101
|
Acosta-Silva C, Bertran J, Branchadell V, Oliva A. Theoretical Study on Two-Step Mechanisms of Peptide Release in the Ribosome. J Phys Chem B 2014; 118:5717-29. [DOI: 10.1021/jp501246a] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Carles Acosta-Silva
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Joan Bertran
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Vicenç Branchadell
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| | - Antoni Oliva
- Departament de Química, Universitat Autònoma de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
102
|
Petropoulos AD, McDonald ME, Green R, Zaher HS. Distinct roles for release factor 1 and release factor 2 in translational quality control. J Biol Chem 2014; 289:17589-96. [PMID: 24798339 DOI: 10.1074/jbc.m114.564989] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
In bacteria, stop codons are recognized by two similar class 1 release factors, release factor 1 (RF1) and release factor 2 (RF2). Normally, during termination, the class 2 release factor 3 (RF3), a GTPase, functions downstream of peptide release where it accelerates the dissociation of RF1/RF2 prior to ribosome recycling. In addition to their canonical function in termination, both classes of release factor are also involved in a post peptidyl transfer quality control (post PT QC) mechanism where the termination factors recognize mismatched (i.e. error-containing) ribosome complexes and promote premature termination. Here, using a well defined in vitro system, we explored the role of release factors in canonical termination and post PT QC. As reported previously, during canonical termination, RF1 and RF2 recognize stop codons in a similar manner, and RF3 accelerates their rate of dissociation. During post PT QC, only RF2 (and not RF1) effectively binds to mismatched ribosome complexes; and whereas the addition of RF3 to RF2 increased its rate of release on mismatched complexes, the addition of RF3 to RF1 inhibited its rate of release but increased the rate of peptidyl-tRNA dissociation. Our data strongly suggest that RF2, in addition to its primary role in peptide release, functions as the principle factor for post PT QC.
Collapse
Affiliation(s)
- Alexandros D Petropoulos
- From the Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | - Megan E McDonald
- From the Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | - Rachel Green
- From the Howard Hughes Medical Institute, Department of Molecular Biology and Genetics, The Johns Hopkins University School of Medicine, Baltimore, Maryland 21205 and
| | - Hani S Zaher
- the Department of Biology, Washington University in St. Louis, St. Louis, Missouri 63130
| |
Collapse
|
103
|
Trappl K, Mathew MA, Joseph S. Thermodynamic and kinetic insights into stop codon recognition by release factor 1. PLoS One 2014; 9:e94058. [PMID: 24699820 PMCID: PMC3974865 DOI: 10.1371/journal.pone.0094058] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2013] [Accepted: 03/10/2014] [Indexed: 11/19/2022] Open
Abstract
Stop codon recognition is a crucial event during translation termination and is performed by class I release factors (RF1 and RF2 in bacterial cells). Recent crystal structures showed that stop codon recognition is achieved mainly through a network of hydrogen bonds and stacking interactions between the stop codon and conserved residues in domain II of RF1/RF2. Additionally, previous studies suggested that recognition of stop codons is coupled to proper positioning of RF1 on the ribosome, which is essential for triggering peptide release. In this study we mutated four conserved residues in Escherichia coli RF1 (Gln185, Arg186, Thr190, and Thr198) that are proposed to be critical for discriminating stop codons from sense codons. Our thermodynamic and kinetic analysis of these RF1 mutants showed that the mutations inhibited the binding of RF1 to the ribosome. However, the mutations in RF1 did not affect the rate of peptide release, showing that imperfect recognition of the stop codon does not affect the proper positioning of RF1 on the ribosome.
Collapse
Affiliation(s)
- Krista Trappl
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Merrill A. Mathew
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
| | - Simpson Joseph
- Department of Chemistry and Biochemistry, University of California San Diego, La Jolla, California, United States of America
- * E-mail:
| |
Collapse
|
104
|
Affiliation(s)
| | - Ignacio Tinoco
- Department of Chemistry, University of California, Berkeley; Berkeley, CA 94720
| |
Collapse
|
105
|
Zhao YB, Krishnan J. mRNA translation and protein synthesis: an analysis of different modelling methodologies and a new PBN based approach. BMC SYSTEMS BIOLOGY 2014; 8:25. [PMID: 24576337 PMCID: PMC4015640 DOI: 10.1186/1752-0509-8-25] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2013] [Accepted: 01/08/2014] [Indexed: 01/12/2023]
Abstract
Background mRNA translation involves simultaneous movement of multiple ribosomes on the mRNA and is also subject to regulatory mechanisms at different stages. Translation can be described by various codon-based models, including ODE, TASEP, and Petri net models. Although such models have been extensively used, the overlap and differences between these models and the implications of the assumptions of each model has not been systematically elucidated. The selection of the most appropriate modelling framework, and the most appropriate way to develop coarse-grained/fine-grained models in different contexts is not clear. Results We systematically analyze and compare how different modelling methodologies can be used to describe translation. We define various statistically equivalent codon-based simulation algorithms and analyze the importance of the update rule in determining the steady state, an aspect often neglected. Then a novel probabilistic Boolean network (PBN) model is proposed for modelling translation, which enjoys an exact numerical solution. This solution matches those of numerical simulation from other methods and acts as a complementary tool to analytical approximations and simulations. The advantages and limitations of various codon-based models are compared, and illustrated by examples with real biological complexities such as slow codons, premature termination and feedback regulation. Our studies reveal that while different models gives broadly similiar trends in many cases, important differences also arise and can be clearly seen, in the dependence of the translation rate on different parameters. Furthermore, the update rule affects the steady state solution. Conclusions The codon-based models are based on different levels of abstraction. Our analysis suggests that a multiple model approach to understanding translation allows one to ascertain which aspects of the conclusions are robust with respect to the choice of modelling methodology, and when (and why) important differences may arise. This approach also allows for an optimal use of analysis tools, which is especially important when additional complexities or regulatory mechanisms are included. This approach can provide a robust platform for dissecting translation, and results in an improved predictive framework for applications in systems and synthetic biology.
Collapse
Affiliation(s)
| | - J Krishnan
- Department of Chemical Engineering, Centre for Process Systems Engineering, Institute for Systems and Synthetic Biology, Imperial College London, South Kensington, London SW7 2AZ, UK.
| |
Collapse
|
106
|
Shalev M, Baasov T. When Proteins Start to Make Sense: Fine-tuning Aminoglycosides for PTC Suppression Therapy. MEDCHEMCOMM 2014; 5:1092-1105. [PMID: 25147726 DOI: 10.1039/c4md00081a] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
Aminoglycosides (AGs) are highly potent antibacterial agents, which are known to exert their deleterious effects on bacterial cells by interfering with the translation process, leading to aberrant protein synthesis that usually results in cell death. Nearly 45 years ago, AGs were shown to induce read-through activity in prokaryotic systems by selectively encoding tRNA molecules at premature termination codon (PTC) positions; resulting in the generation of full length functional proteins. However, only in the last 20 years this ability has been demonstrated in eukaryotic systems, highlighting their potential as therapeutic agents to treat PTC induced genetic disorders. Despite the great potential, AGs use in these manners is quite restricted due to relatively high toxicity values observed upon their administration. Over the last few years several synthetic derivatives were developed to overcome some of the enhanced toxicity issues, while in parallel showed significantly improved PTC suppression activity in various in-vitro, ex-vivo and in-vivo models of a variety of different diseases models underling by PTC mutations. Although these derivatives hold great promise to serve as therapeutic candidates they also demonstrate the necessity to further understand the molecular mechanisms of which AGs confer their biological activity in eukaryotic cells for further rational drug design. Recent achievements in structural research shed light on AGs mechanism of action and opened a new avenue in the development of new and improved therapeutic derivatives. The following manuscript highlights these accomplishments and summarizes their contributions to the state of art rational drug design.
