101
|
Hierarchical recruitment of Plk4 and regulation of centriole biogenesis by two centrosomal scaffolds, Cep192 and Cep152. Proc Natl Acad Sci U S A 2013; 110:E4849-57. [PMID: 24277814 DOI: 10.1073/pnas.1319656110] [Citation(s) in RCA: 157] [Impact Index Per Article: 13.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Centrosomes play an important role in various cellular processes, including spindle formation and chromosome segregation. They are composed of two orthogonally arranged centrioles, whose duplication occurs only once per cell cycle. Accurate control of centriole numbers is essential for the maintenance of genomic integrity. Although it is well appreciated that polo-like kinase 4 (Plk4) plays a central role in centriole biogenesis, how it is recruited to centrosomes and whether this step is necessary for centriole biogenesis remain largely elusive. Here we showed that Plk4 localizes to distinct subcentrosomal regions in a temporally and spatially regulated manner, and that Cep192 and Cep152 serve as two distinct scaffolds that recruit Plk4 to centrosomes in a hierarchical order. Interestingly, Cep192 and Cep152 competitively interacted with the cryptic polo box of Plk4 through their homologous N-terminal sequences containing acidic-α-helix and N/Q-rich motifs. Consistent with these observations, the expression of either one of these N-terminal fragments was sufficient to delocalize Plk4 from centrosomes. Furthermore, loss of the Cep192- or Cep152-dependent interaction with Plk4 resulted in impaired centriole duplication that led to delayed cell proliferation. Thus, the spatiotemporal regulation of Plk4 localization by two hierarchical scaffolds, Cep192 and Cep152, is critical for centriole biogenesis.
Collapse
|
102
|
Spindle formation in the mouse embryo requires Plk4 in the absence of centrioles. Dev Cell 2013; 27:586-97. [PMID: 24268700 PMCID: PMC3898710 DOI: 10.1016/j.devcel.2013.09.029] [Citation(s) in RCA: 53] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/07/2013] [Accepted: 09/30/2013] [Indexed: 12/16/2022]
Abstract
During the first five rounds of cell division in the mouse embryo, spindles assemble in the absence of centrioles. Spindle formation initiates around chromosomes, but the microtubule nucleating process remains unclear. Here we demonstrate that Plk4, a protein kinase known as a master regulator of centriole formation, is also essential for spindle assembly in the absence of centrioles. Depletion of maternal Plk4 prevents nucleation and growth of microtubules and results in monopolar spindle formation. This leads to cytokinesis failure and, consequently, developmental arrest. We show that Plk4 function depends on its kinase activity and its partner protein, Cep152. Moreover, tethering Cep152 to cellular membranes sequesters Plk4 and is sufficient to trigger spindle assembly from ectopic membranous sites. Thus, the Plk4-Cep152 complex has an unexpected role in promoting microtubule nucleation in the vicinity of chromosomes to mediate bipolar spindle formation in the absence of centrioles. Plk4 is at acentriolar MTOCs and spindle poles in mouse embryos Plk4 is essential for acentriolar spindle assembly Depletion of maternal Plk4 prevents normal nucleation and growth of microtubules Plk4 MT-nucleating function depends on its kinase activity and its partner, Cep152
Collapse
|
103
|
Cunha-Ferreira I, Bento I, Pimenta-Marques A, Jana SC, Lince-Faria M, Duarte P, Borrego-Pinto J, Gilberto S, Amado T, Brito D, Rodrigues-Martins A, Debski J, Dzhindzhev N, Bettencourt-Dias M. Regulation of autophosphorylation controls PLK4 self-destruction and centriole number. Curr Biol 2013; 23:2245-2254. [PMID: 24184099 DOI: 10.1016/j.cub.2013.09.037] [Citation(s) in RCA: 95] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2013] [Revised: 08/08/2013] [Accepted: 09/16/2013] [Indexed: 12/22/2022]
Abstract
Polo-like kinase 4 (PLK4) is a major player in centriole biogenesis: in its absence centrioles fail to form, while in excess leads to centriole amplification. The SCF-Slimb/βTrCP-E3 ubiquitin ligase controls PLK4 levels through recognition of a conserved phosphodegron. SCF-Slimb/βTrCP substrate binding and targeting for degradation is normally regulated by phosphorylation cascades, controlling complex processes, such as circadian clocks and morphogenesis. Here, we show that PLK4 is a suicide kinase, autophosphorylating in residues that are critical for SCF-Slimb/βTrCP binding. We demonstrate a multisite trans-autophosphorylation mechanism, likely to ensure that both a threshold of PLK4 concentration is attained and a sequence of events is observed before PLK4 can autodestruct. First, we show that PLK4 trans-autophosphorylates other PLK4 molecules on both Ser293 and Thr297 within the degron and that these residues contribute differently for PLK4 degradation, the first being critical and the second maximizing auto-destruction. Second, PLK4 trans-autophosphorylates a phospho-cluster outside the degron, which regulates Thr297 phosphorylation, PLK4 degradation, and centriole number. Finally, we show the importance of PLK4-Slimb/βTrCP regulation as it operates in both soma and germline. As βTrCP, PLK4, and centriole number are deregulated in several cancers, our work provides novel links between centriole number control and tumorigenesis.
Collapse
Affiliation(s)
- Inês Cunha-Ferreira
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| | - Inês Bento
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Ana Pimenta-Marques
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Swadhin Chandra Jana
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Mariana Lince-Faria
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Paulo Duarte
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Joana Borrego-Pinto
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Samuel Gilberto
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Tiago Amado
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | - Daniela Brito
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal
| | | | - Janusz Debski
- Institute of Biochemistry and Biophysics, PAS, Pawinskiego 5a, 02-106, Warszawa, Poland
| | - Nikola Dzhindzhev
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Downing Street, Cambridge CB2 3EH, UK
| | | |
Collapse
|
104
|
Peel N. Everything in moderation: Proteolytic regulation of centrosome duplication. WORM 2013; 2:e22497. [PMID: 24058868 PMCID: PMC3704442 DOI: 10.4161/worm.22497] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Accepted: 10/09/2012] [Indexed: 11/30/2022]
Abstract
The presence of too many or too few centrosomes at mitosis can disrupt the timely formation of a bipolar spindle and may lead to aneuploidy and cancer. Strict control of centrosome duplication is therefore crucial. Centrosome duplication must occur once per cell cycle and the number of new centrioles made must be tightly controlled. The importance of protein degradation for the orderly progression of the cell cycle has long been recognized, but until recently the role of proteolysis in the regulation of centrosome duplication had not been appreciated. Recent evidence suggests that restricting protein levels so that a single new centriole is built next to each pre-existing centriole is one way in which centrosome duplication is controlled. Here we discuss our recent finding that the SCF ubiquitin ligase complex regulates centrosome duplication in C. elegans in the larger context of the proteolytic regulation of centrosome duplication.
Collapse
Affiliation(s)
- Nina Peel
- Department of Biology; The College of New Jersey; Ewing, NJ USA
| |
Collapse
|
105
|
Ledoux AC, Sellier H, Gillies K, Iannetti A, James J, Perkins ND. NFκB regulates expression of Polo-like kinase 4. Cell Cycle 2013; 12:3052-62. [PMID: 23974100 PMCID: PMC3875679 DOI: 10.4161/cc.26086] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 08/07/2013] [Accepted: 08/07/2013] [Indexed: 01/21/2023] Open
Abstract
Activation of the NFκB signaling pathway allows the cell to respond to infection and stress and can affect many cellular processes. As a consequence, NFκB activity must be integrated with a wide variety of parallel signaling pathways. One mechanism through which NFκB can exert widespread effects is through controlling the expression of key regulatory kinases. Here we report that NFκB regulates the expression of genes required for centrosome duplication, and that Polo-like kinase 4 (PLK4) is a direct NFκB target gene. RNA interference, chromatin immunoprecipitation, and analysis of the PLK4 promoter in a luciferase reporter assay revealed that all NFκB subunits participate in its regulation. Moreover, we demonstrate that NFκB regulation of PLK4 expression is seen in multiple cell types. Significantly long-term deletion of the NFκB2 (p100/p52) subunit leads to defects in centrosome structure. This data reveals a new component of cell cycle regulation by NFκB and suggests a mechanism through which deregulated NFκB activity in cancer can lead to increased genomic instability and uncontrolled proliferation.
Collapse
Affiliation(s)
- Adeline C Ledoux
- Institute for Cell and Molecular Biosciences; Faculty of Medical Sciences; Newcastle University; Newcastle Upon Tyne, UK
| | - Hélène Sellier
- Institute for Cell and Molecular Biosciences; Faculty of Medical Sciences; Newcastle University; Newcastle Upon Tyne, UK
| | | | - Alessio Iannetti
- Institute for Cell and Molecular Biosciences; Faculty of Medical Sciences; Newcastle University; Newcastle Upon Tyne, UK
| | - John James
- College of Life Sciences; University of Dundee; Dundee, UK
| | - Neil D Perkins
- Institute for Cell and Molecular Biosciences; Faculty of Medical Sciences; Newcastle University; Newcastle Upon Tyne, UK
| |
Collapse
|
106
|
Fu J, Glover DM. Structured illumination of the interface between centriole and peri-centriolar material. Open Biol 2013; 2:120104. [PMID: 22977736 PMCID: PMC3438536 DOI: 10.1098/rsob.120104] [Citation(s) in RCA: 197] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2012] [Accepted: 08/02/2012] [Indexed: 12/22/2022] Open
Abstract
The increase in centrosome size in mitosis was described over a century ago, and yet it is poorly understood how centrioles, which lie at the core of centrosomes, organize the pericentriolar material (PCM) in this process. Now, structured illumination microscopy reveals in Drosophila that, before clouds of PCM appear, its proteins are closely associated with interphase centrioles in two tube-like layers: an inner layer occupied by centriolar microtubules, Sas-4, Spd-2 and Polo kinase; and an outer layer comprising Pericentrin-like protein (Dplp), Asterless (Asl) and Plk4 kinase. Centrosomin (Cnn) and γ-tubulin associate with this outer tube in G2 cells and, upon mitotic entry, Polo activity is required to recruit them together with Spd-2 into PCM clouds. Cnn is required for Spd-2 to expand into the PCM during this maturation process but can itself contribute to PCM independently of Spd-2. By contrast, the centrioles of spermatocytes elongate from a pre-existing proximal unit during the G2 preceding meiosis. Sas-4 is restricted to the microtubule-associated, inner cylinder and Dplp and Cnn to the outer cylinder of this proximal part. γ-Tubulin and Asl associate with the outer cylinder and Spd-2 with the inner cylinder throughout the entire G2 centriole. Although they occupy different spatial compartments on the G2 centriole, Cnn, Spd-2 and γ-tubulin become diminished at the centriole upon entry into meiosis to become part of PCM clouds.
