101
|
Stein V, Alexandrov K. Synthetic protein switches: design principles and applications. Trends Biotechnol 2015; 33:101-10. [DOI: 10.1016/j.tibtech.2014.11.010] [Citation(s) in RCA: 105] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2014] [Revised: 11/27/2014] [Accepted: 11/29/2014] [Indexed: 12/22/2022]
|
102
|
Porter JR, Batchelor E. Using computational modeling and experimental synthetic perturbations to probe biological circuits. Methods Mol Biol 2015; 1244:259-76. [PMID: 25487101 PMCID: PMC6311997 DOI: 10.1007/978-1-4939-1878-2_12] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/10/2023]
Abstract
This chapter describes approaches for using computational modeling of synthetic biology perturbations to analyze endogenous biological circuits, with a particular focus on signaling and metabolic pathways. We describe a bottom-up approach in which ordinary differential equations are constructed to model the core interactions of a pathway of interest. We then discuss methods for modeling synthetic perturbations that can be used to investigate properties of the natural circuit. Keeping in mind the importance of the interplay between modeling and experimentation, we next describe experimental methods for constructing synthetic perturbations to test the computational predictions. Finally, we present a case study of the p53 tumor-suppressor pathway, illustrating the process of modeling the core network, designing informative synthetic perturbations in silico, and testing the predictions in vivo.
Collapse
Affiliation(s)
- Joshua R. Porter
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room B1B42, 10 Center Dr., MSC 1500, Bethesda, MD, 20892, USA
| | - Eric Batchelor
- Laboratory of Pathology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Building 10, Room B1B42, 10 Center Dr., MSC 1500, Bethesda, MD, 20892, USA
| |
Collapse
|
103
|
Abstract
Synthetic gene networks have evolved from simple proof-of-concept circuits to complex therapy-oriented networks over the past 15 years. This advancement has greatly facilitated the expansion of the emerging field of synthetic biology. In this review, we highlight the main applications ofsynthetic gene networks in understanding biological design principles, developing biosensors for diagnosis, producing industrial and biomedical compounds, and treating human diseases. Finally, we outline current challenges and future prospects of synthetic gene networks for advancing practical applications.
Collapse
Affiliation(s)
- Fuqing Wu
- Wuhan Institute of Virology, Chinese Academy of Sciences. Arizona State University, Tempe, AZ 85287, USA
| | - Xiao Wang
- Arizona State University. University of North Carolina at Chapel Hill in 2006
| |
Collapse
|
104
|
Abstract
The Shoc2 protein has been implicated in the positive regulation of the Ras-ERK pathway by increasing the functional binding interaction between Ras and Raf, leading to increased ERK activity. Here we found that Shoc2 overexpression induced sustained ERK phosphorylation, notably in the case of EGF stimulation, and Shoc2 knockdown inhibited ERK activation. We demonstrate that ectopic overexpression of human Shoc2 in PC12 cells significantly promotes neurite extension in the presence of EGF, a stimulus that induces proliferation rather than differentiation in these cells. Finally, Shoc2 depletion reduces both NGF-induced neurite outgrowth and ERK activation in PC12 cells. Our data indicate that Shoc2 is essential to modulate the Ras-ERK signaling outcome in cell differentiation processes involved in neurite outgrowth.
Collapse
|
105
|
Negron C, Keating AE. A set of computationally designed orthogonal antiparallel homodimers that expands the synthetic coiled-coil toolkit. J Am Chem Soc 2014; 136:16544-56. [PMID: 25337788 PMCID: PMC4277747 DOI: 10.1021/ja507847t] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Indexed: 12/11/2022]
Abstract
Molecular engineering of protein assemblies, including the fabrication of nanostructures and synthetic signaling pathways, relies on the availability of modular parts that can be combined to give different structures and functions. Currently, a limited number of well-characterized protein interaction components are available. Coiled-coil interaction modules have been demonstrated to be useful for biomolecular design, and many parallel homodimers and heterodimers are available in the coiled-coil toolkit. In this work, we sought to design a set of orthogonal antiparallel homodimeric coiled coils using a computational approach. There are very few antiparallel homodimers described in the literature, and none have been measured for cross-reactivity. We tested the ability of the distance-dependent statistical potential DFIRE to predict orientation preferences for coiled-coil dimers of known structure. The DFIRE model was then combined with the CLASSY multistate protein design framework to engineer sets of three orthogonal antiparallel homodimeric coiled coils. Experimental measurements confirmed the successful design of three peptides that preferentially formed antiparallel homodimers that, furthermore, did not interact with one additional previously reported antiparallel homodimer. Two designed peptides that formed higher-order structures suggest how future design protocols could be improved. The successful designs represent a significant expansion of the existing protein-interaction toolbox for molecular engineers.
Collapse
Affiliation(s)
- Christopher Negron
- Program
in Computational and Systems Biology and Departments of Biology and Biological
Engineering, Massachusetts Institute of
Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 021393, United States
| | - Amy E. Keating
- Program
in Computational and Systems Biology and Departments of Biology and Biological
Engineering, Massachusetts Institute of
Technology, 77 Massachusetts
Avenue, Cambridge, Massachusetts 021393, United States
| |
Collapse
|
106
|
In vitro reconstitution of a CaMKII memory switch by an NMDA receptor-derived peptide. Biophys J 2014; 106:1414-20. [PMID: 24655517 DOI: 10.1016/j.bpj.2014.01.026] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2013] [Revised: 01/16/2014] [Accepted: 01/23/2014] [Indexed: 11/23/2022] Open
Abstract
Ca(2+)/Calmodulin-dependent protein kinase II (CaMKII) has been shown to play a major role in establishing memories through complex molecular interactions including phosphorylation of multiple synaptic targets. However, it is still controversial whether CaMKII itself serves as a molecular memory because of a lack of direct evidence. Here, we show that a single holoenzyme of CaMKII per se serves as an erasable molecular memory switch. We reconstituted Ca(2+)/Calmodulin-dependent CaMKII autophosphorylation in the presence of protein phosphatase 1 in vitro, and found that CaMKII phosphorylation shows a switch-like response with history dependence (hysteresis) only in the presence of an N-methyl-D-aspartate receptor-derived peptide. This hysteresis is Ca(2+) and protein phosphatase 1 concentration-dependent, indicating that the CaMKII memory switch is not simply caused by an N-methyl-D-aspartate receptor-derived peptide lock of CaMKII in an active conformation. Mutation of a phosphorylation site of the peptide shifted the Ca(2+) range of hysteresis. These functions may be crucial for induction and maintenance of long-term synaptic plasticity at hippocampal synapses.
Collapse
|
107
|
Transplantation of prokaryotic two-component signaling pathways into mammalian cells. Proc Natl Acad Sci U S A 2014; 111:15705-10. [PMID: 25331891 DOI: 10.1073/pnas.1406482111] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Signaling pathway engineering is a promising route toward synthetic biological circuits. Histidine-aspartate phosphorelays are thought to have evolved in prokaryotes where they form the basis for two-component signaling. Tyrosine-serine-threonine phosphorelays, exemplified by MAP kinase cascades, are predominant in eukaryotes. Recently, a prokaryotic two-component pathway was implemented in a plant species to sense environmental trinitrotoluene. We reasoned that "transplantation" of two-component pathways into mammalian host could provide an orthogonal and diverse toolkit for a variety of signal processing tasks. Here we report that two-component pathways could be partially reconstituted in mammalian cell culture and used for programmable control of gene expression. To enable this reconstitution, coding sequences of histidine kinase (HK) and response regulator (RR) components were codon-optimized for human cells, whereas the RRs were fused with a transactivation domain. Responsive promoters were furnished by fusing DNA binding sites in front of a minimal promoter. We found that coexpression of HKs and their cognate RRs in cultured mammalian cells is necessary and sufficient to strongly induce gene expression even in the absence of pathways' chemical triggers in the medium. Both loss-of-function and constitutive mutants behaved as expected. We further used the two-component signaling pathways to implement two-input logical AND, NOR, and OR gene regulation. Thus, two-component systems can be applied in different capacities in mammalian cells and their components can be used for large-scale synthetic gene circuits.
