101
|
Oda T, Yanagisawa H, Shinmori H, Ogawa Y, Kawamura T. Cryo-electron tomography of Birbeck granules reveals the molecular mechanism of langerin lattice formation. eLife 2022; 11:79990. [PMID: 35758632 PMCID: PMC9259017 DOI: 10.7554/elife.79990] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Accepted: 06/23/2022] [Indexed: 01/03/2023] Open
Abstract
Langerhans cells are specialized antigen-presenting cells localized within the epidermis and mucosal epithelium. Upon contact with Langerhans cells, pathogens are captured by the C-type lectin langerin and internalized into a structurally unique vesicle known as a Birbeck granule. Although the immunological role of Langerhans cells and Birbeck granules have been extensively studied, the mechanism by which the characteristic zippered membrane structure of Birbeck granules is formed remains elusive. In this study, we observed isolated Birbeck granules using cryo-electron tomography and reconstructed the 3D structure of the repeating unit of the honeycomb lattice of langerin at 6.4 Å resolution. We found that the interaction between the two langerin trimers was mediated by docking the flexible loop at residues 258–263 into the secondary carbohydrate-binding cleft. Mutations within the loop inhibited Birbeck granule formation and the internalization of HIV pseudovirus. These findings suggest a molecular mechanism for membrane zippering during Birbeck granule biogenesis and provide insight into the role of langerin in the defense against viral infection.
Collapse
Affiliation(s)
- Toshiyuki Oda
- Department of Anatomy and Structural Biology, University of Yamanashi, Yamanashi, Japan
| | - Haruaki Yanagisawa
- Department of Cell Biology and Anatomy, University of Tokyo, Tokyo, Japan
| | - Hideyuki Shinmori
- Faculty of Life and Environmental Science, University of Yamanashi, Yamanashi, Japan
| | - Youichi Ogawa
- Department of Dermatology, University of Yamanashi, Yamanashi, Japan
| | | |
Collapse
|
102
|
Tumor protein D54 binds intracellular nanovesicles via an extended amphipathic region. J Biol Chem 2022; 298:102136. [PMID: 35714773 PMCID: PMC9270247 DOI: 10.1016/j.jbc.2022.102136] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 06/07/2022] [Accepted: 06/09/2022] [Indexed: 11/22/2022] Open
Abstract
Tumor Protein D54 (TPD54) is an abundant cytosolic protein that belongs to the TPD52 family, a family of four proteins (TPD52, 53, 54 and 55) that are overexpressed in several cancer cells. Even though the functions of these proteins remain elusive, recent investigations indicate that TPD54 binds to very small cytosolic vesicles with a diameter of ca. 30 nm, half the size of classical (e.g. COPI and COPII) transport vesicles. Here, we investigated the mechanism of intracellular nanovesicle capture by TPD54. Bioinformatical analysis suggests that TPD54 contains a small coiled-coil followed by four amphipathic helices (AH1-4), which could fold upon binding to lipid membranes. Limited proteolysis, circular dichroism (CD) spectroscopy, tryptophan fluorescence, and cysteine mutagenesis coupled to covalent binding of a membrane sensitive probe showed that binding of TPD54 to small liposomes is accompanied by large structural changes in the amphipathic helix region. Furthermore, site-directed mutagenesis indicated that AH2 and AH3 have a predominant role in TPD54 binding to membranes both in cells and using model liposomes. We found that AH3 has the physicochemical features of an Amphipathic Lipid Packing Sensor (ALPS) motif, which, in other proteins, enables membrane binding in a curvature-dependent manner. Accordingly, we observed that binding of TPD54 to liposomes is very sensitive to membrane curvature and lipid unsaturation. We conclude that TPD54 recognizes nanovesicles through a combination of ALPS-dependent and -independent mechanisms.
Collapse
|
103
|
Deng Q, Natesan R, Cidre-Aranaz F, Arif S, Liu Y, Rasool RU, Wang P, Mitchell-Velasquez E, Das CK, Vinca E, Cramer Z, Grohar PJ, Chou M, Kumar-Sinha C, Weber K, Eisinger-Mathason TK, Grillet N, Grünewald T, Asangani IA. Oncofusion-driven de novo enhancer assembly promotes malignancy in Ewing sarcoma via aberrant expression of the stereociliary protein LOXHD1. Cell Rep 2022; 39:110971. [PMID: 35705030 PMCID: PMC9716578 DOI: 10.1016/j.celrep.2022.110971] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Revised: 04/05/2022] [Accepted: 05/24/2022] [Indexed: 01/16/2023] Open
Abstract
Ewing sarcoma (EwS) is a highly aggressive tumor of bone and soft tissues that mostly affects children and adolescents. The pathognomonic oncofusion EWSR1::FLI1 transcription factor drives EwS by orchestrating an oncogenic transcription program through de novo enhancers. By integrative analysis of thousands of transcriptomes representing pan-cancer cell lines, primary cancers, metastasis, and normal tissues, we identify a 32-gene signature (ESS32 [Ewing Sarcoma Specific 32]) that stratifies EwS from pan-cancer. Among the ESS32, LOXHD1, encoding a stereociliary protein, is the most highly expressed gene through an alternative transcription start site. Deletion or silencing of EWSR1::FLI1 bound upstream de novo enhancer results in loss of the LOXHD1 short isoform, altering EWSR1::FLI1 and HIF1α pathway genes and resulting in decreased proliferation/invasion of EwS cells. These observations implicate LOXHD1 as a biomarker and a determinant of EwS metastasis and suggest new avenues for developing LOXHD1-targeted drugs or cellular therapies for this deadly disease.
Collapse
Affiliation(s)
- Qu Deng
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Ramakrishnan Natesan
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA,These authors contributed equally
| | - Florencia Cidre-Aranaz
- Max-Eder Research Group of Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany,Hopp Children’s Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany
| | - Shehbeel Arif
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | - Ying Liu
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, BRBII/III, Philadelphia, PA, USA
| | - Reyaz ur Rasool
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | - Pei Wang
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Erick Mitchell-Velasquez
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | - Chandan Kanta Das
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | - Endrit Vinca
- Hopp Children’s Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany,Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Hopp Children’s Cancer Center (KiTZ), Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Zvi Cramer
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA
| | | | - Margaret Chou
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, BRBII/III, Philadelphia, PA, USA
| | - Chandan Kumar-Sinha
- Michigan Center for Translational Pathology, University of Michigan, Ann Arbor, MI, USA
| | - Kristy Weber
- Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - T.S. Karin Eisinger-Mathason
- Department of Pathology and Laboratory Medicine, Perelman School of Medicine, University of Pennsylvania, BRBII/III, Philadelphia, PA, USA,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Nicolas Grillet
- Department of Otolaryngology-Head & Neck Surgery, School of Medicine, Stanford University, Stanford, CA, USA
| | - Thomas Grünewald
- Max-Eder Research Group of Pediatric Sarcoma Biology, Institute of Pathology, LMU Munich, Munich, Germany,Hopp Children’s Cancer Center (KiTZ) Heidelberg, Heidelberg, Germany,Division of Translational Pediatric Sarcoma Research, German Cancer Research Center (DKFZ), German Cancer Consortium (DKTK), Hopp Children’s Cancer Center (KiTZ), Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany,Institute of Pathology, Heidelberg University Hospital, Heidelberg, Germany
| | - Irfan A. Asangani
- Department of Cancer Biology, Perelman School of Medicine, University of Pennsylvania, 421 Curie Boulevard, BRBII/III, Philadelphia, PA 19104, USA,Abramson Family Cancer Research Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Epigenetics Institute, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA,Lead contact,Correspondence:
| |
Collapse
|
104
|
Fontana P, Dong Y, Pi X, Tong AB, Hecksel CW, Wang L, Fu TM, Bustamante C, Wu H. Structure of cytoplasmic ring of nuclear pore complex by integrative cryo-EM and AlphaFold. Science 2022; 376:eabm9326. [PMID: 35679401 PMCID: PMC10054137 DOI: 10.1126/science.abm9326] [Citation(s) in RCA: 125] [Impact Index Per Article: 41.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
INTRODUCTION The nuclear pore complex (NPC) is the molecular conduit in the nuclear membrane of eukaryotic cells that regulates import and export of biomolecules between the nucleus and the cytosol, with vertebrate NPCs ~110 to 125 MDa in molecular mass and ~120 nm in diameter. NPCs are organized into four main rings: the cytoplasmic ring (CR) at the cytosolic side, the inner ring and the luminal ring on the plane of the nuclear membrane, and the nuclear ring facing the nucleus. Each ring possesses an approximate eightfold symmetry and is composed of multiple copies of different nucleoporins. NPCs have been implicated in numerous biological processes, and their dysfunctions are associated with a growing number of serious human diseases. However, despite pioneering studies from many groups over the past two decades, we still lack a full understanding of NPCs' organization, dynamics, and complexity. RATIONALE We used the Xenopus laevis oocyte as a model system for the structural characterization because each oocyte possesses a large number of NPC particles that can be visualized on native nuclear membranes without the aid of detergent extraction. We used single-particle cryo-electron microscopy (cryo-EM) analysis on data collected at different stage tilt angles for three-dimensional reconstruction and structure prediction with AlphaFold for model building. RESULTS We reconstructed the CR map of X. laevis NPC at 6.9 and 6.7 Å resolutions for the full CR protomer and a core region, respectively, and predicted the structures of the individual nucleoporins using AlphaFold because no high-resolution models of X. laevis Nups were available. For any ambiguous subunit interactions, we also predicted complex structures, which further guided model fitting of the CR protomer. We placed the nucleoporin or complex structures into the CR density to obtain an almost full CR atomic model, composed of the inner and outer Y-complexes, two copies of Nup205, two copies of the Nup214-Nup88-Nup62 complex, one Nup155, and five copies of Nup358. In particular, we predicted the largest protein in the NPC, Nup358, as having an S-shaped globular domain, a coiled-coil domain, and a largely disordered C-terminal region containing phenylalanine-glycine (FG) repeats previously shown to form a gel-like condensate phase for selective cargo passage. Four of the Nup358 copies clamp around the inner and outer Y-complexes to stabilize the CR, and the fifth Nup358 situates in the center of the cluster of clamps. AlphaFold also predicted a homo-oligomeric, likely specifically pentameric, coiled-coil structure of Nup358 that may provide the avidity for Nup358 recruitment to the NPC and for lowering the threshold for Nup358 condensation in NPC biogenesis. CONCLUSION Our studies offer an example of integrative cryo-EM and structure prediction as a general approach for attaining more precise models of megadalton protein complexes from medium-resolution density maps. The more accurate and almost complete model of the CR presented here expands our understanding of the molecular interactions in the NPC and represents a substantial step forward toward the molecular architecture of a full NPC, with implications for NPC function, biogenesis, and regulation. [Figure: see text].
