101
|
Suppressors of dGTP Starvation in Escherichia coli. J Bacteriol 2017; 199:JB.00142-17. [PMID: 28373271 DOI: 10.1128/jb.00142-17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 03/23/2017] [Indexed: 11/20/2022] Open
Abstract
dGTP starvation, a newly discovered phenomenon in which Escherichia coli cells are starved specifically for the DNA precursor dGTP, leads to impaired growth and, ultimately, cell death. Phenomenologically, it represents an example of nutritionally induced unbalanced growth: cell mass amplifies normally as dictated by the nutritional status of the medium, but DNA content growth is specifically impaired. The other known example of such a condition, thymineless death (TLD), involves starvation for the DNA precursor dTTP, which has been found to have important chemotherapeutic applications. Experimentally, dGTP starvation is induced by depriving an E. coligpt optA1 strain of its required purine source, hypoxanthine. In our studies of this phenomenon, we noted the emergence of a relatively high frequency of suppressor mutants that proved resistant to the treatment. To study such suppressors, we used next-generation sequencing on a collection of independently obtained mutants. A significant fraction was found to carry a defect in the PurR transcriptional repressor, controlling de novo purine biosynthesis, or in its downstream purEK operon. Thus, upregulation of de novo purine biosynthesis appears to be a major mode of overcoming the lethal effects of dGTP starvation. In addition, another large fraction of the suppressors contained a large tandem duplication of a 250- to 300-kb genomic region that included the purEK operon as well as the acrAB-encoded multidrug efflux system. Thus, the suppressive effects of the duplications could potentially involve beneficial effects of a number of genes/operons within the amplified regions.IMPORTANCE Concentrations of the four precursors for DNA synthesis (2'-deoxynucleoside-5'-triphosphates [dNTPs]) are critical for both the speed of DNA replication and its accuracy. Previously, we investigated consequences of dGTP starvation, where the DNA precursor dGTP was specifically reduced to a low level. Under this condition, E. coli cells continued cell growth but eventually developed a DNA replication defect, leading to cell death due to formation of unresolvable DNA structures. Nevertheless, dGTP-starved cultures eventually resumed growth due to the appearance of resistant mutants. Here, we used whole-genome DNA sequencing to identify the responsible suppressor mutations. We show that the majority of suppressors can circumvent death by upregulating purine de novo biosynthesis, leading to restoration of dGTP to acceptable levels.
Collapse
|
102
|
Cisneros L, Bussey KJ, Orr AJ, Miočević M, Lineweaver CH, Davies P. Ancient genes establish stress-induced mutation as a hallmark of cancer. PLoS One 2017; 12:e0176258. [PMID: 28441401 PMCID: PMC5404761 DOI: 10.1371/journal.pone.0176258] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Accepted: 04/08/2017] [Indexed: 02/07/2023] Open
Abstract
Cancer is sometimes depicted as a reversion to single cell behavior in cells adapted to live in a multicellular assembly. If this is the case, one would expect that mutation in cancer disrupts functional mechanisms that suppress cell-level traits detrimental to multicellularity. Such mechanisms should have evolved with or after the emergence of multicellularity. This leads to two related, but distinct hypotheses: 1) Somatic mutations in cancer will occur in genes that are younger than the emergence of multicellularity (1000 million years [MY]); and 2) genes that are frequently mutated in cancer and whose mutations are functionally important for the emergence of the cancer phenotype evolved within the past 1000 million years, and thus would exhibit an age distribution that is skewed to younger genes. In order to investigate these hypotheses we estimated the evolutionary ages of all human genes and then studied the probability of mutation and their biological function in relation to their age and genomic location for both normal germline and cancer contexts. We observed that under a model of uniform random mutation across the genome, controlled for gene size, genes less than 500 MY were more frequently mutated in both cases. Paradoxically, causal genes, defined in the COSMIC Cancer Gene Census, were depleted in this age group. When we used functional enrichment analysis to explain this unexpected result we discovered that COSMIC genes with recessive disease phenotypes were enriched for DNA repair and cell cycle control. The non-mutated genes in these pathways are orthologous to those underlying stress-induced mutation in bacteria, which results in the clustering of single nucleotide variations. COSMIC genes were less common in regions where the probability of observing mutational clusters is high, although they are approximately 2-fold more likely to harbor mutational clusters compared to other human genes. Our results suggest this ancient mutational response to stress that evolved among prokaryotes was co-opted to maintain diversity in the germline and immune system, while the original phenotype is restored in cancer. Reversion to a stress-induced mutational response is a hallmark of cancer that allows for effectively searching “protected” genome space where genes causally implicated in cancer are located and underlies the high adaptive potential and concomitant therapeutic resistance that is characteristic of cancer.
Collapse
Affiliation(s)
- Luis Cisneros
- NantOmics, Tempe, Arizona, United States of America
- BEYOND Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, United States of America
| | - Kimberly J. Bussey
- NantOmics, Tempe, Arizona, United States of America
- Department of Biomedical Informatics, Arizona State University, Tempe, Arizona, United States of America
- * E-mail:
| | - Adam J. Orr
- School of Life Sciences, Arizona State University, Tempe, Arizona, United States of America
| | - Milica Miočević
- Department of Psychology, Arizona State University, Tempe, Arizona, United States of America
| | - Charles H. Lineweaver
- Planetary Science Institute, Research School of Astronomy and Astrophysics and Research School of Earth Sciences, Australian National University, Canberra, Australian Capital Territory, Australia
| | - Paul Davies
- BEYOND Center for Fundamental Concepts in Science, Arizona State University, Tempe, Arizona, United States of America
| |
Collapse
|
103
|
Molina-García L, Moreno-Del Álamo M, Botias P, Martín-Moldes Z, Fernández M, Sánchez-Gorostiaga A, Alonso-Del Valle A, Nogales J, García-Cantalejo J, Giraldo R. Outlining Core Pathways of Amyloid Toxicity in Bacteria with the RepA-WH1 Prionoid. Front Microbiol 2017; 8:539. [PMID: 28421043 PMCID: PMC5378768 DOI: 10.3389/fmicb.2017.00539] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Accepted: 03/14/2017] [Indexed: 12/14/2022] Open
Abstract
The synthetic bacterial prionoid RepA-WH1 causes a vertically transmissible amyloid proteinopathy in Escherichia coli that inhibits growth and eventually kills the cells. Recent in vitro studies show that RepA-WH1 builds pores through model lipid membranes, suggesting a possible mechanism for bacterial cell death. By comparing acutely (A31V) and mildly (ΔN37) cytotoxic mutant variants of the protein, we report here that RepA-WH1(A31V) expression decreases the intracellular osmotic pressure and compromise bacterial viability under either aerobic or anaerobic conditions. Both are effects expected from threatening membrane integrity and are in agreement with findings on the impairment by RepA-WH1(A31V) of the proton motive force (PMF)-dependent transport of ions (Fe3+) and ATP synthesis. Systems approaches reveal that, in aerobiosis, the PMF-independent respiratory dehydrogenase NdhII is induced in response to the reduction in intracellular levels of iron. While NdhII is known to generate H2O2 as a by-product of the autoxidation of its FAD cofactor, key proteins in the defense against oxidative stress (OxyR, KatE), together with other stress-resistance factors, are sequestered by co-aggregation with the RepA-WH1(A31V) amyloid. Our findings suggest a route for RepA-WH1 toxicity in bacteria: a primary hit of damage to the membrane, compromising bionergetics, triggers a stroke of oxidative stress, which is exacerbated due to the aggregation-dependent inactivation of enzymes and transcription factors that enable the cellular response to such injury. The proteinopathy caused by the prion-like protein RepA-WH1 in bacteria recapitulates some of the core hallmarks of human amyloid diseases.
Collapse
Affiliation(s)
- Laura Molina-García
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - María Moreno-Del Álamo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Pedro Botias
- Genomics Unit, Complutense UniversityMadrid, Spain
| | - Zaira Martín-Moldes
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - María Fernández
- Proteomics Facility, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Alicia Sánchez-Gorostiaga
- Department of Microbial Biotechnology, National Centre for Biotechnology, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Aída Alonso-Del Valle
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | - Juan Nogales
- Department of Environmental Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| | | | - Rafael Giraldo
- Department of Cellular and Molecular Biology, Centro de Investigaciones Biológicas, Consejo Superior de Investigaciones CientíficasMadrid, Spain
| |
Collapse
|
104
|
Fitzgerald DM, Hastings PJ, Rosenberg SM. Stress-Induced Mutagenesis: Implications in Cancer and Drug Resistance. ANNUAL REVIEW OF CANCER BIOLOGY 2017; 1:119-140. [PMID: 29399660 PMCID: PMC5794033 DOI: 10.1146/annurev-cancerbio-050216-121919] [Citation(s) in RCA: 110] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Genomic instability underlies many cancers and generates genetic variation that drives cancer initiation, progression, and therapy resistance. In contrast with classical assumptions that mutations occur purely stochastically at constant, gradual rates, microbes, plants, flies, and human cancer cells possess mechanisms of mutagenesis that are upregulated by stress responses. These generate transient, genetic-diversity bursts that can propel evolution, specifically when cells are poorly adapted to their environments-that is, when stressed. We review molecular mechanisms of stress-response-dependent (stress-induced) mutagenesis that occur from bacteria to cancer, and are activated by starvation, drugs, hypoxia, and other stressors. We discuss mutagenic DNA break repair in Escherichia coli as a model for mechanisms in cancers. The temporal regulation of mutagenesis by stress responses and spatial restriction in genomes are common themes across the tree of life. Both can accelerate evolution, including the evolution of cancers. We discuss possible anti-evolvability drugs, aimed at targeting mutagenesis and other variation generators, that could be used to delay the evolution of cancer progression and therapy resistance.
Collapse
Affiliation(s)
- Devon M Fitzgerald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston Texas 77030
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| | - P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas 77030
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas 77030
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston Texas 77030
- The Dan L. Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, Texas 77030
| |
Collapse
|
105
|
Transcriptome-Level Signatures in Gene Expression and Gene Expression Variability during Bacterial Adaptive Evolution. mSphere 2017; 2:mSphere00009-17. [PMID: 28217741 PMCID: PMC5311112 DOI: 10.1128/msphere.00009-17] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2017] [Accepted: 01/23/2017] [Indexed: 01/22/2023] Open
Abstract
Antibiotic-resistant bacteria are an increasingly serious public health concern, as strains emerge that demonstrate resistance to almost all available treatments. One factor that contributes to the crisis is the adaptive ability of bacteria, which exhibit remarkable phenotypic and gene expression heterogeneity in order to gain a survival advantage in damaging environments. This high degree of variability in gene expression across biological populations makes it a challenging task to identify key regulators of bacterial adaptation. Here, we research the regulation of adaptive resistance by investigating transcriptome profiles of Escherichia coli upon adaptation to disparate toxins, including antibiotics and biofuels. We locate potential target genes via conventional gene expression analysis as well as using a new analysis technique examining differential gene expression variability. By investigating trends across the diverse adaptation conditions, we identify a focused set of genes with conserved behavior, including those involved in cell motility, metabolism, membrane structure, and transport, and several genes of unknown function. To validate the biological relevance of the observed changes, we synthetically perturb gene expression using clustered regularly interspaced short palindromic repeat (CRISPR)-dCas9. Manipulation of select genes in combination with antibiotic treatment promotes adaptive resistance as demonstrated by an increased degree of antibiotic tolerance and heterogeneity in MICs. We study the mechanisms by which identified genes influence adaptation and find that select differentially variable genes have the potential to impact metabolic rates, mutation rates, and motility. Overall, this work provides evidence for a complex nongenetic response, encompassing shifts in gene expression and gene expression variability, which underlies adaptive resistance. IMPORTANCE Even initially sensitive bacteria can rapidly thwart antibiotic treatment through stress response processes known as adaptive resistance. Adaptive resistance fosters transient tolerance increases and the emergence of mutations conferring heritable drug resistance. In order to extend the applicable lifetime of new antibiotics, we must seek to hinder the occurrence of bacterial adaptive resistance; however, the regulation of adaptation is difficult to identify due to immense heterogeneity emerging during evolution. This study specifically seeks to generate heterogeneity by adapting bacteria to different stresses and then examines gene expression trends across the disparate populations in order to pinpoint key genes and pathways associated with adaptive resistance. The targets identified here may eventually inform strategies for impeding adaptive resistance and prolonging the effectiveness of antibiotic treatment.