Collapse
Affiliation(s)
- Jingyan Fu
- Cancer Research UK Cell Cycle Genetics Group, Department of Genetics, University of Cambridge, Cambridge CB2 3EH, UK.
| | | |
Collapse
|
107
|
Sonnen KF, Gabryjonczyk AM, Anselm E, Stierhof YD, Nigg EA. Human Cep192 and Cep152 cooperate in Plk4 recruitment and centriole duplication. J Cell Sci 2013; 126:3223-33. [PMID: 23641073 DOI: 10.1242/jcs.129502] [Citation(s) in RCA: 161] [Impact Index Per Article: 13.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Polo-like kinase 4 (Plk4) is a key regulator of centriole duplication, but the mechanism underlying its recruitment to mammalian centrioles is not understood. In flies, Plk4 recruitment depends on Asterless, whereas nematodes rely on a distinct protein, Spd-2. Here, we have explored the roles of two homologous mammalian proteins, Cep152 and Cep192, in the centriole recruitment of human Plk4. We demonstrate that Cep192 plays a key role in centrosome recruitment of both Cep152 and Plk4. Double-depletion of Cep192 and Cep152 completely abolishes Plk4 binding to centrioles as well as centriole duplication, indicating that the two proteins cooperate. Most importantly, we show that Cep192 binds Plk4 through an N-terminal extension that is specific to the largest isoform. The Plk4 binding regions of Cep192 and Cep152 (residues 190-240 and 1-46, respectively) are rich in negatively charged amino acids, suggesting that Plk4 localization to centrioles depends on electrostatic interactions with the positively charged polo-box domain. We conclude that cooperation between Cep192 and Cep152 is crucial for centriole recruitment of Plk4 and centriole duplication during the cell cycle.
Collapse
Affiliation(s)
- Katharina F Sonnen
- Biozentrum, University of Basel, Klingelbergstrasse 50/70, 4056 Basel, Switzerland
| | | | | | | | | |
Collapse
|
108
|
Howe K, FitzHarris G. A non-canonical mode of microtubule organization operates throughout pre-implantation development in mouse. Cell Cycle 2013; 12:1616-24. [PMID: 23624836 DOI: 10.4161/cc.24755] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
In dividing animal cells, the centrosome, comprising centrioles and surrounding pericentriolar-material (PCM), is the major interphase microtubule-organizing center (MTOC), arranging a polarized array of microtubules (MTs) that controls cellular architecture. The mouse embryo is a unique setting for investigating the role of centrosomes in MT organization, since the early embryo is acentrosomal, and centrosomes emerge de novo during early cleavages. Here we use embryos from a GFP::CETN2 transgenic mouse to observe the emergence of centrosomes and centrioles in embryos, and show that unfocused acentriolar centrosomes first form in morulae (~16-32-cell stage) and become focused at the blastocyst stage (~64-128 cells) concomitant with the emergence of centrioles. We then used high-resolution microscopy and dynamic tracking of MT growth events in live embryos to examine the impact of centrosome emergence upon interphase MT dynamics. We report that pre-implantation mouse embryos of all stages employ a non-canonical mode of MT organization that generates a complex array of randomly oriented MTs that are preferentially nucleated adjacent to nuclear and plasmalemmal membranes and cell-cell interfaces. Surprisingly, however, cells of the early embryo continue to employ this mode of interphase MT organization even after the emergence of centrosomes. Centrosomes are found at MT-sparse sites and have no detectable impact upon interphase MT dynamics. To our knowledge, the early embryo is unique among proliferating cells in adopting an acentrosomal mode of MT organization despite the presence of centrosomes, revealing that the transition to a canonical mode of interphase MT organization remains incomplete prior to implantation.
Collapse
Affiliation(s)
- Katie Howe
- Department of Cell and Developmental Biology, University College London, London, UK
| | | |
Collapse
|
109
|
Marthiens V, Piel M, Basto R. Never tear us apart--the importance of centrosome clustering. J Cell Sci 2013; 125:3281-92. [PMID: 22956721 DOI: 10.1242/jcs.094797] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
The presence of more than two centrosomes (centrosome amplification) at the onset of mitosis has long been associated with multipolar spindle formation, and with the generation of genetic instability. However, in recent years, several studies have shown that a process termed 'centrosome clustering' actively contributes to bipolar division by promoting the gathering of extra centrosomes in two main poles. In this Commentary, we describe the main proteins that are involved in centriole duplication and discuss how centrosome amplification can be generated both in vitro and in vivo. We then summarize what is currently known about the processes that contribute to bipolar spindle formation when extra centrosomes are present, and which forces contribute to this process. Finally, we discuss how extra centrosomes might contribute to tumorigenesis, giving emphasis to the role of centrosome amplification in promoting genetic instability.
Collapse
|
110
|
Abstract
The ubiquitin-proteasome system plays a pivotal role in the sequence of events leading to cell division known as the cell cycle. Not only does ubiquitin-mediated proteolysis constitute a critical component of the core oscillator that drives the cell cycle in all eukaryotes, it is also central to the mechanisms that ensure that the integrity of the genome is maintained. These functions are primarily carried out by two families of E3 ubiquitin ligases, the Skp/cullin/F-box-containing and anaphase-promoting complex/cyclosome complexes. However, beyond those functions associated with regulation of central cell cycle events, many peripheral cell cycle-related processes rely on ubiquitylation for signaling, homeostasis, and dynamicity, involving additional types of ubiquitin ligases and regulators. We are only beginning to understand the diversity and complexity of this regulation.
Collapse
Affiliation(s)
- Leonardo K Teixeira
- Department of Molecular Biology, The Scripps Research Institute, La Jolla, California 92037, USA
| | | |
Collapse
|
111
|
Brownlee CW, Rogers GC. Show me your license, please: deregulation of centriole duplication mechanisms that promote amplification. Cell Mol Life Sci 2013; 70:1021-34. [PMID: 22892665 PMCID: PMC11113234 DOI: 10.1007/s00018-012-1102-6] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2012] [Revised: 07/13/2012] [Accepted: 07/17/2012] [Indexed: 12/13/2022]
Abstract
Centrosomes are organelles involved in generating and organizing the interphase microtubule cytoskeleton, mitotic spindles and cilia. At the centrosome core are a pair of centrioles, structures that act as the duplicating elements of this organelle. Centrioles function to recruit and organize pericentriolar material which nucleates microtubules. While centrioles are relatively simple in construction, the mechanics of centriole biogenesis remain an important yet poorly understood process. More mysterious still are the regulatory mechanisms that oversee centriole assembly. The fidelity of centriole duplication is critical as defects in either the assembly or number of centrioles promote aneuploidy, primary microcephaly, birth defects, ciliopathies and tumorigenesis. In addition, some pathogens employ mechanisms to promote centriole overduplication to the detriment of the host cell. This review summarizes our current understanding of this important topic, highlighting the need for further study if new therapeutics are to be developed to treat diseases arising from defects of centrosome duplication.
Collapse
Affiliation(s)
- Christopher W. Brownlee
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| | - Gregory C. Rogers
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724 USA
| |
Collapse
|
112
|
Carvalho-Santos Z, Machado P, Alvarez-Martins I, Gouveia SM, Jana SC, Duarte P, Amado T, Branco P, Freitas MC, Silva STN, Antony C, Bandeiras TM, Bettencourt-Dias M. BLD10/CEP135 is a microtubule-associated protein that controls the formation of the flagellum central microtubule pair. Dev Cell 2012; 23:412-24. [PMID: 22898782 DOI: 10.1016/j.devcel.2012.06.001] [Citation(s) in RCA: 74] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2011] [Revised: 04/14/2012] [Accepted: 06/01/2012] [Indexed: 11/18/2022]
Abstract
Cilia and flagella are involved in a variety of processes and human diseases, including ciliopathies and sterility. Their motility is often controlled by a central microtubule (MT) pair localized within the ciliary MT-based skeleton, the axoneme. We characterized the formation of the motility apparatus in detail in Drosophila spermatogenesis. We show that assembly of the central MT pair starts prior to the meiotic divisions, with nucleation of a singlet MT within the basal body of a small cilium, and that the second MT of the pair only assembles much later, upon flagella formation. BLD10/CEP135, a conserved player in centriole and flagella biogenesis, can bind and stabilize MTs and is required for the early steps of central MT pair formation. This work describes a genetically tractable system to study motile cilia formation and provides an explanation for BLD10/CEP135's role in assembling highly stable MT-based structures, such as motile axonemes and centrioles.
Collapse
Affiliation(s)
- Zita Carvalho-Santos
- Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-156 Oeiras, Portugal.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
113
|
Slevin LK, Nye J, Pinkerton DC, Buster DW, Rogers GC, Slep KC. The structure of the plk4 cryptic polo box reveals two tandem polo boxes required for centriole duplication. Structure 2012; 20:1905-17. [PMID: 23000383 DOI: 10.1016/j.str.2012.08.025] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 08/26/2012] [Accepted: 08/28/2012] [Indexed: 11/19/2022]
Abstract
Centrioles are key microtubule polarity determinants. Centriole duplication is tightly controlled to prevent cells from developing multipolar spindles, a situation that promotes chromosomal instability. A conserved component in the duplication pathway is Plk4, a polo kinase family member that localizes to centrioles in M/G1. To limit centriole duplication, Plk4 levels are controlled through trans-autophosphorylation that primes ubiquitination. In contrast to Plks 1-3, Plk4 possesses a unique central region called the "cryptic polo box." Here, we present the crystal structure of this region at 2.3 Å resolution. Surprisingly, the structure reveals two tandem homodimerized polo boxes, PB1-PB2, that form a unique winged architecture. The full PB1-PB2 cassette is required for binding the centriolar protein Asterless as well as robust centriole targeting. Thus, with its C-terminal polo box (PB3), Plk4 has a triple polo box architecture that facilitates oligomerization, targeting, and promotes trans-autophosphorylation, limiting centriole duplication to once per cell cycle.
