tcb.2011.09.004] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2011] [Revised: 09/15/2011] [Accepted: 09/15/2011] [Indexed: 10/16/2022]
|
112
|
Giraudi PJ, Bellarosa C, Coda-Zabetta CD, Peruzzo P, Tiribelli C. Functional induction of the cystine-glutamate exchanger system Xc(-) activity in SH-SY5Y cells by unconjugated bilirubin. PLoS One 2011; 6:e29078. [PMID: 22216172 PMCID: PMC3246462 DOI: 10.1371/journal.pone.0029078] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2011] [Accepted: 11/21/2011] [Indexed: 12/18/2022] Open
Abstract
We have previously reported that exposure of SH-SY5Y neuroblastoma cells to unconjugated bilirubin (UCB) resulted in a marked up-regulation of the mRNA encoding for the Na+ -independent cystine∶glutamate exchanger System Xc− (SLC7A11 and SLC3A2 genes). In this study we demonstrate that SH-SY5Y cells treated with UCB showed a higher cystine uptake due to a significant and specific increase in the activity of System Xc−, without the contribution of the others two cystine transporters (XAG− and GGT) reported in neurons. The total intracellular glutathione content was 2 folds higher in the cells exposed to bilirubin as compared to controls, suggesting that the internalized cystine is used for gluthathione synthesis. Interestingly, these cells were significantly less sensitive to an oxidative insult induced by hydrogen peroxide. If System Xc− is silenced the protection is lost. In conclusion, these results suggest that bilirubin can modulate the gluthathione levels in neuroblastoma cells through the induction of the System Xc−, and this renders the cell less prone to oxidative damage.
Collapse
Affiliation(s)
- Pablo J Giraudi
- Centro Studi Fegato, Fondazione Italiana Fegato, Trieste, Italy
| | | | | | | | | |
Collapse
|
113
|
Metabolic cycling without cell division cycling in respiring yeast. Proc Natl Acad Sci U S A 2011; 108:19090-5. [PMID: 22065748 DOI: 10.1073/pnas.1116998108] [Citation(s) in RCA: 60] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Despite rapid progress in characterizing the yeast metabolic cycle, its connection to the cell division cycle (CDC) has remained unclear. We discovered that a prototrophic batch culture of budding yeast, growing in a phosphate-limited ethanol medium, synchronizes spontaneously and goes through multiple metabolic cycles, whereas the fraction of cells in the G1/G0 phase of the CDC increases monotonically from 90 to 99%. This demonstrates that metabolic cycling does not require cell division cycling and that metabolic synchrony does not require carbon-source limitation. More than 3,000 genes, including most genes annotated to the CDC, were expressed periodically in our batch culture, albeit a mere 10% of the cells divided asynchronously; only a smaller subset of CDC genes correlated with cell division. These results suggest that the yeast metabolic cycle reflects a growth cycle during G1/G0 and explains our previous puzzling observation that genes annotated to the CDC increase in expression at slow growth.
Collapse
|
114
|
Rao AR, Pellegrini M. Regulation of the yeast metabolic cycle by transcription factors with periodic activities. BMC SYSTEMS BIOLOGY 2011; 5:160. [PMID: 21992532 PMCID: PMC3216092 DOI: 10.1186/1752-0509-5-160] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 10/12/2011] [Indexed: 01/03/2023]
Abstract
Background When growing budding yeast under continuous, nutrient-limited conditions, over half of yeast genes exhibit periodic expression patterns. Periodicity can also be observed in respiration, in the timing of cell division, as well as in various metabolite levels. Knowing the transcription factors involved in the yeast metabolic cycle is helpful for determining the cascade of regulatory events that cause these patterns. Results Transcription factor activities were estimated by linear regression using time series and genome-wide transcription factor binding data. Time-translation matrices were estimated using least squares and were used to model the interactions between the most significant transcription factors. The top transcription factors have functions involving respiration, cell cycle events, amino acid metabolism and glycolysis. Key regulators of transitions between phases of the yeast metabolic cycle appear to be Hap1, Hap4, Gcn4, Msn4, Swi6 and Adr1. Conclusions Analysis of the phases at which transcription factor activities peak supports previous findings suggesting that the various cellular functions occur during specific phases of the yeast metabolic cycle.
Collapse
Affiliation(s)
- Aliz R Rao
- Bioinformatics Interdepartmental Program, University of California, Los Angeles, USA.
| | | |
Collapse
|
115
|
Young TR, Fernandez B, Buckalew R, Moses G, Boczko EM. Clustering in cell cycle dynamics with general response/signaling feedback. J Theor Biol 2011; 292:103-15. [PMID: 22001733 DOI: 10.1016/j.jtbi.2011.10.002] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2011] [Revised: 09/14/2011] [Accepted: 10/03/2011] [Indexed: 10/16/2022]
Abstract
Motivated by experimental and theoretical work on autonomous oscillations in yeast, we analyze ordinary differential equations models of large populations of cells with cell-cycle dependent feedback. We assume a particular type of feedback that we call responsive/signaling (RS), but do not specify a functional form of the feedback. We study the dynamics and emergent behavior of solutions, particularly temporal clustering and stability of clustered solutions. We establish the existence of certain periodic clustered solutions as well as "uniform" solutions and add to the evidence that cell-cycle dependent feedback robustly leads to cell-cycle clustering. We highlight the fundamental differences in dynamics between systems with negative and positive feedback. For positive feedback systems the most important mechanism seems to be the stability of individual isolated clusters. On the other hand we find that in negative feedback systems, clusters must interact with each other to reinforce coherence. We conclude from various details of the mathematical analysis that negative feedback is most consistent with observations in yeast experiments.
Collapse
Affiliation(s)
- Todd R Young
- Department of Mathematics, Ohio University, Athens, OH, USA.
| | | | | | | | | |
Collapse
|
116
|
Stolc V, Shmygelska A, Griko Y. Adaptation of organisms by resonance of RNA transcription with the cellular redox cycle. PLoS One 2011; 6:e25270. [PMID: 21980411 PMCID: PMC3182209 DOI: 10.1371/journal.pone.0025270] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2010] [Accepted: 08/30/2011] [Indexed: 01/26/2023] Open
Abstract
Sequence variation in organisms differs across the genome and the majority of mutations are caused by oxidation, yet its origin is not fully understood. It has also been shown that the reduction-oxidation reaction cycle is the fundamental biochemical cycle that coordinates the timing of all biochemical processes in the cell, including energy production, DNA replication, and RNA transcription. We show that the temporal resonance of transcriptome biosynthesis with the oscillating binary state of the reduction-oxidation reaction cycle serves as a basis for non-random sequence variation at specific genome-wide coordinates that change faster than by accumulation of chance mutations. This work demonstrates evidence for a universal, persistent and iterative feedback mechanism between the environment and heredity, whereby acquired variation between cell divisions can outweigh inherited variation.