Collapse
Affiliation(s)
- Pietro Fontana
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Ying Dong
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Xiong Pi
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Alexander B Tong
- Jason L. Choy Laboratory of Single-Molecule Biophysics, Institute for Quantitative Biosciences-QB3, and Chemistry Graduate Group, University of California, Berkeley, CA 94720, USA
| | - Corey W Hecksel
- Division of CryoEM and Bioimaging, SSRL, SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
| | - Longfei Wang
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| | - Tian-Min Fu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA.,Department of Biological Chemistry and Pharmacology, Ohio State University, Columbus, OH 43210, USA.,The Ohio State University Comprehensive Cancer Center, Columbus, OH 43210, USA
| | - Carlos Bustamante
- Jason L. Choy Laboratory of Single-Molecule Biophysics, Institute for Quantitative Biosciences-QB3, and Chemistry Graduate Group, University of California, Berkeley, CA 94720, USA.,Departments of Molecular and Cell Biology, Physics, and Chemistry, Howard Hughes Medical Institute, University of California, Berkeley, CA 94720, USA
| | - Hao Wu
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.,Program in Cellular and Molecular Medicine, Boston Children's Hospital, Boston, MA 02115, USA
| |
Collapse
|
105
|
Krawczyk HE, Sun S, Doner NM, Yan Q, Lim MSS, Scholz P, Niemeyer PW, Schmitt K, Valerius O, Pleskot R, Hillmer S, Braus GH, Wiermer M, Mullen RT, Ischebeck T. SEED LIPID DROPLET PROTEIN1, SEED LIPID DROPLET PROTEIN2, and LIPID DROPLET PLASMA MEMBRANE ADAPTOR mediate lipid droplet-plasma membrane tethering. THE PLANT CELL 2022; 34:2424-2448. [PMID: 35348751 PMCID: PMC9134073 DOI: 10.1093/plcell/koac095] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2022] [Accepted: 02/14/2022] [Indexed: 05/27/2023]
Abstract
Membrane contact sites (MCSs) are interorganellar connections that allow for the direct exchange of molecules, such as lipids or Ca2+ between organelles, but can also serve to tether organelles at specific locations within cells. Here, we identified and characterized three proteins of Arabidopsis thaliana that form a lipid droplet (LD)-plasma membrane (PM) tethering complex in plant cells, namely LD-localized SEED LD PROTEIN (SLDP) 1 and SLDP2 and PM-localized LD-PLASMA MEMBRANE ADAPTOR (LIPA). Using proteomics and different protein-protein interaction assays, we show that both SLDPs associate with LIPA. Disruption of either SLDP1 and SLDP2 expression, or that of LIPA, leads to an aberrant clustering of LDs in Arabidopsis seedlings. Ectopic co-expression of one of the SLDPs with LIPA is sufficient to reconstitute LD-PM tethering in Nicotiana tabacum pollen tubes, a cell type characterized by dynamically moving LDs in the cytosolic streaming. Furthermore, confocal laser scanning microscopy revealed both SLDP2.1 and LIPA to be enriched at LD-PM contact sites in seedlings. These and other results suggest that SLDP and LIPA interact to form a tethering complex that anchors a subset of LDs to the PM during post-germinative seedling growth in Arabidopsis.
Collapse
Affiliation(s)
- Hannah Elisa Krawczyk
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Siqi Sun
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Nathan M Doner
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Qiqi Yan
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Molecular Biology of Plant-Microbe Interactions Research Group, University of Göttingen, Göttingen, Germany
| | - Magdiel Sheng Satha Lim
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Patricia Scholz
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Philipp William Niemeyer
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
| | - Kerstin Schmitt
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Department for Molecular Microbiology and Genetics, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Oliver Valerius
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Department for Molecular Microbiology and Genetics, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Roman Pleskot
- Institute of Experimental Botany of the Czech Academy of Sciences, Prague, Czech Republic
| | - Stefan Hillmer
- Electron Microscopy Core Facility, Heidelberg University, Heidelberg, Germany
| | - Gerhard H Braus
- Institute for Microbiology and Genetics and Göttingen Center for Molecular Biosciences (GZMB) and Service Unit LCMS Protein Analytics, Department for Molecular Microbiology and Genetics, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Marcel Wiermer
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Molecular Biology of Plant-Microbe Interactions Research Group, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
| | - Robert T Mullen
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON N1G 2W1, Canada
| | - Till Ischebeck
- Albrecht-von-Haller-Institute for Plant Sciences and Göttingen Center for Molecular Biosciences (GZMB), Department of Plant Biochemistry, University of Göttingen, Göttingen, Germany
- Göttingen Center for Molecular Biosciences (GZMB), University of Göttingen, Göttingen, Germany
- Institute of Plant Biology and Biotechnology (IBBP), Green Biotechnology, University of Münster, Münster, Germany
| |
Collapse
|
106
|
Si Z, Qiao Y, Zhang K, Ji Z, Han J. Genome-wide identification and characterization of NBS-encoding genes in the sweet potato wild ancestor Ipomoea trifida (H.B.K.). Open Life Sci 2022; 17:497-511. [PMID: 35647293 PMCID: PMC9102303 DOI: 10.1515/biol-2022-0052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 01/24/2022] [Accepted: 03/03/2022] [Indexed: 11/15/2022] Open
Abstract
The most predominant type of resistance (R) genes contain nucleotide-binding sites and leucine-rich repeat (NBS-LRR) domains, characterization of which is helpful for plant resistance improvement. However, the NBS genes of Ipomoea trifida (H.B.K.) remain insufficient to date. In this study, a genome-wide analysis of the NBS-encoding gene in I. trifida (H.B.K.) was carried out. A total of 442 NBS encoding genes were identified, amounting to 1.37% of the total genes of I. trifida (H.B.K.). Based on the analysis of the domains, the identified ItfNBS genes were further classified into seven groups: CNL, NL, CN, N, TNL, TN, and RNL. Phylogenetic analysis showed that the I. trifida NBS genes clustered into three independent clades: RNL, TNL, and CNL. Chromosome location analysis revealed that the distribution of ItfNBS genes in chromosomes was uneven, with a number ranging from 3 to 45. Multiple stress-related regulatory elements were detected in the promoters of the NBS-encoding genes, and their expression profiles were obtained. The qRT-PCR analysis revealed that IbNBS10, IbNBS20, IbNBS258, and IbNBS88 responded to stem nematode infection. These results provide critical proof for further characterization and analysis of NBS-encoding genes with important functions.
Collapse
Affiliation(s)
- Zengzhi Si
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Yake Qiao
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Kai Zhang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Zhixin Ji
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| | - Jinling Han
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science & Technology , Qinghuangdao , 066000, Hebei Province , China
| |
Collapse
|
107
|
Campitelli LF, Yellan I, Albu M, Barazandeh M, Patel ZM, Blanchette M, Hughes TR. Reconstruction of full-length LINE-1 progenitors from ancestral genomes. Genetics 2022; 221:6584822. [PMID: 35552404 PMCID: PMC9252281 DOI: 10.1093/genetics/iyac074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Accepted: 04/27/2022] [Indexed: 11/24/2022] Open
Abstract
Sequences derived from the Long INterspersed Element-1 (L1) family of retrotransposons occupy at least 17% of the human genome, with 67 distinct subfamilies representing successive waves of expansion and extinction in mammalian lineages. L1s contribute extensively to gene regulation, but their molecular history is difficult to trace, because most are present only as truncated and highly mutated fossils. Consequently, L1 entries in current databases of repeat sequences are composed mainly of short diagnostic subsequences, rather than full functional progenitor sequences for each subfamily. Here, we have coupled 2 levels of sequence reconstruction (at the level of whole genomes and L1 subfamilies) to reconstruct progenitor sequences for all human L1 subfamilies that are more functionally and phylogenetically plausible than existing models. Most of the reconstructed sequences are at or near the canonical length of L1s and encode uninterrupted ORFs with expected protein domains. We also show that the presence or absence of binding sites for KRAB-C2H2 Zinc Finger Proteins, even in ancient-reconstructed progenitor L1s, mirrors binding observed in human ChIP-exo experiments, thus extending the arms race and domestication model. RepeatMasker searches of the modern human genome suggest that the new models may be able to assign subfamily resolution identities to previously ambiguous L1 instances. The reconstructed L1 sequences will be useful for genome annotation and functional study of both L1 evolution and L1 contributions to host regulatory networks.