Collapse
Affiliation(s)
- Lauren K Slevin
- Department of Biology, CB 3280, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| | | | | | | | | | | |
Collapse
|
114
|
Anderhub SJ, Krämer A, Maier B. Centrosome amplification in tumorigenesis. Cancer Lett 2012; 322:8-17. [PMID: 22342684 DOI: 10.1016/j.canlet.2012.02.006] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2011] [Revised: 02/06/2012] [Accepted: 02/07/2012] [Indexed: 01/11/2023]
Affiliation(s)
- Simon J Anderhub
- Clinical Cooperation Unit Molecular Hematology/Oncology, German Cancer Research Center, University of Heidelberg, Germany
| | | | | |
Collapse
|
115
|
Dantas TJ, Daly OM, Morrison CG. Such small hands: the roles of centrins/caltractins in the centriole and in genome maintenance. Cell Mol Life Sci 2012; 69:2979-97. [PMID: 22460578 PMCID: PMC11114748 DOI: 10.1007/s00018-012-0961-1] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Revised: 02/20/2012] [Accepted: 03/12/2012] [Indexed: 01/11/2023]
Abstract
Centrins are small, highly conserved members of the EF-hand superfamily of calcium-binding proteins that are found throughout eukaryotes. They play a major role in ensuring the duplication and appropriate functioning of the ciliary basal bodies in ciliated cells. They have also been localised to the centrosome, which is the major microtubule organising centre in animal somatic cells. We describe the identification, cloning and characterisation of centrins in multiple eukaryotic species. Although centrins have been implicated in centriole biogenesis, recent results have indicated that centrosome duplication can, in fact, occur in the absence of centrins. We discuss these data and the non-centrosomal functions that are emerging for the centrins. In particular, we discuss the involvement of centrins in nucleotide excision repair, a process that repairs the DNA lesions that are induced primarily by ultraviolet irradiation. We discuss how centrin may be involved in these diverse processes and contribute to nuclear and cytoplasmic events.
Collapse
Affiliation(s)
- Tiago J. Dantas
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | - Owen M. Daly
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| | - Ciaran G. Morrison
- Centre for Chromosome Biology, School of Natural Sciences, National University of Ireland Galway, University Road, Galway, Ireland
| |
Collapse
|
116
|
Long T, Vanderstraete M, Cailliau K, Morel M, Lescuyer A, Gouignard N, Grevelding CG, Browaeys E, Dissous C. SmSak, the second Polo-like kinase of the helminth parasite Schistosoma mansoni: conserved and unexpected roles in meiosis. PLoS One 2012; 7:e40045. [PMID: 22768216 PMCID: PMC3386946 DOI: 10.1371/journal.pone.0040045] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2012] [Accepted: 05/31/2012] [Indexed: 11/18/2022] Open
Abstract
Polo-like kinases (Plks) are a family of conserved regulators of a variety of events throughout the cell cycle, expanded from one Plk in yeast to five Plks in mammals (Plk1-5). Plk1 is the best characterized member of the Plk family, homolog to the founding member Polo of Drosophila, and plays a major role in cell cycle progression by triggering G2/M transition. Plk4/Sak (for Snk (Serum-inducible kinase) akin kinase) is a unique member of the family, structurally distinct from other Plk members, with essential functions in centriole duplication. The genome of the trematode parasite Schistosoma mansoni contains only two Plk genes encoding SmPlk1 and SmSak. SmPlk1 has been shown already to be required for gametogenesis and parasite reproduction. In this work, in situ hybridization indicated that the structurally conserved Plk4 protein, SmSak, was largely expressed in schistosome female ovary and vitellarium. Expression of SmSak in Xenopus oocytes confirmed its Plk4 conserved function in centriole amplification. Moreover, analysis of the function of SmSak in meiosis progression of G2-blocked Xenopus oocytes indicated that, in contrast to SmPlk1, SmSak cannot induce G2/M transition in the absence of endogenous Plk1 (Plx1). Unexpectedly, meiosis progression was spontaneously observed in Plx1-depleted oocytes co-expressing SmSak and SmPlk1. Molecular interaction between SmSak and SmPlk1 was confirmed by co-immunoprecipitation of both proteins. These data indicate that Plk1 and Plk4 proteins have the potential to interact and cross-activate in cells, thus attributing for the first time a potential role of Plk4 proteins in meiosis/mitosis entry. This unexpected role of SmSak in meiosis could be relevant to further consider the function of this novel Plk in schistosome reproduction.
Collapse
Affiliation(s)
- Thavy Long
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, University Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Mathieu Vanderstraete
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, University Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Katia Cailliau
- EA 4479, IFR 147, Universite Lille 1 Sciences et Technologies, Villeneuve d’Ascq, France
| | - Marion Morel
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, University Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | - Arlette Lescuyer
- EA 4479, IFR 147, Universite Lille 1 Sciences et Technologies, Villeneuve d’Ascq, France
| | - Nadege Gouignard
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, University Lille Nord de France, Institut Pasteur de Lille, Lille, France
| | | | - Edith Browaeys
- EA 4479, IFR 147, Universite Lille 1 Sciences et Technologies, Villeneuve d’Ascq, France
| | - Colette Dissous
- Center for Infection and Immunity of Lille, Inserm U1019, CNRS-UMR 8204, University Lille Nord de France, Institut Pasteur de Lille, Lille, France
| |
Collapse
|
117
|
Telley IA, Gáspár I, Ephrussi A, Surrey T. Aster migration determines the length scale of nuclear separation in the Drosophila syncytial embryo. J Cell Biol 2012; 197:887-95. [PMID: 22711698 PMCID: PMC3384421 DOI: 10.1083/jcb.201204019] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2012] [Accepted: 05/24/2012] [Indexed: 11/22/2022] Open
Abstract
In the early embryo of many species, comparatively small spindles are positioned near the cell center for subsequent cytokinesis. In most insects, however, rapid nuclear divisions occur in the absence of cytokinesis, and nuclei distribute rapidly throughout the large syncytial embryo. Even distribution and anchoring of nuclei at the embryo cortex are crucial for cellularization of the blastoderm embryo. The principles underlying nuclear dispersal in a syncytium are unclear. We established a cell-free system from individual Drosophila melanogaster embryos that supports successive nuclear division cycles with native characteristics. This allowed us to investigate nuclear separation in predefined volumes. Encapsulating nuclei in microchambers revealed that the early cytoplasm is programmed to separate nuclei a distinct distance. Laser microsurgery revealed an important role of microtubule aster migration through cytoplasmic space, which depended on F-actin and cooperated with anaphase spindle elongation. These activities define a characteristic separation length scale that appears to be a conserved property of developing insect embryos.
Collapse
Affiliation(s)
- Ivo A. Telley
- Cell Biology and Biophysics Unit and Developmental Biology Unit, European Molecular Biology Laboratory, 69126 Heidelberg, Germany
| | - Imre Gáspár
- Cell Biology and Biophysics Unit and Developmental Biology Unit, European Molecular Biology Laboratory, 69126 Heidelberg, Germany
| | - Anne Ephrussi
- Cell Biology and Biophysics Unit and Developmental Biology Unit, European Molecular Biology Laboratory, 69126 Heidelberg, Germany
| | - Thomas Surrey
- Cell Biology and Biophysics Unit and Developmental Biology Unit, European Molecular Biology Laboratory, 69126 Heidelberg, Germany
- Cancer Research UK London Research Institute, Lincoln’s Inn Fields Laboratories, London WC2A 3LY, England, UK
| |
Collapse
|
118
|
Ohta M, Sato M, Yamamoto M. Spindle pole body components are reorganized during fission yeast meiosis. Mol Biol Cell 2012; 23:1799-811. [PMID: 22438582 PMCID: PMC3350546 DOI: 10.1091/mbc.e11-11-0951] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
We show that spindle pole body (SPB) remodeling during meiosis in fission yeast is essential for meiosis. Many SPB components disappear during meiotic prophase and return to the SPBs at meiosis I onset. We found novel functions for Polo kinase/Plo1 and centrin/Cdc31 in the meiotic reorganization of SPB components. During meiosis, the centrosome/spindle pole body (SPB) must be regulated in a manner distinct from that of mitosis to achieve a specialized cell division that will produce gametes. In this paper, we demonstrate that several SPB components are localized to SPBs in a meiosis-specific manner in the fission yeast Schizosaccharomyces pombe. SPB components, such as Cut12, Pcp1, and Spo15, which stay on the SPB during the mitotic cell cycle, disassociate from the SPB during meiotic prophase and then return to the SPB immediately before the onset of meiosis I. Interestingly, the polo kinase Plo1, which normally localizes to the SPB during mitosis, is excluded from them in meiotic prophase, when meiosis-specific, horse-tail nuclear movement occurs. We found that exclusion of Plo1 during this period was essential to properly remodel SPBs, because artificial targeting of Plo1 to SPBs resulted in an overduplication of SPBs. We also found that the centrin Cdc31 was required for meiotic SPB remodeling. Thus Plo1 and a centrin play central roles in the meiotic SPB remodeling, which is essential for generating the proper number of meiotic SPBs and, thereby provide unique characteristics to meiotic divisions.
Collapse
Affiliation(s)
- Midori Ohta
- Department of Biophysics and Biochemistry, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | | | | |
Collapse
|
119
|
Klp10A, a microtubule-depolymerizing kinesin-13, cooperates with CP110 to control Drosophila centriole length. Curr Biol 2012; 22:502-9. [PMID: 22365849 DOI: 10.1016/j.cub.2012.01.046] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2011] [Revised: 12/06/2011] [Accepted: 01/24/2012] [Indexed: 11/22/2022]
Abstract
Klp10A is a kinesin-13 of Drosophila melanogaster that depolymerizes cytoplasmic microtubules. In interphase, it promotes microtubule catastrophe; in mitosis, it contributes to anaphase chromosome movement by enabling tubulin flux. Here we show that Klp10A also acts as a microtubule depolymerase on centriolar microtubules to regulate centriole length. Thus, in both cultured cell lines and the testes, absence of Klp10A leads to longer centrioles that show incomplete 9-fold symmetry at their ends. These structures and associated pericentriolar material undergo fragmentation. We also show that in contrast to mammalian cells where depletion of CP110 leads to centriole elongation, in Drosophila cells it results in centriole length diminution that is overcome by codepletion of Klp10A to give longer centrioles than usual. We discuss how loss of centriole capping by CP110 might have different consequences for centriole length in mammalian and insect cells and also relate these findings to the functional interactions between mammalian CP110 and another kinesin-13, Kif24, that in mammalian cells regulates cilium formation.