Collapse
Affiliation(s)
- Viktor Stolc
- NASA Ames Research Center, Moffett Field, California, United States of America.
| | | | | |
Collapse
|
117
|
Genetics and Regulation of Glycogen and Trehalose Metabolism in Saccharomyces cerevisiae. ACTA ACUST UNITED AC 2011. [DOI: 10.1007/978-3-642-21467-7_2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
118
|
Cai L, Sutter BM, Li B, Tu BP. Acetyl-CoA induces cell growth and proliferation by promoting the acetylation of histones at growth genes. Mol Cell 2011; 42:426-37. [PMID: 21596309 DOI: 10.1016/j.molcel.2011.05.004] [Citation(s) in RCA: 529] [Impact Index Per Article: 37.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2011] [Revised: 04/06/2011] [Accepted: 05/05/2011] [Indexed: 12/16/2022]
Abstract
The decision by a cell to enter a round of growth and division must be intimately coordinated with nutrient availability and its metabolic state. These metabolic and nutritional requirements, and the mechanisms by which they induce cell growth and proliferation, remain poorly understood. Herein, we report that acetyl-CoA is the downstream metabolite of carbon sources that represents a critical metabolic signal for growth and proliferation. Upon entry into growth, intracellular acetyl-CoA levels increase substantially and consequently induce the Gcn5p/SAGA-catalyzed acetylation of histones at genes important for growth, thereby enabling their rapid transcription and commitment to growth. Thus, acetyl-CoA functions as a carbon-source rheostat that signals the initiation of the cellular growth program by promoting the acetylation of histones specifically at growth genes.
Collapse
Affiliation(s)
- Ling Cai
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Boulevard, Dallas, TX 75390-9038, USA
| | | | | | | |
Collapse
|
119
|
Ainali C, Simon M, Freilich S, Espinosa O, Hazelwood L, Tsoka S, Ouzounis CA, Hancock JM. Protein coalitions in a core mammalian biochemical network linked by rapidly evolving proteins. BMC Evol Biol 2011; 11:142. [PMID: 21612628 PMCID: PMC3112093 DOI: 10.1186/1471-2148-11-142] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2010] [Accepted: 05/25/2011] [Indexed: 12/27/2022] Open
Abstract
BACKGROUND Cellular ATP levels are generated by glucose-stimulated mitochondrial metabolism and determine metabolic responses, such as glucose-stimulated insulin secretion (GSIS) from the β-cells of pancreatic islets. We describe an analysis of the evolutionary processes affecting the core enzymes involved in glucose-stimulated insulin secretion in mammals. The proteins involved in this system belong to ancient enzymatic pathways: glycolysis, the TCA cycle and oxidative phosphorylation. RESULTS We identify two sets of proteins, or protein coalitions, in this group of 77 enzymes with distinct evolutionary patterns. Members of the glycolysis, TCA cycle, metabolite transport, pyruvate and NADH shuttles have low rates of protein sequence evolution, as inferred from a human-mouse comparison, and relatively high rates of evolutionary gene duplication. Respiratory chain and glutathione pathway proteins evolve faster, exhibiting lower rates of gene duplication. A small number of proteins in the system evolve significantly faster than co-pathway members and may serve as rapidly evolving adapters, linking groups of co-evolving genes. CONCLUSIONS Our results provide insights into the evolution of the involved proteins. We find evidence for two coalitions of proteins and the role of co-adaptation in protein evolution is identified and could be used in future research within a functional context.
Collapse
Affiliation(s)
- Chrysanthi Ainali
- Centre for Bioinformatics, Department of Informatics, School of Natural and Mathematical Sciences, King's College London, Strand, UK
| | | | | | | | | | | | | | | |
Collapse
|
120
|
Slavov N, Botstein D. Coupling among growth rate response, metabolic cycle, and cell division cycle in yeast. Mol Biol Cell 2011; 22:1997-2009. [PMID: 21525243 PMCID: PMC3113766 DOI: 10.1091/mbc.e11-02-0132] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
We discovered that the relative durations of the phases of the yeast metabolic cycle change with the growth rate. These changes can explain mechanistically the transcriptional growth-rate responses of all yeast genes (25% of the genome) that we find to be the same across all studied nutrient limitations in either ethanol or glucose media. We studied the steady-state responses to changes in growth rate of yeast when ethanol is the sole source of carbon and energy. Analysis of these data, together with data from studies where glucose was the carbon source, allowed us to distinguish a “universal” growth rate response (GRR) common to all media studied from a GRR specific to the carbon source. Genes with positive universal GRR include ribosomal, translation, and mitochondrial genes, and those with negative GRR include autophagy, vacuolar, and stress response genes. The carbon source–specific GRR genes control mitochondrial function, peroxisomes, and synthesis of vitamins and cofactors, suggesting this response may reflect the intensity of oxidative metabolism. All genes with universal GRR, which comprise 25% of the genome, are expressed periodically in the yeast metabolic cycle (YMC). We propose that the universal GRR may be accounted for by changes in the relative durations of the YMC phases. This idea is supported by oxygen consumption data from metabolically synchronized cultures with doubling times ranging from 5 to 14 h. We found that the high oxygen consumption phase of the YMC can coincide exactly with the S phase of the cell division cycle, suggesting that oxidative metabolism and DNA replication are not incompatible.