Collapse
Affiliation(s)
- Laura F Campitelli
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada.,Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Isaac Yellan
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada.,Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Mihai Albu
- Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Marjan Barazandeh
- Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada.,Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Zain M Patel
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada.,Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| | - Mathieu Blanchette
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z4, Canada.,Department of Computer Science, McGill University, Montreal, Quebec H3A 0G4, Canada
| | - Timothy R Hughes
- Department of Molecular Genetics, University of Toronto, Toronto, ON M5S 1A1, Canada.,Donnelly Centre, University of Toronto, Toronto, ON M5S 1A1, Canada
| |
Collapse
|
108
|
Matsuoka R, Miki M, Mizuno S, Ito Y, Yamada C, Suzuki A. MTCL2 promotes asymmetric microtubule organization by crosslinking microtubules on the Golgi membrane. J Cell Sci 2022; 135:275616. [PMID: 35543016 DOI: 10.1242/jcs.259374] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Accepted: 04/20/2022] [Indexed: 11/20/2022] Open
Abstract
The Golgi complex plays an active role in organizing asymmetric microtubule arrays essential for polarized vesicle transport. The coiled-coil protein MTCL1 stabilizes microtubules nucleated from the Golgi membrane. Here, we report an MTCL1 paralog, MTCL2, which preferentially acts on the perinuclear microtubules accumulated around the Golgi. MTCL2 associates with the Golgi membrane through the N-terminal coiled-coil region and directly binds microtubules through the conserved C-terminal domain without promoting microtubule stabilization. Knockdown of MTCL2 significantly impaired microtubule accumulation around the Golgi as well as the compactness of the Golgi ribbon assembly structure. Given that MTCL2 forms parallel oligomers through homo-interaction of the central coiled-coil motifs, our results indicate that MTCL2 promotes asymmetric microtubule organization by crosslinking microtubules on the Golgi membrane. Results of in vitro wound healing assays further suggest that this function of MTCL2 enables integration of the centrosomal and Golgi-associated microtubules on the Golgi membrane, supporting directional migration. Additionally, the results demonstrated the involvement of CLASPs and giantin in mediating the Golgi association of MTCL2.
Collapse
Affiliation(s)
- Risa Matsuoka
- Molecular Cellular Biology Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Masateru Miki
- Molecular Cellular Biology Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Sonoko Mizuno
- Molecular Cellular Biology Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Yurina Ito
- Molecular Cellular Biology Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Chihiro Yamada
- Molecular Cellular Biology Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| | - Atsushi Suzuki
- Molecular Cellular Biology Laboratory, Yokohama City University Graduate School of Medical Life Science, 1-7-29 Suehiro-cho, Tsurumi-ku, Yokohama 230-0045, Japan
| |
Collapse
|
109
|
Wang M, Garneau MG, Poudel AN, Lamm D, Koo AJ, Bates PD, Thelen JJ. Overexpression of pea α-carboxyltransferase in Arabidopsis and camelina increases fatty acid synthesis leading to improved seed oil content. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2022; 110:1035-1046. [PMID: 35220631 DOI: 10.1111/tpj.15721] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/11/2022] [Accepted: 02/21/2022] [Indexed: 06/14/2023]
Abstract
SUMMARYHeteromeric acetyl‐CoA carboxylase (htACCase) catalyzes the committed step of de novo fatty acid biosynthesis in most plant plastids. Plant htACCase is comprised of four subunits: α‐ and β‐carboxyltransferase (α‐ and β‐CT), biotin carboxylase, and biotin carboxyl carrier protein. Based on in vivo absolute quantification of htACCase subunits, α‐CT is 3‐ to 10‐fold less abundant than its partner subunit β‐CT in developing Arabidopsis seeds [Wilson and Thelen, J. Proteome Res., 2018, 17 (5)]. To test the hypothesis that low expression of α‐CT limits htACCase activity and flux through fatty acid synthesis in planta, we overexpressed Pisum sativum α‐CT, either with or without its C‐terminal non‐catalytic domain, in both Arabidopsis thaliana and Camelina sativa. First‐generation Arabidopsis seed of 35S::Ps α‐CT (n = 25) and 35S::Ps α‐CTΔ406‐875 (n = 47) were on average 14% higher in oil content (% dry weight) than wild type co‐cultivated in a growth chamber. First‐generation camelina seed showed an average 8% increase compared to co‐cultivated wild type. Biochemical analyses confirmed the accumulation of Ps α‐CT and Ps α‐CTΔ406‐875 protein and higher htACCase activity in overexpression lines during early seed development. Overexpressed Ps α‐CT co‐migrated with native At β‐CT during anion exchange chromatography, indicating co‐association. By successfully increasing seed oil content upon heterologous overexpression of α‐CT, we demonstrate how absolute quantitation of in vivo protein complex stoichiometry can be used to guide rational metabolic engineering.
Collapse
Affiliation(s)
- Minmin Wang
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| | - Matthew G Garneau
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, DC, 99164, USA
| | - Arati N Poudel
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Daniel Lamm
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Abraham J Koo
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
| | - Philip D Bates
- Institute of Biological Chemistry, Washington State University, Pullman, Washington, DC, 99164, USA
| | - Jay J Thelen
- Department of Biochemistry, University of Missouri, Columbia, Missouri, 65211, USA
- Christopher S. Bond Life Sciences Center, University of Missouri, Columbia, Missouri, 65211, USA
| |
Collapse
|
110
|
Ramos AL, Aquino M, García G, Gaspar M, de la Cruz C, Saavedra-Flores A, Brom S, Cervantes-Rivera R, Galindo-Sánchez CE, Hernandez R, Puhar A, Lupas AN, Sepulveda E. RpuS/R Is a Novel Two-Component Signal Transduction System That Regulates the Expression of the Pyruvate Symporter MctP in Sinorhizobium fredii NGR234. Front Microbiol 2022; 13:871077. [PMID: 35572670 PMCID: PMC9100948 DOI: 10.3389/fmicb.2022.871077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 04/11/2022] [Indexed: 11/16/2022] Open
Abstract
The SLC5/STAC histidine kinases comprise a recently identified family of sensor proteins in two-component signal transduction systems (TCSTS), in which the signaling domain is fused to an SLC5 solute symporter domain through a STAC domain. Only two members of this family have been characterized experimentally, the CrbS/R system that regulates acetate utilization in Vibrio and Pseudomonas, and the CbrA/B system that regulates the utilization of histidine in Pseudomonas and glucose in Azotobacter. In an attempt to expand the characterized members of this family beyond the Gammaproteobacteria, we identified two putative TCSTS in the Alphaproteobacterium Sinorhizobium fredii NGR234 whose sensor histidine kinases belong to the SLC5/STAC family. Using reverse genetics, we were able to identify the first TCSTS as a CrbS/R homolog that is also needed for growth on acetate, while the second TCSTS, RpuS/R, is a novel system required for optimal growth on pyruvate. Using RNAseq and transcriptional fusions, we determined that in S. fredii the RpuS/R system upregulates the expression of an operon coding for the pyruvate symporter MctP when pyruvate is the sole carbon source. In addition, we identified a conserved DNA sequence motif in the putative promoter region of the mctP operon that is essential for the RpuR-mediated transcriptional activation of genes under pyruvate-utilizing conditions. Finally, we show that S. fredii mutants lacking these TCSTS are affected in nodulation, producing fewer nodules than the parent strain and at a slower rate.
Collapse
Affiliation(s)
| | - Maria Aquino
- Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Gema García
- Facultad de Biología, Universidad Autónoma de Sinaloa, Culiacan, Mexico
| | - Miriam Gaspar
- Facultad de Ciencias, Universidad Autónoma de Baja California, Ensenada, Mexico
| | - Cristina de la Cruz
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Anaid Saavedra-Flores
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico
| | - Susana Brom
- Programa de Ingeniería Genómica, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Cuernavaca, Mexico
| | - Ramón Cervantes-Rivera
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Clara Elizabeth Galindo-Sánchez
- Departamento de Biotecnología Marina, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico
| | - Rufina Hernandez
- Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico
| | - Andrea Puhar
- The Laboratory for Molecular Infection Medicine Sweden (MIMS), Umeå University, Umeå, Sweden
- Umeå Centre for Microbial Research (UCMR), Umeå University, Umeå, Sweden
- Department of Molecular Biology, Umeå University, Umeå, Sweden
| | - Andrei N. Lupas
- Department of Protein Evolution, Max Planck Institute for Biology, Tübingen, Germany
| | - Edgardo Sepulveda
- CONACYT-Departamento de Microbiología, Centro de Investigación Científica y de Educación Superior de Ensenada (CICESE), Ensenada, Mexico
- *Correspondence: Edgardo Sepulveda,
| |
Collapse
|
111
|
Structural Domains of CIF3 Required for Interaction with Cytokinesis Regulatory Proteins and for Cytokinesis Initiation in Trypanosoma brucei. mSphere 2022; 7:e0004722. [PMID: 35296142 PMCID: PMC9044925 DOI: 10.1128/msphere.00047-22] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022] Open
Abstract
Cytokinesis in Trypanosoma brucei occurs unidirectionally from the anterior toward the posterior through mechanisms distinct from those of its human host and is controlled by a signaling pathway comprising evolutionarily conserved and trypanosome-specific regulatory proteins. The mechanistic roles and the functional interplay of these cytokinesis regulators remain poorly understood. Here, we investigate the requirement of the structural motifs in the trypanosome-specific cytokinesis regulator CIF3 for the initiation of cytokinesis, the interaction with other cytokinesis regulators, and the recruitment of CIF3-interacting proteins to the cytokinesis initiation site. We demonstrate that the internal and C-terminal coiled-coil motifs, but not the N-terminal coiled-coil motif, of CIF3 play essential roles in cytokinesis and interact with distinct cytokinesis regulators. CIF3 interacts with TbPLK, CIF1, CIF4, and FPRC through the N-terminal and C-terminal coiled-coil motifs and with KAT80 through all three coiled-coil motifs. The C-terminal coiled-coil motif of CIF3 is required for the localization of CIF3 and all of its interacting proteins, and additionally, the internal coiled-coil motif of CIF3 is required for KAT80 localization. Conversely, all the CIF3-interacting proteins are required to maintain CIF3 at the cytokinesis initiation site at different cell cycle stages. These results demonstrate that CIF3 cooperates with multiple interacting partner proteins to promote cytokinesis in T. brucei. IMPORTANCE Cytokinesis is the final stage of cell division and is regulated by a signaling pathway conserved from yeast to humans. Cytokinesis in Trypanosoma brucei, an early-branching protozoan parasite causing human sleeping sickness, is regulated by mechanisms that are distinct from those of its human host, employing a number of trypanosome-specific regulatory proteins to cooperate with evolutionarily conserved regulators. The functional interplay of these cytokinesis regulators is still poorly understood. In this work, we investigated the structural requirement of the trypanosome-specific cytokinesis regulator CIF3 for the initiation of cytokinesis, the interaction with other cytokinesis regulatory proteins, and the recruitment of CIF3-interacting proteins. We demonstrated that different structural motifs of CIF3 played distinct roles in cytokinesis, interacted with distinct cytokinesis regulatory proteins, and were required for the recruitment of distinct cytokinesis regulatory proteins. These findings provided novel insights into the cooperative roles of cytokinesis regulators in promoting cytokinesis in T. brucei.