Collapse
|
120
|
Mahen R, Venkitaraman AR. Pattern formation in centrosome assembly. Curr Opin Cell Biol 2012; 24:14-23. [PMID: 22245706 DOI: 10.1016/j.ceb.2011.12.012] [Citation(s) in RCA: 65] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2011] [Revised: 12/21/2011] [Accepted: 12/23/2011] [Indexed: 01/01/2023]
Abstract
A striking but poorly explained feature of cell division is the ability to assemble and maintain organelles not bounded by membranes, from freely diffusing components in the cytosol. This process is driven by information transfer across biological scales such that interactions at the molecular scale allow pattern formation at the scale of the organelle. One important example of such an organelle is the centrosome, which is the main microtubule organising centre in the cell. Centrosomes consist of two centrioles surrounded by a cloud of proteins termed the pericentriolar material (PCM). Profound structural and proteomic transitions occur in the centrosome during specific cell cycle stages, underlying events such as centrosome maturation during mitosis, in which the PCM increases in size and microtubule nucleating capacity. Here we use recent insights into the spatio-temporal behaviour of key regulators of centrosomal maturation, including Polo-like kinase 1, CDK5RAP2 and Aurora-A, to propose a model for the assembly and maintenance of the PCM through the mobility and local interactions of its constituent proteins. We argue that PCM structure emerges as a pattern from decentralised self-organisation through a reaction-diffusion mechanism, with or without an underlying template, rather than being assembled from a central structural template alone. Self-organisation of this kind may have broad implications for the maintenance of mitotic structures, which, like the centrosome, exist stably as supramolecular assemblies on the micron scale, based on molecular interactions at the nanometer scale.
Collapse
Affiliation(s)
- Robert Mahen
- The Medical Research Council Cancer Cell Unit, Hutchison/MRC Research Centre, Hills Road, Cambridge, CB2 OXZ, United Kingdom.
| | | |
Collapse
|
121
|
Shifting from clonal to sexual reproduction in aphids: physiological and developmental aspects. Biol Cell 2012; 100:441-51. [DOI: 10.1042/bc20070135] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
122
|
Centrosomes, microtubules and neuronal development. Mol Cell Neurosci 2011; 48:349-58. [DOI: 10.1016/j.mcn.2011.05.004] [Citation(s) in RCA: 117] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2011] [Revised: 05/12/2011] [Accepted: 05/15/2011] [Indexed: 11/24/2022] Open
|
123
|
Hinchcliffe EH. The centrosome and bipolar spindle assembly: does one have anything to do with the other? Cell Cycle 2011; 10:3841-8. [PMID: 22071626 DOI: 10.4161/cc.10.22.18293] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
In vertebrate somatic cells the centrosome functions as the major microtubule-organizing center (MTOC), which splits and separates to form the poles of the mitotic spindle. However, the role of the centriole-containing centrosome in the formation of bipolar mitotic spindles continues to be controversial. Cells normally containing centrosomes are still able to build bipolar spindles after their centrioles have been removed or ablated. In naturally occurring cellular systems that lack centrioles - such as plant cells and many oocytes - bipolar spindles form in the complete absence of canonical centrosomes. These observations have led to the notion that centrosomes play no role during mitosis. However, recent work has re-examined spindle assembly in the absence of centrosomes, both in cells that naturally lack them, and those that have had them experimentally removed. The results of these studies suggest that an appreciation of microtubule network organization- both before and after nuclear envelope breakdown (NEB) - is the key to understanding the mechanisms that regulate spindle assembly and the generation of bipolarity.
Collapse
Affiliation(s)
- Edward H Hinchcliffe
- Section of Cellular Dynamics, The Hormel Institute, University of Minnesota, Austin, MN, USA.
| |
Collapse
|
124
|
Tonelli R, McIntyre A, Camerin C, Walters ZS, Di Leo K, Selfe J, Purgato S, Missiaglia E, Tortori A, Renshaw J, Astolfi A, Taylor KR, Serravalle S, Bishop R, Nanni C, Valentijn LJ, Faccini A, Leuschner I, Formica S, Reis-Filho JS, Ambrosini V, Thway K, Franzoni M, Summersgill B, Marchelli R, Hrelia P, Cantelli-Forti G, Fanti S, Corradini R, Pession A, Shipley J. Antitumor activity of sustained N-myc reduction in rhabdomyosarcomas and transcriptional block by antigene therapy. Clin Cancer Res 2011; 18:796-807. [PMID: 22065083 DOI: 10.1158/1078-0432.ccr-11-1981] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
PURPOSE Rhabdomyosarcomas are a major cause of cancer death in children, described with MYCN amplification and, in the alveolar subtype, transcription driven by the PAX3-FOXO1 fusion protein. Our aim was to determine the prevalence of N-Myc protein expression and the potential therapeutic effects of reducing expression in rhabdomyosarcomas, including use of an antigene strategy that inhibits transcription. EXPERIMENTAL DESIGN Protein expression was assessed by immunohistochemistry. MYCN expression was reduced in representative cell lines by RNA interference and an antigene peptide nucleic acid (PNA) oligonucleotide conjugated to a nuclear localization signal peptide. Associated gene expression changes, cell viability, and apoptosis were analyzed in vitro. As a paradigm for antigene therapy, the effects of systemic treatment of mice with rhabdomyosarcoma cell line xenografts were determined. RESULTS High N-Myc levels were significantly associated with genomic amplification, presence of the PAX3/7-FOXO1 fusion genes, and proliferative capacity. Sustained reduction of N-Myc levels in all rhabdomyosarcoma cell lines that express the protein decreased cell proliferation and increased apoptosis. Positive feedback was shown to regulate PAX3-FOXO1 and N-Myc levels in the alveolar subtype that critically decrease PAX3-FOXO1 levels on reducing N-Myc. Pharmacologic systemic administration of the antigene PNA can eliminate alveolar rhabdomyosarcoma xenografts in mice, without relapse or toxicity. CONCLUSION N-Myc, with its restricted expression in non-fetal tissues, is a therapeutic target to treat rhabdomyosarcomas, and blocking gene transcription using antigene oligonucleotide strategies has therapeutic potential in the treatment of cancer and other diseases that has not been previously realized in vivo.
Collapse
Affiliation(s)
- Roberto Tonelli
- Department of Pediatric Hematology, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
125
|
Brownlee CW, Klebba JE, Buster DW, Rogers GC. The Protein Phosphatase 2A regulatory subunit Twins stabilizes Plk4 to induce centriole amplification. ACTA ACUST UNITED AC 2011; 195:231-43. [PMID: 21987638 PMCID: PMC3198173 DOI: 10.1083/jcb.201107086] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
The PP2A subunit Twins and the SV40 small T antigen, a functional mimic of Twins, counteract Plk4 autophosphorylation, leading to its stabilization and to subsequent centriole amplification. Centriole duplication is a tightly regulated process that must occur only once per cell cycle; otherwise, supernumerary centrioles can induce aneuploidy and tumorigenesis. Plk4 (Polo-like kinase 4) activity initiates centriole duplication and is regulated by ubiquitin-mediated proteolysis. Throughout interphase, Plk4 autophosphorylation triggers its degradation, thus preventing centriole amplification. However, Plk4 activity is required during mitosis for proper centriole duplication, but the mechanism stabilizing mitotic Plk4 is unknown. In this paper, we show that PP2A (Protein Phosphatase 2ATwins) counteracts Plk4 autophosphorylation, thus stabilizing Plk4 and promoting centriole duplication. Like Plk4, the protein level of PP2A’s regulatory subunit, Twins (Tws), peaks during mitosis and is required for centriole duplication. However, untimely Tws expression stabilizes Plk4 inappropriately, inducing centriole amplification. Paradoxically, expression of tumor-promoting simian virus 40 small tumor antigen (ST), a reported PP2A inhibitor, promotes centrosome amplification by an unknown mechanism. We demonstrate that ST actually mimics Tws function in stabilizing Plk4 and inducing centriole amplification.
Collapse
Affiliation(s)
- Christopher W Brownlee
- Department of Cellular and Molecular Medicine, Arizona Cancer Center, University of Arizona, Tucson, AZ 85724, USA
| | | | | | | |
Collapse
|
126
|
The centrosome cycle: Centriole biogenesis, duplication and inherent asymmetries. Nat Cell Biol 2011; 13:1154-60. [PMID: 21968988 DOI: 10.1038/ncb2345] [Citation(s) in RCA: 451] [Impact Index Per Article: 32.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Centrosomes are microtubule-organizing centres of animal cells. They influence the morphology of the microtubule cytoskeleton, function as the base for the primary cilium and serve as a nexus for important signalling pathways. At the core of a typical centrosome are two cylindrical microtubule-based structures termed centrioles, which recruit a matrix of associated pericentriolar material. Cells begin the cell cycle with exactly one centrosome, and the duplication of centrioles is constrained such that it occurs only once per cell cycle and at a specific site in the cell. As a result of this duplication mechanism, the two centrioles differ in age and maturity, and thus have different functions; for example, the older of the two centrioles can initiate the formation of a ciliary axoneme. We discuss spatial aspects of the centrosome duplication cycle, the mechanism of centriole assembly and the possible consequences of the inherent asymmetry of centrioles and centrosomes.
Collapse
|
127
|
Snook RR, Hosken DJ, Karr TL. The biology and evolution of polyspermy: insights from cellular and functional studies of sperm and centrosomal behavior in the fertilized egg. Reproduction 2011; 142:779-92. [PMID: 21964827 DOI: 10.1530/rep-11-0255] [Citation(s) in RCA: 63] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Recent studies of centrosome biogenesis, microtubule dynamics, and their management point to their role in mediating conditions such as aging and cancer. Centrosome dysfunction is also a hallmark of pathological polyspermy. Polyspermy occurs when the oocyte is penetrated by more than one sperm and can be pathological because an excess of centrosomes compromises development. However, in some taxa, multiple sperm enter the egg with no apparent adverse effect on zygote viability. Thus, some taxa can manage excess centrosomes and represent cases of non-pathological polyspermy. While these two forms of polyspermy have long been known, we argue that there is limited understanding of the proximate and ultimate processes that underlie this taxonomic variation in the outcome of polyspermy and that studying this variation could help uncover the control and role(s) of centrosomes during fertilization in particular, but also mitosis in general. To encourage such studies we: 1) describe taxonomic differences in the outcome of polyspermy, 2) discuss mechanistic aspects of reproductive biology that may contribute to the different consequences of polyspermy, and 3) outline the potential selective events that could lead to the evolution of variation in polyspermy outcomes. We suggest that novel insights into centrosome biology may occur by cooperative studies between reproductive and evolutionary biologists focusing on the mechanisms generating variation in the fitness consequences of polyspermy, and in the taxonomic distribution of all these events. The consequent discoveries of these studies may lead to informative insights into cancer and aging along with other centrosome-related diseases and syndromes.