Collapse
Affiliation(s)
- Nikolai Slavov
- Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
| | | |
Collapse
|
121
|
Ptitsyn AA, Reyes-Solis G, Saavedra-Rodriguez K, Betz J, Suchman EL, Carlson JO, Black WC. Rhythms and synchronization patterns in gene expression in the Aedes aegypti mosquito. BMC Genomics 2011; 12:153. [PMID: 21414217 PMCID: PMC3072344 DOI: 10.1186/1471-2164-12-153] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2010] [Accepted: 03/17/2011] [Indexed: 12/11/2022] Open
Abstract
Background Aedes aegypti is arguably the most studied of all mosquito species in the laboratory and is the primary vector of both Dengue and Yellow Fever flaviviruses in the field. A large number of transcriptional studies have been made in the species and these usually report transcript quantities observed at a certain age or stage of development. However, circadian oscillation is an important characteristic of gene expression in many animals and plants, modulating both their physiology and behavior. Circadian gene expression in mosquito species has been previously reported but for only a few genes directly involved in the function of the molecular clock. Results Herein we analyze the transcription profiles of 21,494 messenger RNAs using an Ae. aegypti Agilent® microarray. Transcripts were quantified in adult female heads at 24 hours and then again at 72 hours and eight subsequent time points spaced four hours apart. We document circadian rhythms in multiple molecular pathways essential for growth, development, immune response, detoxification/pesticide resistance. Circadian rhythms were also noted in ribosomal protein genes used for normalization in reverse transcribed PCR (RT-PCR) to determine transcript abundance. We report pervasive oscillations and intricate synchronization patterns relevant to all known biological pathways. Conclusion These results argue strongly that transcriptional analyses either need to be made over time periods rather than confining analyses to a single time point or development stage or exceptional care needs to be made to synchronize all mosquitoes to be analyzed and compared among treatment groups.
Collapse
Affiliation(s)
- Andrey A Ptitsyn
- Center for Bioinformatics, Colorado State University, Fort Collins, CO 80525, USA
| | | | | | | | | | | | | |
Collapse
|
122
|
Abstract
Multiple microarray studies have documented the importance of circadian regulation of gene expression in different species under many experimental conditions. However, these reports often differ with respect to the identity and total number of oscillating genes. This review explores the interrelated questions of: How many genes are oscillating within individual tissues or systems? What are the forces that drive these oscillations? What are the methodological sources contributing to the discrepancy between estimates of gene oscillation? And finally, what are the physiological and systemic implications of oscillatory gene expression with respect to circadian molecular biology? Since this remains an evolving area of investigation, this hypothetical and speculative review also highlights the potential limitations faced by the current data in the literature relating to the novel paradigm(s) proposed.
Collapse
Affiliation(s)
- Andrey A Ptitsyn
- Center for Bioinformatics, Colorado State University, Fort Collins, CO 80525, USA.
| | | |
Collapse
|
123
|
Laxman S, Tu BP. Systems approaches for the study of metabolic cycles in yeast. Curr Opin Genet Dev 2010; 20:599-604. [PMID: 21051220 DOI: 10.1016/j.gde.2010.09.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2010] [Revised: 08/02/2010] [Accepted: 09/20/2010] [Indexed: 10/18/2022]
Abstract
Over four decades ago, the first oscillations in metabolism in yeast cells were reported. Since then, multiple forms of oscillatory behavior have been observed in yeast grown under a variety of continuous culturing environments. The remarkable synchrony of cells undergoing such oscillations has made them ideal subjects for investigation using systems-based approaches. Herein, we briefly summarize previous work on the characterization of such oscillations using systems approaches, and present the long-period, Yeast Metabolic Cycle as an excellent model system for deciphering the temporal organization of fundamental cellular and metabolic processes at unprecedented resolution.
Collapse
Affiliation(s)
- Sunil Laxman
- Department of Biochemistry, UT Southwestern Medical Center, 5323 Harry Hines Blvd., Dallas, TX 75390-9038, United States
| | | |
Collapse
|
124
|
Post-transcriptional regulation of the mitochondrial H(+)-ATP synthase: a key regulator of the metabolic phenotype in cancer. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2010; 1807:543-51. [PMID: 21035425 DOI: 10.1016/j.bbabio.2010.10.016] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/20/2010] [Revised: 10/19/2010] [Accepted: 10/20/2010] [Indexed: 12/12/2022]
Abstract
A distinctive metabolic trait of tumors is their enforced aerobic glycolysis. This phenotype was first reported by Otto Warburg, who suggested that the increased glucose consumption of cancer cells under aerobic conditions might result from an impaired bioenergetic activity of their mitochondria. A central player in defining the bioenergetic activity of the cell is the mitochondrial H(+)-ATP synthase. The expression of its catalytic subunit β-F1-ATPase is tightly regulated at post-transcriptional levels during mammalian development and in the cell cycle. Moreover, the down-regulation of β-F1-ATPase is a hallmark of most human carcinomas. In this review we summarize our present understanding of the molecular mechanisms that participate in promoting the "abnormal" aerobic glycolysis of prevalent human carcinomas. The role of the ATPase Inhibitor Factor 1 (IF1) and of Ras-GAP SH3 binding protein 1 (G3BP1), controlling the activity of the H(+)-ATP synthase and the translation of β-F1-ATPase mRNA respectively in cancer cells is emphasized. Furthermore, we underline the role of mitochondrial dysfunction as a pivotal player of tumorigenesis.
Collapse
|
125
|
Oikonomou C, Cross FR. Frequency control of cell cycle oscillators. Curr Opin Genet Dev 2010; 20:605-12. [PMID: 20851595 DOI: 10.1016/j.gde.2010.08.006] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2010] [Revised: 08/02/2010] [Accepted: 08/19/2010] [Indexed: 10/19/2022]
Abstract
The cell cycle oscillator, based on a core negative feedback loop and modified extensively by positive feedback, cycles with a frequency that is regulated by environmental and developmental programs to encompass a wide range of cell cycle times. We discuss how positive feedback allows frequency tuning, how size and morphogenetic checkpoints regulate oscillator frequency, and how extrinsic oscillators such as the circadian clock gate cell cycle frequency. The master cell cycle regulatory oscillator in turn controls the frequency of peripheral oscillators controlling essential events. A recently proposed phase-locking model accounts for this coupling.