Collapse
|
112
|
Extraction, Cloning and Bioinformatics Analysis of Mycoplasma genitalium MG428 Protein. Jundishapur J Microbiol 2022. [DOI: 10.5812/jjm.121644] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Background: Mycoplasma genitalium is a sexually transmitted human pathogen, causing numerous reproductive tract diseases in both genders. MG428 is a positive regulator of surface exposure protein gene recombination and an alternative sigma factor of M. genitalium. Objectives: We extracted and cloned the MG428 gene and bioinformatics analyzed its protein structure in this study. Methods: We designed specific primers based on the MG428 gene sequence of M. genitalium. The MG428 gene was amplified using PCR techniques and ligated into the pGEM-T easy vector. The positive clones were verified by DNA sequencing. The MG428 protein biological characteristics and structure was analysed by biological characteristics. Results: The MG428 gene of M. genitalium has a length of 513 bp and encodes 171 amino acids. No coiled-coil conformation, possible transmembrane helices, or signal peptide was found in the MG428 protein. The MG428 protein was located in the nucleoid of bacteria, and its 3D structure was similar to that of the sigma-H factor of Pseudomonas aeruginosa. A total of 14 B cell epitopes in MG428 were predicted. Conclusions: We successfully cloned the MG428 protein of M. genitalium and predicted its structure and function. The results of this study could provide a research direction for medicine screening against M. genitalium.
Collapse
|
113
|
Genome-Wide Survey and Development of the First Microsatellite Markers Database ( AnCorDB) in Anemone coronaria L. Int J Mol Sci 2022; 23:ijms23063126. [PMID: 35328546 PMCID: PMC8949970 DOI: 10.3390/ijms23063126] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 03/08/2022] [Accepted: 03/10/2022] [Indexed: 12/31/2022] Open
Abstract
Anemone coronaria L. (2n = 2x = 16) is a perennial, allogamous, highly heterozygous plant marketed as a cut flower or in gardens. Due to its large genome size, limited efforts have been made in order to develop species-specific molecular markers. We obtained the first draft genome of the species by Illumina sequencing an androgenetic haploid plant of the commercial line “MISTRAL® Magenta”. The genome assembly was obtained by applying the MEGAHIT pipeline and consisted of 2 × 106 scaffolds. The SciRoKo SSR (Simple Sequence Repeats)-search module identified 401.822 perfect and 188.987 imperfect microsatellites motifs. Following, we developed a user-friendly “Anemone coronaria Microsatellite DataBase” (AnCorDB), which incorporates the Primer3 script, making it possible to design couples of primers for downstream application of the identified SSR markers. Eight genotypes belonging to eight cultivars were used to validate 62 SSRs and a subset of markers was applied for fingerprinting each cultivar, as well as to assess their intra-cultivar variability. The newly developed microsatellite markers will find application in Breeding Rights disputes, developing genetic maps, marker assisted breeding (MAS) strategies, as well as phylogenetic studies.
Collapse
|
114
|
Fick A, Swart V, Backer R, Bombarely A, Engelbrecht J, van den Berg N. Partially Resistant Avocado Rootstock Dusa ® Shows Prolonged Upregulation of Nucleotide Binding-Leucine Rich Repeat Genes in Response to Phytophthora cinnamomi Infection. FRONTIERS IN PLANT SCIENCE 2022; 13:793644. [PMID: 35360305 PMCID: PMC8963474 DOI: 10.3389/fpls.2022.793644] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Accepted: 02/22/2022] [Indexed: 06/14/2023]
Abstract
Avocado is an important agricultural food crop in many countries worldwide. Phytophthora cinnamomi, a hemibiotrophic oomycete, remains one of the most devastating pathogens within the avocado industry, as it is near impossible to eradicate from areas where the pathogen is present. A key aspect to Phytophthora root rot disease management is the use of avocado rootstocks partially resistant to P. cinnamomi, which demonstrates an increased immune response following infection. In plant species, Nucleotide binding-Leucine rich repeat (NLR) proteins form an integral part of pathogen recognition and Effector triggered immune responses (ETI). To date, a comprehensive set of Persea americana NLR genes have yet to be identified, though their discovery is crucial to understanding the molecular mechanisms underlying P. americana-P. cinnamomi interactions. In this study, a total of 161 PaNLR genes were identified in the P. americana West-Indian pure accession genome. These putative resistance genes were characterized using bioinformatic approaches and grouped into 13 distinct PaNLR gene clusters, with phylogenetic analysis revealing high sequence similarity within these clusters. Additionally, PaNLR expression levels were analyzed in both a partially resistant (Dusa®) and a susceptible (R0.12) avocado rootstock infected with P. cinnamomi using an RNA-sequencing approach. The results showed that the partially resistant rootstock has increased expression levels of 84 PaNLRs observed up to 24 h post-inoculation, while the susceptible rootstock only showed increased PaNLR expression during the first 6 h post-inoculation. Results of this study may indicate that the partially resistant avocado rootstock has a stronger, more prolonged ETI response which enables it to suppress P. cinnamomi growth and combat disease caused by this pathogen. Furthermore, the identification of PaNLRs may be used to develop resistant rootstock selection tools, which can be employed in the avocado industry to accelerate rootstock screening programs.
Collapse
Affiliation(s)
- Alicia Fick
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Velushka Swart
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Robert Backer
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Aureliano Bombarely
- Instituto de Biología Molecular y Celular de Plantas, Consejo Superior de Investigaciones Científicas - Universitat Politècnica de València (IBMCP-CSIC-UPV), Valencia, Spain
| | - Juanita Engelbrecht
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| | - Noëlani van den Berg
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria, South Africa
- Forestry and Agricultural Biotechnology Institute, University of Pretoria, Pretoria, South Africa
| |
Collapse
|
115
|
Wang S, Shen Y, Guo L, Tan L, Ye X, Yang Y, Zhao X, Nie Y, Deng D, Liu S, Wu W. Innovation and Emerging Roles of Populus trichocarpa TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR Transcription Factors in Abiotic Stresses by Whole-Genome Duplication. FRONTIERS IN PLANT SCIENCE 2022; 13:850064. [PMID: 35356113 DOI: 10.3389/fpls.2022.850064if] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 06/05/2023]
Abstract
The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) family proteins are plant-specific transcription factors that have been well-acknowledged for designing the architectures of plant branch, shoot, and inflorescence. However, evidence for their innovation and emerging role in abiotic stress has been lacking. In this study, we identified a total of 36 TCP genes in Populus trichocarpa, 50% more than that in Arabidopsis (i.e., 24). Comparative intra-genomes showed that such significant innovation was mainly due to the most recent whole genome duplication (rWGD) in Populus lineage around Cretaceous-Paleogene (K-Pg) boundary after the divergence from Arabidopsis. Transcriptome analysis showed that the expressions of PtrTCP genes varied among leaf, stem, and root, and they could also be elaborately regulated by abiotic stresses (e.g., cold and salt). Moreover, co-expression network identified a cold-associated regulatory module including PtrTCP31, PtrTCP10, and PtrTCP36. Of them, PtrTCP10 was rWGD-duplicated from PtrTCP31 and evolved a strong capability of cold induction, which might suggest a neofunctionalization of PtrTCP genes and contribute to the adaptation of Populus lineage during the Cenozoic global cooling. Evidentially, overexpression of PtrTCP10 into Arabidopsis increased freezing tolerance and salt susceptibility. Integrating co-expression network and cis-regulatory element analysis confirmed that PtrTCP10 can regulate the well-known cold- and salt-relevant genes (e.g., ZAT10, GolS2, and SOS1), proving that PtrTCP10 is an evolutionary innovation in P. trichocarpa response to environmental changes. Altogether, our results provide evidence of the rWGD in P. trichocarpa responsible for the innovation of PtrTCP genes and their emerging roles in environmental stresses.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yirong Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Lingling Tan
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xiaoxue Ye
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yanmei Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xijuan Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yuqi Nie
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Deyin Deng
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
116
|
Wang S, Shen Y, Guo L, Tan L, Ye X, Yang Y, Zhao X, Nie Y, Deng D, Liu S, Wu W. Innovation and Emerging Roles of Populus trichocarpa TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR Transcription Factors in Abiotic Stresses by Whole-Genome Duplication. FRONTIERS IN PLANT SCIENCE 2022; 13:850064. [PMID: 35356113 PMCID: PMC8959825 DOI: 10.3389/fpls.2022.850064] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Accepted: 01/27/2022] [Indexed: 05/25/2023]
Abstract
The TEOSINTE BRANCHED1/CYCLOIDEA/PROLIFERATING CELL FACTOR (TCP) family proteins are plant-specific transcription factors that have been well-acknowledged for designing the architectures of plant branch, shoot, and inflorescence. However, evidence for their innovation and emerging role in abiotic stress has been lacking. In this study, we identified a total of 36 TCP genes in Populus trichocarpa, 50% more than that in Arabidopsis (i.e., 24). Comparative intra-genomes showed that such significant innovation was mainly due to the most recent whole genome duplication (rWGD) in Populus lineage around Cretaceous-Paleogene (K-Pg) boundary after the divergence from Arabidopsis. Transcriptome analysis showed that the expressions of PtrTCP genes varied among leaf, stem, and root, and they could also be elaborately regulated by abiotic stresses (e.g., cold and salt). Moreover, co-expression network identified a cold-associated regulatory module including PtrTCP31, PtrTCP10, and PtrTCP36. Of them, PtrTCP10 was rWGD-duplicated from PtrTCP31 and evolved a strong capability of cold induction, which might suggest a neofunctionalization of PtrTCP genes and contribute to the adaptation of Populus lineage during the Cenozoic global cooling. Evidentially, overexpression of PtrTCP10 into Arabidopsis increased freezing tolerance and salt susceptibility. Integrating co-expression network and cis-regulatory element analysis confirmed that PtrTCP10 can regulate the well-known cold- and salt-relevant genes (e.g., ZAT10, GolS2, and SOS1), proving that PtrTCP10 is an evolutionary innovation in P. trichocarpa response to environmental changes. Altogether, our results provide evidence of the rWGD in P. trichocarpa responsible for the innovation of PtrTCP genes and their emerging roles in environmental stresses.