Collapse
|
106
|
Dopson M, Holmes DS, Lazcano M, McCredden TJ, Bryan CG, Mulroney KT, Steuart R, Jackaman C, Watkin ELJ. Multiple Osmotic Stress Responses in Acidihalobacter prosperus Result in Tolerance to Chloride Ions. Front Microbiol 2017; 7:2132. [PMID: 28111571 PMCID: PMC5216662 DOI: 10.3389/fmicb.2016.02132] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/19/2016] [Indexed: 11/16/2022] Open
Abstract
Extremely acidophilic microorganisms (pH optima for growth of ≤3) are utilized for the extraction of metals from sulfide minerals in the industrial biotechnology of “biomining.” A long term goal for biomining has been development of microbial consortia able to withstand increased chloride concentrations for use in regions where freshwater is scarce. However, when challenged by elevated salt, acidophiles experience both osmotic stress and an acidification of the cytoplasm due to a collapse of the inside positive membrane potential, leading to an influx of protons. In this study, we tested the ability of the halotolerant acidophile Acidihalobacter prosperus to grow and catalyze sulfide mineral dissolution in elevated concentrations of salt and identified chloride tolerance mechanisms in Ac. prosperus as well as the chloride susceptible species, Acidithiobacillus ferrooxidans. Ac. prosperus had optimum iron oxidation at 20 g L−1 NaCl while At. ferrooxidans iron oxidation was inhibited in the presence of 6 g L−1 NaCl. The tolerance to chloride in Ac. prosperus was consistent with electron microscopy, determination of cell viability, and bioleaching capability. The Ac. prosperus proteomic response to elevated chloride concentrations included the production of osmotic stress regulators that potentially induced production of the compatible solute, ectoine uptake protein, and increased iron oxidation resulting in heightened electron flow to drive proton export by the F0F1 ATPase. In contrast, At. ferrooxidans responded to low levels of Cl− with a generalized stress response, decreased iron oxidation, and an increase in central carbon metabolism. One potential adaptation to high chloride in the Ac. prosperus Rus protein involved in ferrous iron oxidation was an increase in the negativity of the surface potential of Rus Form I (and Form II) that could help explain how it can be active under elevated chloride concentrations. These data have been used to create a model of chloride tolerance in the salt tolerant and susceptible species Ac. prosperus and At. ferrooxidans, respectively.
Collapse
Affiliation(s)
- Mark Dopson
- Centre for Ecology and Evolution in Microbial Model Systems, Linnaeus University Kalmar, Sweden
| | - David S Holmes
- Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile; Center for Bioinformatics and Genome Biology, Fundacion Ciencia y VidaSantiago, Chile
| | - Marcelo Lazcano
- Facultad de Ciencias Biologicas, Universidad Andres BelloSantiago, Chile; Center for Bioinformatics and Genome Biology, Fundacion Ciencia y VidaSantiago, Chile
| | - Timothy J McCredden
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| | - Christopher G Bryan
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| | - Kieran T Mulroney
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| | - Robert Steuart
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| | - Connie Jackaman
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| | - Elizabeth L J Watkin
- School of Biomedical Sciences, Curtin Health Innovation Research Institute, Curtin University Perth, WA, Australia
| |
Collapse
|
107
|
Li Y, Heckmann D, Lercher MJ, Maurino VG. Combining genetic and evolutionary engineering to establish C4 metabolism in C3 plants. JOURNAL OF EXPERIMENTAL BOTANY 2017; 68:117-125. [PMID: 27660481 DOI: 10.1093/jxb/erw333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
To feed a world population projected to reach 9 billion people by 2050, the productivity of major crops must be increased by at least 50%. One potential route to boost the productivity of cereals is to equip them genetically with the 'supercharged' C4 type of photosynthesis; however, the necessary genetic modifications are not sufficiently understood for the corresponding genetic engineering programme. In this opinion paper, we discuss a strategy to solve this problem by developing a new paradigm for plant breeding. We propose combining the bioengineering of well-understood traits with subsequent evolutionary engineering, i.e. mutagenesis and artificial selection. An existing mathematical model of C3-C4 evolution is used to choose the most promising path towards this goal. Based on biomathematical simulations, we engineer Arabidopsis thaliana plants that express the central carbon-fixing enzyme Rubisco only in bundle sheath cells (Ru-BSC plants), the localization characteristic for C4 plants. This modification will initially be deleterious, forcing the Ru-BSC plants into a fitness valley from where previously inaccessible adaptive steps towards C4 photosynthesis become accessible through fitness-enhancing mutations. Mutagenized Ru-BSC plants are then screened for improved photosynthesis, and are expected to respond to imposed artificial selection pressures by evolving towards C4 anatomy and biochemistry.
Collapse
Affiliation(s)
- Yuanyuan Li
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Institute for Computer Science, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| | - David Heckmann
- Institute for Computer Science, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
| | - Martin J Lercher
- Institute for Computer Science, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| | - Veronica G Maurino
- Institute of Developmental and Molecular Biology of Plants, Plant Molecular Physiology and Biotechnology Group, Heinrich Heine University, Universitätsstr. 1, 40225 Düsseldorf, Germany
- Cluster of Excellence on Plant Sciences (CEPLAS), 40225 Düsseldorf, Germany
| |
Collapse
|
108
|
The Small RNA GcvB Promotes Mutagenic Break Repair by Opposing the Membrane Stress Response. J Bacteriol 2016; 198:3296-3308. [PMID: 27698081 PMCID: PMC5116933 DOI: 10.1128/jb.00555-16] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2016] [Accepted: 09/22/2016] [Indexed: 12/19/2022] Open
Abstract
Microbes and human cells possess mechanisms of mutagenesis activated by stress responses. Stress-inducible mutagenesis mechanisms may provide important models for mutagenesis that drives host-pathogen interactions, antibiotic resistance, and possibly much of evolution generally. In Escherichia coli, repair of DNA double-strand breaks is switched to a mutagenic mode, using error-prone DNA polymerases, via the SOS DNA damage and general (σS) stress responses. We investigated small RNA (sRNA) clients of Hfq, an RNA chaperone that promotes mutagenic break repair (MBR), and found that GcvB promotes MBR by allowing a robust σS response, achieved via opposing the membrane stress (σE) response. Cells that lack gcvB were MBR deficient and displayed reduced σS-dependent transcription but not reduced σS protein levels. The defects in MBR and σS-dependent transcription in ΔgcvB cells were alleviated by artificially increasing σS levels, implying that GcvB promotes mutagenesis by allowing a normal σS response. ΔgcvB cells were highly induced for the σE response, and blocking σE response induction restored both mutagenesis and σS-promoted transcription. We suggest that GcvB may promote the σS response and mutagenesis indirectly, by promoting membrane integrity, which keeps σE levels lower. At high levels, σE might outcompete σS for binding RNA polymerase and so reduce the σS response and mutagenesis. The data show the delicate balance of stress response modulation of mutagenesis. IMPORTANCE Mutagenesis mechanisms upregulated by stress responses promote de novo antibiotic resistance and cross-resistance in bacteria, antifungal drug resistance in yeasts, and genome instability in cancer cells under hypoxic stress. This paper describes the role of a small RNA (sRNA) in promoting a stress-inducible-mutagenesis mechanism, mutagenic DNA break repair in Escherichia coli The roles of many sRNAs in E. coli remain unknown. This study shows that ΔgcvB cells, which lack the GcvB sRNA, display a hyperactivated membrane stress response and reduced general stress response, possibly because of sigma factor competition for RNA polymerase. This results in a mutagenic break repair defect. The data illuminate a function of GcvB sRNA in opposing the membrane stress response, and thus indirectly upregulating mutagenesis.
Collapse
|
109
|
Xia J, Chen LT, Mei Q, Ma CH, Halliday JA, Lin HY, Magnan D, Pribis JP, Fitzgerald DM, Hamilton HM, Richters M, Nehring RB, Shen X, Li L, Bates D, Hastings PJ, Herman C, Jayaram M, Rosenberg SM. Holliday junction trap shows how cells use recombination and a junction-guardian role of RecQ helicase. SCIENCE ADVANCES 2016; 2:e1601605. [PMID: 28090586 PMCID: PMC5222578 DOI: 10.1126/sciadv.1601605] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2016] [Accepted: 10/05/2016] [Indexed: 05/05/2023]
Abstract
DNA repair by homologous recombination (HR) underpins cell survival and fuels genome instability, cancer, and evolution. However, the main kinds and sources of DNA damage repaired by HR in somatic cells and the roles of important HR proteins remain elusive. We present engineered proteins that trap, map, and quantify Holliday junctions (HJs), a central DNA intermediate in HR, based on catalytically deficient mutant RuvC protein of Escherichia coli. We use RuvCDefGFP (RDG) to map genomic footprints of HR at defined DNA breaks in E. coli and demonstrate genome-scale directionality of double-strand break (DSB) repair along the chromosome. Unexpectedly, most spontaneous HR-HJ foci are instigated, not by DSBs, but rather by single-stranded DNA damage generated by replication. We show that RecQ, the E. coli ortholog of five human cancer proteins, nonredundantly promotes HR-HJ formation in single cells and, in a novel junction-guardian role, also prevents apparent non-HR-HJs promoted by RecA overproduction. We propose that one or more human RecQ orthologs may act similarly in human cancers overexpressing the RecA ortholog RAD51 and find that cancer genome expression data implicate the orthologs BLM and RECQL4 in conjunction with EME1 and GEN1 as probable HJ reducers in such cancers. Our results support RecA-overproducing E. coli as a model of the many human tumors with up-regulated RAD51 and provide the first glimpses of important, previously elusive reaction intermediates in DNA replication and repair in single living cells.
Collapse
Affiliation(s)
- Jun Xia
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Li-Tzu Chen
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Qian Mei
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA
| | - Chien-Hui Ma
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
- Institute of Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | - Jennifer A. Halliday
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hsin-Yu Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - David Magnan
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - John P. Pribis
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Devon M. Fitzgerald
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Holly M. Hamilton
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Megan Richters
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Ralf B. Nehring
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Xi Shen
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Lei Li
- Department of Experimental Radiation Oncology, University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David Bates
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - P. J. Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Christophe Herman
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
| | - Makkuni Jayaram
- Department of Molecular Biosciences, University of Texas, Austin, TX 78712, USA
- Institute of Cell and Molecular Biology, University of Texas, Austin, TX 78712, USA
| | - Susan M. Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Biochemistry, Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA
- Dan L Duncan Comprehensive Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
- Graduate Program in Integrative Molecular and Biomedical Sciences, Baylor College of Medicine, Houston, TX 77030, USA
- Systems, Synthetic, and Physical Biology Program, Rice University, Houston, TX 77030, USA
- Corresponding author.
| |
Collapse
|
110
|
Michiels JE, Van den Bergh B, Verstraeten N, Michiels J. Molecular mechanisms and clinical implications of bacterial persistence. Drug Resist Updat 2016; 29:76-89. [PMID: 27912845 DOI: 10.1016/j.drup.2016.10.002] [Citation(s) in RCA: 117] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Any bacterial population harbors a small number of phenotypic variants that survive exposure to high concentrations of antibiotic. Importantly, these so-called 'persister cells' compromise successful antibiotic therapy of bacterial infections and are thought to contribute to the development of antibiotic resistance. Intriguingly, drug-tolerant persisters have also been identified as a factor underlying failure of chemotherapy in tumor cell populations. Recent studies have begun to unravel the complex molecular mechanisms underlying persister formation and revolve around stress responses and toxin-antitoxin modules. Additionally, in vitro evolution experiments are revealing insights into the evolutionary and adaptive aspects of this phenotype. Furthermore, ever-improving experimental techniques are stimulating efforts to investigate persisters in their natural, infection-associated, in vivo environment. This review summarizes recent insights into the molecular mechanisms of persister formation, explains how persisters complicate antibiotic treatment of infections, and outlines emerging strategies to combat these tolerant cells.