Collapse
|
126
|
Henry KA, Blank HM, Hoose SA, Polymenis M. The unfolded protein response is not necessary for the G1/S transition, but it is required for chromosome maintenance in Saccharomyces cerevisiae. PLoS One 2010; 5:e12732. [PMID: 20856872 PMCID: PMC2939067 DOI: 10.1371/journal.pone.0012732] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2010] [Accepted: 08/23/2010] [Indexed: 11/18/2022] Open
Abstract
BACKGROUND The unfolded protein response (UPR) is a eukaryotic signaling pathway, from the endoplasmic reticulum (ER) to the nucleus. Protein misfolding in the ER triggers the UPR. Accumulating evidence links the UPR in diverse aspects of cellular homeostasis. The UPR responds to the overall protein synthesis capacity and metabolic fluxes of the cell. Because the coupling of metabolism with cell division governs when cells start dividing, here we examined the role of UPR signaling in the timing of initiation of cell division and cell cycle progression, in the yeast Saccharomyces cerevisiae. METHODOLOGY/PRINCIPAL FINDINGS We report that cells lacking the ER-resident stress sensor Ire1p, which cannot trigger the UPR, nonetheless completed the G1/S transition on time. Furthermore, loss of UPR signaling neither affected the nutrient and growth rate dependence of the G1/S transition, nor the metabolic oscillations that yeast cells display in defined steady-state conditions. Remarkably, however, loss of UPR signaling led to hypersensitivity to genotoxic stress and a ten-fold increase in chromosome loss. CONCLUSIONS/SIGNIFICANCE Taken together, our results strongly suggest that UPR signaling is not necessary for the normal coupling of metabolism with cell division, but it has a role in genome maintenance. These results add to previous work that linked the UPR with cytokinesis in yeast. UPR signaling is conserved in all eukaryotes, and it malfunctions in a variety of diseases, including cancer. Therefore, our findings may be relevant to other systems, including humans.
Collapse
Affiliation(s)
- Kelsey A. Henry
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Heidi M. Blank
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Scott A. Hoose
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
| | - Michael Polymenis
- Department of Biochemistry and Biophysics, Texas A&M University, College Station, Texas, United States of America
- * E-mail:
| |
Collapse
|
127
|
Boczko EM, Stowers CC, Gedeon T, Young TR. ODE, RDE and SDE models of cell cycle dynamics and clustering in yeast. JOURNAL OF BIOLOGICAL DYNAMICS 2010; 4:328-45. [PMID: 20563236 PMCID: PMC2885793 DOI: 10.1080/17513750903288003] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/21/2023]
Abstract
Biologists have long observed periodic-like oxygen consumption oscillations in yeast populations under certain conditions, and several unsatisfactory explanations for this phenomenon have been proposed. These ‘autonomous oscillations’ have often appeared with periods that are nearly integer divisors of the calculated doubling time of the culture. We hypothesize that these oscillations could be caused by a form of cell cycle synchronization that we call clustering. We develop some novel ordinary differential equation models of the cell cycle. For these models, and for random and stochastic perturbations, we give both rigorous proofs and simulations showing that both positive and negative growth rate feedback within the cell cycle are possible agents that can cause clustering of populations within the cell cycle. It occurs for a variety of models and for a broad selection of parameter values. These results suggest that the clustering phenomenon is robust and is likely to be observed in nature. Since there are necessarily an integer number of clusters, clustering would lead to periodic-like behaviour with periods that are nearly integer divisors of the period of the cell cycle. Related experiments have shown conclusively that cell cycle clustering occurs in some oscillating yeast cultures.
Collapse
Affiliation(s)
- Erik M. Boczko
- Department of Biomedical Informatics, Vanderbilt University
| | | | - Tomas Gedeon
- Department of Mathematics, Montana State University
| | | |
Collapse
|
128
|
Affiliation(s)
- Timo Partonen
- Department of Mental Health and Substance Abuse Services, National Institute for Health and Welfare, PO Box 30 Mannerheimintie 166, FI-00271 Helsinki, Finland.
| |
Collapse
|
129
|
ARNTL (BMAL1) and NPAS2 gene variants contribute to fertility and seasonality. PLoS One 2010; 5:e10007. [PMID: 20368993 PMCID: PMC2848852 DOI: 10.1371/journal.pone.0010007] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2009] [Accepted: 03/10/2010] [Indexed: 12/12/2022] Open
Abstract
BACKGROUND Circadian clocks guide the metabolic, cell-division, sleep-wake, circadian and seasonal cycles. Abnormalities in these clocks may be a health hazard. Circadian clock gene polymorphisms have been linked to sleep, mood and metabolic disorders. Our study aimed to examine polymorphisms in four key circadian clock genes in relation to seasonal variation, reproduction and well-being in a sample that was representative of the general population, aged 30 and over, living in Finland. METHODOLOGY/PRINCIPAL FINDINGS Single-nucleotide polymorphisms in the ARNTL, ARNTL2, CLOCK and NPAS2 genes were genotyped in 511 individuals. 19 variants were analyzed in relation to 31 phenotypes that were assessed in a health interview and examination study. With respect to reproduction, women with ARNTL rs2278749 TT genotype had more miscarriages and pregnancies, while NPAS2 rs11673746 T carriers had fewer miscarriages. NPAS2 rs2305160 A allele carriers had lower Global Seasonality Scores, a sum score of six items i.e. seasonal variation of sleep length, social activity, mood, weight, appetite and energy level. Furthermore, carriers of A allele at NPAS2 rs6725296 had greater loadings on the metabolic factor (weight and appetite) of the global seasonality score, whereas individuals with ARNTL rs6290035 TT genotype experienced less seasonal variation of energy level. CONCLUSIONS/SIGNIFICANCE ARNTL and NPAS2 gene variants were associated with reproduction and with seasonal variation. Earlier findings have linked ARNTL to infertility in mice, but this is the first time when any polymorphism of these genes is linked to fertility in humans.
Collapse
|
130
|
Metabolic cycling in single yeast cells from unsynchronized steady-state populations limited on glucose or phosphate. Proc Natl Acad Sci U S A 2010; 107:6946-51. [PMID: 20335538 DOI: 10.1073/pnas.1002422107] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Oscillations in patterns of expression of a large fraction of yeast genes are associated with the "metabolic cycle," usually seen only in prestarved, continuous cultures of yeast. We used FISH of mRNA in individual cells to test the hypothesis that these oscillations happen in single cells drawn from unsynchronized cultures growing exponentially in chemostats. Gene-expression data from synchronized cultures were used to predict coincident appearance of mRNAs from pairs of genes in the unsynchronized cells. Quantitative analysis of the FISH results shows that individual unsynchronized cells growing slowly because of glucose limitation or phosphate limitation show the predicted oscillations. We conclude that the yeast metabolic cycle is an intrinsic property of yeast metabolism and does not depend on either synchronization or external limitation of growth by the carbon source.