Collapse
|
108
|
Hu Y, Wang F, Lu CH, Girsh J, Golub E, Willner I. Switchable Enzyme/DNAzyme Cascades by the Reconfiguration of DNA Nanostructures. Chemistry 2014; 20:16203-9. [DOI: 10.1002/chem.201404122] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2014] [Indexed: 01/16/2023]
|
109
|
Olson EJ, Tabor JJ. Optogenetic characterization methods overcome key challenges in synthetic and systems biology. Nat Chem Biol 2014; 10:502-11. [PMID: 24937068 DOI: 10.1038/nchembio.1559] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2014] [Accepted: 05/21/2014] [Indexed: 12/28/2022]
Abstract
Systems biologists aim to understand how organism-level processes, such as differentiation and multicellular development, are encoded in DNA. Conversely, synthetic biologists aim to program systems-level biological processes, such as engineered tissue growth, by writing artificial DNA sequences. To achieve their goals, these groups have adapted a hierarchical electrical engineering framework that can be applied in the forward direction to design complex biological systems or in the reverse direction to analyze evolved networks. Despite much progress, this framework has been limited by an inability to directly and dynamically characterize biological components in the varied contexts of living cells. Recently, two optogenetic methods for programming custom gene expression and protein localization signals have been developed and used to reveal fundamentally new information about biological components that respond to those signals. This basic dynamic characterization approach will be a major enabling technology in synthetic and systems biology.
Collapse
Affiliation(s)
- Evan J Olson
- Graduate Program in Applied Physics, Rice University, Houston, Texas, USA
| | - Jeffrey J Tabor
- 1] Department of Bioengineering, Rice University, Houston, Texas, USA. [2] Department of Biochemistry and Cell Biology, Rice University, Houston, Texas, USA
| |
Collapse
|
110
|
Zhang H, Li J, Hou S, Wang G, Jiang M, Sun C, Hu X, Zhuang F, Dai Z, Dai J, Xi JJ. Engineered TAL Effector modulators for the large-scale gain-of-function screening. Nucleic Acids Res 2014; 42:e114. [PMID: 24939900 PMCID: PMC4132705 DOI: 10.1093/nar/gku535] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Abstract
Recent effective use of TAL Effectors (TALEs) has provided an important approach to the design and synthesis of sequence-specific DNA-binding proteins. However, it is still a challenging task to design and manufacture effective TALE modulators because of the limited knowledge of TALE–DNA interactions. Here we synthesized more than 200 TALE modulators and identified two determining factors of transcription activity in vivo: chromatin accessibility and the distance from the transcription start site. The implementation of these modulators in a gain-of-function screen was successfully demonstrated for four cell lines in migration/invasion assays and thus has broad relevance in this field. Furthermore, a novel TALE–TALE modulator was developed to transcriptionally inhibit target genes. Together, these findings underscore the huge potential of these TALE modulators in the study of gene function, reprogramming of cellular behaviors, and even clinical investigation.
Collapse
Affiliation(s)
- Hanshuo Zhang
- Biomedical Engineering Department, College of Engineering, Peking University Yan Nan Yuan 60, Beijing 100871, China
| | - Juan Li
- Beijing ViewSolid Biotechnology, Beijing 100034, China
| | - Sha Hou
- Center for Epigenetics and Chromatin, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Gancheng Wang
- Biomedical Engineering Department, College of Engineering, Peking University Yan Nan Yuan 60, Beijing 100871, China
| | - Mingjun Jiang
- Biomedical Engineering Department, College of Engineering, Peking University Yan Nan Yuan 60, Beijing 100871, China
| | - Changhong Sun
- Biomedical Engineering Department, College of Engineering, Peking University Yan Nan Yuan 60, Beijing 100871, China
| | - Xiongbing Hu
- Beijing ViewSolid Biotechnology, Beijing 100034, China
| | | | - Zhifei Dai
- Biomedical Engineering Department, College of Engineering, Peking University Yan Nan Yuan 60, Beijing 100871, China
| | - Junbiao Dai
- Center for Epigenetics and Chromatin, School of Life Sciences, Tsinghua University, Beijing 100084, China
| | - Jianzhong Jeff Xi
- Biomedical Engineering Department, College of Engineering, Peking University Yan Nan Yuan 60, Beijing 100871, China State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of Molecular Medicine, Peking University, Beijing 100871, China
| |
Collapse
|
111
|
Rewiring yeast osmostress signalling through the MAPK network reveals essential and non-essential roles of Hog1 in osmoadaptation. Sci Rep 2014; 4:4697. [PMID: 24732094 PMCID: PMC3986706 DOI: 10.1038/srep04697] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2013] [Accepted: 04/01/2014] [Indexed: 12/11/2022] Open
Abstract
Mitogen-activated protein kinases (MAPKs) have a number of targets which they regulate at transcriptional and post-translational levels to mediate specific responses. The yeast Hog1 MAPK is essential for cell survival under hyperosmotic conditions and it plays multiple roles in gene expression, metabolic regulation, signal fidelity and cell cycle regulation. Here we describe essential and non-essential roles of Hog1 using engineered yeast cells in which osmoadaptation was reconstituted in a Hog1-independent manner. We rewired Hog1-dependent osmotic stress-induced gene expression under the control of Fus3/Kss1 MAPKs, which are activated upon osmostress via crosstalk in hog1Δ cells. This approach revealed that osmotic up-regulation of only two Hog1-dependent glycerol biosynthesis genes, GPD1 and GPP2, is sufficient for successful osmoadaptation. Moreover, some of the previously described Hog1-dependent mechanisms appeared to be dispensable for osmoadaptation in the engineered cells. These results suggest that the number of essential MAPK functions may be significantly smaller than anticipated and that knockout approaches may lead to over-interpretation of phenotypic data.
Collapse
|
112
|
Abstract
Bacterial cells continuously sense and respond to their environment using their inherent signalling and gene regulatory networks. Cells are equipped with parallel signalling pathways, which can specifically cope with individual input signals, while interconnectivities between pathways lead to an enhanced complexity of regulatory responses that enable sophisticated adaptation. In principle, any cell signalling pathway may be rewired to respond to non-cognate signals by exchanging and recombining their underlying cognate signalling components. In the present article, we review the engineering strategies and use of chimaeric regulatory proteins in cell signalling pathways, especially the TCS (two-component signalling) system in bacteria, to achieve novel customized signalling or regulatory functions. We envisage that engineered chimaeric regulatory proteins can play an important role to aid both forward and reverse engineering of biological systems for many desired applications.
Collapse
|
113
|
|
114
|
Youk H, Lim WA. Secreting and sensing the same molecule allows cells to achieve versatile social behaviors. Science 2014; 343:1242782. [PMID: 24503857 PMCID: PMC4145839 DOI: 10.1126/science.1242782] [Citation(s) in RCA: 136] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Cells that secrete and sense the same signaling molecule are ubiquitous. To uncover the functional capabilities of the core "secrete-and-sense" circuit motif shared by these cells, we engineered yeast to secrete and sense the mating pheromone. Perturbing each circuit element revealed parameters that control the degree to which the cell communicated with itself versus with its neighbors. This tunable interplay of self-communication and neighbor communication enables cells to span a diverse repertoire of cellular behaviors. These include a cell being asocial by responding only to itself and social through quorum sensing, and an isogenic population of cells splitting into social and asocial subpopulations. A mathematical model explained these behaviors. The versatility of the secrete-and-sense circuit motif may explain its recurrence across species.