Collapse
Affiliation(s)
- Shuo Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yirong Shen
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Liangyu Guo
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Lingling Tan
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xiaoxue Ye
- Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Yanmei Yang
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Xijuan Zhao
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Yuqi Nie
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Deyin Deng
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Shenkui Liu
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| | - Wenwu Wu
- State Key Laboratory of Subtropical Silviculture, Zhejiang Agriculture and Forestry University, Hangzhou, China
| |
Collapse
|
117
|
Discovery of ultrafast myosin, its amino acid sequence, and structural features. Proc Natl Acad Sci U S A 2022; 119:2120962119. [PMID: 35173046 PMCID: PMC8872768 DOI: 10.1073/pnas.2120962119] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 11/18/2022] Open
Abstract
Cytoplasmic streaming with extremely high velocity (∼70 μm s-1) occurs in cells of the characean algae (Chara). Because cytoplasmic streaming is caused by myosin XI, it has been suggested that a myosin XI with a velocity of 70 μm s-1, the fastest myosin measured so far, exists in Chara cells. However, the velocity of the previously cloned Chara corallina myosin XI (CcXI) was about 20 μm s-1, one-third of the cytoplasmic streaming velocity in Chara Recently, the genome sequence of Chara braunii has been published, revealing that this alga has four myosin XI genes. We cloned these four myosin XI (CbXI-1, 2, 3, and 4) and measured their velocities. While the velocities of CbXI-3 and CbXI-4 motor domains (MDs) were similar to that of CcXI MD, the velocities of CbXI-1 and CbXI-2 MDs were 3.2 times and 2.8 times faster than that of CcXI MD, respectively. The velocity of chimeric CbXI-1, a functional, full-length CbXI-1 construct, was 60 μm s-1 These results suggest that CbXI-1 and CbXI-2 would be the main contributors to cytoplasmic streaming in Chara cells and show that these myosins are ultrafast myosins with a velocity 10 times faster than fast skeletal muscle myosins in animals. We also report an atomic structure (2.8-Å resolution) of myosin XI using X-ray crystallography. Based on this crystal structure and the recently published cryo-electron microscopy structure of acto-myosin XI at low resolution (4.3-Å), it appears that the actin-binding region contributes to the fast movement of Chara myosin XI. Mutation experiments of actin-binding surface loops support this hypothesis.
Collapse
|
118
|
Liu Y, Li M, Lv X, Bao K, Yu Tian X, He L, Shi L, Zhu Y, Ai D. YAP Targets the TGFβ Pathway to Mediate High-Fat/High-Sucrose Diet-Induced Arterial Stiffness. Circ Res 2022; 130:851-867. [PMID: 35176871 DOI: 10.1161/circresaha.121.320464] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Metabolic syndrome is related to cardiovascular diseases, which is attributed in part, to arterial stiffness; however, the mechanisms remain unclear. The present study aimed to investigate the molecular mechanisms of metabolic syndrome-induced arterial stiffness and to identify new therapeutic targets. METHODS Arterial stiffness was induced by high-fat/high-sucrose diet in mice, which was quantified by Doppler ultrasound. Four-dimensional label-free quantitative proteomic analysis, affinity purification and mass spectrometry, and immunoprecipitation and GST pull-down experiments were performed to explore the mechanism of YAP (Yes-associated protein)-mediated TGF (transforming growth factor) β pathway activation. RESULTS YAP protein was upregulated in the aortic tunica media of mice fed a high-fat/high-sucrose diet for 2 weeks and precedes arterial stiffness. Smooth muscle cell-specific YAP knockdown attenuated high-fat/high-sucrose diet-induced arterial stiffness and activation of TGFβ-Smad2/3 signaling pathway in arteries. By contrast, Myh11CreERT2-YapTg mice exhibited exacerbated high-fat/high-sucrose diet-induced arterial stiffness and enhanced TGFβ-activated Smad2/3 phosphorylation in arteries. PPM1B (protein phosphatase, Mg2+/Mn2+-dependent 1B) was identified as a YAP-bound phosphatase that translocates into the nucleus to dephosphorylate Smads in response to TGFβ. This process was inhibited by YAP through removal of the K63-linked ubiquitin chain of PPM1B at K326. CONCLUSIONS This study provides a new mechanism by which smooth muscle cell YAP regulates the TGFβ pathway and a potential therapeutic target in metabolic syndrome-associated arterial stiffness.
Collapse
Affiliation(s)
- Yanan Liu
- Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University, Tianjin Medical University, China. (Y.L., X.L., D.A.)
| | - Mengke Li
- Department of Physiology and Pathophysiology, Tianjin Medical University, China. (M.L., Y.Z., D.A.)
| | - Xue Lv
- Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University, Tianjin Medical University, China. (Y.L., X.L., D.A.)
| | - Kaiwen Bao
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, China. (K.B., L.S.)
| | - Xiao Yu Tian
- School of Biomedical Sciences, Chinese University of Hong Kong (X.Y.T., L.H.)
| | - Lei He
- School of Biomedical Sciences, Chinese University of Hong Kong (X.Y.T., L.H.)
| | - Lei Shi
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Tianjin Medical University, China. (K.B., L.S.)
| | - Yi Zhu
- Department of Physiology and Pathophysiology, Tianjin Medical University, China. (M.L., Y.Z., D.A.)
| | - Ding Ai
- Tianjin Institute of Cardiology, The Province and Ministry Co-sponsored Collaborative Innovation Center for Medical Epigenetics, State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Key Laboratory of Immune Microenvironment and Disease (Ministry of Education), The Second Hospital of Tianjin Medical University, Tianjin Medical University, China. (Y.L., X.L., D.A.).,Department of Physiology and Pathophysiology, Tianjin Medical University, China. (M.L., Y.Z., D.A.)
| |
Collapse
|
119
|
Yang Y, Liu X, Shi X, Ma J, Zeng X, Zhu Z, Li F, Zhou M, Guo X, Liu X. A High-Quality, Chromosome-Level Genome Provides Insights Into Determinate Flowering Time and Color of Cotton Rose ( Hibiscus mutabilis). FRONTIERS IN PLANT SCIENCE 2022; 13:818206. [PMID: 35251086 PMCID: PMC8896357 DOI: 10.3389/fpls.2022.818206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 01/20/2022] [Indexed: 06/14/2023]
Abstract
Hibiscus mutabilis (cotton rose) is a deciduous shrub or small tree of the Malvaceae family. Here, we report a chromosome-scale assembly of the H. mutabilis genome based on a combination of single-molecule sequencing and Hi-C technology. We obtained an optimized assembly of 2.68 Gb with a scaffold N50 length of 54.7 Mb. An integrated strategy of homology-based, de novo, and transcriptome-based gene predictions identified 118,222 protein-coding genes. Repetitive DNA sequences made up 58.55% of the genome, and LTR retrotransposons were the most common repetitive sequence type, accounting for 53.15% of the genome. Through the use of Hi-C data, we constructed a chromosome-scale assembly in which Nanopore scaffolds were assembled into 46 pseudomolecule sequences. We identified important genes involved in anthocyanin biosynthesis and documented copy number variation in floral regulators. Phylogenetic analysis indicated that H. mutabilis was closely related to H. syriacus, from which it diverged approximately 15.3 million years ago. The availability of cotton rose genome data increases our understanding of the species' genetic evolution and will support further biological research and breeding in cotton rose, as well as other Malvaceae species.