Collapse
Affiliation(s)
- Moran Shalev
- The Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| | - Timor Baasov
- The Edith and Joseph Fischer Enzyme Inhibitors Laboratory, Schulich Faculty of Chemistry, Technion - Israel Institute of Technology, Haifa 32000, Israel
| |
Collapse
|
107
|
Jiang J, Aduri R, Chow CS, SantaLucia J. Structure modulation of helix 69 from Escherichia coli 23S ribosomal RNA by pseudouridylations. Nucleic Acids Res 2013; 42:3971-81. [PMID: 24371282 PMCID: PMC3973299 DOI: 10.1093/nar/gkt1329] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Helix 69 (H69) is a 19-nt stem-loop region from the large subunit ribosomal RNA. Three pseudouridine (Ψ) modifications clustered in H69 are conserved across phylogeny and known to affect ribosome function. To explore the effects of Ψ on the conformations of Escherichia coli H69 in solution, nuclear magnetic resonance spectroscopy was used to reveal the structural differences between H69 with (ΨΨΨ) and without (UUU) Ψ modifications. Comparison of the two structures shows that H69 ΨΨΨ has the following unique features: (i) the loop region is closed by a Watson-Crick base pair between Ψ1911 and A1919, which is potentially reinforced by interactions involving Ψ1911N1H and (ii) Ψ modifications at loop residues 1915 and 1917 promote base stacking from Ψ1915 to A1918. In contrast, the H69 UUU loop region, which lacks Ψ modifications, is less organized. Structure modulation by Ψ leads to alteration in conformational behavior of the 5' half of the H69 loop region, observed as broadening of C1914 non-exchangeable base proton resonances in the H69 ΨΨΨ nuclear magnetic resonance spectra, and plays an important biological role in establishing the ribosomal intersubunit bridge B2a and mediating translational fidelity.
Collapse
Affiliation(s)
- Jun Jiang
- Department of Chemistry, Wayne State University, Detroit, MI 48202, USA
| | | | | | | |
Collapse
|
108
|
des Georges A, Hashem Y, Unbehaun A, Grassucci RA, Taylor D, Hellen CUT, Pestova TV, Frank J. Structure of the mammalian ribosomal pre-termination complex associated with eRF1.eRF3.GDPNP. Nucleic Acids Res 2013; 42:3409-18. [PMID: 24335085 PMCID: PMC3950680 DOI: 10.1093/nar/gkt1279] [Citation(s) in RCA: 58] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Eukaryotic translation termination results from the complex functional interplay between two release factors, eRF1 and eRF3, in which GTP hydrolysis by eRF3 couples codon recognition with peptidyl-tRNA hydrolysis by eRF1. Here, we present a cryo-electron microscopy structure of pre-termination complexes associated with eRF1•eRF3•GDPNP at 9.7 -Å resolution, which corresponds to the initial pre-GTP hydrolysis stage of factor attachment and stop codon recognition. It reveals the ribosomal positions of eRFs and provides insights into the mechanisms of stop codon recognition and triggering of eRF3's GTPase activity.
Collapse
Affiliation(s)
- Amédée des Georges
- Howard Hughes Medical Institute, Chevy Chase, MD, USA, Department of Biochemistry and Molecular Biophysics, Columbia University, New York, NY, USA, Department of Cell Biology, SUNY Downstate Medical Center, Brooklyn, NY, USA, Department of Pharmacology, Case Western Reserve University, Cleveland, OH, USA and Department of Biological Sciences, Columbia University, New York, NY, USA
| | | | | | | | | | | | | | | |
Collapse
|
109
|
Kogure H, Handa Y, Nagata M, Kanai N, Güntert P, Kubota K, Nameki N. Identification of residues required for stalled-ribosome rescue in the codon-independent release factor YaeJ. Nucleic Acids Res 2013; 42:3152-63. [PMID: 24322300 PMCID: PMC3950681 DOI: 10.1093/nar/gkt1280] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
Abstract
The YaeJ protein is a codon-independent release factor with peptidyl-tRNA hydrolysis (PTH) activity, and functions as a stalled-ribosome rescue factor in Escherichia coli. To identify residues required for YaeJ function, we performed mutational analysis for in vitro PTH activity towards rescue of ribosomes stalled on a non-stop mRNA, and for ribosome-binding efficiency. We focused on residues conserved among bacterial YaeJ proteins. Additionally, we determined the solution structure of the GGQ domain of YaeJ from E. coli using nuclear magnetic resonance spectroscopy. YaeJ and a human homolog, ICT1, had similar levels of PTH activity, despite various differences in sequence and structure. While no YaeJ-specific residues important for PTH activity occur in the structured GGQ domain, Arg118, Leu119, Lys122, Lys129 and Arg132 in the following C-terminal extension were required for PTH activity. All of these residues are completely conserved among bacteria. The equivalent residues were also found in the C-terminal extension of ICT1, allowing an appropriate sequence alignment between YaeJ and ICT1 proteins from various species. Single amino acid substitutions for each of these residues significantly decreased ribosome-binding efficiency. These biochemical findings provide clues to understanding how YaeJ enters the A-site of stalled ribosomes.
Collapse
Affiliation(s)
- Hiroyuki Kogure
- Division of Molecular Science, Faculty of Science and Technology, Gunma University, 1-5-1 Tenjin-cho, Kiryu, Gunma 376-8515, Japan, Institute of Biophysical Chemistry, Center for Biomolecular Magnetic Resonance, and Frankfurt Institute for Advanced Studies, Goethe University, Frankfurt am Main, Germany and Graduate School of Science and Engineering, Tokyo Metropolitan University, 1-1 Minami-ohsawa, Hachioji, Tokyo 192-0397, Japan
| | | | | | | | | | | | | |
Collapse
|
110
|
Peske F, Kuhlenkoetter S, Rodnina MV, Wintermeyer W. Timing of GTP binding and hydrolysis by translation termination factor RF3. Nucleic Acids Res 2013; 42:1812-20. [PMID: 24214994 PMCID: PMC3919579 DOI: 10.1093/nar/gkt1095] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Protein synthesis in bacteria is terminated by release factors 1 or 2 (RF1/2), which, on recognition of a stop codon in the decoding site on the ribosome, promote the hydrolytic release of the polypeptide from the transfer RNA (tRNA). Subsequently, the dissociation of RF1/2 is accelerated by RF3, a guanosine triphosphatase (GTPase) that hydrolyzes GTP during the process. Here we show that—in contrast to a previous report—RF3 binds GTP and guanosine diphosphate (GDP) with comparable affinities. Furthermore, we find that RF3–GTP binds to the ribosome and hydrolyzes GTP independent of whether the P site contains peptidyl-tRNA (pre-termination state) or deacylated tRNA (post-termination state). RF3–GDP in either pre- or post-termination complexes readily exchanges GDP for GTP, and the exchange is accelerated when RF2 is present on the ribosome. Peptide release results in the stabilization of the RF3–GTP–ribosome complex, presumably due to the formation of the hybrid/rotated state of the ribosome, thereby promoting the dissociation of RF1/2. GTP hydrolysis by RF3 is virtually independent of the functional state of the ribosome and the presence of RF2, suggesting that RF3 acts as an unregulated ribosome-activated switch governed by its internal GTPase clock.
Collapse
Affiliation(s)
- Frank Peske
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Am Fassberg 11, 37077 Göttingen, Germany
| | | | | | | |
Collapse
|
111
|
Feng S, Chen Y, Kamada K, Wang H, Tang K, Wang M, Gao YG. YoeB-ribosome structure: a canonical RNase that requires the ribosome for its specific activity. Nucleic Acids Res 2013; 41:9549-56. [PMID: 23945936 PMCID: PMC3814384 DOI: 10.1093/nar/gkt742] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
As a typical endoribonuclease, YoeB mediates cellular adaptation in diverse bacteria by degrading mRNAs on its activation. Although the catalytic core of YoeB is thought to be identical to well-studied nucleases, this enzyme specifically targets mRNA substrates that are associated with ribosomes in vivo. However, the molecular mechanism of mRNA recognition and cleavage by YoeB, and the requirement of ribosome for its optimal activity, largely remain elusive. Here, we report the structure of YoeB bound to 70S ribosome in pre-cleavage state, revealing that both the 30S and 50S subunits participate in YoeB binding. The mRNA is recognized by the catalytic core of YoeB, of which the general base/acid (Glu46/His83) are within hydrogen-bonding distance to their reaction atoms, demonstrating an active conformation of YoeB on ribosome. Also, the mRNA orientation involves the universally conserved A1493 and G530 of 16S rRNA. In addition, mass spectrometry data indicated that YoeB cleaves mRNA following the second position at the A-site codon, resulting in a final product with a 3′–phosphate at the newly formed 3′ end. Our results demonstrate a classical acid-base catalysis for YoeB-mediated RNA hydrolysis and provide insight into how the ribosome is essential for its specific activity.