Collapse
Affiliation(s)
- Hyun Youk
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
- Center for Systems and Synthetic Biology, University of California San Francisco, San Francisco, CA 94158, USA
| | - Wendell A. Lim
- Department of Cellular and Molecular Pharmacology, University of California San Francisco, San Francisco, CA 94158, USA
- Center for Systems and Synthetic Biology, University of California San Francisco, San Francisco, CA 94158, USA
- Howard Hughes Medical Institute, University of California San Francisco, San Francisco, CA 94158, USA
| |
Collapse
|
115
|
Goltsov A, Langdon SP, Goltsov G, Harrison DJ, Bown J. Customizing the therapeutic response of signaling networks to promote antitumor responses by drug combinations. Front Oncol 2014; 4:13. [PMID: 24551596 PMCID: PMC3914444 DOI: 10.3389/fonc.2014.00013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2013] [Accepted: 01/20/2014] [Indexed: 01/26/2023] Open
Abstract
Drug resistance, de novo and acquired, pervades cellular signaling networks (SNs) from one signaling motif to another as a result of cancer progression and/or drug intervention. This resistance is one of the key determinants of efficacy in targeted anti-cancer drug therapy. Although poorly understood, drug resistance is already being addressed in combination therapy by selecting drug targets where SN sensitivity increases due to combination components or as a result of de novo or acquired mutations. Additionally, successive drug combinations have shown low resistance potential. To promote a rational, systematic development of combination therapies, it is necessary to establish the underlying mechanisms that drive the advantages of combination therapies, and design methods to determine drug targets for combination regimens. Based on a joint systems analysis of cellular SN response and its sensitivity to drug action and oncogenic mutations, we describe an in silico method to analyze the targets of drug combinations. Our method explores mechanisms of sensitizing the SN through a combination of two drugs targeting vertical signaling pathways. We propose a paradigm of SN response customization by one drug to both maximize the effect of another drug in combination and promote a robust therapeutic response against oncogenic mutations. The method was applied to customize the response of the ErbB/PI3K/PTEN/AKT pathway by combination of drugs targeting HER2 receptors and proteins in the down-stream pathway. The results of a computational experiment showed that the modification of the SN response from hyperbolic to smooth sigmoid response by manipulation of two drugs in combination leads to greater robustness in therapeutic response against oncogenic mutations determining cancer heterogeneity. The application of this method in drug combination co-development suggests a combined evaluation of inhibition effects together with the capability of drug combinations to suppress resistance mechanisms before they become clinically manifest.
Collapse
Affiliation(s)
- Alexey Goltsov
- Centre for Research in Informatics and Systems Pathology (CRISP), University of Abertay Dundee , Dundee , UK
| | - Simon P Langdon
- Division of Pathology, Institute of Genetics and Molecular Medicine, Western General Hospital, University of Edinburgh , Edinburgh , UK
| | | | | | - James Bown
- Centre for Research in Informatics and Systems Pathology (CRISP), University of Abertay Dundee , Dundee , UK
| |
Collapse
|
116
|
Rice MK, Ruder WC. Creating biological nanomaterials using synthetic biology. SCIENCE AND TECHNOLOGY OF ADVANCED MATERIALS 2014; 15:014401. [PMID: 27877637 PMCID: PMC5090598 DOI: 10.1088/1468-6996/15/1/014401] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2013] [Revised: 12/03/2013] [Accepted: 09/10/2013] [Indexed: 05/08/2023]
Abstract
Synthetic biology is a new discipline that combines science and engineering approaches to precisely control biological networks. These signaling networks are especially important in fields such as biomedicine and biochemical engineering. Additionally, biological networks can also be critical to the production of naturally occurring biological nanomaterials, and as a result, synthetic biology holds tremendous potential in creating new materials. This review introduces the field of synthetic biology, discusses how biological systems naturally produce materials, and then presents examples and strategies for incorporating synthetic biology approaches in the development of new materials. In particular, strategies for using synthetic biology to produce both organic and inorganic nanomaterials are discussed. Ultimately, synthetic biology holds the potential to dramatically impact biological materials science with significant potential applications in medical systems.
Collapse
|
117
|
Sun J, Lu S, Ouyang M, Lin LJ, Zhuo Y, Liu B, Chien S, Neel BG, Wang Y. Antagonism between binding site affinity and conformational dynamics tunes alternative cis-interactions within Shp2. Nat Commun 2013; 4:2037. [PMID: 23792876 PMCID: PMC3777412 DOI: 10.1038/ncomms3037] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 05/21/2013] [Indexed: 11/16/2022] Open
Abstract
Protein functions are largely affected by their conformations. This is exemplified in proteins containing modular domains. However, the evolutionary dynamics that define and adapt the conformation of such modular proteins remain elusive. Here we show that cis-interactions between the C-terminal phosphotyrosines and SH2 domain within the protein tyrosine phosphatase Shp2 can be tuned by an adaptor protein, Grb2. The competitiveness of two phosphotyrosines, namely pY542 and pY580, for cis-interaction with the same SH2 domain is governed by an antagonistic combination of contextual amino acid sequence and position of the phosphotyrosines. Specifically, pY580 with the combination of a favorable position and an adverse sequence has an overall advantage over pY542. Swapping the sequences of pY542 and pY580 results in one dominant form of cis-interaction and subsequently inhibits the trans-regulation by Grb2. Thus, the antagonistic combination of sequence and position may serve as a basic design principle for proteins with tunable conformations.
Collapse
Affiliation(s)
- Jie Sun
- Department of Molecular and Integrative Physiology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
118
|
Chen R, Chen Q, Kim H, Siu KH, Sun Q, Tsai SL, Chen W. Biomolecular scaffolds for enhanced signaling and catalytic efficiency. Curr Opin Biotechnol 2013; 28:59-68. [PMID: 24832076 DOI: 10.1016/j.copbio.2013.11.007] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Revised: 11/18/2013] [Accepted: 11/19/2013] [Indexed: 11/16/2022]
Abstract
Proteins inherently are not designed to be standalone entities. Whether it is a multi-step biochemical reaction or a signaling event that triggers several other cascading events, proteins are naturally designed to function cohesively. Several natural systems have been developed through evolution to co-localize the functional proteins of the same pathway in order to ensure efficient communication of signals or intermediates. This review focuses on some selected examples of where synthetic scaffolds inspired by nature have been used to enhance the overall biological pathway performance. Applications encompass both in vivo and in vitro systems that address two key biological events in cell signaling and biosynthesis will be discussed.
Collapse
Affiliation(s)
- Rebecca Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Qi Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Heejae Kim
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Ka-Hei Siu
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Qing Sun
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States
| | - Shen-Long Tsai
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei City, Taiwan
| | - Wilfred Chen
- Department of Chemical and Biomolecular Engineering, University of Delaware, Newark, DE 19716, United States.
| |
Collapse
|
119
|
|
120
|
Moser F, Horwitz A, Chen J, Lim WA, Voigt CA. Genetic sensor for strong methylating compounds. ACS Synth Biol 2013; 2:614-24. [PMID: 24032656 DOI: 10.1021/sb400086p] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Methylating chemicals are common in industry and agriculture and are often toxic, partly due to their propensity to methylate DNA. The Escherichia coli Ada protein detects methylating compounds by sensing aberrant methyl adducts on the phosphoester backbone of DNA. We characterize this system as a genetic sensor and engineer it to lower the detection threshold. By overexpressing Ada from a plasmid, we improve the sensor’s dynamic range to 350-fold induction and lower its detection threshold to 40 μM for methyl iodide. In eukaryotes, there is no known sensor of methyl adducts on the phosphoester backbone of DNA. By fusing the N-terminal domain of Ada to the Gal4 transcriptional activation domain, we built a functional sensor for methyl phosphotriester adducts in Saccharomyces cerevisiae. This sensor can be tuned to variable specifications by altering the expression level of the chimeric sensor and changing the number of Ada operators upstream of the Gal4-sensitive reporter promoter. These changes result in a detection threshold of 28 μM and 5.2-fold induction in response to methyl iodide. When the yeast sensor is exposed to different SN1 and SN2 alkylating compounds, its response profile is similar to that observed for the native Ada protein in E. coli, indicating that its native function is retained in yeast. Finally, we demonstrate that the specifications achieved for the yeast sensor are suitable for detecting methylating compounds at relevant concentrations in environmental samples. This work demonstrates the movement of a sensor from a prokaryotic to eukaryotic system and its rational tuning to achieve desired specifications.