Collapse
Affiliation(s)
| | | | | | - Jan Michiels
- Centre of Microbial and Plant Genetics, KU Leuven, Leuven, Belgium.
| |
Collapse
|
111
|
Wang KC, Huang CH, Ding SM, Chen CK, Fang HW, Huang MT, Fang SB. Role of yqiC in the Pathogenicity of Salmonella and Innate Immune Responses of Human Intestinal Epithelium. Front Microbiol 2016; 7:1614. [PMID: 27777572 PMCID: PMC5056187 DOI: 10.3389/fmicb.2016.01614] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 09/27/2016] [Indexed: 01/12/2023] Open
Abstract
The yqiC gene of Salmonella enterica serovar Typhimurium (S. Typhimurium) regulates bacterial growth at different temperatures and mice survival after infection. However, the role of yqiC in bacterial colonization and host immunity remains unknown. We infected human LS174T, Caco-2, HeLa, and THP-1 cells with S. Typhimurium wild-type SL1344, its yqiC mutant, and its complemented strain. Bacterial colonization and internalization in the four cell lines significantly reduced on yqiC depletion. Post-infection production of interleukin-8 and human β-defensin-3 in LS174T cells significantly reduced because of yqiC deleted in S. Typhimurium. The phenotype of yqiC mutant exhibited few and short flagella, fimbriae on the cell surface, enhanced biofilm formation, upregulated type-1 fimbriae expression, and reduced bacterial motility. Type-1 fimbriae, flagella, SPI-1, and SPI-2 gene expression was quantified using real-time PCR. The data show that deletion of yqiC upregulated fimA and fimZ expression and downregulated flhD, fliZ, invA, and sseB expression. Furthermore, thin-layer chromatography and high-performance liquid chromatography revealed the absence of menaquinone in the yqiC mutant, thus validating the importance of yqiC in the bacterial electron transport chain. Therefore, YqiC can negatively regulate FimZ for type-1 fimbriae expression and manipulate the functions of its downstream virulence factors including flagella, SPI-1, and SPI-2 effectors.
Collapse
Affiliation(s)
- Ke-Chuan Wang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical UniversityTaipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
| | - Chih-Hung Huang
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology Taipei, Taiwan
| | - Shih-Min Ding
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical UniversityTaipei, Taiwan; Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of TechnologyTaipei, Taiwan
| | - Ching-Kuo Chen
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of Technology Taipei, Taiwan
| | - Hsu-Wei Fang
- Graduate Institute of Biochemical and Biomedical Engineering, National Taipei University of TechnologyTaipei, Taiwan; Institute of Biomedical Engineering and Nanomedicine - National Health Research InstitutesZhunan, Taiwan
| | - Ming-Te Huang
- Department of Surgery, Shuang Ho Hospital, Taipei Medical UniversityTaipei, Taiwan; Department of Surgery, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
| | - Shiuh-Bin Fang
- Division of Pediatric Gastroenterology and Hepatology, Department of Pediatrics, Shuang Ho Hospital, Taipei Medical UniversityTaipei, Taiwan; Department of Pediatrics, School of Medicine, College of Medicine, Taipei Medical UniversityTaipei, Taiwan
| |
Collapse
|
112
|
Abstract
Cancer has challenged researchers with its immense complexity, from initiation to progression and on to therapeutic resistance. The seventh Origins of Cancer Symposium, held on July 22, 2016, at Van Andel Research Institute, was organized around the theme “Exploring Tumor Complexity”, and the latest advances under that theme from seven leading cancer research laboratories were discussed. Here we summarize highlights from the meeting and their implications.
Collapse
|
113
|
Sargentini NJ, Gularte NP, Hudman DA. Screen for genes involved in radiation survival of Escherichia coli and construction of a reference database. Mutat Res 2016; 793-794:1-14. [PMID: 27718375 DOI: 10.1016/j.mrfmmm.2016.10.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2015] [Revised: 09/29/2016] [Accepted: 10/01/2016] [Indexed: 01/21/2023]
Abstract
A set of 3907 single-gene knockout (Keio collection) strains of Escherichia coli K-12 was examined for strains with increased susceptibility to killing by X- or UV-radiation. After screening with a high-throughput resazurin-based assay and determining radiation survival with triplicate clonogenic assays, we identified 76 strains (and associated deleted genes) showing statistically-significant increased radiation sensitivity compared to a control strain. To determine gene novelty, we constructed a reference database comprised of genes found in nine similar studies including ours. This database contains 455 genes comprised of 103 common genes (found 2-7 times), and 352 uncommon genes (found once). Our 76 genes includes 43 common genes and 33 uncommon (potentially novel) genes, i.e., appY, atoS, betB, bglJ, clpP, cpxA, cysB, cysE, ddlA, dgkA, dppF, dusB, elfG, eutK, fadD, glnA, groL, guaB, intF, prpR, queA, rplY, seqA, sufC,yadG, yagJ, yahD, yahO, ybaK, ybfA, yfaL, yhjV, and yiaL. Of our 33 uncommon gene mutants, 4 (12%) were sensitive only to UV-radiation, 10 (30%) only to X-radiation, and 19 (58%) to both radiations. Our uncommon mutants vs. our common mutants showed more radiation specificity, i.e., 12% vs. 9% (sensitive only to UV-); 30% vs. 16% (X-) and 58% vs. 74% (both radiations). Considering just our radiation-sensitive mutants, the median UV-radiation survival (75Jm-2) for 23 uncommon mutants was 6.84E-3 compared to 1.85E-3 for 36 common mutants (P=0.025). Similarly, the average X-radiation survival for 29 uncommon mutants was 1.08E-2, compared to 6.19E-3 for 39 common mutants (P=0.010). Comparing gene functions using MultiFun terms, uncommon genes tended to show less involvement in DNA repair-relevant categories (information transfer and cell processes), but greater involvement in seven other categories. Our analysis of 455 genes suggests cell survival and DNA repair processes are more complex than previously understood, and may be compromised by deficiencies in other processes.
Collapse
Affiliation(s)
- Neil J Sargentini
- Department of Microbiology and Immunology, A.T. Still University, Kirksville College of Osteopathic Medicine, Kirksville, MO 63501, USA.
| | - Nicholas P Gularte
- Department of Microbiology and Immunology, A.T. Still University, Kirksville College of Osteopathic Medicine, Kirksville, MO 63501, USA
| | - Deborah A Hudman
- Department of Microbiology and Immunology, A.T. Still University, Kirksville College of Osteopathic Medicine, Kirksville, MO 63501, USA
| |
Collapse
|
114
|
Ramiro RS, Costa H, Gordo I. Macrophage adaptation leads to parallel evolution of genetically diverse Escherichia coli small-colony variants with increased fitness in vivo and antibiotic collateral sensitivity. Evol Appl 2016; 9:994-1004. [PMID: 27606007 PMCID: PMC4999529 DOI: 10.1111/eva.12397] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Accepted: 05/18/2016] [Indexed: 12/20/2022] Open
Abstract
Small-colony variants (SCVs) are commonly observed in evolution experiments and clinical isolates, being associated with antibiotic resistance and persistent infections. We recently observed the repeated emergence of Escherichia coli SCVs during adaptation to the interaction with macrophages. To identify the genetic targets underlying the emergence of this clinically relevant morphotype, we performed whole-genome sequencing of independently evolved SCV clones. We uncovered novel mutational targets, not previously associated with SCVs (e.g. cydA, pepP) and observed widespread functional parallelism. All SCV clones had mutations in genes related to the electron-transport chain. As SCVs emerged during adaptation to macrophages, and often show increased antibiotic resistance, we measured SCV fitness inside macrophages and measured their antibiotic resistance profiles. SCVs had a fitness advantage inside macrophages and showed increased aminoglycoside resistance in vitro, but had collateral sensitivity to other antibiotics (e.g. tetracycline). Importantly, we observed similar results in vivo. SCVs had a fitness advantage upon colonization of the mouse gut, which could be tuned by antibiotic treatment: kanamycin (aminoglycoside) increased SCV fitness, but tetracycline strongly reduced it. Our results highlight the power of using experimental evolution as the basis for identifying the causes and consequences of adaptation during host-microbe interactions.
Collapse
|
115
|
McClung DJ, Calixto A, Mosera MN, Kumar R, Neidle EL, Elliott KT. Novel heterologous bacterial system reveals enhanced susceptibility to DNA damage mediated by yqgF, a nearly ubiquitous and often essential gene. MICROBIOLOGY-SGM 2016; 162:1808-1821. [PMID: 27527105 DOI: 10.1099/mic.0.000355] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Despite its presence in most bacteria, yqgF remains one of only 13 essential genes of unknown function in Escherichia coli. Predictions of YqgF function often derive from sequence similarity to RuvC, the canonical Holliday junction resolvase. To clarify its role, we deleted yqgF from a bacterium where it is not essential, Acinetobacter baylyi ADP1. Loss of yqgF impaired growth and increased the frequency of transformation and allelic replacement (TAR). When E. coli yqgF was inserted in place of its A. baylyi chromosomal orthologue, wild-type growth and TAR were restored. Functional similarities of yqgF in both gamma-proteobacteria were further supported by defective 16S rRNA processing by the A. baylyi mutant, an effect previously shown in E. coli for a temperature-sensitive yqgF allele. However, our data question the validity of deducing YqgF function strictly by comparison to RuvC. A. baylyi studies indicated that YqgF and RuvC can function in opposition to one another. Relative to the wild type, the ΔyqgF mutant had increased TAR frequency and increased resistance to nalidixic acid, a DNA-damaging agent. In contrast, deletion of ruvC decreased TAR frequency and lowered resistance to nalidixic acid. YqgF, but not RuvC, appears to increase bacterial susceptibility to DNA damage, including UV radiation. Nevertheless, the effects of yqgF on growth and TAR frequency were found to depend on amino acids analogous to catalytically required residues of RuvC. This new heterologous system should facilitate future yqgF investigation by exploiting the viability of A. baylyi yqgF mutants. In addition, bioinformatic analysis showed that a non-essential gene immediately upstream of yqgF in A. baylyi and E. coli (yqgE) is similarly positioned in most gamma- and beta-proteobacteria. A small overlap in the coding sequences of these adjacent genes is typical. This conserved genetic arrangement raises the possibility of a functional partnership between yqgE and yqgF.