Collapse
Affiliation(s)
| | | | | | - Jiao Ma
- Chengdu Botanical Garden, Chengdu, China
| | | | | | - Fangwen Li
- Chengdu Botanical Garden, Chengdu, China
| | - Mengyan Zhou
- Novogene Bioinformatics Institute, Beijing, China
| | - Xiaodan Guo
- Novogene Bioinformatics Institute, Beijing, China
| | - Xiaoli Liu
- Chengdu Botanical Garden, Chengdu, China
| |
Collapse
|
120
|
Migliore C, Vendramin A, McKee S, Prontera P, Faravelli F, Sachdev R, Dias P, Mascaro M, Licastro D, Meroni G. SPECC1L Mutations Are Not Common in Sporadic Cases of Opitz G/BBB Syndrome. Genes (Basel) 2022; 13:genes13020252. [PMID: 35205294 PMCID: PMC8871657 DOI: 10.3390/genes13020252] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 01/26/2022] [Accepted: 01/26/2022] [Indexed: 12/31/2022] Open
Abstract
Opitz G/BBB syndrome (OS) is a rare genetic developmental condition characterized by congenital defects along the midline of the body. The main clinical signs are represented by hypertelorism, laryngo–tracheo–esophageal defects and hypospadias. The X-linked form of the disease is associated with mutations in the MID1 gene located in Xp22 whereas mutations in the SPECC1L gene in 22q11 have been linked to few cases of the autosomal dominant form of this disorder, as well as to other genetic syndromes. In this study, we have undertaken a mutation screening of the SPECC1L gene in samples of sporadic OS cases in which mutations in the MID1 gene were excluded. The heterozygous missense variants identified are already reported in variant databases raising the issue of their pathogenetic meaning. Recently, it was reported that some clinical manifestations peculiar to OS signs are not observed in patients carrying mutations in the SPECC1L gene, leading to the proposal of the designation of ‘SPECC1L syndrome’ to refer to this disorder. Our study confirms that patients with diagnosis of OS, mainly characterized by the presence of hypospadias and laryngo–tracheo–esophageal defects, do not carry pathogenic SPECC1L mutations. In addition, SPECC1L syndrome-associated mutations are clustered in two specific domains of the protein, whereas the missense variants detected in our work lies elsewhere and the impact of these variants in the function of this protein is difficult to ascertain with the current knowledge and will require further investigations. Nonetheless, our study provides further insight into the SPECC1L syndrome classification.
Collapse
Affiliation(s)
- Chiara Migliore
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (C.M.); (M.M.)
| | - Anna Vendramin
- Genomic and Bioinformatic Lab., Cluster in Biomedicine, S.c.r.l., 34149 Trieste, Italy;
| | - Shane McKee
- Northern Ireland Regional Genetics Service, Belfast City Hospital, Belfast BT9 7AB, UK;
| | - Paolo Prontera
- Medical Genetics Unit, University and Hospital of Perugia, 06129 Perugia, Italy;
| | - Francesca Faravelli
- The North East Thames Regional Genetics Service, Great Ormond Street Hospital, London WC1N 3JH, UK;
| | - Rani Sachdev
- St George and Sydney Children’s Hospital, Randwick, Sydney, NSW 2031, Australia;
| | - Patricia Dias
- Serviço de Genética Médica, Hospital de Santa Maria, Centro Universitário Hospitalar Lisboa Norte, 1649-028 Lisbon, Portugal;
| | - Martina Mascaro
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (C.M.); (M.M.)
| | | | - Germana Meroni
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy; (C.M.); (M.M.)
- Correspondence: ; Tel.: +39-040-5588679
| |
Collapse
|
121
|
Prichard KL, O'Brien NS, Murcia SR, Baker JR, McCluskey A. Role of Clathrin and Dynamin in Clathrin Mediated Endocytosis/Synaptic Vesicle Recycling and Implications in Neurological Diseases. Front Cell Neurosci 2022; 15:754110. [PMID: 35115907 PMCID: PMC8805674 DOI: 10.3389/fncel.2021.754110] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Accepted: 12/10/2021] [Indexed: 12/17/2022] Open
Abstract
Endocytosis is a process essential to the health and well-being of cell. It is required for the internalisation and sorting of “cargo”—the macromolecules, proteins, receptors and lipids of cell signalling. Clathrin mediated endocytosis (CME) is one of the key processes required for cellular well-being and signalling pathway activation. CME is key role to the recycling of synaptic vesicles [synaptic vesicle recycling (SVR)] in the brain, it is pivotal to signalling across synapses enabling intracellular communication in the sensory and nervous systems. In this review we provide an overview of the general process of CME with a particular focus on two key proteins: clathrin and dynamin that have a central role to play in ensuing successful completion of CME. We examine these two proteins as they are the two endocytotic proteins for which small molecule inhibitors, often of known mechanism of action, have been identified. Inhibition of CME offers the potential to develop therapeutic interventions into conditions involving defects in CME. This review will discuss the roles and the current scope of inhibitors of clathrin and dynamin, providing an insight into how further developments could affect neurological disease treatments.
Collapse
|
122
|
Feng SH, Xia CQ, Shen HB. CoCoPRED: coiled-coil protein structural feature prediction from amino acid sequence using deep neural networks. Bioinformatics 2022; 38:720-729. [PMID: 34718416 DOI: 10.1093/bioinformatics/btab744] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 10/08/2021] [Accepted: 10/27/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION Coiled-coil is composed of two or more helices that are wound around each other. It widely exists in proteins and has been discovered to play a variety of critical roles in biology processes. Generally, there are three types of structural features in coiled-coil: coiled-coil domain (CCD), oligomeric state and register. However, most of the existing computational tools only focus on one of them. RESULTS Here, we describe a new deep learning model, CoCoPRED, which is based on convolutional layers, bidirectional long short-term memory, and attention mechanism. It has three networks, i.e. CCD network, oligomeric state network, and register network, corresponding to the three types of structural features in coiled-coil. This means CoCoPRED has the ability of fulfilling comprehensive prediction for coiled-coil proteins. Through the 5-fold cross-validation experiment, we demonstrate that CoCoPRED can achieve better performance than the state-of-the-art models on both CCD prediction and oligomeric state prediction. Further analysis suggests the CCD prediction may be a performance indicator of the oligomeric state prediction in CoCoPRED. The attention heads in CoCoPRED indicate that registers a, b and e are more crucial for the oligomeric state prediction. AVAILABILITY AND IMPLEMENTATION CoCoPRED is available at http://www.csbio.sjtu.edu.cn/bioinf/CoCoPRED. The datasets used in this research can also be downloaded from the website. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Shi-Hao Feng
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | - Chun-Qiu Xia
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China
| | - Hong-Bin Shen
- Institute of Image Processing and Pattern Recognition, Shanghai Jiao Tong University, Key Laboratory of System Control and Information Processing, Ministry of Education of China, Shanghai 200240, China.,Department of Computer Science, Shanghai Jiao Tong University, Key Laboratory of Shanghai Education Commission for Intelligent Interaction and Cognitive Engineering, Shanghai 200240, China
| |
Collapse
|
123
|
Coelho JC, Calhoun ED, Calhoun GN, Poole AZ. Patchy Distribution of GTPases of Immunity Associated Proteins (GIMAP) within Cnidarians and Dinoflagellates Suggests a Complex Evolutionary History. Genome Biol Evol 2022; 14:6500283. [PMID: 35015849 PMCID: PMC8857920 DOI: 10.1093/gbe/evac002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/05/2022] [Indexed: 11/24/2022] Open
Abstract
GTPases of Immunity-Associated Proteins (GIMAP) are a group of small GTP-binding proteins found in a variety of organisms, including vertebrates, invertebrates, and plants. These proteins are characterized by the highly conserved AIG1 domain, and in vertebrates, have been implicated in regulation of the immune system as well as apoptosis and autophagy, though their exact mechanism of action remains unclear. Recent work on cnidarian GIMAPs suggests a conserved role in immunity, apoptosis, and autophagy—three processes involved in coral bleaching, or the breakdown of cnidarian-dinoflagellate symbiosis. Therefore, to further understand the evolution of GIMAPs in this group of organisms, the purpose of this study was to characterize GIMAP or GIMAP-like sequences utilizing publicly available genomic and transcriptomic data in species across the cnidarian phylogeny. The results revealed a patchy distribution of GIMAPs in cnidarians, with three distinct types referred to as L-GIMAP, S-GIMAP, and GIMAP-like. Additionally, GIMAPs were present in most dinoflagellate species and formed seven well-supported clades. Overall, these results elucidate the distribution of GIMAPs within two distantly related eukaryotic groups and represent the first in-depth investigation on the evolution of these proteins within both protists and basal metazoans.
Collapse
Affiliation(s)
- Jenny C Coelho
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry GA, 30149, USA.,Department of Biology, University of North Carolina at Chapel Hill, 120 South Rd, Chapel Hill, NC 27599, USA
| | - Ethan D Calhoun
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry GA, 30149, USA
| | - Grant N Calhoun
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry GA, 30149, USA
| | - Angela Z Poole
- Department of Biology, Berry College, 2277 Martha Berry Highway NW, Mt. Berry GA, 30149, USA
| |
Collapse
|
124
|
Liu Z, Ren Z, Yan L, Li F. DeepLRR: An Online Webserver for Leucine-Rich-Repeat Containing Protein Characterization Based on Deep Learning. PLANTS (BASEL, SWITZERLAND) 2022; 11:plants11010136. [PMID: 35009139 PMCID: PMC8796025 DOI: 10.3390/plants11010136] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2021] [Revised: 12/31/2021] [Accepted: 01/01/2022] [Indexed: 05/26/2023]
Abstract
Members of the leucine-rich repeat (LRR) superfamily play critical roles in multiple biological processes. As the LRR unit sequence is highly variable, accurately predicting the number and location of LRR units in proteins is a highly challenging task in the field of bioinformatics. Existing methods still need to be improved, especially when it comes to similarity-based methods. We introduce our DeepLRR method based on a convolutional neural network (CNN) model and LRR features to predict the number and location of LRR units in proteins. We compared DeepLRR with six existing methods using a dataset containing 572 LRR proteins and it outperformed all of them when it comes to overall F1 score. In addition, DeepLRR has integrated identifying plant disease-resistance proteins (NLR, LRR-RLK, LRR-RLP) and non-canonical domains. With DeepLRR, 223, 191 and 183 LRR-RLK genes in Arabidopsis (Arabidopsis thaliana), rice (Oryza sativa ssp. Japonica) and tomato (Solanum lycopersicum) genomes were re-annotated, respectively. Chromosome mapping and gene cluster analysis revealed that 24.2% (54/223), 29.8% (57/191) and 16.9% (31/183) of LRR-RLK genes formed gene cluster structures in Arabidopsis, rice and tomato, respectively. Finally, we explored the evolutionary relationship and domain composition of LRR-RLK genes in each plant and distributions of known receptor and co-receptor pairs. This provides a new perspective for the identification of potential receptors and co-receptors.