Collapse
|
131
|
Dong G, Yang Q, Wang Q, Kim YI, Wood TL, Osteryoung KW, van Oudenaarden A, Golden SS. Elevated ATPase activity of KaiC applies a circadian checkpoint on cell division in Synechococcus elongatus. Cell 2010; 140:529-39. [PMID: 20178745 DOI: 10.1016/j.cell.2009.12.042] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2009] [Revised: 10/13/2009] [Accepted: 12/21/2009] [Indexed: 11/16/2022]
Abstract
A circadian clock coordinates physiology and behavior in diverse groups of living organisms. Another major cyclic cellular event, the cell cycle, is regulated by the circadian clock in the few cases where linkage of these cycles has been studied. In the cyanobacterium Synechococcus elongatus, the circadian clock gates cell division by an unknown mechanism. Using timelapse microscopy, we confirm the gating of cell division in the wild-type and demonstrate the regulation of cytokinesis by key clock components. Specifically, a state of the oscillator protein KaiC that is associated with elevated ATPase activity closes the gate by acting through a known clock output pathway to inhibit FtsZ ring formation at the division site. An activity that stimulates KaiC phosphorylation independently of the KaiA protein was also uncovered. We propose a model that separates the functions of KaiC ATPase and phosphorylation in cell division gating and other circadian behaviors.
Collapse
Affiliation(s)
- Guogang Dong
- Center for Biological Clocks Research, Department of Biology, Texas A&M University, College Station, 77843-3258, USA
| | | | | | | | | | | | | | | |
Collapse
|
132
|
Abstract
Budding yeast are capable of displaying various modes of oscillatory behavior. Such cycles can occur with a period ranging from 1 min up to many hours, depending on the growth and culturing conditions used to observe them. This chapter discusses the robust oscillations in oxygen consumption exhibited by high-density yeast cell populations during continuous, glucose-limited growth in a chemostat. These ultradian metabolic cycles offer a view of the life of yeast cells under a challenging, nutrient-poor growth environment and might represent useful systems to interrogate a variety of fundamental metabolic and regulatory processes.
Collapse
Affiliation(s)
- Benjamin P Tu
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| |
Collapse
|
133
|
Spatiotemporal compartmentalization of key physiological processes during muscle precursor differentiation. Proc Natl Acad Sci U S A 2010; 107:4224-9. [PMID: 20160088 DOI: 10.1073/pnas.0909375107] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
The development of multicellular organisms is controlled by transcriptional networks. Understanding the role of these networks requires a full understanding of transcriptome regulation during embryogenesis. Several microarray studies have characterized the temporal evolution of the transcriptome during development in different organisms [Wang QT, et al. (2004) Dev Cell 6:133-144; Furlong EE, Andersen EC, Null B, White KP, Scott MP (2001) Science 293:1629-1633; Mitiku N, Baker JC (2007) Dev Cell 13:897-907]. In all cases, however, experiments were performed on whole embryos, thus averaging gene expression among many different tissues. Here, we took advantage of the local synchrony of the differentiation process in the paraxial mesoderm. This approach provides a unique opportunity to study the systems-level properties of muscle differentiation. Using high-resolution, spatiotemporal profiling of the early stages of muscle development in the zebrafish embryo, we identified a major reorganization of the transcriptome taking place in the presomitic mesoderm. We further show that the differentiation process is associated with a striking modular compartmentalization of the transcription of essential components of cellular physiological programs. Particularly, we identify a tight segregation of cell cycle/DNA metabolic processes and translation/oxidative metabolism at the tissue level, highly reminiscent of the yeast metabolic cycle. These results should expand more investigations into the developmental control of metabolism.
Collapse
|
134
|
Abstract
The circadian clock is an evolutionarily conserved time-keeping system that coordinates the physiology of the organism with daily changes in the environment. A growing body of evidence gradually leads to the conception that virtually all aspects of the biochemical, physiological, and behavioral functions of the animal are linked to circadian regulation. Moreover, proper synchronization of various processes through the activity of circadian components is important for the well-being of many organisms, including humans. The focus of this review is the circadian control of an organism's response to genotoxic stress, which is a major contributor to life-threatening human pathologies such as cancer and cardiovascular disease.
Collapse
Affiliation(s)
- Marina P Antoch
- Department of Molecular and Cellular Biology, Roswell Park Cancer Institute, Elm & Carlton St, Buffalo, NY 14263, USA.
| | | |
Collapse
|
135
|
|
136
|
Cretenet G, Le Clech M, Gachon F. Circadian clock-coordinated 12 Hr period rhythmic activation of the IRE1alpha pathway controls lipid metabolism in mouse liver. Cell Metab 2010; 11:47-57. [PMID: 20074527 DOI: 10.1016/j.cmet.2009.11.002] [Citation(s) in RCA: 148] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2009] [Revised: 09/30/2009] [Accepted: 11/03/2009] [Indexed: 12/11/2022]
Abstract
The mammalian circadian clock plays a fundamental role in the liver by regulating fatty acid, glucose, and xenobiotic metabolism. Impairment of this rhythm has been shown to lead to diverse pathologies, including metabolic syndrome. Currently, it is supposed that the circadian clock regulates metabolism mostly by regulating expression of liver enzymes at the transcriptional level. Here, we show that the circadian clock also controls hepatic metabolism by synchronizing a secondary 12 hr period rhythm characterized by rhythmic activation of the IRE1alpha pathway in the endoplasmic reticulum. The absence of circadian clock perturbs this secondary clock and provokes deregulation of endoplasmic reticulum-localized enzymes. This leads to impaired lipid metabolism, resulting in aberrant activation of the sterol-regulated SREBP transcription factors. The resulting aberrant circadian lipid metabolism in mice devoid of the circadian clock could be involved in the appearance of the associated metabolic syndrome.