Collapse
Affiliation(s)
- Dylan J McClung
- Department of Biology, The College of New Jersey, Ewing, NJ, USA
| | - Abigail Calixto
- Department of Biology, The College of New Jersey, Ewing, NJ, USA
| | | | - Raagni Kumar
- Department of Biology, The College of New Jersey, Ewing, NJ, USA
| | - Ellen L Neidle
- Department of Microbiology, University of Georgia, Athens, GA, USA
| | | |
Collapse
|
116
|
Systematically Altering Bacterial SOS Activity under Stress Reveals Therapeutic Strategies for Potentiating Antibiotics. mSphere 2016; 1:mSphere00163-16. [PMID: 27536734 PMCID: PMC4980697 DOI: 10.1128/msphere.00163-16] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2016] [Accepted: 07/19/2016] [Indexed: 11/20/2022] Open
Abstract
Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role in promoting survival and the evolution of resistance under antibiotic stress. As a result, targeting the SOS response has been proposed as an adjuvant strategy to revitalize our current antibiotic arsenal. However, the optimal molecular targets and partner antibiotics for such an approach remain unclear. In this study, focusing on the two key regulators of the SOS response, LexA and RecA, we provide the first comprehensive assessment of how to target the SOS response in order to increase bacterial susceptibility and reduce mutagenesis under antibiotic treatment. The bacterial SOS response is a DNA damage repair network that is strongly implicated in both survival and acquired drug resistance under antimicrobial stress. The two SOS regulators, LexA and RecA, have therefore emerged as potential targets for adjuvant therapies aimed at combating resistance, although many open questions remain. For example, it is not well understood whether SOS hyperactivation is a viable therapeutic approach or whether LexA or RecA is a better target. Furthermore, it is important to determine which antimicrobials could serve as the best treatment partners with SOS-targeting adjuvants. Here we derived Escherichia coli strains that have mutations in either lexA or recA genes in order to cover the full spectrum of possible SOS activity levels. We then systematically analyzed a wide range of antimicrobials by comparing the mean inhibitory concentrations (MICs) and induced mutation rates for each drug-strain combination. We first show that significant changes in MICs are largely confined to DNA-damaging antibiotics, with strains containing a constitutively repressed SOS response impacted to a greater extent than hyperactivated strains. Second, antibiotic-induced mutation rates were suppressed when SOS activity was reduced, and this trend was observed across a wider spectrum of antibiotics. Finally, perturbing either LexA or RecA proved to be equally viable strategies for targeting the SOS response. Our work provides support for multiple adjuvant strategies, while also suggesting that the combination of an SOS inhibitor with a DNA-damaging antibiotic could offer the best potential for lowering MICs and decreasing acquired drug resistance. IMPORTANCE Our antibiotic arsenal is becoming depleted, in part, because bacteria have the ability to rapidly adapt and acquire resistance to our best agents. The SOS pathway, a widely conserved DNA damage stress response in bacteria, is activated by many antibiotics and has been shown to play central role in promoting survival and the evolution of resistance under antibiotic stress. As a result, targeting the SOS response has been proposed as an adjuvant strategy to revitalize our current antibiotic arsenal. However, the optimal molecular targets and partner antibiotics for such an approach remain unclear. In this study, focusing on the two key regulators of the SOS response, LexA and RecA, we provide the first comprehensive assessment of how to target the SOS response in order to increase bacterial susceptibility and reduce mutagenesis under antibiotic treatment.
Collapse
|
117
|
Tagel M, Tavita K, Hõrak R, Kivisaar M, Ilves H. A novel papillation assay for the identification of genes affecting mutation rate in Pseudomonas putida and other pseudomonads. Mutat Res 2016; 790:41-55. [PMID: 27447898 DOI: 10.1016/j.mrfmmm.2016.06.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 06/20/2016] [Accepted: 06/22/2016] [Indexed: 06/06/2023]
Abstract
Formation of microcolonies (papillae) permits easy visual screening of mutational events occurring in single colonies of bacteria. In this study, we have established a novel papillation assay employable in a wide range of pseudomonads including Pseudomonas aeruginosa and Pseudomonas putida for monitoring mutation frequency in distinct colonies. With the aid of this assay, we conducted a genome-wide search for the factors affecting mutation frequency in P. putida. Screening ∼27,000 transposon mutants for increased mutation frequency allowed us to identify 34 repeatedly targeted genes. In addition to genes involved in DNA replication and repair, we identified genes participating in metabolism and transport of secondary metabolites, cell motility, and cell wall synthesis. The highest effect on mutant frequency was observed when truA (tRNA pseudouridine synthase), mpl (UDP-N-acetylmuramate-alanine ligase) or gacS (multi-sensor hybrid histidine kinase) were inactivated. Inactivation of truA elevated the mutant frequency only in growing cells, while the deficiency of gacS affected mainly stationary-phase mutagenesis. Thus, our results demonstrate the feasibility of the assay for isolating mutants with elevated mutagenesis in growing as well as stationary-phase bacteria.
Collapse
Affiliation(s)
- Mari Tagel
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Kairi Tavita
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Rita Hõrak
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Maia Kivisaar
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia
| | - Heili Ilves
- Institute of Molecular and Cell Biology, University of Tartu, Tartu, Estonia.
| |
Collapse
|
118
|
Establishment of a multi-species biofilm model and metatranscriptomic analysis of biofilm and planktonic cell communities. Appl Microbiol Biotechnol 2016; 100:7263-79. [PMID: 27102130 DOI: 10.1007/s00253-016-7532-6] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Revised: 03/28/2016] [Accepted: 04/05/2016] [Indexed: 02/06/2023]
Abstract
We collected several biofilm samples from Japanese rivers and established a reproducible multi-species biofilm model that can be analyzed in laboratories. Bacterial abundance at the generic level was highly similar between the planktonic and biofilm communities, whereas comparative metatranscriptomic analysis revealed many upregulated and downregulated genes in the biofilm. Many genes involved in iron-sulfur metabolism, stress response, and cell envelope function were upregulated; biofilm formation is mediated by an iron-dependent signaling mechanism and the signal is relayed to stress-responsive and cell envelope function genes. Flagella-related gene expression was regulated depending upon the growth phase, indicating different roles of flagella during the adherence, maturation, and dispersal steps of biofilm formation. Downregulation of DNA repair genes was observed, indicating that spontaneous mutation frequency would be elevated within the biofilm and that the biofilm is a cradle for generating novel genetic traits. Although the significance remains unclear, genes for rRNA methyltransferase, chromosome partitioning, aminoacyl-tRNA synthase, and cysteine, methionine, leucine, thiamine, nucleotide, and fatty acid metabolism were found to be differentially regulated. These results indicate that planktonic and biofilm communities are in different dynamic states. Studies on biofilm and sessile cells, which have received less attention, are important for understanding microbial ecology and for designing tailor-made anti-biofilm drugs.
Collapse
|
119
|
Trade-off Mechanisms Shaping the Diversity of Bacteria. Trends Microbiol 2016; 24:209-223. [DOI: 10.1016/j.tim.2015.11.009] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2015] [Revised: 11/21/2015] [Accepted: 11/25/2015] [Indexed: 01/20/2023]
|
120
|
Staying in Shape: the Impact of Cell Shape on Bacterial Survival in Diverse Environments. Microbiol Mol Biol Rev 2016; 80:187-203. [PMID: 26864431 DOI: 10.1128/mmbr.00031-15] [Citation(s) in RCA: 176] [Impact Index Per Article: 19.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Bacteria display an abundance of cellular forms and can change shape during their life cycle. Many plausible models regarding the functional significance of cell morphology have emerged. A greater understanding of the genetic programs underpinning morphological variation in diverse bacterial groups, combined with assays of bacteria under conditions that mimic their varied natural environments, from flowing freshwater streams to diverse human body sites, provides new opportunities to probe the functional significance of cell shape. Here we explore shape diversity among bacteria, at the levels of cell geometry, size, and surface appendages (both placement and number), as it relates to survival in diverse environments. Cell shape in most bacteria is determined by the cell wall. A major challenge in this field has been deconvoluting the effects of differences in the chemical properties of the cell wall and the resulting cell shape perturbations on observed fitness changes. Still, such studies have begun to reveal the selective pressures that drive the diverse forms (or cell wall compositions) observed in mammalian pathogens and bacteria more generally, including efficient adherence to biotic and abiotic surfaces, survival under low-nutrient or stressful conditions, evasion of mammalian complement deposition, efficient dispersal through mucous barriers and tissues, and efficient nutrient acquisition.
Collapse
|
121
|
Qin TT, Kang HQ, Ma P, Li PP, Huang LY, Gu B. SOS response and its regulation on the fluoroquinolone resistance. ANNALS OF TRANSLATIONAL MEDICINE 2016; 3:358. [PMID: 26807413 DOI: 10.3978/j.issn.2305-5839.2015.12.09] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 11/14/2022]
Abstract
Bacteria can survive fluoroquinolone antibiotics (FQs) treatment by becoming resistant through a genetic change-mutation or gene acquisition. The SOS response is widespread among bacteria and exhibits considerable variation in its composition and regulation, which is repressed by LexA protein and derepressed by RecA protein. Here, we take a comprehensive review of the SOS gene network and its regulation on the fluoroquinolone resistance. As a unique survival mechanism, SOS may be an important factor influencing the outcome of antibiotic therapy in vivo.
Collapse
Affiliation(s)
- Ting-Ting Qin
- 1 Medical Technology Institute of Xuzhou Medical College, Xuzhou 221004, China ; 2 Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221006, China
| | - Hai-Quan Kang
- 1 Medical Technology Institute of Xuzhou Medical College, Xuzhou 221004, China ; 2 Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221006, China
| | - Ping Ma
- 1 Medical Technology Institute of Xuzhou Medical College, Xuzhou 221004, China ; 2 Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221006, China
| | - Peng-Peng Li
- 1 Medical Technology Institute of Xuzhou Medical College, Xuzhou 221004, China ; 2 Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221006, China
| | - Lin-Yan Huang
- 1 Medical Technology Institute of Xuzhou Medical College, Xuzhou 221004, China ; 2 Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221006, China
| | - Bing Gu
- 1 Medical Technology Institute of Xuzhou Medical College, Xuzhou 221004, China ; 2 Department of Laboratory Medicine, Affiliated Hospital of Xuzhou Medical College, Xuzhou 221006, China
| |
Collapse
|
122
|
Srivastava S, Baptista MS. Markovian language model of the DNA and its information content. ROYAL SOCIETY OPEN SCIENCE 2016; 3:150527. [PMID: 26909179 PMCID: PMC4736934 DOI: 10.1098/rsos.150527] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/01/2015] [Accepted: 11/26/2015] [Indexed: 05/12/2023]
Abstract
This work proposes a Markovian memoryless model for the DNA that simplifies enormously the complexity of it. We encode nucleotide sequences into symbolic sequences, called words, from which we establish meaningful length of words and groups of words that share symbolic similarities. Interpreting a node to represent a group of similar words and edges to represent their functional connectivity allows us to construct a network of the grammatical rules governing the appearance of groups of words in the DNA. Our model allows us to predict the transition between groups of words in the DNA with unprecedented accuracy, and to easily calculate many informational quantities to better characterize the DNA. In addition, we reduce the DNA of known bacteria to a network of only tens of nodes, show how our model can be used to detect similar (or dissimilar) genes in different organisms, and which sequences of symbols are responsible for most of the information content of the DNA. Therefore, the DNA can indeed be treated as a language, a Markovian language, where a 'word' is an element of a group, and its grammar represents the rules behind the probability of transitions between any two groups.
Collapse
|
123
|
Mielecki D, Sikora A, Wrzesiński M, Nieminuszczy J, Detman A, Żuchniewicz K, Gromadka R, Grzesiuk E. Evaluation of the Escherichia coli HK82 and BS87 strains as tools for AlkB studies. DNA Repair (Amst) 2015; 39:34-40. [PMID: 26769230 DOI: 10.1016/j.dnarep.2015.12.010] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 12/18/2015] [Accepted: 12/21/2015] [Indexed: 01/26/2023]
Abstract
Within a decade the family of AlkB dioxygenases has been extensively studied as a one-protein DNA/RNA repair system in Escherichia coli but also as a group of proteins of much wider functions in eukaryotes. Two strains, HK82 and BS87, are the most commonly used E. coli strains for the alkB gene mutations. The aim of this study was to assess the usefulness of these alkB mutants in different aspects of research on AlkB dioxygenases that function not only in alkylated DNA repair but also in other metabolic processes in cells. Using of HK82 and BS87 strains, we found the following differences among these alkB(-) derivatives: (i) HK82 has shown more than 10-fold higher MMS-induced mutagenesis in comparison to BS87; (ii) different specificity of Arg(+) revertants; (iii) increased induction of SOS and Ada responses in HK82; (iv) the genome of HK82, in comparison to AB1157 and BS87, contains additional mutations: nalA, sbcC, and nuoC. We hypothesize that in HK82 these mutations, together with the non-functional AlkB protein, may result in much higher contents of ssDNA, thus higher in comparison to BS87 MMS-induced mutagenesis. In the light of our findings, we strongly recommend using BS87 strain in AlkB research as HK82, bearing several additional mutations in its genome, is not an exact derivative of the AB1157 strain, and shows additional features that may disturb proper interpretation of obtained results.