Collapse
Affiliation(s)
- Shu Feng
- School of Biological Science, Nanyang Technological University, 637551 Singapore, RIKEN Advanced Science Institute, Saitama 351-0198, Japan, Swiss Light Source, Paul Scherrer Institut, CH-5232, Switzerland and Institute of Molecular and Cell Biology, A-STAR, 138673, Singapore
| | | | | | | | | | | | | |
Collapse
|
112
|
Dujeancourt L, Richter R, Chrzanowska-Lightowlers ZM, Bonnefoy N, Herbert CJ. Interactions between peptidyl tRNA hydrolase homologs and the ribosomal release factor Mrf1 in S. pombe mitochondria. Mitochondrion 2013; 13:871-80. [PMID: 23892058 PMCID: PMC3919214 DOI: 10.1016/j.mito.2013.07.115] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2012] [Revised: 06/19/2013] [Accepted: 07/18/2013] [Indexed: 11/22/2022]
Abstract
Mitochondrial translation synthesizes key subunits of the respiratory complexes. In Schizosaccharomyces pombe, strains lacking Mrf1, the mitochondrial stop codon recognition factor, are viable, suggesting that other factors can play a role in translation termination. S. pombe contains four predicted peptidyl tRNA hydrolases, two of which (Pth3 and Pth4), have a GGQ motif that is conserved in class I release factors. We show that high dosage of Pth4 can compensate for the absence of Mrf1 and loss of Pth4 exacerbates the lack of Mrf1. Also Pth4 is a component of the mitochondrial ribosome, suggesting that it could help recycling stalled ribosomes. In S. pombe the peptidyl tRNA hydrolases Pth3 and Pth4 are mitochondrial proteins. Pth3 and Pth4 are associated with the mitochondrial ribosome and the large subunit. Deletion of pth4 and mrf1, encoding the mitochondrial release factor, is co-lethal. Over-expression of pth4 compensates for the deletion of mrf1. Pth4 can act as a release factor in S. pombe mitochondria.
Collapse
Affiliation(s)
- Laurent Dujeancourt
- Centre de Génétique Moléculaire, UPR3404, FRC3115, Avenue de la Terrasse, 91198 Gif-sur-Yvette Cedex, France
| | | | | | | | | |
Collapse
|
113
|
Blasticidin S inhibits translation by trapping deformed tRNA on the ribosome. Proc Natl Acad Sci U S A 2013; 110:12283-8. [PMID: 23824292 DOI: 10.1073/pnas.1304922110] [Citation(s) in RCA: 76] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The antibiotic blasticidin S (BlaS) is a potent inhibitor of protein synthesis in bacteria and eukaryotes. We have determined a 3.4-Å crystal structure of BlaS bound to a 70S⋅tRNA ribosome complex and performed biochemical and single-molecule FRET experiments to determine the mechanism of action of the antibiotic. We find that BlaS enhances tRNA binding to the P site of the large ribosomal subunit and slows down spontaneous intersubunit rotation in pretranslocation ribosomes. However, the antibiotic has negligible effect on elongation factor G catalyzed translocation of tRNA and mRNA. The crystal structure of the antibiotic-ribosome complex reveals that BlaS impedes protein synthesis through a unique mechanism by bending the 3' terminus of the P-site tRNA toward the A site of the large ribosomal subunit. Biochemical experiments demonstrate that stabilization of the deformed conformation of the P-site tRNA by BlaS strongly inhibits peptidyl-tRNA hydrolysis by release factors and, to a lesser extent, peptide bond formation.
Collapse
|
114
|
Giudice E, Gillet R. The task force that rescues stalled ribosomes in bacteria. Trends Biochem Sci 2013; 38:403-11. [PMID: 23820510 DOI: 10.1016/j.tibs.2013.06.002] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2013] [Revised: 05/28/2013] [Accepted: 06/03/2013] [Indexed: 11/29/2022]
Abstract
In bacteria, the main quality control mechanism for rescuing ribosomes that have arrested during translation is trans-translation, performed by transfer-mRNA (tmRNA) associated with small protein B (SmpB). Intriguingly, this very elegant mechanism is not always necessary to maintain cell viability, suggesting the existence of alternatives. Other rescue systems have recently been discovered, revealing a far more complicated story than expected. These include the alternative ribosome rescue factors ArfA and ArfB, the elongation factors EF4 and EF-P, the peptidyl-tRNA hydrolase Pth, and several protein synthesis factors. These discoveries make it possible to describe a large network of factors dedicated to ribosome rescue, thus ensuring cell survival during stresses that induce ribosome stalling.
Collapse
Affiliation(s)
- Emmanuel Giudice
- Translation and Folding Team, Université de Rennes 1, UMR CNRS 6290 IGDR, Campus de Beaulieu 35042 Rennes cedex, France
| | | |
Collapse
|
115
|
Santos N, Zhu J, Donohue JP, Korostelev AA, Noller HF. Crystal structure of the 70S ribosome bound with the Q253P mutant form of release factor RF2. Structure 2013; 21:1258-63. [PMID: 23769667 DOI: 10.1016/j.str.2013.04.028] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2013] [Revised: 03/26/2013] [Accepted: 04/26/2013] [Indexed: 11/25/2022]
Abstract
Bacterial translation termination is mediated by release factors RF1 and RF2, which recognize stop codons and catalyze hydrolysis of the peptidyl-tRNA ester bond. The catalytic mechanism has been debated. We proposed that the backbone amide NH group, rather than the side chain, of the glutamine of the universally conserved GGQ motif participates in catalysis by H-bonding to the tetrahedral transition-state intermediate and by product stabilization. This was supported by complete loss of RF1 catalytic activity when glutamine is replaced by proline, the only residue that lacks a backbone NH group. Here, we present the 3.4 Å crystal structure of the ribosome complex containing the RF2 Q253P mutant and find that its fold, including the GGP sequence, is virtually identical to that of wild-type RF2. This rules out proline-induced misfolding and further supports the proposal that catalytic activity requires interaction of the Gln-253 backbone amide with the 3' end of peptidyl-tRNA.
Collapse
Affiliation(s)
- Natalia Santos
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | | | |
Collapse
|
116
|
Affiliation(s)
| | - V. Ramakrishnan
- MRC Laboratory of Molecular Biology, Cambridge CB2 0QH, United Kingdom; ,
| |
Collapse
|
117
|
Jiang J, Sakakibara Y, Chow CS. Helix 69: A Multitasking RNA Motif as a Novel Drug Target. Isr J Chem 2013. [DOI: 10.1002/ijch.201300012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|
118
|
Acosta-Silva C, Bertran J, Branchadell V, Oliva A. Quantum Mechanical Study on the Mechanism of Peptide Release in the Ribosome. J Phys Chem B 2013; 117:3503-15. [DOI: 10.1021/jp3110248] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Affiliation(s)
- Carles Acosta-Silva
- Departament de Química, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| | - Joan Bertran
- Departament de Química, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| | - Vicenç Branchadell
- Departament de Química, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| | - Antoni Oliva
- Departament de Química, Universitat Autònoma
de Barcelona, 08193 Bellaterra, Spain
| |
Collapse
|
119
|
Kryuchkova P, Grishin A, Eliseev B, Karyagina A, Frolova L, Alkalaeva E. Two-step model of stop codon recognition by eukaryotic release factor eRF1. Nucleic Acids Res 2013; 41:4573-86. [PMID: 23435318 PMCID: PMC3632111 DOI: 10.1093/nar/gkt113] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Release factor eRF1 plays a key role in the termination of protein synthesis in eukaryotes. The eRF1 consists of three domains (N, M and C) that perform unique roles in termination. Previous studies of eRF1 point mutants and standard/variant code eRF1 chimeras unequivocally demonstrated a direct involvement of the highly conserved N-domain motifs (NIKS, YxCxxxF and GTx) in stop codon recognition. In the current study, we extend this work by investigating the role of the 41 invariant and conserved N-domain residues in stop codon decoding by human eRF1. Using a combination of the conservative and non-conservative amino acid substitutions, we measured the functional activity of >80 mutant eRF1s in an in vitro reconstituted eukaryotic translation system and selected 15 amino acid residues essential for recognition of different stop codon nucleotides. Furthermore, toe-print analyses provide evidence of a conformational rearrangement of ribosomal complexes that occurs during binding of eRF1 to messenger RNA and reflects stop codon decoding activity of eRF1. Based on our experimental data and molecular modelling of the N-domain at the ribosomal A site, we propose a two-step model of stop codon decoding in the eukaryotic ribosome.