Collapse
Affiliation(s)
- Rhonda R Snook
- Department of Animal and Plant Sciences, University of Sheffield, Sheffield, UK.
| | | | | |
Collapse
|
128
|
Suppression of scant identifies Endos as a substrate of greatwall kinase and a negative regulator of protein phosphatase 2A in mitosis. PLoS Genet 2011; 7:e1002225. [PMID: 21852956 PMCID: PMC3154957 DOI: 10.1371/journal.pgen.1002225] [Citation(s) in RCA: 52] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/18/2011] [Indexed: 12/02/2022] Open
Abstract
Protein phosphatase 2A (PP2A) plays a major role in dephosphorylating the targets of the major mitotic kinase Cdk1 at mitotic exit, yet how it is regulated in mitotic progression is poorly understood. Here we show that mutations in either the catalytic or regulatory twins/B55 subunit of PP2A act as enhancers of gwlScant, a gain-of-function allele of the Greatwall kinase gene that leads to embryonic lethality in Drosophila when the maternal dosage of the mitotic kinase Polo is reduced. We also show that heterozygous mutant endos alleles suppress heterozygous gwlScant; many more embryos survive. Furthermore, heterozygous PP2A mutations make females heterozygous for the strong mutation polo11 partially sterile, even in the absence of gwlScant. Heterozygosity for an endos mutation suppresses this PP2A/polo11 sterility. Homozygous mutation or knockdown of endos leads to phenotypes suggestive of defects in maintaining the mitotic state. In accord with the genetic interactions shown by the gwlScant dominant mutant, the mitotic defects of Endos knockdown in cultured cells can be suppressed by knockdown of either the catalytic or the Twins/B55 regulatory subunits of PP2A but not by the other three regulatory B subunits of Drosophila PP2A. Greatwall phosphorylates Endos at a single site, Ser68, and this is essential for Endos function. Together these interactions suggest that Greatwall and Endos act to promote the inactivation of PP2A-Twins/B55 in Drosophila. We discuss the involvement of Polo kinase in such a regulatory loop. Progression through mitosis requires the addition of phosphate groups onto specific proteins by enzymes collectively known as mitotic protein kinases. At the end of mitosis, these phosphates are removed by protein phosphatases. Whereas we know quite a lot about the mitotic protein kinases, we know much less about the phosphatases. Here we used the fruit fly Drosophila as a model organism to identify a pathway regulating a phosphatase required for mitotic exit. Using mutations in genes for this pathway in the fly and by depleting levels of corresponding proteins from cultured cells, we established the relationships between the gene products. This has revealed that Greatwall mitotic kinase works in concert with the protein Endos to antagonise Protein Phosphatase 2A (PP2A). Specifically, Greatwall and Endos affect the activity of a particular form of PP2A that is associated with only one of the four different regulatory subunits found in Drosophila. We found that phosphorylation of Endos at a defined position by Greatwall kinase is required for its function. Together this provides genetic evidence that the Greatwall mitotic kinase inhibits the PP2A phosphatase required for mitotic exit thus complementing biochemical experiments using frog eggs and indicating the universality of this mechanism.
Collapse
|
129
|
Carvalho-Santos Z, Azimzadeh J, Pereira-Leal JB, Bettencourt-Dias M. Evolution: Tracing the origins of centrioles, cilia, and flagella. J Cell Biol 2011; 194:165-75. [PMID: 21788366 PMCID: PMC3144413 DOI: 10.1083/jcb.201011152] [Citation(s) in RCA: 308] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2010] [Accepted: 06/29/2011] [Indexed: 12/28/2022] Open
Abstract
Centrioles/basal bodies (CBBs) are microtubule-based cylindrical organelles that nucleate the formation of centrosomes, cilia, and flagella. CBBs, cilia, and flagella are ancestral structures; they are present in all major eukaryotic groups. Despite the conservation of their core structure, there is variability in their architecture, function, and biogenesis. Recent genomic and functional studies have provided insight into the evolution of the structure and function of these organelles.
Collapse
Affiliation(s)
| | - Juliette Azimzadeh
- Department of Biochemistry and Biophysics, UCSF Mission Bay, University of California, San Francisco, San Francisco, CA 94143
| | | | | |
Collapse
|
130
|
de Cárcer G, Manning G, Malumbres M. From Plk1 to Plk5: functional evolution of polo-like kinases. Cell Cycle 2011; 10:2255-62. [PMID: 21654194 PMCID: PMC3230524 DOI: 10.4161/cc.10.14.16494] [Citation(s) in RCA: 218] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2011] [Accepted: 05/16/2011] [Indexed: 12/19/2022] Open
Abstract
Mammalian polo-like kinases (Plks) are characterized by the presence of an N-terminal protein kinase domain and a C-terminal polo-box domain (PBD) involved in substrate binding and regulation of kinase activity. Plk1-4 have traditionally been linked to cell cycle progression, genotoxic stress and, more recently, neuron biology. Recently, a fifth mammalian Plk family member, Plk5, has been characterized in murine and human cells. Plk5 is expressed mainly in differentiated tissues such as the cerebellum. Despite apparent loss of catalytic activity and a stop codon in the middle of the human gene, Plk5 proteins retain important functions in neuron biology. Notably, its expression is silenced by epigenetic alterations in brain tumors, such as glioblastomas, and its re-expression prevents cell proliferation of these tumor cells. In this review, we will focus on the non-cell cycle roles of Plks, the biology of the new member of the family and the possible kinase- and PBD-independent functions of polo-like kinases.
Collapse
Affiliation(s)
- Guillermo de Cárcer
- Cell Division and Cancer Group; Spanish National Cancer Research Centre (CNIO); Madrid, Spain
| | - Gerard Manning
- Razavi Newman Center for Bioinformatics; Salk Institute; La Jolla, California USA
| | - Marcos Malumbres
- Cell Division and Cancer Group; Spanish National Cancer Research Centre (CNIO); Madrid, Spain
| |
Collapse
|
131
|
Abstract
The role of centrioles changes as a function of the cell cycle. Centrioles promote formation of spindle poles in mitosis and act as basal bodies to assemble primary cilia in interphase. Stringent regulations govern conversion between these two states. Although the molecular mechanisms have not been fully elucidated, recent findings have begun to shed light on pathways that regulate the conversion of centrioles to basal bodies and vice versa. Emerging studies also provide insights into how defects in the balance between centrosome and cilia function could promote ciliopathies and cancer.
Collapse
Affiliation(s)
- Tetsuo Kobayashi
- Department of Pathology, School of Medicine, New York University Cancer Institute, New York, NY 10016, USA
| | | |
Collapse
|
132
|
Gopalakrishnan J, Mennella V, Blachon S, Zhai B, Smith AH, Megraw TL, Nicastro D, Gygi SP, Agard DA, Avidor-Reiss T. Sas-4 provides a scaffold for cytoplasmic complexes and tethers them in a centrosome. Nat Commun 2011; 2:359. [PMID: 21694707 DOI: 10.1038/ncomms1367] [Citation(s) in RCA: 100] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2010] [Accepted: 05/24/2011] [Indexed: 12/28/2022] Open
Abstract
Centrosomes are conserved organelles that are essential for accurate cell division and cilium formation. A centrosome consists of a pair of centrioles surrounded by a protein network of pericentriolar material (PCM) that is essential for the centrosome's function. In this study, we show that Sas-4 provides a scaffold for cytoplasmic complexes (named S-CAP), which include CNN, Asl and D-PLP, proteins that are all found in the centrosomes at the vicinity of the centriole. When Sas-4 is absent, nascent procentrioles are unstable and lack PCM, and functional centrosomes are not generated. When Sas-4 is mutated, so that it cannot form S-CAP complexes, centrosomes are present but with dramatically reduced levels of PCM. Finally, purified S-CAP complexes or recombinant Sas-4 can bind centrosomes stripped of PCM, whereas recombinant CNN or Asl cannot. In summary, PCM assembly begins in the cytosol where Sas-4 provides a scaffold for pre-assembled cytoplasmic complexes before tethering of the complexes in a centrosome.
Collapse
|
133
|
Wang WJ, Soni RK, Uryu K, Bryan Tsou MF. The conversion of centrioles to centrosomes: essential coupling of duplication with segregation. J Cell Biol 2011; 193:727-39. [PMID: 21576395 PMCID: PMC3166877 DOI: 10.1083/jcb.201101109] [Citation(s) in RCA: 126] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2011] [Accepted: 04/20/2011] [Indexed: 12/02/2022] Open
Abstract
Centrioles are self-reproducing organelles that form the core structure of centrosomes or microtubule-organizing centers (MTOCs). However, whether duplication and MTOC organization reflect innate activities of centrioles or activities acquired conditionally is unclear. In this paper, we show that newly formed full-length centrioles had no inherent capacity to duplicate or to organize pericentriolar material (PCM) but acquired both after mitosis through a Plk1-dependent modification that occurred in early mitosis. Modified centrioles initiated PCM recruitment in G1 and segregated equally in mitosis through association with spindle poles. Conversely, unmodified centrioles segregated randomly unless passively tethered to modified centrioles. Strikingly, duplication occurred only in centrioles that were both modified and disengaged, whereas unmodified centrioles, engaged or not, were "infertile," indicating that engagement specifically blocks modified centrioles from reduplication. These two requirements, centriole modification and disengagement, fully exclude unlimited duplication in one cell cycle. We thus uncovered a Plk1-dependent mechanism whereby duplication and segregation are coupled to maintain centriole homeostasis.