Collapse
Affiliation(s)
- D Mielecki
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - A Sikora
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - M Wrzesiński
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - J Nieminuszczy
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - A Detman
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - K Żuchniewicz
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - R Gromadka
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland
| | - E Grzesiuk
- Institute of Biochemistry and Biophysics, Polish Academy of Sciences, Warsaw, Poland.
| |
Collapse
|
124
|
Liu M, Han X, Xian M, Ding Y, Liu H, Zhao G. Development of a 3-hydroxypropionate resistant Escherichia coli strain. Bioengineered 2015; 7:21-7. [PMID: 26709549 DOI: 10.1080/21655979.2015.1122143] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
Abstract
3-hydroxypropionate (3HP) is an important platform chemical, and its biosynthesis is severely restricted by the toxicity of 3HP on cell growth and survival. To improve Escherichia coli resistance to 3HP and reduce the total production cost in industrial applications, we have identified variations in protein expression level exposed to sub-lethal concentration of this chemical using 2-dimensional gel electrophoresis. Under 3HP stress, the amount of 46 proteins was increased while the amount of 23 proteins was reduced. According to the proteomic results, overexpression of some identified proteins significantly increased the E. coli survival rate under 3HP stress. This study shed light on clues for developing E. coli strains with higher resistance to 3HP toxicity and lower production cost for industrial applications.
Collapse
Affiliation(s)
- Min Liu
- a CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Xueping Han
- a CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China.,b University of Chinese Academy of Sciences , Beijing , China
| | - Mo Xian
- a CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China
| | - Yamei Ding
- c Institute of Oceanology, Chinese Academy of Sciences , Qingdao , China
| | - Huizhou Liu
- a CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China
| | - Guang Zhao
- a CAS Key Laboratory of Biobased Materials, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences , Qingdao , China
| |
Collapse
|
125
|
Moore JM, Magnan D, Mojica AK, Núñez MAB, Bates D, Rosenberg SM, Hastings PJ. Roles of Nucleoid-Associated Proteins in Stress-Induced Mutagenic Break Repair in Starving Escherichia coli. Genetics 2015; 201:1349-62. [PMID: 26500258 PMCID: PMC4676537 DOI: 10.1534/genetics.115.178970] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 10/18/2015] [Indexed: 01/02/2023] Open
Abstract
The mutagenicity of DNA double-strand break repair in Escherichia coli is controlled by DNA-damage (SOS) and general (RpoS) stress responses, which let error-prone DNA polymerases participate, potentially accelerating evolution during stress. Either base substitutions and indels or genome rearrangements result. Here we discovered that most small basic proteins that compact the genome, nucleoid-associated proteins (NAPs), promote or inhibit mutagenic break repair (MBR) via different routes. Of 15 NAPs, H-NS, Fis, CspE, and CbpA were required for MBR; Dps inhibited MBR; StpA and Hha did neither; and five others were characterized previously. Three essential genes were not tested. Using multiple tests, we found the following: First, Dps, which reduces reactive oxygen species (ROS), inhibited MBR, implicating ROS in MBR. Second, CbpA promoted F' plasmid maintenance, allowing MBR to be measured in an F'-based assay. Third, Fis was required for activation of the SOS DNA-damage response and could be substituted in MBR by SOS-induced levels of DinB error-prone DNA polymerase. Thus, Fis promoted MBR by allowing SOS activation. Fourth, H-NS represses ROS detoxifier sodB and was substituted in MBR by deletion of sodB, which was not otherwise mutagenic. We conclude that normal ROS levels promote MBR and that H-NS promotes MBR by maintaining ROS. CspE positively regulates RpoS, which is required for MBR. Four of five previously characterized NAPs promoted stress responses that enhance MBR. Hence, most NAPs affect MBR, the majority via regulatory functions. The data show that a total of six NAPs promote MBR by regulating stress responses, indicating the importance of nucleoid structure and function to the regulation of MBR and of coupling mutagenesis to stress, creating genetic diversity responsively.
Collapse
Affiliation(s)
- Jessica M Moore
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030 Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030
| | - David Magnan
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - Ana K Mojica
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 Undergraduate Program on Genomic Sciences, National Autonomous University of Mexico, Cuernavaca, 62210, Morelos, Mexico
| | - María Angélica Bravo Núñez
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030 Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| | - David Bates
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, 77030
| | - Susan M Rosenberg
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, 77030 Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, 77030
| | - P J Hastings
- Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, 77030 Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, 77030
| |
Collapse
|
126
|
Nehring RB, Gu F, Lin HY, Gibson JL, Blythe MJ, Wilson R, Bravo Núñez MA, Hastings PJ, Louis EJ, Frisch RL, Hu JC, Rosenberg SM. An ultra-dense library resource for rapid deconvolution of mutations that cause phenotypes in Escherichia coli. Nucleic Acids Res 2015; 44:e41. [PMID: 26578563 PMCID: PMC4797258 DOI: 10.1093/nar/gkv1131] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2015] [Accepted: 10/15/2015] [Indexed: 01/26/2023] Open
Abstract
With the wide availability of whole-genome sequencing (WGS), genetic mapping has become the rate-limiting step, inhibiting unbiased forward genetics in even the most tractable model organisms. We introduce a rapid deconvolution resource and method for untagged causative mutations after mutagenesis, screens, and WGS in Escherichia coli. We created Deconvoluter—ordered libraries with selectable insertions every 50 kb in the E. coli genome. The Deconvoluter method uses these for replacement of untagged mutations in the genome using a phage-P1-based gene-replacement strategy. We validate the Deconvoluter resource by deconvolution of 17 of 17 phenotype-altering mutations from a screen of N-ethyl-N-nitrosourea-induced mutants. The Deconvoluter resource permits rapid unbiased screens and gene/function identification and will enable exploration of functions of essential genes and undiscovered genes/sites/alleles not represented in existing deletion collections. This resource for unbiased forward-genetic screens with mapping-by-sequencing (‘forward genomics’) demonstrates a strategy that could similarly enable rapid screens in many other microbes.
Collapse
Affiliation(s)
- Ralf B Nehring
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Franklin Gu
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Hsin-Yu Lin
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Janet L Gibson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Martin J Blythe
- Deep Seq. Centre for Genetics and Genomics, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Ray Wilson
- Deep Seq. Centre for Genetics and Genomics, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - María Angélica Bravo Núñez
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA Undergraduate Program in Genomic Sciences, National Autonomous University of Mexico, 62210 Cuernavaca, Mexico
| | - P J Hastings
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - Edward J Louis
- Deep Seq. Centre for Genetics and Genomics, Queens Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK
| | - Ryan L Frisch
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| | - James C Hu
- Department of Biochemistry and Biophysics, Texas A&M University and Texas Agrilife Research, College Station, TX 77843, USA
| | - Susan M Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, TX 77030, USA Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, TX 77030, USA The Dan L. Duncan Cancer Center, Baylor College of Medicine, Houston, TX 77030, USA
| |
Collapse
|
127
|
Erickson KE, Otoupal PB, Chatterjee A. Gene Expression Variability Underlies Adaptive Resistance in Phenotypically Heterogeneous Bacterial Populations. ACS Infect Dis 2015; 1:555-67. [PMID: 27623410 DOI: 10.1021/acsinfecdis.5b00095] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The root cause of the antibiotic resistance crisis is the ability of bacteria to evolve resistance to a multitude of antibiotics and other environmental toxins. The regulation of adaptation is difficult to pinpoint due to extensive phenotypic heterogeneity arising during evolution. Here, we investigate the mechanisms underlying general bacterial adaptation by evolving wild-type Escherichia coli populations to dissimilar chemical toxins. We demonstrate the presence of extensive inter- and intrapopulation phenotypic heterogeneity across adapted populations in multiple traits, including minimum inhibitory concentration, growth rate, and lag time. To search for a common response across the heterogeneous adapted populations, we measured gene expression in three stress-response networks: the mar regulon, the general stress response, and the SOS response. While few genes were differentially expressed, clustering revealed that interpopulation gene expression variability in adapted populations was distinct from that of unadapted populations. Notably, we observed both increases and decreases in gene expression variability upon adaptation. Sequencing select genes revealed that the observed gene expression trends are not necessarily attributable to genetic changes. To further explore the connection between gene expression variability and adaptation, we propagated single-gene knockout and CRISPR (clustered regularly interspaced short palindromic repeats) interference strains and quantified impact on adaptation to antibiotics. We identified significant correlations that suggest genes with low expression variability have greater impact on adaptation. This study provides evidence that gene expression variability can be used as an indicator of bacterial adaptive resistance, even in the face of the pervasive phenotypic heterogeneity underlying adaptation.
Collapse
Affiliation(s)
- Keesha E. Erickson
- Department of Chemical and Biological Engineering and ‡BioFrontiers
Institute, University of Colorado, 596 UCB, Boulder, Colorado 80303, United States
| | - Peter B. Otoupal
- Department of Chemical and Biological Engineering and ‡BioFrontiers
Institute, University of Colorado, 596 UCB, Boulder, Colorado 80303, United States
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering and ‡BioFrontiers
Institute, University of Colorado, 596 UCB, Boulder, Colorado 80303, United States
| |
Collapse
|
128
|
The external domains of the HIV-1 envelope are a mutational cold spot. Nat Commun 2015; 6:8571. [PMID: 26450412 PMCID: PMC4687473 DOI: 10.1038/ncomms9571] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2015] [Accepted: 09/07/2015] [Indexed: 01/27/2023] Open
Abstract
In RNA viruses, mutations occur fast and have large fitness effects. While this affords remarkable adaptability, it can also endanger viral survival due to the accumulation of deleterious mutations. How RNA viruses reconcile these two opposed facets of mutation is still unknown. Here we show that, in human immunodeficiency virus (HIV-1), spontaneous mutations are not randomly located along the viral genome. We find that the viral mutation rate experiences a threefold reduction in the region encoding the most external domains of the viral envelope, which are strongly targeted by neutralizing antibodies. This contrasts with the hypermutation mechanisms deployed by other, more slowly mutating pathogens such as DNA viruses and bacteria, in response to immune pressure. We show that downregulation of the mutation rate in HIV-1 is exerted by the template RNA through changes in sequence context and secondary structure, which control the activity of apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3 (A3)-mediated cytidine deamination and the fidelity of the viral reverse transcriptase. Mutations allow RNA virus to adapt fast but also entail fitness costs. Geller et al. show that, in HIV-1, mutations occur three times less often in the most external domains of the envelope, and that this is due to changes in RNA sequence context and structure, which control viral and host-encoded mutational mechanisms.
Collapse
|
129
|
Helfrich S, Pfeifer E, Krämer C, Sachs CC, Wiechert W, Kohlheyer D, Nöh K, Frunzke J. Live cell imaging of SOS and prophage dynamics in isogenic bacterial populations. Mol Microbiol 2015; 98:636-50. [PMID: 26235130 DOI: 10.1111/mmi.13147] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/23/2015] [Indexed: 12/15/2022]
Abstract
Almost all bacterial genomes contain DNA of viral origin, including functional prophages or degenerated phage elements. A frequent but often unnoted phenomenon is the spontaneous induction of prophage elements (SPI) even in the absence of an external stimulus. In this study, we have analyzed SPI of the large, degenerated prophage CGP3 (187 kbp), which is integrated into the genome of the Gram-positive Corynebacterium glutamicum ATCC 13032. Time-lapse fluorescence microscopy of fluorescent reporter strains grown in microfluidic chips revealed the sporadic induction of the SOS response as a prominent trigger of CGP3 SPI but also displayed a considerable fraction (∼30%) of RecA-independent SPI. Whereas approx. 20% of SOS-induced cells recovered from this stress and resumed growth, the spontaneous induction of CGP3 always led to a stop of growth and likely cell death. A carbon source starvation experiment clearly emphasized that SPI only occurs in actively proliferating cells, whereas sporadic SOS induction was still observed in resting cells. These data highlight the impact of sporadic DNA damage on the activity of prophage elements and provide a time-resolved, quantitative description of SPI as general phenomenon of bacterial populations.