Collapse
|
137
|
Abstract
Circadian rhythms govern a remarkable variety of metabolic and physiological functions. Accumulating epidemiological and genetic evidence indicates that the disruption of circadian rhythms might be directly linked to cancer. Intriguingly, several molecular gears constituting the clock machinery have been found to establish functional interplays with regulators of the cell cycle, and alterations in clock function could lead to aberrant cellular proliferation. In addition, connections between the circadian clock and cellular metabolism have been identified that are regulated by chromatin remodelling. This suggests that abnormal metabolism in cancer could also be a consequence of a disrupted circadian clock. Therefore, a comprehensive understanding of the molecular links that connect the circadian clock to the cell cycle and metabolism could provide therapeutic benefit against certain human neoplasias.
Collapse
Affiliation(s)
- Saurabh Sahar
- Department of Pharmacology, School of Medicine, University of California, Irvine, Irvine, California 92697, USA
| | | |
Collapse
|
138
|
Sarsour EH, Kumar MG, Chaudhuri L, Kalen AL, Goswami PC. Redox control of the cell cycle in health and disease. Antioxid Redox Signal 2009; 11:2985-3011. [PMID: 19505186 PMCID: PMC2783918 DOI: 10.1089/ars.2009.2513] [Citation(s) in RCA: 293] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2009] [Revised: 06/04/2009] [Accepted: 06/05/2009] [Indexed: 01/11/2023]
Abstract
The cellular oxidation and reduction (redox) environment is influenced by the production and removal of reactive oxygen species (ROS). In recent years, several reports support the hypothesis that cellular ROS levels could function as ''second messengers'' regulating numerous cellular processes, including proliferation. Periodic oscillations in the cellular redox environment, a redox cycle, regulate cell-cycle progression from quiescence (G(0)) to proliferation (G(1), S, G(2), and M) and back to quiescence. A loss in the redox control of the cell cycle could lead to aberrant proliferation, a hallmark of various human pathologies. This review discusses the literature that supports the concept of a redox cycle controlling the mammalian cell cycle, with an emphasis on how this control relates to proliferative disorders including cancer, wound healing, fibrosis, cardiovascular diseases, diabetes, and neurodegenerative diseases. We hypothesize that reestablishing the redox control of the cell cycle by manipulating the cellular redox environment could improve many aspects of the proliferative disorders.
Collapse
Affiliation(s)
- Ehab H Sarsour
- Free Radical and Radiation Biology Program, Department of Radiation Oncology, University of Iowa , Iowa City, Iowa, USA
| | | | | | | | | |
Collapse
|
139
|
Sulfur metabolism actively promotes initiation of cell division in yeast. PLoS One 2009; 4:e8018. [PMID: 19956742 PMCID: PMC2776973 DOI: 10.1371/journal.pone.0008018] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2009] [Accepted: 11/01/2009] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND Sulfur metabolism is required for initiation of cell division, but whether or not it can actively promote cell division remains unknown. METHODOLOGY/PRINCIPAL FINDINGS Here we show that yeast cells with more mtDNA have an expanded reductive phase of their metabolic cycle and an increased sulfur metabolic flux. We also show that in wild type cells manipulations of sulfur metabolic flux phenocopy the enhanced growth rate of cells with more mtDNA. Furthermore, introduction of a hyperactive cystathionine-beta-synthase (CBS) allele in wild type cells accelerates initiation of DNA replication. CONCLUSIONS/SIGNIFICANCE Our results reveal a novel connection between a key sulfur metabolic enzyme, CBS, and the cell cycle. Since the analogous hyperactive CBS allele in human CBS suppresses other disease-causing CBS mutations, our findings may be relevant for human pathology. Taken together, our results demonstrate the importance of sulfur metabolism in actively promoting initiation of cell division.
Collapse
|
140
|
Boer VM, Crutchfield CA, Bradley PH, Botstein D, Rabinowitz JD. Growth-limiting intracellular metabolites in yeast growing under diverse nutrient limitations. Mol Biol Cell 2009; 21:198-211. [PMID: 19889834 PMCID: PMC2801714 DOI: 10.1091/mbc.e09-07-0597] [Citation(s) in RCA: 185] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022] Open
Abstract
Microbes tailor their growth rate to nutrient availability. Here, we measured, using liquid chromatography-mass spectrometry, >100 intracellular metabolites in steady-state cultures of Saccharomyces cerevisiae growing at five different rates and in each of five different limiting nutrients. In contrast to gene transcripts, where approximately 25% correlated with growth rate irrespective of the nature of the limiting nutrient, metabolite concentrations were highly sensitive to the limiting nutrient's identity. Nitrogen (ammonium) and carbon (glucose) limitation were characterized by low intracellular amino acid and high nucleotide levels, whereas phosphorus (phosphate) limitation resulted in the converse. Low adenylate energy charge was found selectively in phosphorus limitation, suggesting the energy charge may actually measure phosphorus availability. Particularly strong concentration responses occurred in metabolites closely linked to the limiting nutrient, e.g., glutamine in nitrogen limitation, ATP in phosphorus limitation, and pyruvate in carbon limitation. A simple but physically realistic model involving the availability of these metabolites was adequate to account for cellular growth rate. The complete data can be accessed at the interactive website http://growthrate.princeton.edu/metabolome.