Collapse
Affiliation(s)
- Polina Kryuchkova
- Engelhardt Institute of Molecular Biology, the Russian Academy of Sciences, 119991 Moscow, Russia
| | | | | | | | | | | |
Collapse
|
120
|
Bai XC, Fernandez IS, McMullan G, Scheres SHW. Ribosome structures to near-atomic resolution from thirty thousand cryo-EM particles. eLife 2013; 2:e00461. [PMID: 23427024 PMCID: PMC3576727 DOI: 10.7554/elife.00461] [Citation(s) in RCA: 325] [Impact Index Per Article: 27.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2012] [Accepted: 01/15/2013] [Indexed: 11/13/2022] Open
Abstract
Although electron cryo-microscopy (cryo-EM) single-particle analysis has become an important tool for structural biology of large and flexible macro-molecular assemblies, the technique has not yet reached its full potential. Besides fundamental limits imposed by radiation damage, poor detectors and beam-induced sample movement have been shown to degrade attainable resolutions. A new generation of direct electron detectors may ameliorate both effects. Apart from exhibiting improved signal-to-noise performance, these cameras are also fast enough to follow particle movements during electron irradiation. Here, we assess the potentials of this technology for cryo-EM structure determination. Using a newly developed statistical movie processing approach to compensate for beam-induced movement, we show that ribosome reconstructions with unprecedented resolutions may be calculated from almost two orders of magnitude fewer particles than used previously. Therefore, this methodology may expand the scope of high-resolution cryo-EM to a broad range of biological specimens.DOI:http://dx.doi.org/10.7554/eLife.00461.001.
Collapse
Affiliation(s)
- Xiao-Chen Bai
- Medical Research Council Laboratory of Molecular Biology , Cambridge , United Kingdom
| | | | | | | |
Collapse
|
121
|
Thyer R, Filipovska A, Rackham O. Engineered rRNA Enhances the Efficiency of Selenocysteine Incorporation during Translation. J Am Chem Soc 2012; 135:2-5. [DOI: 10.1021/ja3069177] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Ross Thyer
- Western
Australian Institute for Medical Research and
Centre for Medical Research, The University of Western Australia, Australia
| | - Aleksandra Filipovska
- Western
Australian Institute for Medical Research and
Centre for Medical Research, The University of Western Australia, Australia
| | - Oliver Rackham
- Western
Australian Institute for Medical Research and
Centre for Medical Research, The University of Western Australia, Australia
| |
Collapse
|
122
|
Shaw JJ, Trobro S, He SL, Åqvist J, Green R. A Role for the 2' OH of peptidyl-tRNA substrate in peptide release on the ribosome revealed through RF-mediated rescue. ACTA ACUST UNITED AC 2012; 19:983-93. [PMID: 22921065 DOI: 10.1016/j.chembiol.2012.06.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Revised: 05/12/2012] [Accepted: 06/01/2012] [Indexed: 11/25/2022]
Abstract
The 2' OH of the peptidyl-tRNA substrate is thought to be important for catalysis of both peptide bond formation and peptide release in the ribosomal active site. The release reaction also specifically depends on a release factor protein (RF) to hydrolyze the ester linkage of the peptidyl-tRNA upon recognition of stop codons in the A site. Here, we demonstrate that certain amino acid substitutions (in particular those containing hydroxyl or thiol groups) in the conserved GGQ glutamine of release factor RF1 can rescue defects in the release reaction associated with peptidyl-tRNA substrates lacking a 2' OH. We explored this rescue effect through biochemical and computational approaches that support a model where the 2' OH of the P-site substrate is critical for orienting the nucleophile in a hydrogen-bonding network productive for catalysis.
Collapse
Affiliation(s)
- Jeffrey J Shaw
- Department of Molecular Biology and Genetics, Howard Hughes Medical Institute, Johns Hopkins University School of Medicine, Baltimore, MD 21205, USA
| | | | | | | | | |
Collapse
|
123
|
Bidou L, Allamand V, Rousset JP, Namy O. Sense from nonsense: therapies for premature stop codon diseases. Trends Mol Med 2012; 18:679-88. [PMID: 23083810 DOI: 10.1016/j.molmed.2012.09.008] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2012] [Revised: 09/19/2012] [Accepted: 09/21/2012] [Indexed: 02/04/2023]
Abstract
Ten percent of inherited diseases are caused by premature termination codon (PTC) mutations that lead to degradation of the mRNA template and to the production of a non-functional, truncated polypeptide. In addition, many acquired mutations in cancer introduce similar PTCs. In 1999, proof-of-concept for treating these disorders was obtained in a mouse model of muscular dystrophy, when administration of aminoglycosides restored protein translation by inducing the ribosome to bypass a PTC. Since, many studies have validated this approach, but despite the promise of PTC readthrough therapies, the mechanisms of translation termination remain to be precisely elucidated before even more progress can be made. Here, we review the molecular basis for PTC readthrough in eukaryotes and describe currently available compounds with significant therapeutic potential for treating genetic disorders and cancer.
Collapse
|
124
|
Zhou J, Korostelev A, Lancaster L, Noller HF. Crystal structures of 70S ribosomes bound to release factors RF1, RF2 and RF3. Curr Opin Struct Biol 2012; 22:733-42. [PMID: 22999888 DOI: 10.1016/j.sbi.2012.08.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2012] [Revised: 08/22/2012] [Accepted: 08/22/2012] [Indexed: 11/29/2022]
Abstract
Termination is a crucial step in translation, most notably because premature termination can lead to toxic truncated polypeptides. Most interesting is the fact that stop codons are read by a completely different mechanism from that of sense codons. In recent years, rapid progress has been made in the structural biology of complexes of bacterial ribosomes bound to translation termination factors, much of which has been discussed in earlier reviews [1-5]. Here, we present a brief overview of the structures of bacterial translation termination complexes. The first part summarizes what has been learned from crystal structures of complexes containing the class I release factors RF1 and RF2. In the second part, we discuss the results and implications of two recent X-ray structures of complexes of ribosomes bound to the translational GTPase RF3. These structures have provided many insights and a number of surprises. While structures alone do not tell us how these complicated molecular assemblies work, is it nevertheless clear that it will not be possible to understand their mechanisms without detailed structural information.