Collapse
Affiliation(s)
- Won-Jing Wang
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Rajesh Kumar Soni
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| | - Kunihiro Uryu
- Electron Microscopy Resource Center, Rockefeller University, New York, NY 10065
| | - Meng-Fu Bryan Tsou
- Cell Biology Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065
| |
Collapse
|
134
|
CDC25B associates with a centrin 2-containing complex and is involved in maintaining centrosome integrity. Biol Cell 2011; 103:55-68. [PMID: 21091437 PMCID: PMC3025493 DOI: 10.1042/bc20100111] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Background information. CDC25 (cell division cycle 25) phosphatases function as activators of CDK (cyclin-dependent kinase)–cyclin complexes to regulate progression through the CDC. We have recently identified a pool of CDC25B at the centrosome of interphase cells that plays a role in regulating centrosome numbers. Results. In the present study, we demonstrate that CDC25B forms a close association with Ctn (centrin) proteins at the centrosome. This interaction involves both N- and C-terminal regions of CDC25B and requires CDC25B binding to its CDK–cyclin substrates. However, the interaction is not dependent on the enzyme activity of CDC25B. Although CDC25B appears to bind indirectly to Ctn2, this association is pertinent to CDC25B localization at the centrosome. We further demonstrate that CDC25B plays a role in maintaining the overall integrity of the centrosome, by regulating the centrosome levels of multiple centrosome proteins, including that of Ctn2. Conclusions. Our results therefore suggest that CDC25B associates with a Ctn2-containing multiprotein complex in the cytoplasm, which targets it to the centrosome, where it plays a role in maintaining the centrosome levels of Ctn2 and a number of other centrosome components.
Collapse
|
135
|
Syed N, Coley HM, Sehouli J, Koensgen D, Mustea A, Szlosarek P, McNeish I, Blagden SP, Schmid P, Lovell DP, Hatzimichael E, Crook T. Polo-like kinase Plk2 is an epigenetic determinant of chemosensitivity and clinical outcomes in ovarian cancer. Cancer Res 2011; 71:3317-27. [PMID: 21402713 DOI: 10.1158/0008-5472.can-10-2048] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Resistance to platinum- and taxane-based chemotherapy remains a major clinical impediment to effective management of epithelial ovarian cancer (EOC). To gain insights into resistance mechanisms, we compared gene and confirmed expression patterns of novel EOC cell lines selected for paclitaxel and carboplatin resistance. Here, we report that resistance can be conferred by downregulation of the Polo-like kinase Plk2. Mechanistic investigations revealed that downregulation occurred at the level of transcription via associated DNA methylation of the CpG island in the Plk2 gene promoter in cell lines, primary tumors, and patient sera. Inhibitory RNA (RNAi)-mediated knockdown and ectopic overexpression established a critical functional role for Plk2 in determining apoptotic sensitivity to paclitaxel and carboplatin. In drug-resistant human EOC cell lines, Plk2 promoter methylation varied with the degree of drug resistance and transcriptional silencing of the promoter. RNAi-dependent knockdown of Plk2 abrogated G(2)-M cell-cycle blockade by paclitaxel, conferring resistance to both paclitaxel and platinum. Conversely, ectopic expression of Plk2 restored sensitivity to G(2)-M cell-cycle blockade and cytotoxicity triggered by paclitaxel. In clinical cases, DNA methylation of the Plk2 CpG island in tumor tissue was associated with a higher risk of relapse in patients treated postoperatively with carboplatin and paclitaxel (P = 0.003). This trend was also reflected in the analysis of matched serum samples. Taken together, our results implicate Plk2 as a clinically important determinant of chemosensitivity, in support of the candidacy of Plk2 as a theranostic marker to inform EOC management.
Collapse
Affiliation(s)
- Nelofer Syed
- Faculty of Medicine, Imperial College London, Neuroscience Centre, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
136
|
Hatch E, Stearns T. The life cycle of centrioles. COLD SPRING HARBOR SYMPOSIA ON QUANTITATIVE BIOLOGY 2011; 75:425-31. [PMID: 21502410 DOI: 10.1101/sqb.2010.75.054] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
Centrioles organize the centrosome and nucleate the ciliary axoneme, and the centriole life cycle has many parallels to the chromosome cycle. The centriole cycle in animals begins at fertilization with the contribution of two centrioles by the male gamete. In the ensuing cell cycles, the duplication of centrioles is controlled temporally, spatially, and numerically. As a consequence of the duplication mechanism, the two centrioles in a typical interphase cell are of different ages and have different functions. Here, we discuss how new centrioles are assembled, what mechanisms limit centriole number, and the consequences of the inherent asymmetry of centriole duplication and segregation.
Collapse
Affiliation(s)
- E Hatch
- Department of Biology, Stanford University, Stanford, California 94305, USA
| | | |
Collapse
|
137
|
Di Ventura B, Sourjik V. Self-organized partitioning of dynamically localized proteins in bacterial cell division. Mol Syst Biol 2011; 7:457. [PMID: 21206490 PMCID: PMC3049411 DOI: 10.1038/msb.2010.111] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2010] [Accepted: 11/29/2010] [Indexed: 11/29/2022] Open
Abstract
The Min proteins are equally partitioned between daughter cells at division. The mechanism allowing this accurate distribution is intrinsic to the Min system. Individual oscillations appear in each daughter cell before cytokinesis is completed. Diffusion through the gradually constricting septum is key to this process.
One of the central problems of cell division is the proper distribution of all components to the progeny, which is essential to avoid the adverse effects that an unequal distribution—when not actively sought for differentiation purposes—would have on cell growth and regulation. Fast-growing bacterial cells are particularly exposed to this problem, as corrections of inequalities in protein distribution by biosynthesis could be too slow compared with the generation time. Moreover, bacterial proteins are usually stable and, therefore, their levels are not easily adjustable in one generation. Although for homogeneously distributed proteins an equal partitioning at division is readily achieved, dedicated mechanisms must exist to segregate proteins or cellular structures that possess a specific cellular location, but these mechanisms are largely unknown. An extremely challenging case is represented by the Min proteins—MinC, MinD and MinE—that in Escherichia coli oscillate from pole to pole to inhibit the assembly of the cytokinetic ring anywhere except at mid-cell. The oscillations stem solely from local interactions among the proteins at the cytoplasmic membrane. In this work, we show that self-organization is also responsible for the distribution of Min proteins between daughter cells at division. Our combined experimental and computational results demonstrate that the equal protein partitioning stems from interplay between the self-organized oscillations and changes in the cell geometry during division, with no need for any additional regulatory network. Using high-resolution time-lapse microscopy, we detected changes in the Min oscillatory regime that correlate with the amount of septal constriction (Figure 3A, B, E and F). When the cell is unconstricted, oscillations run from pole to pole (Figure 3A). When the constriction reaches a certain degree, typically corresponding to a septum of 600–500 nm, the oscillations change into a ‘half-cell to half-cell' mode during which the fluorescence covers, alternatively, the entire membrane of one daughter cell (Figure 3A, B and E). This mode persists for several minutes and, just before cell division when the septum is smaller than 200 nm, gives way to yet another oscillatory pattern wherein oscillations split and run independently in each daughter cell (Figure 3A, B and F). Our 3D stochastic computer simulations revealed that these different regimes are an outcome of impaired diffusion through the closing septum and that oscillations finally split because protein exchange between the two future daughter cells becomes critically slow, so that independent oscillations on both sides of the septum become the stable solution (Figure 6A and E). FRAP experiments confirmed that the presence of the septum is enough to slow down the passage of molecules from one side of the cell to the other (Figure 6F). As oscillations become independent in each daughter cell before completion of cytokinesis, diffusion through the septum can still occur, which further equilibrates the levels of the Min proteins in the daughter cells (Figure 3C and D and Figure 6B, C and D). In summary, our results suggest that E. coli cells have evolved a very simple and elegant way to ensure equal concentrations of the Min proteins in the progeny, based entirely on the intrinsic self-organizing properties of the Min system. This provides a clear example of self-organizing partitioning, which we expect to be a widely used strategy given its simplicity and low evolutionary cost. How cells manage to get equal distribution of their structures and molecules at cell division is a crucial issue in biology. In principle, a feedback mechanism could always ensure equality by measuring and correcting the distribution in the progeny. However, an elegant alternative could be a mechanism relying on self-organization, with the interplay between system properties and cell geometry leading to the emergence of equal partitioning. The problem is exemplified by the bacterial Min system that defines the division site by oscillating from pole to pole. Unequal partitioning of Min proteins at division could negatively impact system performance and cell growth because of loss of Min oscillations and imprecise mid-cell determination. In this study, we combine live cell and computational analyses to show that known properties of the Min system together with the gradual reduction of protein exchange through the constricting septum are sufficient to explain the observed highly precise spontaneous protein partitioning. Our findings reveal a novel and effective mechanism of protein partitioning in dividing cells and emphasize the importance of self-organization in basic cellular processes.
Collapse
Affiliation(s)
- Barbara Di Ventura
- Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, Heidelberg, Germany.
| | | |
Collapse
|
138
|
Eckerdt F, Yamamoto TM, Lewellyn AL, Maller JL. Identification of a polo-like kinase 4-dependent pathway for de novo centriole formation. Curr Biol 2011; 21:428-32. [PMID: 21353560 PMCID: PMC3093158 DOI: 10.1016/j.cub.2011.01.072] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2010] [Revised: 12/30/2010] [Accepted: 01/28/2011] [Indexed: 12/26/2022]
Abstract
Supernumerary centrosomes are a key cause of genomic instability in cancer cells. New centrioles can be generated by duplication with a mother centriole as a platform or, in the absence of preexisting centrioles, by formation de novo. Polo-like kinase 4 (Plk4) regulates both modes of centriole biogenesis, and Plk4 deregulation has been linked to tumor development. We show that Plx4, the Xenopus homolog of mammalian Plk4 and Drosophila Sak, induces de novo centriole formation in vivo in activated oocytes and in egg extracts, but not in immature or in vitro matured oocytes. Both kinase activity and the polo-box domain of Plx4 are required for de novo centriole biogenesis. Polarization microscopy in "cycling" egg extracts demonstrates that de novo centriole formation is independent of Cdk2 activity, a major difference compared to template-driven centrosome duplication that is linked to the nuclear cycle and requires cyclinA/E/Cdk2. Moreover, we show that the Mos-MAPK pathway blocks Plx4-dependent de novo centriole formation before fertilization, thereby ensuring paternal inheritance of the centrosome. The results define a new system for studying the biochemical and molecular basis of de novo centriole formation and centriole biogenesis in general.