Collapse
Affiliation(s)
- Viktor M Boer
- Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08544, USA
| | | | | | | | | |
Collapse
|
141
|
Burhans WC, Heintz NH. The cell cycle is a redox cycle: linking phase-specific targets to cell fate. Free Radic Biol Med 2009; 47:1282-93. [PMID: 19486941 DOI: 10.1016/j.freeradbiomed.2009.05.026] [Citation(s) in RCA: 261] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/10/2009] [Revised: 05/19/2009] [Accepted: 05/22/2009] [Indexed: 11/22/2022]
Abstract
Reactive oxygen species (ROS) regulate the strength and duration of signaling through redox-dependent signal transduction pathways via the cyclic oxidation/reduction of cysteine residues in kinases, phosphatases, and other regulatory factors. Signaling circuits may be segregated in organelles or other subcellular domains with distinct redox states, permitting them to respond independently to changes in the oxidation state of two major thiol reductants, glutathione and thioredoxin. Studies in yeast, and in complex eukaryotes, show that oscillations in oxygen consumption, energy metabolism, and redox state are intimately integrated with cell cycle progression. Because signaling pathways play specific roles in different phases of the cell cycle and the hierarchy of redox-dependent regulatory checkpoints changes during cell cycle progression, the effects of ROS on cell fate vary during the cell cycle. In G1, ROS stimulate mitogenic pathways that control the activity of cyclin-dependent kinases (CDKs) and phosphorylation of the retinoblastoma protein (pRB), thereby regulating S-phase entry. In response to oxidative stress, Nrf2 and Foxo3a promote cell survival by inducing the expression of antioxidant enzymes and factors involved in cell cycle withdrawal, such as the cyclin-dependent kinase inhibitor (CKI) p27. In S phase, ROS induce S-phase arrest via PP2A-dependent dephosphorylation of pRB. In precancerous cells, unconstrained mitogenic signaling by activated oncogenes induces replication stress in S phase, which activates the DNA-damage response and induces cell senescence. A number of studies suggest that interactions of ROS with the G1 CDK/CKI network play a fundamental role in senescence, which is considered a barrier to tumorigenesis. Adaptive responses and loss of checkpoint proteins such as p53 and p16(INK4a) allow tumor cells to tolerate constitutive mitogenic signaling and enhanced production of ROS, leading to altered redox status in many fully transformed cells. Alterations in oxidant and energy metabolism of cancer cells have emerged as fertile ground for new therapeutic targets. The present challenge is to identify redox-dependent targets relevant to each cell cycle phase, to understand how these targets control fate decisions, and to describe the mechanisms that link metabolism to cell cycle progression.
Collapse
Affiliation(s)
- William C Burhans
- Department of Molecular & Cellular Biology, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | | |
Collapse
|
142
|
Grover D, Ford D, Brown C, Hoe N, Erdem A, Tavaré S, Tower J. Hydrogen peroxide stimulates activity and alters behavior in Drosophila melanogaster. PLoS One 2009; 4:e7580. [PMID: 19862323 PMCID: PMC2763216 DOI: 10.1371/journal.pone.0007580] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2009] [Accepted: 09/28/2009] [Indexed: 12/26/2022] Open
Abstract
Circadian rhythms in animals are regulated at the level of individual cells and by systemic signaling to coordinate the activities of multiple tissues. The circadian pacemakers have several physiological outputs, including daily locomotor rhythms. Several redox-active compounds have been found to function in regulation of circadian rhythms in cells, however, how particular compounds might be involved in regulating specific animal behaviors remains largely unknown. Here the effects of hydrogen peroxide on Drosophila movement were analyzed using a recently developed three-dimensional real-time multiple fly tracking assay. Both hydrogen peroxide feeding and direct injection of hydrogen peroxide caused increased adult fly locomotor activity. Continuous treatment with hydrogen peroxide also suppressed daily locomotor rhythms. Conditional over-expression of the hydrogen peroxide-producing enzyme superoxide dismutase (SOD) also increased fly activity and altered the patterns of locomotor activity across days and weeks. The real-time fly tracking system allowed for detailed analysis of the effects of these manipulations on behavior. For example, both hydrogen peroxide feeding and SOD over-expression increased all fly motion parameters, however, hydrogen peroxide feeding caused relatively more erratic movement, whereas SOD over-expression produced relatively faster-moving flies. Taken together, the data demonstrate that hydrogen peroxide has dramatic effects on fly movement and daily locomotor rhythms, and implicate hydrogen peroxide in the normal control of these processes.
Collapse
Affiliation(s)
- Dhruv Grover
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Daniel Ford
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Christopher Brown
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Nicholas Hoe
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Aysen Erdem
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - Simon Tavaré
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
| | - John Tower
- Molecular and Computational Biology Program, Department of Biological Sciences, University of Southern California, Los Angeles, California, United States of America
- * E-mail:
| |
Collapse
|
143
|
Affiliation(s)
- David M Suter
- Department of Molecular Biology, Sciences III, University of Geneva, and National Centre of Competence in Research Frontiers in Genetics, 30 Quai Ernest Ansermet, 1211 Geneva, Switzerland.
| | | |
Collapse
|
144
|
de Groof AJC, te Lindert MM, van Dommelen MMT, Wu M, Willemse M, Smift AL, Winer M, Oerlemans F, Pluk H, Fransen JAM, Wieringa B. Increased OXPHOS activity precedes rise in glycolytic rate in H-RasV12/E1A transformed fibroblasts that develop a Warburg phenotype. Mol Cancer 2009; 8:54. [PMID: 19646236 PMCID: PMC2734543 DOI: 10.1186/1476-4598-8-54] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2009] [Accepted: 07/31/2009] [Indexed: 12/11/2022] Open
Abstract
Background The Warburg phenotype in cancer cells has been long recognized, but there is still limited insight in the consecutive metabolic alterations that characterize its establishment. We obtained better understanding of the coupling between metabolism and malignant transformation by studying mouse embryonic fibroblast-derived cells with loss-of-senescence or H-RasV12/E1A-transformed phenotypes at different stages of oncogenic progression. Results Spontaneous immortalization or induction of senescence-bypass had only marginal effects on metabolic profiles and viability. In contrast, H-RasV12/E1A transformation initially caused a steep increase in oxygen consumption and superoxide production, accompanied by massive cell death. During prolonged culture in vitro, cell growth rate increased gradually, along with tumor forming potential in in vitro anchorage-independent growth assays and in vivo tumor formation assays in immuno-deficient mice. Notably, glucose-to-lactic acid flux increased with passage number, while cellular oxygen consumption decreased. This conversion in metabolic properties was associated with a change in mitochondrial NAD+/NADH redox, indicative of decreased mitochondrial tricarboxic acid cycle and OXPHOS activity. Conclusion The high rate of oxidative metabolism in newly transformed cells is in marked contrast with the high glycolytic rate in cells in the later tumor stage. In our experimental system, with cells growing under ambient oxygen conditions in nutrient-rich media, the shift towards this Warburg phenotype occurred as a step-wise adaptation process associated with augmented tumorigenic capacity and improved survival characteristics of the transformed cells. We hypothesize that early-transformed cells, which potentially serve as founders for new tumor masses may escape therapies aimed at metabolic inhibition of tumors with a fully developed Warburg phenotype.