Collapse
Affiliation(s)
- Jie Zhou
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, CA 95064, USA
| | | | | | | |
Collapse
|
125
|
Keeling KM, Wang D, Conard SE, Bedwell DM. Suppression of premature termination codons as a therapeutic approach. Crit Rev Biochem Mol Biol 2012; 47:444-63. [PMID: 22672057 PMCID: PMC3432268 DOI: 10.3109/10409238.2012.694846] [Citation(s) in RCA: 82] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
In this review, we describe our current understanding of translation termination and pharmacological agents that influence the accuracy of this process. A number of drugs have been identified that induce suppression of translation termination at in-frame premature termination codons (PTCs; also known as nonsense mutations) in mammalian cells. We discuss efforts to utilize these drugs to suppress disease-causing PTCs that result in the loss of protein expression and function. In-frame PTCs represent a genotypic subset of mutations that make up ~11% of all known mutations that cause genetic diseases, and millions of patients have diseases attributable to PTCs. Current approaches aimed at reducing the efficiency of translation termination at PTCs (referred to as PTC suppression therapy) have the goal of alleviating the phenotypic consequences of a wide range of genetic diseases. Suppression therapy is currently in clinical trials for treatment of several genetic diseases caused by PTCs, and preliminary results suggest that some patients have shown clinical improvements. While current progress is promising, we discuss various approaches that may further enhance the efficiency of this novel therapeutic approach.
Collapse
Affiliation(s)
- Kim M. Keeling
- Dept. of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Dan Wang
- Dept. of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - Sara E. Conard
- Dept. of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
| | - David M. Bedwell
- Dept. of Microbiology, University of Alabama at Birmingham, Birmingham, AL, USA
- Gregory Fleming James Cystic Fibrosis Research Center, University of Alabama at Birmingham, Birmingham, AL, USA
| |
Collapse
|
126
|
Chadani Y, Ito K, Kutsukake K, Abo T. ArfA recruits release factor 2 to rescue stalled ribosomes by peptidyl-tRNA hydrolysis inEscherichia coli. Mol Microbiol 2012; 86:37-50. [DOI: 10.1111/j.1365-2958.2012.08190.x] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
127
|
Geiermann AS, Micura R. Selective desulfurization significantly expands sequence variety of 3'-peptidyl-tRNA mimics obtained by native chemical ligation. Chembiochem 2012; 13:1742-5. [PMID: 22786696 PMCID: PMC3430856 DOI: 10.1002/cbic.201200368] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2012] [Indexed: 12/30/2022]
Affiliation(s)
- Anna-Skrollan Geiermann
- Institute of Organic Chemistry, CCB: Center for Chemistry and Biomedicine, University of Innsbruck6020 Innsbruck (Austria) E-mail:
| | - Ronald Micura
- Institute of Organic Chemistry, CCB: Center for Chemistry and Biomedicine, University of Innsbruck6020 Innsbruck (Austria) E-mail:
| |
Collapse
|
128
|
Kogure H, Hikawa Y, Hagihara M, Tochio N, Koshiba S, Inoue Y, Güntert P, Kigawa T, Yokoyama S, Nameki N. Solution structure and siRNA-mediated knockdown analysis of the mitochondrial disease-related protein C12orf65. Proteins 2012; 80:2629-42. [DOI: 10.1002/prot.24152] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2012] [Revised: 06/27/2012] [Accepted: 07/05/2012] [Indexed: 01/17/2023]
|
129
|
Aqvist J, Lind C, Sund J, Wallin G. Bridging the gap between ribosome structure and biochemistry by mechanistic computations. Curr Opin Struct Biol 2012; 22:815-23. [PMID: 22884263 DOI: 10.1016/j.sbi.2012.07.008] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2012] [Revised: 06/14/2012] [Accepted: 07/09/2012] [Indexed: 11/18/2022]
Abstract
The wealth of structural and biochemical data now available for protein synthesis on the ribosome presents major new challenges for computational biochemistry. Apart from technical difficulties in modeling ribosome systems, the complexity of the overall translation cycle with a multitude of different kinetic steps presents a formidable problem for computational efforts where we have only seen the beginning. However, a range of methodologies including molecular dynamics simulations, free energy calculations, molecular docking and quantum chemical approaches have already been put to work with promising results. In particular, the combined efforts of structural biology, biochemistry, kinetics and computational modeling can lead towards a quantitative structure-based description of translation.
Collapse
Affiliation(s)
- Johan Aqvist
- Department of Cell and Molecular Biology, Uppsala University, Biomedical Center, Box 596, SE-751 24 Uppsala, Sweden.
| | | | | | | |
Collapse
|
130
|
Leppik M, Ero R, Liiv A, Kipper K, Remme J. Different sensitivity of H69 modification enzymes RluD and RlmH to mutations in Escherichia coli 23S rRNA. Biochimie 2012; 94:1080-9. [PMID: 22586702 DOI: 10.1016/j.biochi.2012.02.023] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Nucleoside modifications are introduced into the ribosomal RNA during the assembly of the ribosome. The number and the localization of the modified nucleosides in rRNAs are known for several organisms. In bacteria, rRNA modified nucleosides are synthesized by a set of specific enzymes, the majority of which have been identified in Escherichia coli. Each rRNA modification enzyme recognizes its substrate nucleoside(s) at a specific stage of ribosome assembly. Not much is known about the specificity determinants involved in the substrate recognition of the modification enzymes. In order to shed light on the substrate specificity of RluD and RlmH, the enzymes responsible for the introduction of modifications into the stem-loop 69 (H69), we monitored the formation of H69 pseudouridines (Ψ) and methylated pseudouridine (m3Ψ) in vitro on ribosomes with alterations in 23S rRNA. While the synthesis of Ψs in H69 by RluD is relatively insensitive to the point mutations at neighboring positions, methylation of one of the Ψs by RlmH exhibited a much stronger sensitivity. Apparently, in spite of synthesizing modifications in the same region or even at the same position of rRNA, the two enzymes employ different substrate recognition mechanisms.
Collapse
Affiliation(s)
- Margus Leppik
- Institute of Molecular and Cell Biology, University of Tartu, Riia 23, 51010 Tartu, Estonia
| | | | | | | | | |
Collapse
|
131
|
Kobayashi K, Saito K, Ishitani R, Ito K, Nureki O. Structural basis for translation termination by archaeal RF1 and GTP-bound EF1α complex. Nucleic Acids Res 2012; 40:9319-28. [PMID: 22772989 PMCID: PMC3467058 DOI: 10.1093/nar/gks660] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022] Open
Abstract
When a stop codon appears at the ribosomal A site, the class I and II release factors (RFs) terminate translation. In eukaryotes and archaea, the class I and II RFs form a heterodimeric complex, and complete the overall translation termination process in a GTP-dependent manner. However, the structural mechanism of the translation termination by the class I and II RF complex remains unresolved. In archaea, archaeal elongation factor 1 alpha (aEF1α), a carrier GTPase for tRNA, acts as a class II RF by forming a heterodimeric complex with archaeal RF1 (aRF1). We report the crystal structure of the aRF1·aEF1α complex, the first active class I and II RF complex. This structure remarkably resembles the tRNA·EF–Tu complex, suggesting that aRF1 is efficiently delivered to the ribosomal A site, by mimicking tRNA. It provides insights into the mechanism that couples GTP hydrolysis by the class II RF to stop codon recognition and peptidyl-tRNA hydrolysis by the class I RF. We discuss the different mechanisms by which aEF1α recognizes aRF1 and aPelota, another aRF1-related protein and molecular evolution of the three functions of aEF1α.