Collapse
Affiliation(s)
- Felix Moser
- Synthetic Biology
Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| | - Andrew Horwitz
- Howard
Hughes
Medical Institute and Department of Cellular and Molecular Pharmacology, University of California—San Francisco, San Francisco, California 94158, United States
| | - Jacinto Chen
- Howard
Hughes
Medical Institute and Department of Cellular and Molecular Pharmacology, University of California—San Francisco, San Francisco, California 94158, United States
| | - Wendell A. Lim
- Howard
Hughes
Medical Institute and Department of Cellular and Molecular Pharmacology, University of California—San Francisco, San Francisco, California 94158, United States
| | - Christopher A. Voigt
- Synthetic Biology
Center, Department of Biological Engineering, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
121
|
Ang J, Harris E, Hussey BJ, Kil R, McMillen DR. Tuning response curves for synthetic biology. ACS Synth Biol 2013; 2:547-67. [PMID: 23905721 PMCID: PMC3805330 DOI: 10.1021/sb4000564] [Citation(s) in RCA: 103] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2013] [Indexed: 01/07/2023]
Abstract
Synthetic biology may be viewed as an effort to establish, formalize, and develop an engineering discipline in the context of biological systems. The ability to tune the properties of individual components is central to the process of system design in all fields of engineering, and synthetic biology is no exception. A large and growing number of approaches have been developed for tuning the responses of cellular systems, and here we address specifically the issue of tuning the rate of response of a system: given a system where an input affects the rate of change of an output, how can the shape of the response curve be altered experimentally? This affects a system's dynamics as well as its steady-state properties, both of which are critical in the design of systems in synthetic biology, particularly those with multiple components. We begin by reviewing a mathematical formulation that captures a broad class of biological response curves and use this to define a standard set of varieties of tuning: vertical shifting, horizontal scaling, and the like. We then survey the experimental literature, classifying the results into our defined categories, and organizing them by regulatory level: transcriptional, post-transcriptional, and post-translational.
Collapse
Affiliation(s)
- Jordan Ang
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Edouard Harris
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Brendan J. Hussey
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - Richard Kil
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| | - David R. McMillen
- Department of Chemical and Physical Sciences and Institute
for Optical Sciences, University of Toronto, Mississauga, Ontario, Canada L5L 1C6
| |
Collapse
|
122
|
Galloway KE, Franco E, Smolke CD. Dynamically reshaping signaling networks to program cell fate via genetic controllers. Science 2013; 341:1235005. [PMID: 23950497 PMCID: PMC4069606 DOI: 10.1126/science.1235005] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Engineering of cell fate through synthetic gene circuits requires methods to precisely implement control around native decision-making pathways and offers the potential to direct cell processes. We demonstrate a class of genetic control systems, molecular network diverters, that interface with a native signaling pathway to route cells to divergent fates in response to environmental signals without modification of native genetic material. A method for identifying control points within natural networks is described that enables the construction of synthetic control systems that activate or attenuate native pathways to direct cell fate. We integrate opposing genetic programs by developing network architectures for reduced antagonism and demonstrate rational tuning of performance. Extension of these control strategies to mammalian systems should facilitate the engineering of complex cellular signaling systems.
Collapse
Affiliation(s)
- Kate E. Galloway
- Division of Chemistry and Chemical Engineering, 1200 East California Blvd., MC 210-41, California Institute of Technology, Pasadena, California 91125, USA
| | - Elisa Franco
- Department of Mechanical Engineering, Bourns Hall A309, University of California, Riverside, Riverside, California 92521, USA
| | - Christina D. Smolke
- Department of Bioengineering, 473 Via Ortega, MC 4201, Stanford University, Stanford, California 94305, USA
| |
Collapse
|
123
|
Sarkar CA. Cell signaling. Concentrating (on) native proteins to control cell fate. Science 2013; 341:1349-51. [PMID: 24052296 DOI: 10.1126/science.1243994] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Affiliation(s)
- Casim A Sarkar
- Department of Biomedical Engineering, University of Minnesota, Minneapolis, MN 55455, USA.
| |
Collapse
|
124
|
Jun JE, Rubio I, Roose JP. Regulation of ras exchange factors and cellular localization of ras activation by lipid messengers in T cells. Front Immunol 2013; 4:239. [PMID: 24027568 PMCID: PMC3762125 DOI: 10.3389/fimmu.2013.00239] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2013] [Accepted: 08/02/2013] [Indexed: 11/17/2022] Open
Abstract
The Ras-MAPK signaling pathway is highly conserved throughout evolution and is activated downstream of a wide range of receptor stimuli. Ras guanine nucleotide exchange factors (RasGEFs) catalyze GTP loading of Ras and play a pivotal role in regulating receptor-ligand induced Ras activity. In T cells, three families of functionally important RasGEFs are expressed: RasGRF, RasGRP, and Son of Sevenless (SOS)-family GEFs. Early on it was recognized that Ras activation is critical for T cell development and that the RasGEFs play an important role herein. More recent work has revealed that nuances in Ras activation appear to significantly impact T cell development and selection. These nuances include distinct biochemical patterns of analog versus digital Ras activation, differences in cellular localization of Ras activation, and intricate interplays between the RasGEFs during distinct T cell developmental stages as revealed by various new mouse models. In many instances, the exact nature of these nuances in Ras activation or how these may result from fine-tuning of the RasGEFs is not understood. One large group of biomolecules critically involved in the control of RasGEFs functions are lipid second messengers. Multiple, yet distinct lipid products are generated following T cell receptor (TCR) stimulation and bind to different domains in the RasGRP and SOS RasGEFs to facilitate the activation of the membrane-anchored Ras GTPases. In this review we highlight how different lipid-based elements are generated by various enzymes downstream of the TCR and other receptors and how these dynamic and interrelated lipid products may fine-tune Ras activation by RasGEFs in developing T cells.
Collapse
Affiliation(s)
- Jesse E Jun
- Department of Anatomy, University of California San Francisco , San Francisco, CA , USA
| | | | | |
Collapse
|
125
|
Ang J, McMillen DR. Physical constraints on biological integral control design for homeostasis and sensory adaptation. Biophys J 2013; 104:505-15. [PMID: 23442873 DOI: 10.1016/j.bpj.2012.12.015] [Citation(s) in RCA: 68] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Revised: 09/11/2012] [Accepted: 12/10/2012] [Indexed: 12/23/2022] Open
Abstract
Synthetic biology includes an effort to use design-based approaches to create novel controllers, biological systems aimed at regulating the output of other biological processes. The design of such controllers can be guided by results from control theory, including the strategy of integral feedback control, which is central to regulation, sensory adaptation, and long-term robustness. Realization of integral control in a synthetic network is an attractive prospect, but the nature of biochemical networks can make the implementation of even basic control structures challenging. Here we present a study of the general challenges and important constraints that will arise in efforts to engineer biological integral feedback controllers or to analyze existing natural systems. Constraints arise from the need to identify target output values that the combined process-plus-controller system can reach, and to ensure that the controller implements a good approximation of integral feedback control. These constraints depend on mild assumptions about the shape of input-output relationships in the biological components, and thus will apply to a variety of biochemical systems. We summarize our results as a set of variable constraints intended to provide guidance for the design or analysis of a working biological integral feedback controller.
Collapse
Affiliation(s)
- Jordan Ang
- Department of Chemical and Physical Sciences and Institute for Optical Sciences, University of Toronto at Mississauga, Mississauga, Ontario, Canada
| | | |
Collapse
|
126
|
Abstract
The spatial structure of the cell is highly organized at all levels: from small complexes and assemblies, to local nano- and microclusters, to global, micrometer scales across and between cells. We suggest that this multiscale spatial cell organization also organizes signaling and coordinates cellular behavior. We propose a new view of the spatial structure of cell signaling systems. This new view describes cell signaling in terms of dynamic allosteric interactions within and among distinct, spatially organized transient clusters. The clusters vary over time and space and are on length scales from nanometers to micrometers. When considered across these length scales, primary factors in the spatial organization are cell membrane domains and the actin cytoskeleton, both also highly dynamic. A key challenge is to understand the interplay across these multiple scales, link it to the physicochemical basis of the conformational behavior of single molecules and ultimately relate it to cellular function. Overall, our premise is that at these scales, cell signaling should be thought of not primarily as a sequence of diffusion-controlled molecular collisions, but instead transient, allostery-driven cluster re-forming interactions.