Collapse
Affiliation(s)
- Zhenya Liu
- Key Lab of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| | - Zirui Ren
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (Z.R.); (L.Y.)
| | - Lunyi Yan
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China; (Z.R.); (L.Y.)
| | - Feng Li
- Key Lab of Horticultural Plant Biology (MOE), College of Horticulture and Forestry Sciences, Huazhong Agricultural University, Wuhan 430070, China
| |
Collapse
|
125
|
Roy B, Sim J, Han SJY, Joglekar AP. Kre28-Spc105 interaction is essential for Spc105 loading at the kinetochore. Open Biol 2022; 12:210274. [PMID: 35042402 PMCID: PMC8767186 DOI: 10.1098/rsob.210274] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2021] [Accepted: 11/18/2021] [Indexed: 11/12/2022] Open
Abstract
Kinetochore (KTs) are macromolecular protein assemblies that attach sister chromatids to spindle microtubules (MTs) and mediate accurate chromosome segregation during mitosis. The outer KT consists of the KMN network, a protein super-complex comprising Knl1 (yeast Spc105), Mis12 (yeast Mtw1), and Ndc80 (yeast Ndc80), which harbours sites for MT binding. Within the KMN network, Spc105 acts as an interaction hub of components involved in spindle assembly checkpoint (SAC) signalling. It is known that Spc105 forms a complex with KT component Kre28. However, where Kre28 physically localizes in the budding yeast KT is not clear. The exact function of Kre28 at the KT is also unknown. Here, we investigate how Spc105 and Kre28 interact and how they are organized within bioriented yeast KTs using genetics and cell biological experiments. Our microscopy data show that Spc105 and Kre28 localize at the KT with a 1 : 1 stoichiometry. We also show that the Kre28-Spc105 interaction is important for Spc105 protein turn-over and essential for their mutual recruitment at the KTs. We created several truncation mutants of kre28 that affect Spc105 loading at the KTs. When over-expressed, these mutants sustain the cell viability, but SAC signalling and KT biorientation are impaired. Therefore, we conclude that Kre28 contributes to chromosome biorientation and high-fidelity segregation at least indirectly by regulating Spc105 localization at the KTs.
Collapse
Affiliation(s)
- Babhrubahan Roy
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Janice Sim
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Simon J. Y. Han
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| | - Ajit P. Joglekar
- Cell and Developmental Biology, University of Michigan Medical School, Ann Arbor, MI, USA
| |
Collapse
|
126
|
Tamburrini KC, Pesce G, Nilsson J, Gondelaud F, Kajava AV, Berrin JG, Longhi S. Predicting Protein Conformational Disorder and Disordered Binding Sites. Methods Mol Biol 2022; 2449:95-147. [PMID: 35507260 DOI: 10.1007/978-1-0716-2095-3_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
In the last two decades it has become increasingly evident that a large number of proteins adopt either a fully or a partially disordered conformation. Intrinsically disordered proteins are ubiquitous proteins that fulfill essential biological functions while lacking a stable 3D structure. Their conformational heterogeneity is encoded by the amino acid sequence, thereby allowing intrinsically disordered proteins or regions to be recognized based on their sequence properties. The identification of disordered regions facilitates the functional annotation of proteins and is instrumental for delineating boundaries of protein domains amenable to crystallization. This chapter focuses on the methods currently employed for predicting protein disorder and identifying intrinsically disordered binding sites.
Collapse
Affiliation(s)
- Ketty C Tamburrini
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France
- INRAE, Aix Marseille Univ, Biodiversité et Biotechnologie Fongiques (BBF), UMR 1163, Marseille, France
| | - Giulia Pesce
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France
| | - Juliet Nilsson
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France
| | - Frank Gondelaud
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France
| | - Andrey V Kajava
- Centre de Recherche en Biologie cellulaire de Montpellier, UMR 5237, CNRS, Université Montpellier, Montpellier, France
| | - Jean-Guy Berrin
- INRAE, Aix Marseille Univ, Biodiversité et Biotechnologie Fongiques (BBF), UMR 1163, Marseille, France
| | - Sonia Longhi
- Aix Marseille Univ, CNRS, Architecture et Fonction des Macromolécules Biologiques, AFMB, UMR 7257, Marseille, France.
| |
Collapse
|
127
|
Pyatnitskaya A, Andreani J, Guérois R, De Muyt A, Borde V. The Zip4 protein directly couples meiotic crossover formation to synaptonemal complex assembly. Genes Dev 2022; 36:53-69. [PMID: 34969823 PMCID: PMC8763056 DOI: 10.1101/gad.348973.121] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Accepted: 12/08/2021] [Indexed: 11/24/2022]
Abstract
Meiotic recombination is triggered by programmed double-strand breaks (DSBs), a subset of these being repaired as crossovers, promoted by eight evolutionarily conserved proteins, named ZMM. Crossover formation is functionally linked to synaptonemal complex (SC) assembly between homologous chromosomes, but the underlying mechanism is unknown. Here we show that Ecm11, a SC central element protein, localizes on both DSB sites and sites that attach chromatin loops to the chromosome axis, which are the starting points of SC formation, in a way that strictly requires the ZMM protein Zip4. Furthermore, Zip4 directly interacts with Ecm11, and point mutants that specifically abolish this interaction lose Ecm11 binding to chromosomes and exhibit defective SC assembly. This can be partially rescued by artificially tethering interaction-defective Ecm11 to Zip4. Mechanistically, this direct connection ensuring SC assembly from CO sites could be a way for the meiotic cell to shut down further DSB formation once enough recombination sites have been selected for crossovers, thereby preventing excess crossovers. Finally, the mammalian ortholog of Zip4, TEX11, also interacts with the SC central element TEX12, suggesting a general mechanism.
Collapse
Affiliation(s)
- Alexandra Pyatnitskaya
- Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, Dynamics of Genetic Information, UMR3244, Centre National de la Recherche Scientifique (CNRS), Paris 75248, France
| | - Jessica Andreani
- Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Raphaël Guérois
- Université Paris-Saclay, Commissariat à l'Énergie Atomique et aux Énergies Alternatives, CNRS, Institute for Integrative Biology of the Cell (I2BC), Gif-sur-Yvette 91198, France
| | - Arnaud De Muyt
- Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, Dynamics of Genetic Information, UMR3244, Centre National de la Recherche Scientifique (CNRS), Paris 75248, France
| | - Valérie Borde
- Institut Curie, Université Paris Sciences et Lettres, Sorbonne Université, Dynamics of Genetic Information, UMR3244, Centre National de la Recherche Scientifique (CNRS), Paris 75248, France
| |
Collapse
|
128
|
Miner JC, Fenimore PW, Fischer WM, McMahon BH, Sanbonmatsu KY, Tung CS. Integrative structural studies of the SARS-CoV-2 spike protein during the fusion process (2022). Curr Res Struct Biol 2022; 4:220-230. [PMID: 35765663 PMCID: PMC9221923 DOI: 10.1016/j.crstbi.2022.06.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
|
129
|
Levine TP. Sequence Analysis and Structural Predictions of Lipid Transfer Bridges in the Repeating Beta Groove (RBG) Superfamily Reveal Past and Present Domain Variations Affecting Form, Function and Interactions of VPS13, ATG2, SHIP164, Hobbit and Tweek. CONTACT (THOUSAND OAKS (VENTURA COUNTY, CALIF.)) 2022; 5:251525642211343. [PMID: 36571082 PMCID: PMC7613979 DOI: 10.1177/25152564221134328] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Lipid transfer between organelles requires proteins that shield the hydrophobic portions of lipids as they cross the cytoplasm. In the last decade a new structural form of lipid transfer protein (LTP) has been found: long hydrophobic grooves made of beta-sheet that bridge between organelles at membrane contact sites. Eukaryotes have five families of bridge-like LTPs: VPS13, ATG2, SHIP164, Hobbit and Tweek. These are unified into a single superfamily through their bridges being composed of just one domain, called the repeating beta groove (RBG) domain, which builds into rod shaped multimers with a hydrophobic-lined groove and hydrophilic exterior. Here, sequences and predicted structures of the RBG superfamily were analyzed in depth. Phylogenetics showed that the last eukaryotic common ancestor contained all five RBG proteins, with duplicated VPS13s. The current set of long RBG protein appears to have arisen in even earlier ancestors from shorter forms with 4 RBG domains. The extreme ends of most RBG proteins have amphipathic helices that might be an adaptation for direct or indirect bilayer interaction, although this has yet to be tested. The one exception to this is the C-terminus of SHIP164, which instead has a coiled-coil. Finally, the exterior surfaces of the RBG bridges are shown to have conserved residues along most of their length, indicating sites for partner interactions almost all of which are unknown. These findings can inform future cell biological and biochemical experiments.