Collapse
Affiliation(s)
- Ad J C de Groof
- Department of Cell Biology, Nijmegen Centre for Molecular Life Sciences, Radboud University Medical Centre, Nijmegen, The Netherlands.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
145
|
Affiliation(s)
- Michael Rosbash
- Howard Hughes Medical Institute, National Center for Behavioral Genomics, and Department of Biology, Brandeis University, Waltham, MA, USA.
| |
Collapse
|
146
|
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. Science 2009; 324:1029-33. [PMID: 19460998 PMCID: PMC2849637 DOI: 10.1126/science.1160809] [Citation(s) in RCA: 11638] [Impact Index Per Article: 727.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In contrast to normal differentiated cells, which rely primarily on mitochondrial oxidative phosphorylation to generate the energy needed for cellular processes, most cancer cells instead rely on aerobic glycolysis, a phenomenon termed "the Warburg effect." Aerobic glycolysis is an inefficient way to generate adenosine 5'-triphosphate (ATP), however, and the advantage it confers to cancer cells has been unclear. Here we propose that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed to produce a new cell. Supporting this idea are recent studies showing that (i) several signaling pathways implicated in cell proliferation also regulate metabolic pathways that incorporate nutrients into biomass; and that (ii) certain cancer-associated mutations enable cancer cells to acquire and metabolize nutrients in a manner conducive to proliferation rather than efficient ATP production. A better understanding of the mechanistic links between cellular metabolism and growth control may ultimately lead to better treatments for human cancer.
Collapse
Affiliation(s)
- Matthew G. Vander Heiden
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02115, USA
- Beth-Israel Deaconess Cancer Center and Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Lewis C. Cantley
- Beth-Israel Deaconess Cancer Center and Department of Systems Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Craig B. Thompson
- Department of Cancer Biology, Abramson Cancer Center, University of Pennsylvania, Philadelphia, PA 19104, USA
| |
Collapse
|
147
|
Vander Heiden MG, Cantley LC, Thompson CB. Understanding the Warburg effect: the metabolic requirements of cell proliferation. SCIENCE (NEW YORK, N.Y.) 2009. [PMID: 19460998 DOI: 10.1126/science.1160809] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In contrast to normal differentiated cells, which rely primarily on mitochondrial oxidative phosphorylation to generate the energy needed for cellular processes, most cancer cells instead rely on aerobic glycolysis, a phenomenon termed "the Warburg effect." Aerobic glycolysis is an inefficient way to generate adenosine 5'-triphosphate (ATP), however, and the advantage it confers to cancer cells has been unclear. Here we propose that the metabolism of cancer cells, and indeed all proliferating cells, is adapted to facilitate the uptake and incorporation of nutrients into the biomass (e.g., nucleotides, amino acids, and lipids) needed to produce a new cell. Supporting this idea are recent studies showing that (i) several signaling pathways implicated in cell proliferation also regulate metabolic pathways that incorporate nutrients into biomass; and that (ii) certain cancer-associated mutations enable cancer cells to acquire and metabolize nutrients in a manner conducive to proliferation rather than efficient ATP production. A better understanding of the mechanistic links between cellular metabolism and growth control may ultimately lead to better treatments for human cancer.
Collapse
|
148
|
Abstract
Circadian rhythms govern a wide variety of physiological and metabolic functions in most organisms. At the heart of these regulatory pathways in mammals is the clock machinery, a remarkably coordinated transcription-translation system that relies on dynamic changes in chromatin states. Recent findings indicate that regulation also goes the other way, as specific elements of the clock can sense changes in cellular metabolism. Understanding in full detail the intimate links between cellular metabolism and the circadian clock machinery will provide not only crucial insights into system physiology but also new avenues toward pharmacological intervention of metabolic disorders.
Collapse
Affiliation(s)
- Kristin Eckel-Mahan
- Department of Pharmacology, University of California, Irvine, California USA
| | - Paolo Sassone-Corsi
- Department of Pharmacology, University of California, Irvine, California USA
| |
Collapse
|
149
|
Tadepalli S, Ramakrishnan N, Watson LT, Mishra B, Helm RF. Simultaneously segmenting multiple gene expression time courses by analyzing cluster dynamics. J Bioinform Comput Biol 2009; 7:339-56. [PMID: 19340919 DOI: 10.1142/s0219720009004114] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2008] [Revised: 11/18/2008] [Accepted: 12/16/2008] [Indexed: 11/18/2022]
Abstract
We present a new approach to segmenting multiple time series by analyzing the dynamics of cluster formation and rearrangement around putative segment boundaries. This approach finds application in distilling large numbers of gene expression profiles into temporal relationships underlying biological processes. By directly minimizing information-theoretic measures of segmentation quality derived from Kullback-Leibler (KL) divergences, our formulation reveals clusters of genes along with a segmentation such that clusters show concerted behavior within segments but exhibit significant regrouping across segmentation boundaries. The results of the segmentation algorithm can be summarized as Gantt charts revealing temporal dependencies in the ordering of key biological processes. Applications to the yeast metabolic cycle and the yeast cell cycle are described.
Collapse
Affiliation(s)
- Satish Tadepalli
- Department of Computer Science, Virginia Polytechnic Institute and State University, Blacksburg, VA 24061, USA.
| | | | | | | | | |
Collapse
|
150
|
Yu FX, Dai RP, Goh SR, Zheng L, Luo Y. Logic of a mammalian metabolic cycle: an oscillated NAD+/NADH redox signaling regulates coordinated histone expression and S-phase progression. Cell Cycle 2009; 8:773-9. [PMID: 19221488 DOI: 10.4161/cc.8.5.7880] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
Many biological activities naturally oscillate. Here, we show that the NAD(+)/NADH ratios (redox status) fluctuate during mammalian cell cycle, with the S-phase redox status being the least oxidative. The S-phase NAD(+)/NADH redox status gates histone expression and S-phase progression, and may provide a genome protection mechanism during S-phase DNA replication as implicated in yeast. Accordingly, perturbing the cellular redox inhibits histone expression and leads to S-phase arrest. We propose that the S-phase NAD(+)/NADH redox status constitutes a redox signaling, which along with the cyclin E/cdk2 signaling regulates histone expression and S-phase progression.
Collapse
Affiliation(s)
- Fa-Xing Yu
- Institute of Molecular and Cell Biology, Singapore, Singapore
| | | | | | | | | |
Collapse
|