Collapse
Affiliation(s)
- Ruth Nussinov
- Basic Research Program, SAIC-Frederick, Inc., Cancer and Inflammation Program, National Cancer Institute, Frederick, MD 21702
- Sackler Inst. of Molecular Medicine, Department of Human Genetics and Molecular Medicine, Sackler School of Medicine, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
127
|
Abstract
Both microbes and multicellular organisms actively regulate their cell fate determination to cope with changing environments or to ensure proper development. Here, we use synthetic biology approaches to engineer bistable gene networks to demonstrate that stochastic and permanent cell fate determination can be achieved through initializing gene regulatory networks (GRNs) at the boundary between dynamic attractors. We realize this experimentally by linking a synthetic GRN to a natural output of galactose metabolism regulation in yeast. Combining mathematical modeling and flow cytometry, we show that our engineered systems are bistable and that inherent gene expression stochasticity does not induce spontaneous state transitioning at steady state. Mathematical analysis predicts that stochastic cell fate determination in this case can only be realized when gene expression fluctuation occurs on or near attractor basin boundaries (the points of instability). Guided by numerical simulations, experiments are designed and performed with quantitatively diverse gene networks to test model predictions, which are verified by both flow cytometry and single-cell microscopy. By interfacing rationally designed synthetic GRNs with background gene regulation mechanisms, this work investigates intricate properties of networks that illuminate possible regulatory mechanisms for cell differentiation and development that can be initiated from points of instability.
Collapse
|
128
|
Perrett RM, Fowkes RC, Caunt CJ, Tsaneva-Atanasova K, Bowsher CG, McArdle CA. Signaling to extracellular signal-regulated kinase from ErbB1 kinase and protein kinase C: feedback, heterogeneity, and gating. J Biol Chem 2013; 288:21001-21014. [PMID: 23754287 PMCID: PMC3774369 DOI: 10.1074/jbc.m113.455345] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Many extracellular signals act via the Raf/MEK/ERK cascade in which kinetics, cell-cell variability, and sensitivity of the ERK response can all influence cell fate. Here we used automated microscopy to explore the effects of ERK-mediated negative feedback on these attributes in cells expressing endogenous ERK or ERK2-GFP reporters. We studied acute rather than chronic stimulation with either epidermal growth factor (ErbB1 activation) or phorbol 12,13-dibutyrate (PKC activation). In unstimulated cells, ERK-mediated negative feedback reduced the population-average and cell-cell variability of the level of activated ppERK and increased its robustness to changes in ERK expression. In stimulated cells, negative feedback (evident between 5 min and 4 h) also reduced average levels and variability of phosphorylated ERK (ppERK) without altering the “gradedness” or sensitivity of the response. Binning cells according to total ERK expression revealed, strikingly, that maximal ppERK responses initially occur at submaximal ERK levels and that this non-monotonic relationship changes to an increasing, monotonic one within 15 min. These phenomena occur in HeLa cells and MCF7 breast cancer cells and in the presence and absence of ERK-mediated negative feedback. They were best modeled assuming distributive (rather than processive) activation. Thus, we have uncovered a novel, time-dependent change in the relationship between total ERK and ppERK levels that persists without negative feedback. This change makes acute response kinetics dependent on ERK level and provides a “gating” or control mechanism in which the interplay between stimulus duration and the distribution of ERK expression across cells could modulate the proportion of cells that respond to stimulation.
Collapse
Affiliation(s)
- Rebecca M Perrett
- From the Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Whitson Street, Bristol BS13NY, United Kingdom
| | - Robert C Fowkes
- Endocrine Signaling Group, Royal Veterinary College, Royal College St., London NW10TU, United Kingdom
| | - Christopher J Caunt
- Department of Biology and Biochemistry, University of Bath, Claverton Down, Bath BA27AY, United Kingdom
| | - Krasimira Tsaneva-Atanasova
- Bristol Centre for Applied Nonlinear Mathematics, Department of Engineering Mathematics, University of Bristol, Bristol BS81TR, United Kingdom, and
| | - Clive G Bowsher
- School of Mathematics, University of Bristol, Bristol BS81TW, United Kingdom
| | - Craig A McArdle
- From the Laboratories for Integrative Neuroscience and Endocrinology, School of Clinical Sciences, University of Bristol, Whitson Street, Bristol BS13NY, United Kingdom,.
| |
Collapse
|
129
|
Selgrade DF, Lohmueller JJ, Lienert F, Silver PA. Protein scaffold-activated protein trans-splicing in mammalian cells. J Am Chem Soc 2013; 135:7713-9. [PMID: 23621664 DOI: 10.1021/ja401689b] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Conditional protein splicing is a powerful biotechnological tool that can be used to rapidly and post-translationally control the activity of a given protein. Here we demonstrate a novel conditional splicing system in which a genetically encoded protein scaffold induces the splicing and activation of an enzyme in mammalian cells. In this system the protein scaffold binds to two inactive split intein/enzyme extein protein fragments leading to intein fragment complementation, splicing, and activation of the firefly luciferase enzyme. We first demonstrate the ability of antiparallel coiled-coils (CCs) to mediate splicing between two intein fragments, effectively creating two new split inteins. We then generate and test two versions of the scaffold-induced splicing system using two pairs of CCs. Finally, we optimize the linker lengths of the proteins in the system and demonstrate 13-fold activation of luciferase by the scaffold compared to the activity of negative controls. Our protein scaffold-triggered conditional splicing system is an effective strategy to control enzyme activity using a protein input, enabling enhanced genetic control over protein splicing and the potential creation of splicing-based protein sensors and autoregulatory systems.
Collapse
Affiliation(s)
- Daniel F Selgrade
- Department of Systems Biology, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
130
|
Gold MG, Fowler DM, Means CK, Pawson CT, Stephany JJ, Langeberg LK, Fields S, Scott JD. Engineering A-kinase anchoring protein (AKAP)-selective regulatory subunits of protein kinase A (PKA) through structure-based phage selection. J Biol Chem 2013; 288:17111-21. [PMID: 23625929 PMCID: PMC3682517 DOI: 10.1074/jbc.m112.447326] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
PKA is retained within distinct subcellular environments by the association of its regulatory type II (RII) subunits with A-kinase anchoring proteins (AKAPs). Conventional reagents that universally disrupt PKA anchoring are patterned after a conserved AKAP motif. We introduce a phage selection procedure that exploits high-resolution structural information to engineer RII mutants that are selective for a particular AKAP. Selective RII (RSelect) sequences were obtained for eight AKAPs following competitive selection screening. Biochemical and cell-based experiments validated the efficacy of RSelect proteins for AKAP2 and AKAP18. These engineered proteins represent a new class of reagents that can be used to dissect the contributions of different AKAP-targeted pools of PKA. Molecular modeling and high-throughput sequencing analyses revealed the molecular basis of AKAP-selective interactions and shed new light on native RII-AKAP interactions. We propose that this structure-directed evolution strategy might be generally applicable for the investigation of other protein interaction surfaces.
Collapse
Affiliation(s)
- Matthew G Gold
- Howard Hughes Medical Institute, University of Washington School of Medicine, Seattle, Washington 98195, USA.
| | | | | | | | | | | | | | | |
Collapse
|
131
|
Chen Z, Zeng AP. Protein design in systems metabolic engineering for industrial strain development. Biotechnol J 2013; 8:523-33. [PMID: 23589416 DOI: 10.1002/biot.201200238] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2012] [Revised: 01/24/2013] [Accepted: 02/27/2013] [Indexed: 12/20/2022]
Abstract
Accelerating the process of industrial bacterial host strain development, aimed at increasing productivity, generating new bio-products or utilizing alternative feedstocks, requires the integration of complementary approaches to manipulate cellular metabolism and regulatory networks. Systems metabolic engineering extends the concept of classical metabolic engineering to the systems level by incorporating the techniques used in systems biology and synthetic biology, and offers a framework for the development of the next generation of industrial strains. As one of the most useful tools of systems metabolic engineering, protein design allows us to design and optimize cellular metabolism at a molecular level. Here, we review the current strategies of protein design for engineering cellular synthetic pathways, metabolic control systems and signaling pathways, and highlight the challenges of this subfield within the context of systems metabolic engineering.