Collapse
Affiliation(s)
- Stefan Helfrich
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Eugen Pfeifer
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Christina Krämer
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Christian Carsten Sachs
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Wolfgang Wiechert
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Dietrich Kohlheyer
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Katharina Nöh
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425, Jülich, Germany
| | - Julia Frunzke
- Institut für Bio- und Geowissenschaften, IBG-1: Biotechnologie, Forschungszentrum Jülich, 52425, Jülich, Germany
| |
Collapse
|
130
|
Abstract
Cancer is widely considered a genetic disease involving nuclear mutations in oncogenes and tumor suppressor genes. This view persists despite the numerous inconsistencies associated with the somatic mutation theory. In contrast to the somatic mutation theory, emerging evidence suggests that cancer is a mitochondrial metabolic disease, according to the original theory of Otto Warburg. The findings are reviewed from nuclear cytoplasm transfer experiments that relate to the origin of cancer. The evidence from these experiments is difficult to reconcile with the somatic mutation theory, but is consistent with the notion that cancer is primarily a mitochondrial metabolic disease.
Collapse
|
131
|
Fornelos N, Butala M, Hodnik V, Anderluh G, Bamford JK, Salas M. Bacteriophage GIL01 gp7 interacts with host LexA repressor to enhance DNA binding and inhibit RecA-mediated auto-cleavage. Nucleic Acids Res 2015; 43:7315-29. [PMID: 26138485 PMCID: PMC4551915 DOI: 10.1093/nar/gkv634] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2015] [Accepted: 06/05/2015] [Indexed: 01/22/2023] Open
Abstract
The SOS response in Eubacteria is a global response to DNA damage and its activation is increasingly associated with the movement of mobile genetic elements. The temperate phage GIL01 is induced into lytic growth using the host's SOS response to genomic stress. LexA, the SOS transcription factor, represses bacteriophage transcription by binding to a set of SOS boxes in the lysogenic promoter P1. However, LexA is unable to efficiently repress GIL01 transcription unless the small phage-encoded protein gp7 is also present. We found that gp7 forms a stable complex with LexA that enhances LexA binding to phage and cellular SOS sites and interferes with RecA-mediated auto-cleavage of LexA, the key step in the initiation of the SOS response. Gp7 did not bind DNA, alone or when complexed with LexA. Our findings suggest that gp7 induces a LexA conformation that favors DNA binding but disfavors LexA auto-cleavage, thereby altering the dynamics of the cellular SOS response. This is the first account of an accessory factor interacting with LexA to regulate transcription.
Collapse
Affiliation(s)
- Nadine Fornelos
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Centre of Excellence in Biological Interactions, PO Box 35, F-40014 Jyvaskyla, Finland Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain
| | - Matej Butala
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Vesna Hodnik
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia
| | - Gregor Anderluh
- Department of Biology, Biotechnical Faculty, University of Ljubljana, Večna pot 111, 1000 Ljubljana, Slovenia National Institute of Chemistry, Hajdrihova 19, 1000 Ljubljana, Slovenia
| | - Jaana K Bamford
- Department of Biological and Environmental Science and Nanoscience Center, University of Jyvaskyla, Centre of Excellence in Biological Interactions, PO Box 35, F-40014 Jyvaskyla, Finland
| | - Margarita Salas
- Instituto de Biología Molecular 'Eladio Viñuela' (CSIC), Centro de Biología Molecular 'Severo Ochoa' (CSIC-Universidad Autónoma de Madrid), Cantoblanco, 28049 Madrid, Spain
| |
Collapse
|
132
|
Zhu L, Li Y, Cai Z. Development of a stress-induced mutagenesis module for autonomous adaptive evolution of Escherichia coli to improve its stress tolerance. BIOTECHNOLOGY FOR BIOFUELS 2015; 8:93. [PMID: 26136829 PMCID: PMC4487801 DOI: 10.1186/s13068-015-0276-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2014] [Accepted: 06/18/2015] [Indexed: 06/04/2023]
Abstract
BACKGROUND Microbial tolerance to different environmental stresses is of importance for efficient production of biofuels and biochemical. Such traits are often improved by evolutionary engineering approaches including mutagen-induced mutagenesis and successive passage. In contrast to these approaches which generate mutations in rapidly growing cells, recent research showed that mutations could be generated in non-dividing cells under stressful but non-lethal conditions, leading to the birth of the theory of stress-induced mutagenesis (SIM). A molecular mechanism of SIM has been elucidated to be mutagenic repair of DNA breaks. This inspired us to develop a synthetic SIM module to simulate the mutagenic cellular response so as to accelerate microbial adaptive evolution for an improved stress tolerance. RESULTS A controllable SIM evolution module was devised based on a genetic toggle switch in Escherichia coli. The synthetic module enables expression and repression of the genes related to up- and down-regulation responses during SIM in a bistable way. Upon addition of different inducers, the module can be turned on or off, triggering transition to a mutagenic or a high-fidelity state and thus allowing periodic adaptive evolution. Six genes (recA, dinB, umuD, ropS, ropE, and nusA) in the up-regulation responses were evaluated for their potentials to enhance the SIM rate. Expression of recA, dinB, or ropS alone increased the SIM rate by 4.5- to 13.7-fold, whereas their combined expression improved the rate by 31.9-fold. Besides, deletion of mutL increased the SIM rate by 82-fold. Assembly of these genes into the SIM module in the mutL-deletion E. coli strain elevated the SIM rate by nearly 3000-fold. Accelerated adaptive evolution of E. coli equipped with this synthetic SIM module was demonstrated under n-butanol stress, with the minimal inhibitory concentration of n-butanol increasing by 56 % within 2.5 months. CONCLUSIONS A synthetic SIM module was constructed to simulate cellular mutagenic responses during SIM. Based on this, a novel evolutionary engineering approach-SIM-based adaptive evolution-was developed to improve the n-butanol tolerance of E. coli.
Collapse
Affiliation(s)
- Linjiang Zhu
- />CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
- />Key Laboratory of Industrial Biotechnology, Ministry of Education of China, School of Biotechnology, Jiangnan University, Wuxi, 214122 China
| | - Yin Li
- />CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
| | - Zhen Cai
- />CAS Key Laboratory of Microbial Physiological and Metabolic Engineering, Institute of Microbiology, Chinese Academy of Sciences, No. 1 West Beichen Road, Chaoyang District, Beijing, 100101 China
| |
Collapse
|
133
|
Courtney CM, Chatterjee A. Sequence-Specific Peptide Nucleic Acid-Based Antisense Inhibitors of TEM-1 β-Lactamase and Mechanism of Adaptive Resistance. ACS Infect Dis 2015; 1:253-63. [PMID: 27622741 DOI: 10.1021/acsinfecdis.5b00042] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The recent surge of drug-resistant superbugs and shrinking antibiotic pipeline are serious challenges to global health. In particular, the emergence of β-lactamases has caused extensive resistance against the most frequently prescribed class of β-lactam antibiotics. Here, we develop novel synthetic peptide nucleic acid-based antisense inhibitors that target the start codon and ribosomal binding site of the TEM-1 β-lactamase transcript and act via translation inhibition mechanism. We show that these antisense inhibitors are capable of resensitizing drug-resistant Escherichia coli to β-lactam antibiotics exhibiting 10-fold reduction in the minimum inhibitory concentration (MIC). To study the mechanism of resistance, we adapted E. coli at MIC levels of the β-lactam/antisense inhibitor combination and observed a nonmutational, bet-hedging based adaptive antibiotic resistance response as evidenced by phenotypic heterogeneity as well as heterogeneous expression of key stress response genes. Our data show that both the development of new antimicrobials and an understanding of cellular response during the development of tolerance could aid in mitigating the impending antibiotic crisis.
Collapse
Affiliation(s)
- Colleen M. Courtney
- Department of Chemical and Biological Engineering and ‡BioFrontiers
Institute, 596 UCB, University of Colorado, Boulder, Colorado 80303, United States
| | - Anushree Chatterjee
- Department of Chemical and Biological Engineering and ‡BioFrontiers
Institute, 596 UCB, University of Colorado, Boulder, Colorado 80303, United States
| |
Collapse
|
134
|
Abstract
![]()
Bacteria
possess a remarkable ability to rapidly adapt and evolve
in response to antibiotics. Acquired antibiotic resistance can arise
by multiple mechanisms but commonly involves altering the target site
of the drug, enzymatically inactivating the drug, or preventing the
drug from accessing its target. These mechanisms involve new genetic
changes in the pathogen leading to heritable resistance. This recognition
underscores the importance of understanding how such
genetic changes can arise. Here, we review recent advances in our
understanding of the processes that contribute to the evolution of
antibiotic resistance, with a particular focus on hypermutation mediated
by the SOS pathway and horizontal gene transfer. We explore the molecular
mechanisms involved in acquired resistance and discuss their viability
as potential targets. We propose that additional studies into these
adaptive mechanisms not only can provide insights into evolution but
also can offer a strategy for potentiating our current antibiotic
arsenal.
Collapse
|
135
|
Abstract
Because mutations are mostly deleterious, mutation rates should be reduced by natural selection. However, mutations also provide the raw material for adaptation. Therefore, evolutionary theory suggests that the mutation rate must balance between adaptability-the ability to adapt-and adaptedness-the ability to remain adapted. We model an asexual population crossing a fitness valley and analyse the rate of complex adaptation with and without stress-induced mutagenesis (SIM)-the increase of mutation rates in response to stress or maladaptation. We show that SIM increases the rate of complex adaptation without reducing the population mean fitness, thus breaking the evolutionary trade-off between adaptability and adaptedness. Our theoretical results support the hypothesis that SIM promotes adaptation and provide quantitative predictions of the rate of complex adaptation with different mutational strategies.
Collapse
Affiliation(s)
- Yoav Ram
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
| | - Lilach Hadany
- Department of Molecular Biology and Ecology of Plants, Tel Aviv University, Tel Aviv, Israel
| |
Collapse
|
136
|
Gibson JL, Lombardo MJ, Aponyi I, Vera Cruz D, Ray MP, Rosenberg SM. Atypical Role for PhoU in Mutagenic Break Repair under Stress in Escherichia coli. PLoS One 2015; 10:e0123315. [PMID: 25961709 PMCID: PMC4427277 DOI: 10.1371/journal.pone.0123315] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2015] [Accepted: 02/17/2015] [Indexed: 01/02/2023] Open
Abstract
Mechanisms of mutagenesis activated by stress responses drive pathogen/host adaptation, antibiotic and anti-fungal-drug resistance, and perhaps much of evolution generally. In Escherichia coli, repair of double-strand breaks (DSBs) by homologous recombination is high fidelity in unstressed cells, but switches to a mutagenic mode using error-prone DNA polymerases when the both the SOS and general (σS) stress responses are activated. Additionally, the σE response promotes spontaneous DNA breakage that leads to mutagenic break repair (MBR). We identified the regulatory protein PhoU in a genetic screen for functions required for MBR. PhoU negatively regulates the phosphate-transport and utilization (Pho) regulon when phosphate is in excess, including the PstB and PstC subunits of the phosphate-specific ABC transporter PstSCAB. Here, we characterize the PhoU mutation-promoting role. First, some mutations that affect phosphate transport and Pho transcriptional regulation decrease mutagenesis. Second, the mutagenesis and regulon-expression phenotypes do not correspond, revealing an apparent new function(s) for PhoU. Third, the PhoU mutagenic role is not via activation of the σS, SOS or σE responses, because mutations (or DSBs) that restore mutagenesis to cells defective in these stress responses do not restore mutagenesis to phoU cells. Fourth, the mutagenesis defect in phoU-mutant cells is partially restored by deletion of arcA, a gene normally repressed by PhoU, implying that a gene(s) repressed by ArcA promotes mutagenic break repair. The data show a new role for PhoU in regulation, and a new regulatory branch of the stress-response signaling web that activates mutagenic break repair in E. coli.