Collapse
Affiliation(s)
- Frank Eckerdt
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Tomomi M. Yamamoto
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - Andrea L. Lewellyn
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| | - James L. Maller
- Department of Pharmacology, University of Colorado School of Medicine, Aurora, CO 80045
| |
Collapse
|
139
|
van Breugel M, Hirono M, Andreeva A, Yanagisawa HA, Yamaguchi S, Nakazawa Y, Morgner N, Petrovich M, Ebong IO, Robinson CV, Johnson CM, Veprintsev D, Zuber B. Structures of SAS-6 suggest its organization in centrioles. Science 2011; 331:1196-9. [PMID: 21273447 DOI: 10.1126/science.1199325] [Citation(s) in RCA: 252] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Centrioles are cylindrical, ninefold symmetrical structures with peripheral triplet microtubules strictly required to template cilia and flagella. The highly conserved protein SAS-6 constitutes the center of the cartwheel assembly that scaffolds centrioles early in their biogenesis. We determined the x-ray structure of the amino-terminal domain of SAS-6 from zebrafish, and we show that recombinant SAS-6 self-associates in vitro into assemblies that resemble cartwheel centers. Point mutations are consistent with the notion that centriole formation in vivo depends on the interactions that define the self-assemblies observed here. Thus, these interactions are probably essential to the structural organization of cartwheel centers.
Collapse
Affiliation(s)
- Mark van Breugel
- Medical Research Council-Laboratory of Molecular Biology (MRC-LMB), Hills Road, Cambridge, UK.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
140
|
de Cárcer G, Escobar B, Higuero AM, García L, Ansón A, Pérez G, Mollejo M, Manning G, Meléndez B, Abad-Rodríguez J, Malumbres M. Plk5, a polo box domain-only protein with specific roles in neuron differentiation and glioblastoma suppression. Mol Cell Biol 2011; 31:1225-39. [PMID: 21245385 PMCID: PMC3067912 DOI: 10.1128/mcb.00607-10] [Citation(s) in RCA: 85] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2010] [Revised: 07/22/2010] [Accepted: 01/09/2011] [Indexed: 02/06/2023] Open
Abstract
Polo-like kinases (Plks) are characterized by the presence of a specific domain, known as the polo box (PBD), involved in protein-protein interactions. Plk1 to Plk4 are involved in centrosome biology as well as the regulation of mitosis, cytokinesis, and cell cycle checkpoints in response to genotoxic stress. We have analyzed here the new member of the vertebrate family, Plk5, a protein that lacks the kinase domain in humans. Plk5 does not seem to have a role in cell cycle progression; in fact, it is downregulated in proliferating cells and accumulates in quiescent cells. This protein is mostly expressed in the brain of both mice and humans, and it modulates the formation of neuritic processes upon stimulation of the brain-derived neurotrophic factor (BDNF)/nerve growth factor (NGF)-Ras pathway in neurons. The human PLK5 gene is significantly silenced in astrocytoma and glioblastoma multiforme by promoter hypermethylation, suggesting a tumor suppressor function for this gene. Indeed, overexpression of Plk5 has potent apoptotic effects in these tumor cells. Thus, Plk5 seems to have evolved as a kinase-deficient PBD-containing protein with nervous system-specific functions and tumor suppressor activity in brain cancer.
Collapse
Affiliation(s)
- Guillermo de Cárcer
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain, Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain, Unidad de Investigación de Patología Molecular, Hospital Virgen de la Salud, Toledo, Spain, Razavi Newman Center for Bioinformatics, Salk Institute, La Jolla, California
| | - Beatriz Escobar
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain, Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain, Unidad de Investigación de Patología Molecular, Hospital Virgen de la Salud, Toledo, Spain, Razavi Newman Center for Bioinformatics, Salk Institute, La Jolla, California
| | - Alonso M. Higuero
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain, Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain, Unidad de Investigación de Patología Molecular, Hospital Virgen de la Salud, Toledo, Spain, Razavi Newman Center for Bioinformatics, Salk Institute, La Jolla, California
| | - Laura García
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain, Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain, Unidad de Investigación de Patología Molecular, Hospital Virgen de la Salud, Toledo, Spain, Razavi Newman Center for Bioinformatics, Salk Institute, La Jolla, California
| | - Alejandra Ansón
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain, Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain, Unidad de Investigación de Patología Molecular, Hospital Virgen de la Salud, Toledo, Spain, Razavi Newman Center for Bioinformatics, Salk Institute, La Jolla, California
| | - Gema Pérez
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain, Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain, Unidad de Investigación de Patología Molecular, Hospital Virgen de la Salud, Toledo, Spain, Razavi Newman Center for Bioinformatics, Salk Institute, La Jolla, California
| | - Manuela Mollejo
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain, Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain, Unidad de Investigación de Patología Molecular, Hospital Virgen de la Salud, Toledo, Spain, Razavi Newman Center for Bioinformatics, Salk Institute, La Jolla, California
| | - Gerard Manning
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain, Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain, Unidad de Investigación de Patología Molecular, Hospital Virgen de la Salud, Toledo, Spain, Razavi Newman Center for Bioinformatics, Salk Institute, La Jolla, California
| | - Bárbara Meléndez
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain, Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain, Unidad de Investigación de Patología Molecular, Hospital Virgen de la Salud, Toledo, Spain, Razavi Newman Center for Bioinformatics, Salk Institute, La Jolla, California
| | - José Abad-Rodríguez
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain, Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain, Unidad de Investigación de Patología Molecular, Hospital Virgen de la Salud, Toledo, Spain, Razavi Newman Center for Bioinformatics, Salk Institute, La Jolla, California
| | - Marcos Malumbres
- Cell Division and Cancer Group, Centro Nacional de Investigaciones Oncológicas, Madrid, Spain, Membrane Biology and Axonal Repair Laboratory, Hospital Nacional de Parapléjicos, Toledo, Spain, Unidad de Investigación de Patología Molecular, Hospital Virgen de la Salud, Toledo, Spain, Razavi Newman Center for Bioinformatics, Salk Institute, La Jolla, California
| |
Collapse
|
141
|
Abstract
Centrioles are conserved microtubule-based organelles that lie at the core of the animal centrosome and play a crucial role in nucleating the formation of cilia and flagella in most eukaryotes. Centrioles have a complex ultrastructure with ninefold symmetry and a well-defined length. This structure is assembled from a host of proteins, including a variety of disease gene products. Over a century after the discovery of centrioles, the mechanisms underlying the assembly of these fascinating organelles, in particular the establishment of ninefold symmetry and the control of centriole length, are now starting to be uncovered.
Collapse
Affiliation(s)
- Juliette Azimzadeh
- Department of Biochemistry and Biophysics, University of California, San Francisco, 94143, USA
| | | |
Collapse
|
142
|
Abstract
In preparation for mitosis, the centrosome doubles once and only once to provide the two poles of the mitotic spindle. The presence of more than two centrosomes increases the chances that mitosis will be multipolar, and chromosomes will be distributed unequally. Since the number of mother-daughter centriole pairs determines the number of centrosomes, it is important that only one daughter centriole is assembled at, but slightly separated from, the proximal end of each mother centriole. This numerical and spatial specificity has led to the belief that a 'template' on the mother centriole provides a unique site for procentriole assembly. We review observations that are leading to the demise of this intuitively attractive idea. In its place, we are left with the notion that pericentriolar material at the wall of the mother centriole provides a local environment that promotes the assembly of a macromolecular complex that seeds the daughter centriole. Even though the system normally behaves in a digital fashion to go from zero to just one daughter centriole per mother, this behaviour appears to be based in the precise analogue control of multiple proteins, their activities, and the structure provided by the mother centriole.
Collapse
Affiliation(s)
- Greenfield Sluder
- Department of Cell Biology, University of Massachusetts Medical School, Worcester, MA 01605, USA.
| | | |
Collapse
|
143
|
Hatch EM, Kulukian A, Holland AJ, Cleveland DW, Stearns T. Cep152 interacts with Plk4 and is required for centriole duplication. ACTA ACUST UNITED AC 2010; 191:721-9. [PMID: 21059850 PMCID: PMC2983069 DOI: 10.1083/jcb.201006049] [Citation(s) in RCA: 214] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Cep152, the orthologue of Drosophila Asterless, is a Plk4 target that functions with Plk4 in centriole assembly. Centrioles are microtubule-based structures that organize the centrosome and nucleate cilia. Centrioles duplicate once per cell cycle, and duplication requires Plk4, a member of the Polo-like kinase family; however, the mechanism linking Plk4 activity and centriole formation is unknown. In this study, we show in human and frog cells that Plk4 interacts with the centrosome protein Cep152, the orthologue of Drosophila melanogaster Asterless. The interaction requires the N-terminal 217 residues of Cep152 and the crypto Polo-box of Plk4. Cep152 and Plk4 colocalize at the centriole throughout the cell cycle. Overexpression of Cep152 (1–217) mislocalizes Plk4, but both Cep152 and Plk4 are able to localize to the centriole independently of the other. Depletion of Cep152 prevents both normal centriole duplication and Plk4-induced centriole amplification and results in a failure to localize Sas6 to the centriole, an early step in duplication. Cep152 can be phosphorylated by Plk4 in vitro, suggesting that Cep152 acts with Plk4 to initiate centriole formation.