Collapse
Affiliation(s)
- Zhen Chen
- Institute of Bioprocess and Biosystems Engineering, Hamburg University of Technology, Hamburg, Germany
| | | |
Collapse
|
132
|
Chen S, Harrigan P, Heineike B, Stewart-Ornstein J, El-Samad H. Building robust functionality in synthetic circuits using engineered feedback regulation. Curr Opin Biotechnol 2013; 24:790-6. [PMID: 23566378 DOI: 10.1016/j.copbio.2013.02.025] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2013] [Revised: 02/11/2013] [Accepted: 02/25/2013] [Indexed: 01/02/2023]
Abstract
The ability to engineer novel functionality within cells, to quantitatively control cellular circuits, and to manipulate the behaviors of populations, has many important applications in biotechnology and biomedicine. These applications are only beginning to be explored. In this review, we advocate the use of feedback control as an essential strategy for the engineering of robust homeostatic control of biological circuits and cellular populations. We also describe recent works where feedback control, implemented in silico or with biological components, was successfully employed for this purpose.
Collapse
Affiliation(s)
- Susan Chen
- Department of Biochemistry and Biophysics, University of California, San Francisco, CA, USA
| | | | | | | | | |
Collapse
|
133
|
Thomas F, Boyle AL, Burton AJ, Woolfson DN. A set of de novo designed parallel heterodimeric coiled coils with quantified dissociation constants in the micromolar to sub-nanomolar regime. J Am Chem Soc 2013; 135:5161-6. [PMID: 23477407 DOI: 10.1021/ja312310g] [Citation(s) in RCA: 128] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
The availability of peptide and protein components that fold to defined structures with tailored stabilities would facilitate rational protein engineering and synthetic biology. We have begun to generate a toolkit of such components based on de novo designed coiled-coil peptides that mediate protein-protein interactions. Here, we present a set of coiled-coil heterodimers to add to the toolkit. The lengths of the coiled-coil regions are 21, 24, or 28 residues, which deliver dissociation constants in the micromolar to sub-nanomolar range. In addition, comparison of two related series of peptides highlights the need for including polar residues within the hydrophobic interfaces, both to specify the dimer state over alternatives and to fine-tune the dissociation constants.
Collapse
Affiliation(s)
- Franziska Thomas
- School of Chemistry and ‡School of Biochemistry, University of Bristol , Bristol BS8 1TS, United Kingdom
| | | | | | | |
Collapse
|
134
|
Williams TC, Nielsen LK, Vickers CE. Engineered quorum sensing using pheromone-mediated cell-to-cell communication in Saccharomyces cerevisiae. ACS Synth Biol 2013; 2:136-49. [PMID: 23656437 DOI: 10.1021/sb300110b] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Population-density-dependent control of gene expression, or quorum sensing, is widespread in nature and is used to coordinate complex population-wide phenotypes through space and time. We have engineered quorum sensing in S. cerevisiae by rewiring the native pheromone communication system that is normally used by haploid cells to detect potential mating partners. In our system, populations consisting of only mating type "a" cells produce and respond to extracellular α-type pheromone by arresting growth and expressing GFP in a population-density-dependent manner. Positive feedback quorum sensing dynamics were tuned by varying α-pheromone production levels using different versions of the pheromone-responsive FUS1 promoter as well as different versions of pheromone genes (mfα1 or mfα2). In a second system, pheromone communication was rendered conditional upon the presence of aromatic amino acids in the growth medium by controlling α-pheromone expression with the aromatic amino acid responsive ARO9 promoter. In these circuits, pheromone communication and response could be fine-tuned according to aromatic amino acid type and concentration. The genetic control programs developed here are responsive to dynamic spatiotemporal and chemical cellular environments, resulting in up-regulation of gene expression. These programs could be used to control biochemical pathways for the production of fuels and chemicals that are toxic or place a heavy metabolic burden on cell growth.
Collapse
Affiliation(s)
- Thomas C. Williams
- Australian Institute for
Bioengineering and Nanotechnology
(AIBN), The University of Queensland, St.
Lucia, QLD 4072, Australia
| | - Lars K. Nielsen
- Australian Institute for
Bioengineering and Nanotechnology
(AIBN), The University of Queensland, St.
Lucia, QLD 4072, Australia
| | - Claudia E. Vickers
- Australian Institute for
Bioengineering and Nanotechnology
(AIBN), The University of Queensland, St.
Lucia, QLD 4072, Australia
| |
Collapse
|
135
|
Furukawa K, Hohmann S. Synthetic biology: lessons from engineering yeast MAPK signalling pathways. Mol Microbiol 2013; 88:5-19. [PMID: 23461595 DOI: 10.1111/mmi.12174] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/04/2013] [Indexed: 02/04/2023]
Abstract
All living cells respond to external stimuli and execute specific physiological responses through signal transduction pathways. Understanding the mechanisms controlling signalling pathways is important for diagnosing and treating diseases and for reprogramming cells with desired functions. Although many of the signalling components in the budding yeast Saccharomyces cerevisiae have been identified by genetic studies, many features concerning the dynamic control of pathway activity, cross-talk, cell-to-cell variability or robustness against perturbation are still incompletely understood. Comparing the behaviour of engineered and natural signalling pathways offers insight complementary to that achievable with standard genetic and molecular studies. Here, we review studies that aim at a deeper understanding of signalling design principles and generation of novel signalling properties by engineering the yeast mitogen-activated protein kinase (MAPK) pathways. The underlying approaches can be applied to other organisms including mammalian cells and offer opportunities for building synthetic pathways and functionalities useful in medicine and biotechnology.
Collapse
Affiliation(s)
- Kentaro Furukawa
- Department of Chemistry and Molecular Biology, University of Gothenburg, Box 462, 40530 Gothenburg, Sweden.
| | | |
Collapse
|
136
|
Wang YH, Wei KY, Smolke CD. Synthetic biology: advancing the design of diverse genetic systems. Annu Rev Chem Biomol Eng 2013; 4:69-102. [PMID: 23413816 DOI: 10.1146/annurev-chembioeng-061312-103351] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
A major objective of synthetic biology is to make the process of designing genetically encoded biological systems more systematic, predictable, robust, scalable, and efficient. Examples of genetic systems in the field vary widely in terms of operating hosts, compositional approaches, and network complexity, ranging from simple genetic switches to search-and-destroy systems. While significant advances in DNA synthesis capabilities support the construction of pathway- and genome-scale programs, several design challenges currently restrict the scale of systems that can be reasonably designed and implemented. Thus, while synthetic biology offers much promise in developing systems to address challenges faced in the fields of manufacturing, environment and sustainability, and health and medicine, the realization of this potential is currently limited by the diversity of available parts and effective design frameworks. As researchers make progress in bridging this design gap, advances in the field hint at ever more diverse applications for biological systems.
Collapse
Affiliation(s)
- Yen-Hsiang Wang
- Department of Bioengineering, Stanford University, Stanford, CA, USA.
| | | | | |
Collapse
|
137
|
Hao N, Budnik BA, Gunawardena J, O'Shea EK. Tunable signal processing through modular control of transcription factor translocation. Science 2013; 339:460-4. [PMID: 23349292 DOI: 10.1126/science.1227299] [Citation(s) in RCA: 104] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
Signaling pathways can induce different dynamics of transcription factor (TF) activation. We explored how TFs process signaling inputs to generate diverse dynamic responses. The budding yeast general stress-responsive TF Msn2 acted as a tunable signal processor that could track, filter, or integrate signals in an input-dependent manner. This tunable signal processing appears to originate from dual regulation of both nuclear import and export by phosphorylation, as mutants with one form of regulation sustained only one signal-processing function. Versatile signal processing by Msn2 is crucial for generating distinct dynamic responses to different natural stresses. Our findings reveal how complex signal-processing functions are integrated into a single molecule and provide a guide for the design of TFs with "programmable" signal-processing functions.