Collapse
Affiliation(s)
- Janet L. Gibson
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mary-Jane Lombardo
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Ildiko Aponyi
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Diana Vera Cruz
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Mellanie P. Ray
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
| | - Susan M. Rosenberg
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Biochemistry and Molecular Biology, Baylor College of Medicine, Houston, Texas, United States of America
- Department of Molecular Virology and Microbiology, Baylor College of Medicine, Houston, Texas, United States of America
- Dan L Duncan Cancer Center, Baylor College of Medicine, Houston, Texas, United States of America
- * E-mail:
| |
Collapse
|
137
|
Gallagher RR, Patel JR, Interiano AL, Rovner AJ, Isaacs FJ. Multilayered genetic safeguards limit growth of microorganisms to defined environments. Nucleic Acids Res 2015; 43:1945-54. [PMID: 25567985 PMCID: PMC4330353 DOI: 10.1093/nar/gku1378] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2014] [Revised: 12/20/2014] [Accepted: 12/20/2014] [Indexed: 12/29/2022] Open
Abstract
Genetically modified organisms (GMOs) are commonly used to produce valuable compounds in closed industrial systems. However, their emerging applications in open clinical or environmental settings require enhanced safety and security measures. Intrinsic biocontainment, the creation of bacterial hosts unable to survive in natural environments, remains a major unsolved biosafety problem. We developed a new biocontainment strategy containing overlapping 'safeguards'-engineered riboregulators that tightly control expression of essential genes, and an engineered addiction module based on nucleases that cleaves the host genome-to restrict viability of Escherichia coli cells to media containing exogenously supplied synthetic small molecules. These multilayered safeguards maintain robust growth in permissive conditions, eliminate persistence and limit escape frequencies to <1.3 × 10(-12). The staged approach to safeguard implementation revealed mechanisms of escape and enabled strategies to overcome them. Our safeguarding strategy is modular and employs conserved mechanisms that could be extended to clinically or industrially relevant organisms and undomesticated species.
Collapse
Affiliation(s)
- Ryan R Gallagher
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06520, USA Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Jaymin R Patel
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06520, USA Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Alexander L Interiano
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06520, USA
| | - Alexis J Rovner
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06520, USA Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| | - Farren J Isaacs
- Department of Molecular, Cellular & Developmental Biology, Yale University, New Haven, CT 06520, USA Systems Biology Institute, Yale University, West Haven, CT 06516, USA
| |
Collapse
|
138
|
Staphylococcus aureus adapts to oxidative stress by producing H2O2-resistant small-colony variants via the SOS response. Infect Immun 2015; 83:1830-44. [PMID: 25690100 PMCID: PMC4399076 DOI: 10.1128/iai.03016-14] [Citation(s) in RCA: 94] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2014] [Accepted: 02/10/2015] [Indexed: 12/30/2022] Open
Abstract
The development of chronic and recurrent Staphylococcus aureus infections is associated with the emergence of slow-growing mutants known as small-colony variants (SCVs), which are highly tolerant of antibiotics and can survive inside host cells. However, the host and bacterial factors which underpin SCV emergence during infection are poorly understood. Here, we demonstrate that exposure of S. aureus to sublethal concentrations of H2O2 leads to a specific, dose-dependent increase in the population frequency of gentamicin-resistant SCVs. Time course analyses revealed that H2O2 exposure caused bacteriostasis in wild-type cells during which time SCVs appeared spontaneously within the S. aureus population. This occurred via a mutagenic DNA repair pathway that included DNA double-strand break repair proteins RexAB, recombinase A, and polymerase V. In addition to triggering SCV emergence by increasing the mutation rate, H2O2 also selected for the SCV phenotype, leading to increased phenotypic stability and further enhancing the size of the SCV subpopulation by reducing the rate of SCV reversion to the wild type. Subsequent analyses revealed that SCVs were significantly more resistant to the toxic effects of H2O2 than wild-type bacteria. With the exception of heme auxotrophs, gentamicin-resistant SCVs displayed greater catalase activity than wild-type bacteria, which contributed to their resistance to H2O2. Taken together, these data reveal a mechanism by which S. aureus adapts to oxidative stress via the production of a subpopulation of H2O2-resistant SCVs with enhanced catalase production.
Collapse
|
139
|
Vasilyev N, Serganov A. Structures of RNA complexes with the Escherichia coli RNA pyrophosphohydrolase RppH unveil the basis for specific 5'-end-dependent mRNA decay. J Biol Chem 2015; 290:9487-99. [PMID: 25657011 DOI: 10.1074/jbc.m114.634824] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2014] [Indexed: 12/20/2022] Open
Abstract
5'-End-dependent RNA degradation impacts virulence, stress responses, and DNA repair in bacteria by controlling the decay of hundreds of mRNAs. The RNA pyrophosphohydrolase RppH, a member of the Nudix hydrolase superfamily, triggers this degradation pathway by removing pyrophosphate from the triphosphorylated RNA 5' terminus. Here, we report the x-ray structures of Escherichia coli RppH (EcRppH) in apo- and RNA-bound forms. These structures show distinct conformations of EcRppH·RNA complexes on the catalytic pathway and suggest a common catalytic mechanism for Nudix hydrolases. EcRppH interacts with RNA by a bipartite mechanism involving specific recognition of the 5'-terminal triphosphate and the second nucleotide, thus enabling discrimination against mononucleotides as substrates. The structures also reveal the molecular basis for the preference of the enzyme for RNA substrates bearing guanine in the second position by identifying a protein cleft in which guanine interacts with EcRppH side chains via cation-π contacts and hydrogen bonds. These interactions explain the modest specificity of EcRppH at the 5' terminus and distinguish the enzyme from the highly selective RppH present in Bacillus subtilis. The divergent means by which RNA is recognized by these two functionally and structurally analogous enzymes have important implications for mRNA decay and the regulation of protein biosynthesis in bacteria.
Collapse
Affiliation(s)
- Nikita Vasilyev
- From the Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| | - Alexander Serganov
- From the Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, New York, New York 10016
| |
Collapse
|
140
|
Abstract
This paper applies the conceptual toolkit of Evolutionary Developmental Biology (evo-devo) to the evolution of the genome and the role of the genome in organism development. This challenges both the Modern Evolutionary Synthesis, the dominant view in evolutionary theory for much of the 20th century, and the typically unreflective analysis of heredity by evo-devo. First, the history of the marginalization of applying system-thinking to the genome is described. Next, the suggested framework is presented. Finally, its application to the evolution of genome modularity, the evolution of induced mutations, the junk DNA versus ENCODE debate, the role of drift in genome evolution, and the relationship between genome dynamics and symbiosis with microorganisms are briefly discussed.
Collapse
Affiliation(s)
- Ehud Lamm
- Tel Aviv University, Cohn Institute for the History and Philosophy of Science and Ideas, Ramat Aviv 69978, Israel
| |
Collapse
|
141
|
Saxer G, Krepps MD, Merkley ED, Ansong C, Deatherage Kaiser BL, Valovska MT, Ristic N, Yeh PT, Prakash VP, Leiser OP, Nakhleh L, Gibbons HS, Kreuzer HW, Shamoo Y. Mutations in global regulators lead to metabolic selection during adaptation to complex environments. PLoS Genet 2014; 10:e1004872. [PMID: 25501822 PMCID: PMC4263409 DOI: 10.1371/journal.pgen.1004872] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2014] [Accepted: 11/04/2014] [Indexed: 01/12/2023] Open
Abstract
Adaptation to ecologically complex environments can provide insights into the evolutionary dynamics and functional constraints encountered by organisms during natural selection. Adaptation to a new environment with abundant and varied resources can be difficult to achieve by small incremental changes if many mutations are required to achieve even modest gains in fitness. Since changing complex environments are quite common in nature, we investigated how such an epistatic bottleneck can be avoided to allow rapid adaptation. We show that adaptive mutations arise repeatedly in independently evolved populations in the context of greatly increased genetic and phenotypic diversity. We go on to show that weak selection requiring substantial metabolic reprogramming can be readily achieved by mutations in the global response regulator arcA and the stress response regulator rpoS. We identified 46 unique single-nucleotide variants of arcA and 18 mutations in rpoS, nine of which resulted in stop codons or large deletions, suggesting that subtle modulations of ArcA function and knockouts of rpoS are largely responsible for the metabolic shifts leading to adaptation. These mutations allow a higher order metabolic selection that eliminates epistatic bottlenecks, which could occur when many changes would be required. Proteomic and carbohydrate analysis of adapting E. coli populations revealed an up-regulation of enzymes associated with the TCA cycle and amino acid metabolism, and an increase in the secretion of putrescine. The overall effect of adaptation across populations is to redirect and efficiently utilize uptake and catabolism of abundant amino acids. Concomitantly, there is a pronounced spread of more ecologically limited strains that results from specialization through metabolic erosion. Remarkably, the global regulators arcA and rpoS can provide a “one-step” mechanism of adaptation to a novel environment, which highlights the importance of global resource management as a powerful strategy to adaptation. Changing environmental conditions are the norm in biology. However, understanding adaptation to complex environments presents many challenges. For example, adaptation to resource-rich environments can potentially have many successful evolutionary trajectories to increased fitness. Even in conditions of plenty, the utilization of numerous but novel resources can require multiple mutations before a benefit is accrued. We evolved two bacterial species isolated from the gut of healthy humans in two different, resource-rich media commonly used in the laboratory. We anticipated that under weak selection the population would evolve tremendous genetic diversity. Despite such a complex genetic background we were able to identify a strong degree of parallel evolution and using a combination of population proteomic and population genomic approaches we show that two global regulators, arcA and rpoS, are the principle targets of selection. Up-regulation of the different metabolic pathways that are controlled by these global regulators in combination with up-regulation of transporters that transport nutrients into the cell revealed increased use of the novel resources. Thus global regulators can provide a one-step model to shift metabolism efficiently and provide rapid a one-step reprogramming of the cell metabolic profile.
Collapse
Affiliation(s)
- Gerda Saxer
- Department of BioSciences, Rice University, Houston, Texas, United States of America
- * E-mail: (GS); (YS)
| | - Michael D. Krepps
- United States Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland, United States of America
- EXCET, Inc, Springfield, Virginia, United States of America
| | - Eric D. Merkley
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Charles Ansong
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | | | | | - Nikola Ristic
- Department of Computer Science, Rice University, Houston, Texas, United States of America
| | - Ping T. Yeh
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Vittal P. Prakash
- Department of BioSciences, Rice University, Houston, Texas, United States of America
| | - Owen P. Leiser
- Center for Microbial Genetics and Genomics, Northern Arizona University, Flagstaff, Arizona, United States of America
| | - Luay Nakhleh
- Department of Computer Science, Rice University, Houston, Texas, United States of America
| | - Henry S. Gibbons
- United States Army Edgewood Chemical Biological Center, Aberdeen Proving Ground, Maryland, United States of America
| | - Helen W. Kreuzer
- Pacific Northwest National Laboratory, Richland, Washington, United States of America
| | - Yousif Shamoo
- Department of BioSciences, Rice University, Houston, Texas, United States of America
- * E-mail: (GS); (YS)
| |
Collapse
|
142
|
Abstract
Bacteria can rapidly evolve resistance to antibiotics via the SOS response, a state of high-activity DNA repair and mutagenesis. We explore here the first steps of this evolution in the bacterium Escherichia coli. Induction of the SOS response by the genotoxic antibiotic ciprofloxacin changes the E. coli rod shape into multichromosome-containing filaments. We show that at subminimal inhibitory concentrations of ciprofloxacin the bacterial filament divides asymmetrically repeatedly at the tip. Chromosome-containing buds are made that, if resistant, propagate nonfilamenting progeny with enhanced resistance to ciprofloxacin as the parent filament dies. We propose that the multinucleated filament creates an environmental niche where evolution can proceed via generation of improved mutant chromosomes due to the mutagenic SOS response and possible recombination of the new alleles between chromosomes. Our data provide a better understanding of the processes underlying the origin of resistance at the single-cell level and suggest an analogous role to the eukaryotic aneuploidy condition in cancer.