Collapse
Affiliation(s)
- Emily M Hatch
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | | | | |
Collapse
|
144
|
Yang CH, Kasbek C, Majumder S, Yusof AM, Fisk HA. Mps1 phosphorylation sites regulate the function of centrin 2 in centriole assembly. Mol Biol Cell 2010; 21:4361-72. [PMID: 20980622 PMCID: PMC3002389 DOI: 10.1091/mbc.e10-04-0298] [Citation(s) in RCA: 43] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
We show that while Centrin2 is dispensable for centriole assembly, it is an Mps1 substrate that stimulates canonical and aberrant centriole assembly by two different Mps1-dependent mechanisms, HsSas-6–dependent and –independent. Centrin2 phosphorylation is also required for the ability of Mps1 to drive production of mature centrioles. The nondegradable Mps1Δ12/13 protein drives centriole overproduction, suggesting that Mps1 phosphorylates a subset of centrosomal proteins to drive the assembly of new centrioles. Here we identify three Mps1 phosphorylation sites within the centriolar protein Centrin 2 (Cetn2). Although centrioles can be assembled in the absence of Cetn2, centriole assembly is attenuated in the absence of Cetn2. While wild-type Cetn2 can compensate for this attenuation, a nonphosphorylatable version cannot. In addition, overexpressing Cetn2 causes Mps1-dependent centriole overproduction that requires each of the three Mps1 phosphorylation sites within Cetn2 and is greatly exacerbated by mimicking phosphorylation at any of these sites. Wild-type Cetn2 generates excess foci that are competent as mitotic spindle poles in HsSas-6–depleted cells, suggesting that Cetn2 can organize a subset of centriolar proteins independently of cartwheels. However, centriole overproduction caused by a phosphomimetic Cetn2 mutant requires HsSas-6, suggesting that Cetn2 phosphorylation stimulates the canonical centriole assembly pathway. Moreover, in the absence of Cetn2, Mps1Δ12/13 cannot drive the production of mature centrioles capable of recruiting γ-Tubulin, and a nonphosphorylatable Cetn2 mutant cannot compensate for this defect and exacerbates Cetn2 depletion. Together, our data suggest that Mps1-dependent phosphorylation of Cetn2 stimulates the canonical centriole assembly pathway.
Collapse
Affiliation(s)
- Ching-Hui Yang
- Department of Molecular Genetics, Ohio State University, Columbus OH 43210-1292, USA
| | | | | | | | | |
Collapse
|
145
|
Riparbelli MG, Callaini G. Detachment of the basal body from the sperm tail is not required to organize functional centrosomes during Drosophila embryogenesis. Cytoskeleton (Hoboken) 2010; 67:251-8. [PMID: 20198700 DOI: 10.1002/cm.20440] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
The formation of the zygotic spindle at fertilization requires in most animals the central contribution of the sperm-inherited basal body that recruits maternal cytoplasmic components to assemble a functional centrosome. Although as a general rule the entire sperm enters the egg during fertilization, the fate of the sperm basal body during further development is not clear. We have found that the sperm centriole remains linked to the apical end of the sperm tail through early development and is able to duplicate and recruit maternal components to assemble functional centrosomes. The basal body, therefore, needs not to be detached from the sperm tail to perform its centriole function during organization of the centrosome. By cellularization and early gastrulation the sperm centriole has lost both these capabilities. The persistence of the sperm axoneme and its close association with its centriole during development presents a paradox. If the sperm centriole is a true basal body, then the widespread idea that cells with a primary cilium must resorb the axoneme and transform the basal body into a centriole to enable proper mitosis will have to be re-examined.
Collapse
|
146
|
Dzhindzhev NS, Yu QD, Weiskopf K, Tzolovsky G, Cunha-Ferreira I, Riparbelli M, Rodrigues-Martins A, Bettencourt-Dias M, Callaini G, Glover DM. Asterless is a scaffold for the onset of centriole assembly. Nature 2010; 467:714-8. [PMID: 20852615 DOI: 10.1038/nature09445] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 08/27/2010] [Indexed: 02/04/2023]
Abstract
Centrioles are found in the centrosome core and, as basal bodies, at the base of cilia and flagella. Centriole assembly and duplication is controlled by Polo-like-kinase 4 (Plk4): these processes fail if Plk4 is downregulated and are promoted by Plk4 overexpression. Here we show that the centriolar protein Asterless (Asl; human orthologue CEP152) provides a conserved molecular platform, the amino terminus of which interacts with the cryptic Polo box of Plk4 whereas the carboxy terminus interacts with the centriolar protein Sas-4 (CPAP in humans). Drosophila Asl and human CEP152 are required for the centrosomal loading of Plk4 in Drosophila and CPAP in human cells, respectively. Depletion of Asl or CEP152 caused failure of centrosome duplication; their overexpression led to de novo centriole formation in Drosophila eggs, duplication of free centrosomes in Drosophila embryos, and centrosome amplification in cultured Drosophila and human cells. Overexpression of a Plk4-binding-deficient mutant of Asl prevented centriole duplication in cultured cells and embryos. However, this mutant protein was able to promote microtubule organizing centre (MTOC) formation in both embryos and oocytes. Such MTOCs had pericentriolar material and the centriolar protein Sas-4, but no centrioles at their core. Formation of such acentriolar MTOCs could be phenocopied by overexpression of Sas-4 in oocytes or embryos. Our findings identify independent functions for Asl as a scaffold for Plk4 and Sas-4 that facilitates self-assembly and duplication of the centriole and organization of pericentriolar material.
Collapse
Affiliation(s)
- Nikola S Dzhindzhev
- Cancer Research UK Cell Cycle Genetics Group, University of Cambridge, Department of Genetics, Downing Street, Cambridge CB2 3EH, UK.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Collins ES, Hornick JE, Durcan TM, Collins NS, Archer W, Karanjeet KB, Vaughan KT, Hinchcliffe EH. Centrosome biogenesis continues in the absence of microtubules during prolonged S-phase arrest. J Cell Physiol 2010; 225:454-65. [PMID: 20458743 DOI: 10.1002/jcp.22222] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
When CHO cells are arrested in S-phase, they undergo repeated rounds of centrosome duplication without cell-cycle progression. While the increase is slow and asynchronous, the number of centrosomes in these cells does rise with time. To investigate mechanisms controlling this duplication, we have arrested CHO cells in S-phase for up to 72 h, and coordinately inhibited new centriole formation by treatment with the microtubule poison colcemid. We find that in such cells, the pre-existing centrosomes remain, and a variable number of foci--containing alpha/gamma-tubulin and centrin 2--assemble at the nuclear periphery. When the colcemid is washed out, the nuclear-associated foci disappear, and cells assemble new centriole-containing centrosomes, which accumulate the centriole scaffold protein SAS-6, nucleate microtubule asters, and form functional mitotic spindle poles. The number of centrosomes that assemble following colcemid washout increases with duration of S-phase arrest, even though the number of nuclear-associated foci or pre-existing centrosomes does not increase. This suggests that during S-phase, a cryptic generative event occurs repeatedly, even in the absence of new triplet microtubule assembly. When triplet microtubule assembly is restored, these cryptic generative events become realized, and multiple centriole-containing centrosomes assemble.
Collapse
Affiliation(s)
- Elizabeth S Collins
- Cellular Dynamics Section, The Hormel Institute, University of Minnesota, Austin, Minnesota, USA
| | | | | | | | | | | | | | | |
Collapse
|
148
|
Müller H, Schmidt D, Steinbrink S, Mirgorodskaya E, Lehmann V, Habermann K, Dreher F, Gustavsson N, Kessler T, Lehrach H, Herwig R, Gobom J, Ploubidou A, Boutros M, Lange BMH. Proteomic and functional analysis of the mitotic Drosophila centrosome. EMBO J 2010; 29:3344-57. [PMID: 20818332 PMCID: PMC2957212 DOI: 10.1038/emboj.2010.210] [Citation(s) in RCA: 92] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2010] [Accepted: 08/04/2010] [Indexed: 11/09/2022] Open
Abstract
Regulation of centrosome structure, duplication and segregation is integrated into cellular pathways that control cell cycle progression and growth. As part of these pathways, numerous proteins with well-established non-centrosomal localization and function associate with the centrosome to fulfill regulatory functions. In turn, classical centrosomal components take up functional and structural roles as part of other cellular organelles and compartments. Thus, although a comprehensive inventory of centrosome components is missing, emerging evidence indicates that its molecular composition reflects the complexity of its functions. We analysed the Drosophila embryonic centrosomal proteome using immunoisolation in combination with mass spectrometry. The 251 identified components were functionally characterized by RNA interference. Among those, a core group of 11 proteins was critical for centrosome structure maintenance. Depletion of any of these proteins in Drosophila SL2 cells resulted in centrosome disintegration, revealing a molecular dependency of centrosome structure on components of the protein translation machinery, actin- and RNA-binding proteins. In total, we assigned novel centrosome-related functions to 24 proteins and confirmed 13 of these in human cells.
Collapse
Affiliation(s)
- Hannah Müller
- Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - David Schmidt
- Leibniz Institute for Age Research—Fritz Lipmann Institute, Jena, Germany
| | - Sandra Steinbrink
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and University of Heidelberg, Faculty of Medicine Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany
| | - Ekaterina Mirgorodskaya
- Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Verena Lehmann
- Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Karin Habermann
- Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Felix Dreher
- Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Niklas Gustavsson
- Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Thomas Kessler
- Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Hans Lehrach
- Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Ralf Herwig
- Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Johan Gobom
- Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| | - Aspasia Ploubidou
- Leibniz Institute for Age Research—Fritz Lipmann Institute, Jena, Germany
| | - Michael Boutros
- German Cancer Research Center (DKFZ), Division of Signaling and Functional Genomics and University of Heidelberg, Faculty of Medicine Mannheim, Department of Cell and Molecular Biology, Heidelberg, Germany
| | - Bodo M H Lange
- Department of Vertebrate Genomics, Max-Planck Institute for Molecular Genetics, Berlin, Germany
| |
Collapse
|
149
|
Abstract
Polo-like kinase 4 (PLK4) is a unique member of the Polo-like family of kinases that shares little homology with its siblings and has an essential role in centriole duplication. The turn-over of this kinase must be strictly controlled to prevent centriole amplification. This is achieved, in part, by an autoregulatory mechanism, whereby PLK4 autophosphorylates residues in a PEST sequence located carboxy-terminal to its catalytic domain. Phosphorylated PLK4 is subsequently recognized by the SCF complex, ubiquitinylated and targeted to the proteasome for degradation. Recent data have also shown that active PLK4 is restricted to the centrosome, a mechanism that could serve to prevent aberrant centriole assembly elsewhere in the cell. While significant advances have been made in understanding how PLK4 is regulated it is certain that additional regulatory mechanisms exist to safeguard the fidelity of centriole duplication. Here, we overview past and present data discussing the regulation and functions of PLK4.
Collapse
|
150
|
RENDÓN PEDROA, BUTLER RONALDD, WOOD ROGERJ. Changes in sperm tail development associated with Y chromosome meiotic drive leading to an excess of males in the medfly Ceratitis capitata (Diptera: Tephritidae). Biol J Linn Soc Lond 2010. [DOI: 10.1111/j.1095-8312.2010.01507.x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|