Collapse
Affiliation(s)
- Nan Hao
- Harvard University Faculty of Arts and Sciences Center for Systems Biology, Cambridge, MA 02138, USA
| | | | | | | |
Collapse
|
138
|
Li J, Bu P, Chen KY, Shen X. Spatial perturbation with synthetic protein scaffold reveals robustness of asymmetric cell division. ACTA ACUST UNITED AC 2013; 6:134-143. [PMID: 25750689 DOI: 10.4236/jbise.2013.62017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Asymmetric cell division is an important mechanism for creating diversity in a cellular population. Stem cells commonly perform asymmetric division to generate both a daughter stem cell for self-renewal and a more differentiated daughter cell to populate the tissue. During asymmetric cell division, protein cell fate determinants asymmetrically localize to the opposite poles of a dividing cell to cause distinct cell fate. However, it remains unclear whether cell fate determination is robust to fluctuations and noise during this spatial allocation process. To answer this question, we engineered Caulobacter, a bacterial model for asymmetric division, to express synthetic scaffolds with modular protein interaction domains. These scaffolds perturbed the spatial distribution of the PleC-DivJ-DivK phospho-signaling network without changing their endogenous expression levels. Surprisingly, enforcing symmetrical distribution of these cell fate determinants did not result in symmetric daughter fate or any morphological defects. Further computational analysis suggested that PleC and DivJ form a robust phospho-switch that can tolerate high amount of spatial variation. This insight may shed light on the presence of similar phospho-switches in stem cell asymmetric division regulation. Overall, our study demonstrates that synthetic protein scaffolds can provide a useful tool to probe biological systems for better understanding of their operating principles.
Collapse
Affiliation(s)
- Jiahe Li
- Department of Biomedical Engineering, Cornell University, Ithaca, USA
| | - Pengcheng Bu
- School of Electrical and Computer Engineering, Cornell University, Ithaca, USA
| | - Kai-Yuan Chen
- School of Electrical and Computer Engineering, Cornell University, Ithaca, USA
| | - Xiling Shen
- Department of Biomedical Engineering, Cornell University, Ithaca, USA ; School of Electrical and Computer Engineering, Cornell University, Ithaca, USA
| |
Collapse
|
139
|
Chen D, Arkin AP. Sequestration-based bistability enables tuning of the switching boundaries and design of a latch. Mol Syst Biol 2013; 8:620. [PMID: 23089683 PMCID: PMC3501275 DOI: 10.1038/msb.2012.52] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2012] [Accepted: 09/19/2012] [Indexed: 12/20/2022] Open
Abstract
Engineering of the sigma/anti-sigma system in Escherichia coli shows that sequestration combined with positive feedback can be used to build a bistable memory device. The minimal requirement of this design makes it potentially scalable and generalizable. ![]()
A sigma factor and its cognate anti-sigma factor are used to build a bistable switch without relying on cooperativity. The switching boundaries are tunable and allow rapid design of a set-reset latch. This design is analytically tractable and should be scalable to more sigma/anti-sigma pairs.
Natural biological systems have evolved a diverse array of switches to realize their strategies for environmental response and development. Emerging applications of synthetic biology have begun to exploit such switches to achieve increasingly sophisticated designed behaviors. However, not all switch architectures allow facile design of the switching and memory properties. Furthermore, not all designs are built from components for which large families of variants exist, a requirement for building many orthogonal switch variants. Therefore, there is a critical need from genetic engineers for scalable strategies that yield custom bistable switches. Here, we use a sigma factor and its cognate anti-sigma factor to experimentally verify that ultrasensitivity from sequestration combined with positive feedback is sufficient to build a bistable switch. We show that sequestration allows us to predictably tune the switching boundaries, and we can easily tune our switch to function as a set–reset latch that can be toggled between two states by a pulse of inducer input.
Collapse
Affiliation(s)
- David Chen
- The UC Berkeley-UCSF Graduate Program in Bioengineering, Berkeley, CA, USA
| | | |
Collapse
|
140
|
Jadhav SV, Singh SK, Reja RM, Gopi HN. γ-Amino acid mutated α-coiled coils as mild thermal triggers for liposome delivery. Chem Commun (Camb) 2013; 49:11065-7. [DOI: 10.1039/c3cc46652c] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
141
|
Abstract
In the last 30 years, many of the mechanisms behind signal transduction, the process by which the cell takes extracellular signals as an input and converts them to a specific cellular phenotype, have been experimentally determined. With these discoveries, however, has come the realization that the architecture of signal transduction, the signaling network, is incredibly complex. Although the main pathways between receptor and output are well-known, there is a complex net of regulatory features that include crosstalk between different pathways, spatial and temporal effects, and positive and negative feedbacks. Hence, modeling approaches have been used to try and unravel some of these complexities. We use the mitogen-activated protein kinase cascade to illustrate chemical kinetic and logic approaches to modeling signaling networks. By using a common well-known model, we illustrate here the assumptions and level of detail behind each modeling approach, which serves as an introduction to the more detailed discussions of each in the accompanying chapters in this book.
Collapse
|
142
|
Witzel F, Maddison L, Blüthgen N. How scaffolds shape MAPK signaling: what we know and opportunities for systems approaches. Front Physiol 2012; 3:475. [PMID: 23267331 PMCID: PMC3527831 DOI: 10.3389/fphys.2012.00475] [Citation(s) in RCA: 79] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2012] [Accepted: 12/04/2012] [Indexed: 11/13/2022] Open
Abstract
Scaffolding proteins add a new layer of complexity to the dynamics of cell signaling. Above their basic function to bring several components of a signaling pathway together, recent experimental research has found that scaffolds influence signaling in a much more complex way: scaffolds can exert some catalytic function, influence signaling by allosteric mechanisms, are feedback-regulated, localize signaling activity to distinct regions of the cell or increase pathway fidelity. Here we review experimental and theoretical approaches that address the function of two MAPK scaffolds, Ste5, a scaffold of the yeast mating pathway and KSR1/2, a scaffold of the classical mammalian MAPK signaling pathway. For the yeast scaffold Ste5, detailed mechanistic models have been valuable for the understanding of its function. For scaffolds in mammalian signaling, however, models have been rather generic and sketchy. For example, these models predicted narrow optimal scaffold concentrations, but when revisiting these models by assuming typical concentrations, rather a range of scaffold levels optimally supports signaling. Thus, more realistic models are needed to understand the role of scaffolds in mammalian signal transduction, which opens a big opportunity for systems biology.
Collapse
Affiliation(s)
- Franziska Witzel
- Institute of Pathology, Charité-Universitätsmedizin Berlin Berlin, Germany ; Institute for Theoretical Biology, Humboldt University Berlin Berlin, Germany
| | | | | |
Collapse
|
143
|
Franco E, Blanchini F. Structural properties of the MAPK pathway topologies in PC12 cells. J Math Biol 2012; 67:1633-68. [PMID: 23096491 DOI: 10.1007/s00285-012-0606-x] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2011] [Revised: 09/12/2012] [Indexed: 11/26/2022]
Abstract
In this paper we propose and analyze parameter-free models for the mitogen-activated protein kinase (MAPK) pathway in PC12 rat neural cells. Experiments show that the dynamic behavior of this pathway depends on the input growth factor. The response to epidermal growth factor (EGF) is a short peak followed by a relaxation, while the response to nerve growth factor (NGF) is sustained. In the latter case, the system can be driven to a new state, which persists after the stimulus has vanished. Ultimately, these dynamic behaviors correspond to different cell fates: EFG stimulation induces proliferation, while NGF stimulation induces differentiation. The biochemical mechanisms responsible for the different input-dependent dynamic response are still unclear. One hypothesis is that each input generates a specific interaction topology among the kinases. Starting from experimental results that support this hypothesis, we derive and analyze qualitative models for the two network topologies. Our approach is based on invariant set theory and non-smooth Lyapunov functions. We demonstrate analytically that the network behaviors and stability properties are structurally dependent on the topology, and do not depend on specific parameter values of the underlying biochemical interactions.