Collapse
Affiliation(s)
- Kan Kobayashi
- Department of Biophysics and Biochemistry, Graduate School of Science, The University of Tokyo, 2-11-16 Yayoi, Bunkyo-ku, Tokyo 113-0032, Japan
| | | | | | | | | |
Collapse
|
132
|
Jackson RJ, Hellen CUT, Pestova TV. Termination and post-termination events in eukaryotic translation. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:45-93. [PMID: 22243581 DOI: 10.1016/b978-0-12-386497-0.00002-5] [Citation(s) in RCA: 166] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Translation termination in eukaryotes occurs in response to a stop codon in the ribosomal A-site and requires two release factors (RFs), eRF1 and eRF3, which bind to the A-site as an eRF1/eRF3/GTP complex with eRF1 responsible for codon recognition. After GTP hydrolysis by eRF3, eRF1 triggers hydrolysis of the polypeptidyl-tRNA, releasing the completed protein product. This leaves an 80S ribosome still bound to the mRNA, with deacylated tRNA in its P-site and at least eRF1 in its A-site, which needs to be disassembled and released from the mRNA to allow further rounds of translation. The first step in recycling is dissociation of the 60S ribosomal subunit, leaving a 40S/deacylated tRNA complex bound to the mRNA. This is mediated by ABCE1, which is a somewhat unusual member of the ATP-binding cassette family of proteins with no membrane-spanning domain but two essential iron-sulfur clusters. Two distinct pathways have been identified for subsequent ejection of the deacylated tRNA followed by dissociation of the 40S subunit from the mRNA, one executed by a subset of the canonical initiation factors (which therefore starts the process of preparing the 40S subunit for the next round of translation) and the other by Ligatin or homologous proteins. However, although this is the normal sequence of events, there are exceptions where the termination reaction is followed by reinitiation on the same mRNA (usually) at a site downstream of the stop codon. The overwhelming majority of such reinitiation events occur when the 5'-proximal open reading frame (ORF) is short and can result in significant regulation of translation of the protein-coding ORF, but there are also rare examples, mainly bicistronic viral RNAs, of reinitiation after a long ORF. Here, we review our current understanding of the mechanisms of termination, ribosome recycling, and reinitiation after translation of short and long ORFs.
Collapse
Affiliation(s)
- Richard J Jackson
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
133
|
Dever TE, Green R. The elongation, termination, and recycling phases of translation in eukaryotes. Cold Spring Harb Perspect Biol 2012; 4:a013706. [PMID: 22751155 DOI: 10.1101/cshperspect.a013706] [Citation(s) in RCA: 303] [Impact Index Per Article: 23.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
This work summarizes our current understanding of the elongation and termination/recycling phases of eukaryotic protein synthesis. We focus here on recent advances in the field. In addition to an overview of translation elongation, we discuss unique aspects of eukaryotic translation elongation including eEF1 recycling, eEF2 modification, and eEF3 and eIF5A function. Likewise, we highlight the function of the eukaryotic release factors eRF1 and eRF3 in translation termination, and the functions of ABCE1/Rli1, the Dom34:Hbs1 complex, and Ligatin (eIF2D) in ribosome recycling. Finally, we present some of the key questions in translation elongation, termination, and recycling that remain to be answered.
Collapse
Affiliation(s)
- Thomas E Dever
- Laboratory of Gene Regulation and Development, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, Maryland 20892, USA.
| | | |
Collapse
|
134
|
Sakakibara Y, Chow CS. Role of pseudouridine in structural rearrangements of helix 69 during bacterial ribosome assembly. ACS Chem Biol 2012; 7:871-8. [PMID: 22324880 DOI: 10.1021/cb200497q] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
As part of the central core domain of the ribosome, helix 69 of 23S rRNA participates in an important intersubunit bridge and contacts several protein translation factors. Helix 69 is believed to play key roles in protein synthesis. Even though high-resolution crystal structures of the ribosome exist, the solution dynamics and roles of individual nucleotides in H69 are still not well-defined. To better understand the influence of modified nucleotides, specifically pseudouridine, on the multiple conformational states of helix 69 in the context of 50S subunits and 70S ribosomes, chemical probing analyses were performed on wild-type and pseudouridine-deficient bacterial ribosomes. Local structural rearrangements of helix 69 upon ribosomal subunit association and interactions with its partner, helix 44 of 16S rRNA, are observed. The helix 69 conformational states are also magnesium-dependent. The probing data presented in this study provide insight into the functional role of helix 69 dynamics and regulation of these conformational states by post-transcriptional pseudouridine modification.
Collapse
Affiliation(s)
- Yogo Sakakibara
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United
States
| | - Christine S. Chow
- Department of Chemistry, Wayne State University, Detroit, Michigan 48202, United
States
| |
Collapse
|
135
|
Huynen MA, Duarte I, Chrzanowska-Lightowlers ZMA, Nabuurs SB. Structure based hypothesis of a mitochondrial ribosome rescue mechanism. Biol Direct 2012; 7:14. [PMID: 22569235 PMCID: PMC3418547 DOI: 10.1186/1745-6150-7-14] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2012] [Accepted: 03/27/2012] [Indexed: 11/29/2022] Open
Abstract
Background mtRF1 is a vertebrate mitochondrial protein with an unknown function that arose from a duplication of the mitochondrial release factor mtRF1a. To elucidate the function of mtRF1, we determined the positions that are conserved among mtRF1 sequences but that are different in their mtRF1a paralogs. We subsequently modeled the 3D structure of mtRF1a and mtRF1 bound to the ribosome, highlighting the structural implications of these differences to derive a hypothesis for the function of mtRF1. Results Our model predicts, in agreement with the experimental data, that the 3D structure of mtRF1a allows it to recognize the stop codons UAA and UAG in the A-site of the ribosome. In contrast, we show that mtRF1 likely can only bind the ribosome when the A-site is devoid of mRNA. Furthermore, while mtRF1a will adopt its catalytic conformation, in which it functions as a peptidyl-tRNA hydrolase in the ribosome, only upon binding of a stop codon in the A-site, mtRF1 appears specifically adapted to assume this extended, peptidyl-tRNA hydrolyzing conformation in the absence of mRNA in the A-site. Conclusions We predict that mtRF1 specifically recognizes ribosomes with an empty A-site and is able to function as a peptidyl-tRNA hydrolase in those situations. Stalled ribosomes with empty A-sites that still contain a tRNA bound to a peptide chain can result from the translation of truncated, stop-codon less mRNAs. We hypothesize that mtRF1 recycles such stalled ribosomes, performing a function that is analogous to that of tmRNA in bacteria. Reviewers This article was reviewed by Dr. Eugene Koonin, Prof. Knud H. Nierhaus (nominated by Dr. Sarah Teichmann) and Dr. Shamil Sunyaev.
Collapse
Affiliation(s)
- Martijn A Huynen
- Centre for Molecular and Biomolecular Informatics, Nijmegen Centre for Molecular Life Sciences, Radboud University Nijmegen Medical Centre, P,O, Box 9101, 6400, HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
136
|
Zenkin N. Hypothesis: Emergence of Translation as a Result of RNA Helicase Evolution. J Mol Evol 2012; 74:249-56. [DOI: 10.1007/s00239-012-9503-6] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2011] [Accepted: 04/13/2012] [Indexed: 10/28/2022]
|
137
|
Polshakov VI, Eliseev BD, Birdsall B, Frolova LY. Structure and dynamics in solution of the stop codon decoding N-terminal domain of the human polypeptide chain release factor eRF1. Protein Sci 2012; 21:896-903. [PMID: 22517631 DOI: 10.1002/pro.2067] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2012] [Revised: 03/15/2012] [Accepted: 03/17/2012] [Indexed: 11/07/2022]
Abstract
The high-resolution NMR structure of the N-domain of human eRF1, responsible for stop codon recognition, has been determined in solution. The overall fold of the protein is the same as that found in the crystal structure. However, the structures of several loops, including those participating in stop codon decoding, are different. Analysis of the NMR relaxation data reveals that most of the regions with the highest structural discrepancy between the solution and solid states undergo internal motions on the ps-ns and ms time scales. The NMR data show that the N-domain of human eRF1 exists in two conformational states. The distribution of the residues having the largest chemical shift differences between the two forms indicates that helices α2 and α3, with the NIKS loop between them, can switch their orientation relative to the β-core of the protein. Such structural plasticity may be essential for stop codon recognition by human eRF1.