Collapse
|
143
|
Maharjan R, Ferenci T. Mutational signatures indicative of environmental stress in bacteria. Mol Biol Evol 2014; 32:380-91. [PMID: 25389207 DOI: 10.1093/molbev/msu306] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022] Open
Abstract
Evolutionary innovations are dependent on mutations. Mutation rates are increased by adverse conditions in the laboratory, but there is no evidence that stressful environments that do not directly impact on DNA leave a mutational imprint on extant genomes. Mutational spectra in the laboratory are normally determined with unstressed cells but are unavailable with stressed bacteria. To by-pass problems with viability, selection effects, and growth rate differences due to stressful environments, in this study we used a set of genetically engineered strains to identify the mutational spectrum associated with nutritional stress. The strain set members each had a fixed level of the master regulator protein, RpoS, which controls the general stress response of Escherichia coli. By assessing mutations in cycA gene from 485 cycloserine resistant mutants collected from as many independent cultures with three distinct perceived stress (RpoS) levels, we were able establish a dose-dependent relationship between stress and mutational spectra. The altered mutational patterns included base pair substitutions, single base pair indels, longer indels, and transpositions of different insertion sequences. The mutational spectrum of low-RpoS cells closely matches the genome-wide spectrum previously generated in laboratory environments, while the spectra of high RpoS, high perceived stress cells more closely matches spectra found in comparisons of extant genomes. Our results offer an explanation of the uneven mutational profiles such as the transition-transversion biases observed in extant genomes and provide a framework for assessing the contribution of stress-induced mutagenesis to evolutionary transitions and the mutational emergence of antibiotic resistance and disease states.
Collapse
Affiliation(s)
- Ram Maharjan
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| | - Thomas Ferenci
- School of Molecular Bioscience, University of Sydney, Sydney, NSW, Australia
| |
Collapse
|
144
|
Ferenci T, Maharjan R. Mutational heterogeneity: A key ingredient of bet-hedging and evolutionary divergence? Bioessays 2014; 37:123-30. [DOI: 10.1002/bies.201400153] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Affiliation(s)
- Thomas Ferenci
- School of Molecular Bioscience; University of Sydney; NSW Australia
| | - Ram Maharjan
- School of Molecular Bioscience; University of Sydney; NSW Australia
| |
Collapse
|
145
|
Environmentally responsive genome-wide accumulation of de novo Arabidopsis thaliana mutations and epimutations. Genome Res 2014; 24:1821-9. [PMID: 25314969 PMCID: PMC4216923 DOI: 10.1101/gr.177659.114] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Evolution is fueled by phenotypic diversity, which is in turn due to underlying heritable genetic (and potentially epigenetic) variation. While environmental factors are well known to influence the accumulation of novel variation in microorganisms and human cancer cells, the extent to which the natural environment influences the accumulation of novel variation in plants is relatively unknown. Here we use whole-genome and whole-methylome sequencing to test if a specific environmental stress (high-salinity soil) changes the frequency and molecular profile of accumulated mutations and epimutations (changes in cytosine methylation status) in mutation accumulation (MA) lineages of Arabidopsis thaliana. We first show that stressed lineages accumulate ∼100% more mutations, and that these mutations exhibit a distinctive molecular mutational spectrum (specific increases in relative frequency of transversion and insertion/deletion [indel] mutations). We next show that stressed lineages accumulate ∼45% more differentially methylated cytosine positions (DMPs) at CG sites (CG-DMPs) than controls, and also show that while many (∼75%) of these CG-DMPs are inherited, some can be lost in subsequent generations. Finally, we show that stress-associated CG-DMPs arise more frequently in genic than in nongenic regions of the genome. We suggest that commonly encountered natural environmental stresses can accelerate the accumulation and change the profiles of novel inherited variants in plants. Our findings are significant because stress exposure is common among plants in the wild, and they suggest that environmental factors may significantly alter the rates and patterns of incidence of the inherited novel variants that fuel plant evolution.
Collapse
|
146
|
Rodríguez-Rojas A, Makarova O, Rolff J. Antimicrobials, stress and mutagenesis. PLoS Pathog 2014; 10:e1004445. [PMID: 25299705 PMCID: PMC4192597 DOI: 10.1371/journal.ppat.1004445] [Citation(s) in RCA: 60] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2014] [Accepted: 09/03/2014] [Indexed: 12/05/2022] Open
Abstract
Cationic antimicrobial peptides are ancient and ubiquitous immune effectors that multicellular organisms use to kill and police microbes whereas antibiotics are mostly employed by microorganisms. As antimicrobial peptides (AMPs) mostly target the cell wall, a microbial ‘Achilles heel’, it has been proposed that bacterial resistance evolution is very unlikely and hence AMPs are ancient ‘weapons’ of multicellular organisms. Here we provide a new hypothesis to explain the widespread distribution of AMPs amongst multicellular organism. Studying five antimicrobial peptides from vertebrates and insects, we show, using a classic Luria-Delbrück fluctuation assay, that cationic antimicrobial peptides (AMPs) do not increase bacterial mutation rates. Moreover, using rtPCR and disc diffusion assays we find that AMPs do not elicit SOS or rpoS bacterial stress pathways. This is in contrast to the main classes of antibiotics that elevate mutagenesis via eliciting the SOS and rpoS pathways. The notion of the ‘Achilles heel’ has been challenged by experimental selection for AMP-resistance, but our findings offer a new perspective on the evolutionary success of AMPs. Employing AMPs seems advantageous for multicellular organisms, as it does not fuel the adaptation of bacteria to their immune defenses. This has important consequences for our understanding of host-microbe interactions, the evolution of innate immune defenses, and also sheds new light on antimicrobial resistance evolution and the use of AMPs as drugs. Cationic antimicrobial peptides are ancient and ubiquitous immune effectors that multicellular organisms use to kill and police microbes, whilst antibiotics are mostly employed by microorganisms. Here we provide a new hypothesis to explain this widespread adoption of antimicrobial peptides. We show that cationic antimicrobial peptides (AMPs) do not increase bacterial mutagenesis, as they do not elicit bacterial stress pathways. Those stress pathways increase the mutation rate when bacteria are treated with antibiotics. Employing AMPs hence seems advantageous for multicellular organisms, as it does not fuel the adaptation of bacteria to their immune defenses. This has important consequences for our understanding of host-microbe interactions, the evolution of innate immune defenses, and also sheds new light on antimicrobial resistance evolution and the use of AMPs as drugs.
Collapse
Affiliation(s)
| | - Olga Makarova
- Evolutionary Biology, Institute for Biology, Free University Berlin, Berlin, Germany
| | - Jens Rolff
- Evolutionary Biology, Institute for Biology, Free University Berlin, Berlin, Germany
- * E-mail:
| |
Collapse
|
147
|
Stress-induced mutation rates show a sigmoidal and saturable increase due to the RpoS sigma factor in Escherichia coli. Genetics 2014; 198:1231-5. [PMID: 25213168 DOI: 10.1534/genetics.114.170258] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Stress-induced mutagenesis was investigated in the absence of selection for growth fitness by using synthetic biology to control perceived environmental stress in Escherichia coli. We find that controlled intracellular RpoS dosage is central to a sigmoidal, saturable three- to fourfold increase in mutation rates and associated changes in DNA repair proteins.
Collapse
|
148
|
Different tradeoffs result from alternate genetic adaptations to a common environment. Proc Natl Acad Sci U S A 2014; 111:12121-6. [PMID: 25092325 DOI: 10.1073/pnas.1406886111] [Citation(s) in RCA: 64] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023] Open
Abstract
Fitness tradeoffs are often assumed by evolutionary theory, yet little is known about the frequency of fitness tradeoffs during stress adaptation. Even less is known about the genetic factors that confer these tradeoffs and whether alternative adaptive mutations yield contrasting tradeoff dynamics. We addressed these issues using 114 clones of Escherichia coli that were evolved independently for 2,000 generations under thermal stress (42.2 °C). For each clone, we measured their fitness relative to the ancestral clone at 37 °C and 20 °C. Tradeoffs were common at 37 °C but more prevalent at 20 °C, where 56% of clones were outperformed by the ancestor. We also characterized the upper and lower thermal boundaries of each clone. All clones shifted their upper boundary to at least 45 °C; roughly half increased their lower niche boundary concomitantly, representing a shift of thermal niche. The remaining clones expanded their thermal niche by increasing their upper limit without a commensurate increase of lower limit. We associated these niche dynamics with genotypes and confirmed associations by engineering single mutations in the rpoB gene, which encodes the beta subunit of RNA polymerase, and the rho gene, which encodes a termination factor. Single mutations in the rpoB gene exhibit antagonistic pleiotropy, with fitness tradeoffs at 18 °C and fitness benefits at 42.2 °C. In contrast, a mutation within the rho transcriptional terminator, which defines an alternative adaptive pathway from that of rpoB, had no demonstrable effect on fitness at 18 °C. This study suggests that two different genetic pathways toward high-temperature adaptation have contrasting effects with respect to thermal tradeoffs.
Collapse
|
149
|
Gundlach J, Winter J. Evolution of Escherichia coli for maximum HOCl resistance through constitutive expression of the OxyR regulon. Microbiology (Reading) 2014; 160:1690-1704. [DOI: 10.1099/mic.0.074815-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Exposure of cells to stress impairs cellular functions and may cause killing or adaptation. Adaptation can be facilitated by stress-induced mutagenesis or epigenetic changes, i.e. phenotypic variation without mutations. Upon exposure to HOCl, which is produced by the innate immune system upon bacterial infection, bacteria trigger stress responses that enable increased survival against the stress. Here, we addressed the question whether bacteria can adapt to high HOCl doses and if so, how the acquired resistance is facilitated. We evolved Escherichia coli cells for maximum HOCl resistance by successively increasing the HOCl concentration in the cultivation medium. HOCl-resistant cells showed broad stress resistance but did not carry any chromosomal mutations as revealed by whole-genome sequencing. According to proteome analysis and analysis of transcript levels of stress-related genes, HOCl resistance was accompanied by altered levels of outer-membrane proteins A, C, F and W, and, most prominently, a constitutively expressed OxyR regulon. Induction of the OxyR regulon is facilitated by a partially oxidized OxyR leading to increased levels of antioxidant proteins such as Dps, AhpC/AhpF and KatG. These changes were maintained in evolved strains even when they were cultivated without stress for a prolonged time, indicating epigenetic changes contributed to stress resistance. This indicated that maximum HOCl resistance was conferred by the accumulated action of the OxyR stress response and other factors such as altered levels of outer-membrane proteins.
Collapse
Affiliation(s)
- Jasmin Gundlach
- Center for Integrated Protein Science Munich, Department Chemie, Technische Universität München, 85747 Garching, Germany
| | - Jeannette Winter
- Center for Integrated Protein Science Munich, Department Chemie, Technische Universität München, 85747 Garching, Germany
| |
Collapse
|
150
|
Moreau PL. Protective role of the RpoE (σE) and Cpx envelope stress responses against gentamicin killing of nongrowing Escherichia coli incubated under aerobic, phosphate starvation conditions. FEMS Microbiol Lett 2014; 357:151-6. [PMID: 25039943 DOI: 10.1111/1574-6968.12534] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Revised: 06/28/2014] [Accepted: 07/04/2014] [Indexed: 11/29/2022] Open
Abstract
The viability of Escherichia coli starved of nitrogen (N) or phosphorus (P) decreased by up to seven orders of magnitude during prolonged incubation under aerobic conditions when exposed to high levels of the antibiotic gentamicin, whereas viability of cells starved of carbon (C) was barely affected. However, the initial rate of killing was lower for P-starved cells than for N-starved cells. The transient resistance of P-starved cells was partially dependent upon the expression of the phosphate (Pho) and Cpx responses. Constitutive activity of the Cpx and RpoE (σ(E)) envelope stress regulons increased the resistance of P- and N-starved cells. The level of expression of the RpoE regulon was fourfold higher in P-starved cells than in N-starved cell at the time gentamicin was added. Gentamicin killing of nongrowing cells may thus require ongoing aerobic glucose metabolism and faulty synthesis of structural membrane proteins. However, membrane protein damage induced by gentamicin can be eliminated or repaired by RpoE- and Cpx-dependent mechanisms pre-emptively induced in P-starved cells, which reveals a novel mechanism of resistance to gentamicin that is active in certain circumstances.
Collapse
Affiliation(s)
- Patrice L Moreau
- Laboratoire de Chimie Bactérienne, Centre National de la Recherche Scientifique, Aix-Marseille Université, Marseille, France
| |
Collapse
|