Collapse
Affiliation(s)
- Elisa Franco
- Department of Mechanical Engineering, University of California at Riverside, 900 University Avenue, Riverside, CA, 92521, USA,
| | | |
Collapse
|
144
|
Abstract
Modular protein interaction domains (PIDs) that recognize linear peptide motifs are found in hundreds of proteins within the human genome. Some PIDs such as SH2, 14-3-3, Chromo, and Bromo domains serve to recognize posttranslational modification (PTM) of amino acids (such as phosphorylation, acetylation, methylation, etc.) and translate these into discrete cellular responses. Other modules such as SH3 and PSD-95/Discs-large/ZO-1 (PDZ) domains recognize linear peptide epitopes and serve to organize protein complexes based on localization and regions of elevated concentration. In both cases, the ability to nucleate-specific signaling complexes is in large part dependent on the selectivity of a given protein module for its cognate peptide ligand. High-throughput (HTP) analysis of peptide-binding domains by peptide or protein arrays, phage display, mass spectrometry, or other HTP techniques provides new insight into the potential protein-protein interactions prescribed by individual or even whole families of modules. Systems level analyses have also promoted a deeper understanding of the underlying principles that govern selective protein-protein interactions and how selectivity evolves. Lastly, there is a growing appreciation for the limitations and potential pitfalls associated with HTP analysis of protein-peptide interactomes. This review will examine some of the common approaches utilized for large-scale studies of PIDs and suggest a set of standards for the analysis and validation of datasets from large-scale studies of peptide-binding modules. We will also highlight how data from large-scale studies of modular interaction domain families can provide insight into systems level properties such as the linguistics of selective interactions.
Collapse
Affiliation(s)
- Bernard A Liu
- Samuel Lunenfeld Research Institute, Mount Sinai Hospital, Toronto, ON, Canada
| | | | | |
Collapse
|
145
|
Engineering robust control of two-component system phosphotransfer using modular scaffolds. Proc Natl Acad Sci U S A 2012; 109:18090-5. [PMID: 23071327 DOI: 10.1073/pnas.1209230109] [Citation(s) in RCA: 69] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022] Open
Abstract
Synthetic biology applies engineering principles to facilitate the predictable design of biological systems. Biological systems composed of modular parts with clearly defined interactions are generally easier to manipulate than complex systems exhibiting a large number of subtle interactions. However, recreating the function of a naturally complex system with simple modular parts can increase fragility. Here, inspired by scaffold-directed signaling in higher organisms, we modularize prokaryotic signal transduction to allow programmable redirection of phosphate flux from a histidine kinase to response regulators based on targeting by eukaryotic protein-protein interaction domains. Although scaffold-directed colocalization alone was sufficient to direct signaling between components, this minimal system suffered from high sensitivity to changing expression levels of each component. To address this fragility, we demonstrate how to engineer autoinhibition into the kinase so that phosphotransfer is possible only upon binding to the scaffold. This system, in which scaffold performs the dual functions of activating this autoinhibited kinase and directing flux to the cotargeted response regulator, was significantly more robust to varying component concentrations. Thus, we demonstrate that design principles inspired by the complex signal-transduction pathways of eukaryotes may be generalized, abstracted, and applied to prokaryotes using well-characterized parts.
Collapse
|
146
|
Analyzing and engineering cell signaling modules with synthetic biology. Curr Opin Biotechnol 2012; 23:785-90. [DOI: 10.1016/j.copbio.2012.01.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2011] [Revised: 01/11/2012] [Accepted: 01/12/2012] [Indexed: 12/20/2022]
|
147
|
Gurevich VV, Gurevich EV. Synthetic biology with surgical precision: targeted reengineering of signaling proteins. Cell Signal 2012; 24:1899-1908. [PMID: 22664341 PMCID: PMC3404258 DOI: 10.1016/j.cellsig.2012.05.012] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2012] [Accepted: 05/14/2012] [Indexed: 01/14/2023]
Abstract
The complexity of living systems exceeds everything else studied by natural sciences. Sophisticated networks of intimately intertwined signaling pathways coordinate cellular functions. Clear understanding how the integration of multiple inputs produces coherent behavior is one of the major challenges of cell biology. Integration via perfectly timed highly regulated protein-protein interactions and precise targeting of the "output" proteins to particular substrates is emerging as a common theme of signaling regulation. This often involves specialized scaffolding proteins, whose key function is to ensure that correct partners come together in an appropriate place at the right time. Defective or faulty signaling underlies many congenital and acquired human disorders. Several pioneering studies showed that ectopic expression of existing proteins or their elements can restore functions destroyed by mutations or normalize the signaling pushed out of balance by disease and/or current small molecule-based therapy. Several recent studies show that proteins with new functional modalities can be generated by mixing and matching existing domains, or via functional recalibration and fine-tuning of existing proteins by precisely targeted mutations. Using arrestins as an example, we describe how manipulation of individual functions yields signaling-biased proteins. Creative protein redesign generates novel tools valuable for unraveling the intricacies of cell biology. Engineered proteins with specific functional changes also have huge therapeutic potential in disorders associated with inherited or acquired signaling errors.
Collapse
Affiliation(s)
- Vsevolod V Gurevich
- Department of Pharmacology, Vanderbilt University, Nashville, TN 37232, USA.
| | | |
Collapse
|
148
|
Bacterial virulence proteins as tools to rewire kinase pathways in yeast and immune cells. Nature 2012; 488:384-8. [PMID: 22820255 PMCID: PMC3422413 DOI: 10.1038/nature11259] [Citation(s) in RCA: 105] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2012] [Accepted: 05/25/2012] [Indexed: 01/08/2023]
Abstract
Bacterial pathogens have evolved specific effector proteins that, by interfacing with host kinase signaling pathways, provide a mechanism to evade immune responses during infection1,2. Although these effectors are responsible for pathogen virulence, we realized that they might also serve as valuable synthetic biology reagents for engineering cellular behavior. Here, we have exploited two effector proteins, the Shigella flexneri OspF protein3 and Yersinia pestis YopH protein4, to systematically rewire kinase-mediated responses in both yeast and mammalian immune cells. Bacterial effector proteins can be directed to selectively inhibit specific mitogen activated protein kinase (MAPK) pathways in yeast by artificially targeting them to pathway specific complexes. Moreover, we show that unique properties of the effectors generate novel pathway behaviors: OspF, which irreversibly inactivates MAPKs4, was used to construct a synthetic feedback circuit that displays novel frequency-dependent input filtering. Finally, we show that effectors can be used in T cells, either as feedback modulators to precisely tune the T cell response amplitude, or as an inducible pause switch that can temporarily disable T cell activation. These studies demonstrate how pathogens could provide a rich toolkit of parts to engineer cells for therapeutic or biotechnological applications.
Collapse
|
149
|
Riccione KA, Smith RP, Lee AJ, You L. A synthetic biology approach to understanding cellular information processing. ACS Synth Biol 2012; 1:389-402. [PMID: 23411668 PMCID: PMC3568971 DOI: 10.1021/sb300044r] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The survival of cells and organisms requires proper responses to environmental signals. These responses are governed by cellular networks, which serve to process diverse environmental cues. Biological networks often contain recurring network topologies called "motifs". It has been recognized that the study of such motifs allows one to predict the response of a biological network and thus cellular behavior. However, studying a single motif in complete isolation of all other network motifs in a natural setting is difficult. Synthetic biology has emerged as a powerful approach to understanding the dynamic properties of network motifs. In addition to testing existing theoretical predictions, construction and analysis of synthetic gene circuits has led to the discovery of novel motif dynamics, such as how the combination of simple motifs can lead to autonomous dynamics or how noise in transcription and translation can affect the dynamics of a motif. Here, we review developments in synthetic biology as they pertain to increasing our understanding of cellular information processing. We highlight several types of dynamic behaviors that diverse motifs can generate, including the control of input/output responses, the generation of autonomous spatial and temporal dynamics, as well as the influence of noise in motif dynamics and cellular behavior.
Collapse
Affiliation(s)
| | - Robert P Smith
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Anna J Lee
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
| | - Lingchong You
- Department of Biomedical Engineering, Duke University, Durham, NC 27708, USA
- Institute for Genome Sciences and Policy, Duke University, Durham, NC 27710, USA
- Center for Systems Biology, Duke University, Durham, NC 27708, USA
| |
Collapse
|
150
|
Lim W. Wendell Lim: exploring the path not chosen. Interview by Caitlin Sedwick. J Cell Biol 2012; 198:956-7. [PMID: 22986491 PMCID: PMC3444780 DOI: 10.1083/jcb.1986pi] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Lim is creating new biological systems from the parts evolution provided.
Collapse
|