Collapse
Affiliation(s)
- Vladimir I Polshakov
- Center for Magnetic Tomography and Spectroscopy, Faculty of Fundamental Medicine, MV Lomonosov Moscow State University, Moscow, Russia.
| | | | | | | |
Collapse
|
138
|
Gagnon MG, Seetharaman SV, Bulkley D, Steitz TA. Structural basis for the rescue of stalled ribosomes: structure of YaeJ bound to the ribosome. Science 2012; 335:1370-2. [PMID: 22422986 DOI: 10.1126/science.1217443] [Citation(s) in RCA: 84] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
In bacteria, the hybrid transfer-messenger RNA (tmRNA) rescues ribosomes stalled on defective messenger RNAs (mRNAs). However, certain gram-negative bacteria have evolved proteins that are capable of rescuing stalled ribosomes in a tmRNA-independent manner. Here, we report a 3.2 angstrom-resolution crystal structure of the rescue factor YaeJ bound to the Thermus thermophilus 70S ribosome in complex with the initiator tRNA(i)(fMet) and a short mRNA. The structure reveals that the C-terminal tail of YaeJ functions as a sensor to discriminate between stalled and actively translating ribosomes by binding in the mRNA entry channel downstream of the A site between the head and shoulder of the 30S subunit. This allows the N-terminal globular domain to sample different conformations, so that its conserved GGQ motif is optimally positioned to catalyze the hydrolysis of peptidyl-tRNA. This structure gives insights into the mechanism of YaeJ function and provides a basis for understanding how it rescues stalled ribosomes.
Collapse
Affiliation(s)
- Matthieu G Gagnon
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, CT 06520-8114, USA
| | | | | | | |
Collapse
|
139
|
Abstract
Because of the molecular complexity of the ribosome and protein synthesis, it is a challenge to imagine how translation could have evolved from a primitive RNA World. Two specific suggestions are made here to help to address this, involving separate evolution of the peptidyl transferase and decoding functions. First, it is proposed that translation originally arose not to synthesize functional proteins, but to provide simple (perhaps random) peptides that bound to RNA, increasing its available structure space, and therefore its functional capabilities. Second, it is proposed that the decoding site of the ribosome evolved from a mechanism for duplication of RNA. This process involved homodimeric "duplicator RNAs," resembling the anticodon arms of tRNAs, which directed ligation of trinucleotides in response to an RNA template.
Collapse
Affiliation(s)
- Harry F Noller
- Center for Molecular Biology of RNA and Department of Molecular, Cell, and Developmental Biology, Sinsheimer Laboratories, University of California at Santa Cruz, Santa Cruz, California 95064, USA.
| |
Collapse
|
140
|
McDonald ME, Green R. Another burst of smoke: atomic resolution structures of RF3 bound to the ribosome. RNA (NEW YORK, N.Y.) 2012; 18:605-609. [PMID: 22345149 PMCID: PMC3312549 DOI: 10.1261/rna.032011.111] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Two recent reports provide atomic resolution information detailing the interaction of the class II release factor, RF3, with the bacterial ribosome. Differences in the composition of the two crystal forms allow us to learn a considerable amount about how translational GTPases engage the ribosome to facilitate and define conformational rearrangements involved in protein synthesis.
Collapse
Affiliation(s)
- Megan E. McDonald
- Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| | - Rachel Green
- Johns Hopkins University School of Medicine, Baltimore, Maryland 21205, USA
| |
Collapse
|
141
|
Wong LE, Li Y, Pillay S, Frolova L, Pervushin K. Selectivity of stop codon recognition in translation termination is modulated by multiple conformations of GTS loop in eRF1. Nucleic Acids Res 2012; 40:5751-65. [PMID: 22383581 PMCID: PMC3384315 DOI: 10.1093/nar/gks192] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Translation termination in eukaryotes is catalyzed by two release factors eRF1 and eRF3 in a cooperative manner. The precise mechanism of stop codon discrimination by eRF1 remains obscure, hindering drug development targeting aberrations at translation termination. By solving the solution structures of the wild-type N-domain of human eRF1 exhibited omnipotent specificity, i.e. recognition of all three stop codons, and its unipotent mutant with UGA-only specificity, we found the conserved GTS loop adopting alternate conformations. We propose that structural variability in the GTS loop may underline the switching between omnipotency and unipotency of eRF1, implying the direct access of the GTS loop to the stop codon. To explore such feasibility, we positioned N-domain in a pre-termination ribosomal complex using the binding interface between N-domain and model RNA oligonucleotides mimicking Helix 44 of 18S rRNA. NMR analysis revealed that those duplex RNA containing 2-nt internal loops interact specifically with helix α1 of N-domain, and displace C-domain from a non-covalent complex of N-domain and C-domain, suggesting domain rearrangement in eRF1 that accompanies N-domain accommodation into the ribosomal A site.
Collapse
Affiliation(s)
- Leo E Wong
- School of Biological Sciences, Nanyang Technological University, 60 Nanyang Drive, Singapore 637551, Singapore
| | | | | | | | | |
Collapse
|
142
|
Parisien M, Yi C, Pan T. Rationalization and prediction of selective decoding of pseudouridine-modified nonsense and sense codons. RNA (NEW YORK, N.Y.) 2012; 18:355-367. [PMID: 22282339 PMCID: PMC3285925 DOI: 10.1261/rna.031351.111] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2011] [Accepted: 12/05/2011] [Indexed: 05/31/2023]
Abstract
A stop or nonsense codon is an in-frame triplet within a messenger RNA that signals the termination of translation. One common feature shared among all three nonsense codons (UAA, UAG, and UGA) is a uridine present at the first codon position. It has been recently shown that the conversion of this uridine into pseudouridine (Ψ) suppresses translation termination, both in vitro and in vivo. Furthermore, decoding of the pseudouridylated nonsense codons is accompanied by the incorporation of two specific amino acids in a nonsense codon-dependent fashion. Ψ differs from uridine by a single N¹H group at the C5 position; how Ψ suppresses termination and, more importantly, enables selective decoding is poorly understood. Here, we provide molecular rationales for how pseudouridylated stop codons are selectively decoded. Our analysis applies crystal structures of ribosomes in varying states of translation to consider weakened interaction of Ψ with release factor; thermodynamic and geometric considerations of the codon-anticodon base pairs to rank and to eliminate mRNA-tRNA pairs; the mechanism of fidelity check of the codon-anticodon pairing by the ribosome to evaluate noncanonical codon-anticodon base pairs and the role of water. We also consider certain tRNA modifications that interfere with the Ψ-coordinated water in the major groove of the codon-anticodon mini-helix. Our analysis of nonsense codons enables prediction of potential decoding properties for Ψ-modified sense codons, such as decoding ΨUU potentially as Cys and Tyr. Our results provide molecular rationale for the remarkable dynamics of ribosome decoding and insights on possible reprogramming of the genetic code using mRNA modifications.
Collapse
Affiliation(s)
| | - Chengqi Yi
- Department of Biochemistry and Molecular Biology
| | - Tao Pan
- Department of Biochemistry and Molecular Biology
- Institute for Biophysical Dynamics, University of Chicago, Chicago, Illinois 60637, USA
| |
Collapse
|
143
|
Zhou J, Lancaster L, Trakhanov S, Noller HF. Crystal structure of release factor RF3 trapped in the GTP state on a rotated conformation of the ribosome. RNA (NEW YORK, N.Y.) 2012; 18:230-40. [PMID: 22187675 PMCID: PMC3264910 DOI: 10.1261/rna.031187.111] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/07/2023]
Abstract
The class II release factor RF3 is a GTPase related to elongation factor EF-G, which catalyzes release of class I release factors RF1 and RF2 from the ribosome after termination of protein synthesis. The 3.3 Å crystal structure of the RF3·GDPNP·ribosome complex provides a high-resolution description of interactions and structural rearrangements that occur when binding of this translational GTPase induces large-scale rotational movements in the ribosome. RF3 induces a 7° rotation of the body and 14° rotation of the head of the 30S ribosomal subunit, and itself undergoes inter- and intradomain conformational rearrangements. We suggest that ordering of critical elements of switch loop I and the P loop, which help to form the GTPase catalytic site, are caused by interactions between the G domain of RF3 and the sarcin-ricin loop of 23S rRNA. The rotational movements in the ribosome induced by RF3, and its distinctly different binding orientation to the sarcin-ricin loop of 23S rRNA, raise interesting implications for the mechanism of action of EF-G in translocation.
Collapse
Affiliation(s)
- Jie Zhou
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Laura Lancaster
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Sergei Trakhanov
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
| | - Harry F. Noller
- Center for Molecular Biology of RNA and Department of Molecular, Cell and Developmental Biology, University of California at Santa Cruz, Santa Cruz, California 95064, USA
- Corresponding author.E-mail .
| |
Collapse
|
144
|
Graille M, Figaro S, Kervestin S, Buckingham RH, Liger D, Heurgué-Hamard V. Methylation of class I translation termination factors: structural and functional aspects. Biochimie 2012; 94:1533-43. [PMID: 22266024 DOI: 10.1016/j.biochi.2012.01.005] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2011] [Accepted: 01/07/2012] [Indexed: 12/23/2022]
Abstract
During protein synthesis, release of polypeptide from the ribosome occurs when an in frame termination codon is encountered. Contrary to sense codons, which are decoded by tRNAs, stop codons present in the A-site are recognized by proteins named class I release factors, leading to the release of newly synthesized proteins. Structures of these factors bound to termination ribosomal complexes have recently been obtained, and lead to a better understanding of stop codon recognition and its coordination with peptidyl-tRNA hydrolysis in bacteria. Release factors contain a universally conserved GGQ motif which interacts with the peptidyl-transferase centre to allow peptide release. The Gln side chain from this motif is methylated, a feature conserved from bacteria to man, suggesting an important biological role. However, methylation is catalysed by completely unrelated enzymes. The function of this motif and its post-translational modification will be discussed in the context of recent structural and functional studies.
Collapse
Affiliation(s)
- Marc Graille
- IBBMC, Université Paris-Sud 11, CNRS UMR8619, Orsay Cedex, F-91405, France.
| | | | | | | | | | | |
Collapse
|
145
|
Quality control of mRNA decoding on the bacterial ribosome. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2012; 86:95-128. [PMID: 22243582 DOI: 10.1016/b978-0-12-386497-0.00003-7] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The ribosome is a major player in providing accurate gene expression in the cell. The fidelity of substrate selection is tightly controlled throughout the translation process, including the initiation, elongation, and termination phases. Although each phase of translation involves different players, that is, translation factors and tRNAs, the general principles of selection appear surprisingly similar for very different substrates. At essentially every step of translation, differences in complex stabilities as well as induced fit are sources of selectivity. A view starts to emerge of how the ribosome uses local and global conformational switches to govern induced-fit mechanisms that ensure fidelity. This review describes the mechanisms of tRNA and mRNA selection at all phases of protein synthesis in bacteria.
Collapse
|
146
|
Walbott H, Machado-Pinilla R, Liger D, Blaud M, Réty S, Grozdanov PN, Godin K, van Tilbeurgh H, Varani G, Meier UT, Leulliot N. The H/ACA RNP assembly factor SHQ1 functions as an RNA mimic. Genes Dev 2011; 25:2398-408. [PMID: 22085966 DOI: 10.1101/gad.176834.111] [Citation(s) in RCA: 47] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
SHQ1 is an essential assembly factor for H/ACA ribonucleoproteins (RNPs) required for ribosome biogenesis, pre-mRNA splicing, and telomere maintenance. SHQ1 binds dyskerin/NAP57, the catalytic subunit of human H/ACA RNPs, and this interaction is modulated by mutations causing X-linked dyskeratosis congenita. We report the crystal structure of the C-terminal domain of yeast SHQ1, Shq1p, and its complex with yeast dyskerin/NAP57, Cbf5p, lacking its catalytic domain. The C-terminal domain of Shq1p interacts with the RNA-binding domain of Cbf5p and, through structural mimicry, uses the RNA-protein-binding sites to achieve a specific protein-protein interface. We propose that Shq1p operates as a Cbf5p chaperone during RNP assembly by acting as an RNA placeholder, thereby preventing Cbf5p from nonspecific RNA binding before association with an H/ACA RNA and the other core RNP proteins.
Collapse
Affiliation(s)
- Hélène Walbott
- Institut de Biochimie et de Biophysique Moléculaire et Cellulaire, Université de Paris-Sud, Orsay Cedex, France
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
147
|
Geiermann AS, Polacek N, Micura R. Native Chemical Ligation of Hydrolysis-Resistant 3′-Peptidyl–tRNA Mimics. J Am Chem Soc 2011; 133:19068-71. [DOI: 10.1021/ja209053b] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Affiliation(s)
- Anna-Skrollan Geiermann
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Austria
| | - Norbert Polacek
- Innsbruck Biocenter, Division of Genomics and RNomics, Medical University of Innsbruck, Austria
| | - Ronald Micura
- Institute of Organic Chemistry and Center for Molecular Biosciences, University of Innsbruck, Austria
| |
Collapse
|
148
|
Abstract
The crystal structures of ribosomes that have been obtained since 2000 have transformed our understanding of protein synthesis. In addition to proving that RNA is responsible for catalyzing peptide bond formation, these structures have provided important insights into the mechanistic details of how the ribosome functions. This review emphasizes what has been learned about the mechanism of peptide bond formation, the antibiotics that inhibit ribosome function, and the fidelity of decoding.
Collapse
Affiliation(s)
- Peter B Moore
- Department of Molecular Biophysics, Yale University, New Haven, Connecticut 208114, USA.
| | | |
Collapse
|
149
|
Ahmed A, Whitford PC, Sanbonmatsu KY, Tama F. Consensus among flexible fitting approaches improves the interpretation of cryo-EM data. J Struct Biol 2011; 177:561-70. [PMID: 22019767 DOI: 10.1016/j.jsb.2011.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2011] [Revised: 10/05/2011] [Accepted: 10/06/2011] [Indexed: 12/31/2022]
Abstract
Cryo-elecron microscopy (cryo-EM) can provide important structural information of large macromolecular assemblies in different conformational states. Recent years have seen an increase in structures deposited in the Protein Data Bank (PDB) by fitting a high-resolution structure into its low-resolution cryo-EM map. A commonly used protocol for accommodating the conformational changes between the X-ray structure and the cryo-EM map is rigid body fitting of individual domains. With the emergence of different flexible fitting approaches, there is a need to compare and revise these different protocols for the fitting. We have applied three diverse automated flexible fitting approaches on a protein dataset for which rigid domain fitting (RDF) models have been deposited in the PDB. In general, a consensus is observed in the conformations, which indicates a convergence from these theoretically different approaches to the most probable solution corresponding to the cryo-EM map. However, the result shows that the convergence might not be observed for proteins with complex conformational changes or with missing densities in cryo-EM map. In contrast, RDF structures deposited in the PDB can represent conformations that not only differ from the consensus obtained by flexible fitting but also from X-ray crystallography. Thus, this study emphasizes that a "consensus" achieved by the use of several automated flexible fitting approaches can provide a higher level of confidence in the modeled configurations. Following this protocol not only increases the confidence level of fitting, but also highlights protein regions with uncertain fitting. Hence, this protocol can lead to better interpretation of cryo-EM data.
Collapse
Affiliation(s)
- Aqeel Ahmed
- Department of Chemistry and Biochemistry, The University of Arizona, 1041 E. Lowell Street, Tucson, AZ 85721, USA.
| | | | | | | |
Collapse
|
150
|
Crystal structure of the hybrid state of ribosome in complex with the guanosine triphosphatase release factor 3. Proc Natl Acad Sci U S A 2011; 108:15798-803. [PMID: 21903932 DOI: 10.1073/pnas.1112185108] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Protein release factor 3 (RF3), a guanosine triphosphatase, binds to ribosome after release of the nascent peptide and promotes dissociation of the class I release factors during the termination of protein synthesis. Here we present the crystal structure of the 70S ribosome with RF3 in the presence of a nonhydrolyzable GTP analogue, guanosine 5'-β,γ-methylenetriphosphate (GDPCP), refined to 3.8 Å resolution. The structure shows that the subunits of the ribosome are rotated relative to each other compared to the canonical state, resulting in a P/E hybrid state for the transfer RNA. The substantial conformational rearrangements in the complex are described and suggest how RF3, by stabilizing the hybrid state of the ribosome, facilitates the dissociation of class I release factors.
Collapse
|