Collapse
|
130
|
Si Z, Wang L, Qiao Y, Roychowdhury R, Ji Z, Zhang K, Han J. Genome-wide comparative analysis of the nucleotide-binding site-encoding genes in four Ipomoea species. FRONTIERS IN PLANT SCIENCE 2022; 13:960723. [PMID: 36061812 PMCID: PMC9434374 DOI: 10.3389/fpls.2022.960723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2022] [Accepted: 07/27/2022] [Indexed: 05/14/2023]
Abstract
The nucleotide-binding site (NBS)-encoding gene is a major type of resistance (R) gene, and its diverse evolutionary patterns were analyzed in different angiosperm lineages. Until now, no comparative studies have been done on the NBS encoding genes in Ipomoea species. In this study, various numbers of NBS-encoding genes were identified across the whole genome of sweet potato (Ipomoea batatas) (#889), Ipomoea trifida (#554), Ipomoea triloba (#571), and Ipomoea nil (#757). Gene analysis showed that the CN-type and N-type were more common than the other types of NBS-encoding genes. The phylogenetic analysis revealed that the NBS-encoding genes formed three monophyletic clades: CNL, TNL, and RNL, which were distinguished by amino acid motifs. The distribution of the NBS-encoding genes among the chromosomes was non-random and uneven; 83.13, 76.71, 90.37, and 86.39% of the genes occurred in clusters in sweet potato, I. trifida, I. triloba, and I. nil, respectively. The duplication pattern analysis reveals the presence of higher segmentally duplicated genes in sweet potatoes than tandemly duplicated ones. The opposite trend was found for the other three species. A total of 201 NBS-encoding orthologous genes were found to form synteny gene pairs between any two of the four Ipomea species, suggesting that each of the synteny gene pairs was derived from a common ancestor. The gene expression patterns were acquired by analyzing using the published datasets. To explore the candidate resistant genes in sweet potato, transcriptome analysis has been carried out using two resistant (JK20 and JK274) and susceptible cultivars (Tengfei and Santiandao) of sweet potato for stem nematodes and Ceratocystis fimbriata pathogen, respectively. A total of 11 differentially expressed genes (DEGs) were found in Tengfei and JK20 for stem nematodes and 19 DEGs in Santiandao and JK274 for C. fimbriata. Moreover, six DEGs were further selected for quantitative reverse-transcription polymerase chain reaction (qRT-PCR) analysis, and the results were consistent with the transcriptome analysis. The results may provide new insights into the evolution of NBS-encoding genes in the Ipomoea genome and contribute to the future molecular breeding of sweet potatoes.
Collapse
Affiliation(s)
- Zengzhi Si
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
- *Correspondence: Zengzhi Si,
| | - Lianjun Wang
- Institute of Food Crops, Hubei Academy of Agricultural Sciences, Wuhan, China
| | - Yake Qiao
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Rajib Roychowdhury
- Department of Plant Pathology and Weed Research, Institute of Plant Protection, Agricultural Research Organization (ARO)–Volcani Center, Rishon LeZion, Israel
| | - Zhixin Ji
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Kai Zhang
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| | - Jinling Han
- Hebei Key Laboratory of Crop Stress Biology, Hebei Normal University of Science and Technology, Qinhuangdao, China
| |
Collapse
|
131
|
Wang G, Wang Y, Chen L, Wang H, Guo L, Zhou X, Dou M, Wang B, Lin J, Liu L, Wang Z, Deng Y, Zhang J. Genetic structure and evolutionary diversity of mating-type (MAT) loci in Hypsizygus marmoreus. IMA Fungus 2021; 12:35. [PMID: 34930496 PMCID: PMC8686365 DOI: 10.1186/s43008-021-00086-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Accepted: 12/15/2021] [Indexed: 11/12/2022] Open
Abstract
The mating compatibility in fungi is generally governed by genes located within a single or two unlinked mating type (MAT) loci. Hypsizygus marmoreus is an edible mushroom in the order Agaricales with a tetrapolar system, which contains two unlinked MAT loci-homeodomain (HD) transcription factor genes and pheromone/pheromone receptor genes (P/R). In this study, we analyzed the genetic structure and diversity of MAT loci in tetrapolar system of H. marmoreus through sequencing of 54 heterokaryon and 8 homokaryon strains. Although within the HD loci, the gene order was conserved, the gene contents were variable, and the HD loci haplotypes were further classified into four types. By analyzing the structure, phylogeny, and the HD transmissibility based on the progeny of these four HD mating-type loci types, we found that they were heritable and tightly linked at the HD loci. The P/R loci genes were found to comprise three pheromone receptors, three pheromones, and two pheromone receptor-like genes. Intra- and inter-specific phylogenetic analyses of pheromone receptors revealed that the STE3 genes were divided into three groups, and we thus theorize that they diverged before speciation. Comparative analysis of the MAT regions among 73 Basidiomycete species indicated that the diversity of HD and P/R loci in Agaricales and Boletales may contribute to mating compatibility. The number of HD genes were not correlated with the tetrapolar or bipolar systems. In H. marmoreus, the expression levels of these genes at HD and P/R loci of compatible strains were found higher than in those of homonuclear/homokaryotic strains, indicating that these mating genes acted as switches for mating processes. Further collinear analysis of HD loci in interspecific species found that HD loci contains conserved recombination hotspots showing major rearrangements in Coprinopsis cinerea and Schizophyllum commune, suggesting different mechanisms for evolution of physically linked MAT loci in these groups. It seems likely that gene rearrangements are common in Agaricales fungi around HD loci. Together, our study provides insights into the genomic basis of mating compatibility in H. marmoreus.
Collapse
Affiliation(s)
- Gang Wang
- Jiangsu Key Laboratory for Bioresources of Saline Soils, Jiangsu Provincial Key Laboratory of Coastal Wetland Bioresources and Environmental Protection, Jiangsu Synthetic Innovation Center for Coastal Bio-Agriculture, Yancheng Teachers University, Yancheng, 224002 China
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Yuanyuan Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lianfu Chen
- College of Plant Sciences and Technology, Huazhong Agricultural University, Wuhan, 430000 China
| | - Hongbo Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lin Guo
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Xuan Zhou
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Meijie Dou
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Baiyu Wang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jingxian Lin
- College of Crop Science, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Lei Liu
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Zhengchao Wang
- Provincial Key Laboratory for Developmental Biology and Neurosciences, College of Life Sciences, Fujian Normal University, Fuzhou, 350002 China
| | - Youjin Deng
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| | - Jisen Zhang
- Center for Genomics and Biotechnology, Haixia Institute of Science and Technology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, College of Life Sciences, Fujian Agriculture and Forestry University, Fuzhou, 350002 China
| |
Collapse
|
132
|
Rossi D, Lorenzini S, Pierantozzi E, Van Petegem F, Amadsun DO, Sorrentino V. Multiple regions of junctin drive interaction with calsequestrin-1 and localization at triads in skeletal muscle. J Cell Sci 2021; 135:274105. [PMID: 34913055 DOI: 10.1242/jcs.259185] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 12/08/2021] [Indexed: 11/20/2022] Open
Abstract
Junctin is a transmembrane protein of striated muscles, localized at the junctional sarcoplasmic reticulum (j-SR). It is characterized by a luminal C-terminal tail, through which it functionally interacts with calsequestrin and the ryanodine receptor. Interaction with calsequestrin was ascribed to the presence of stretches of charged amino acids. However, the regions able to bind calsequestrin have not been defined in detail. We report here that, in non-muscle cells, junctin and calsequestrin assemble in long linear regions within the endoplasmic reticulum, mirroring the formation of calsequestrin polymers. In differentiating myotubes, the two proteins co-localize at triads, where they assemble with other j-SR proteins. By performing GST pull-down assays with distinct regions of the junctin tail, we identified two KEKE motifs able to bind calsequestrin. In addition, stretches of charged amino acids downstream these motifs were found to be also able to bind calsequestrin and the ryanodine receptor. Deletion of even one of these regions impaired the ability of junctin to localize at the j-SR, suggesting that interaction with other proteins at this site represents a key element in junctin targeting.
Collapse
Affiliation(s)
- Daniela Rossi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Stefania Lorenzini
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Enrico Pierantozzi
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| | - Filip Van Petegem
- Department of Biochemistry and Molecular Biology, University of British Columbia, Vancouver, Canada
| | | | - Vincenzo Sorrentino
- Department of Molecular and Developmental Medicine, University of Siena, Siena, Italy
| |
Collapse
|
133
|
Wu YFO, Bryant AT, Nelson NT, Madey AG, Fernandes GF, Goodson HV. Overexpression of the microtubule-binding protein CLIP-170 induces a +TIP network superstructure consistent with a biomolecular condensate. PLoS One 2021; 16:e0260401. [PMID: 34890409 PMCID: PMC8664194 DOI: 10.1371/journal.pone.0260401] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Accepted: 11/09/2021] [Indexed: 12/02/2022] Open
Abstract
Proper regulation of microtubule (MT) dynamics is critical for cellular processes including cell division and intracellular transport. Plus-end tracking proteins (+TIPs) dynamically track growing MTs and play a key role in MT regulation. +TIPs participate in a complex web of intra- and inter- molecular interactions known as the +TIP network. Hypotheses addressing the purpose of +TIP:+TIP interactions include relieving +TIP autoinhibition and localizing MT regulators to growing MT ends. In addition, we have proposed that the web of +TIP:+TIP interactions has a physical purpose: creating a dynamic scaffold that constrains the structural fluctuations of the fragile MT tip and thus acts as a polymerization chaperone. Here we examine the possibility that this proposed scaffold is a biomolecular condensate (i.e., liquid droplet). Many animal +TIP network proteins are multivalent and have intrinsically disordered regions, features commonly found in biomolecular condensates. Moreover, previous studies have shown that overexpression of the +TIP CLIP-170 induces large “patch” structures containing CLIP-170 and other +TIPs; we hypothesized that these structures might be biomolecular condensates. To test this hypothesis, we used video microscopy, immunofluorescence staining, and Fluorescence Recovery After Photobleaching (FRAP). Our data show that the CLIP-170-induced patches have hallmarks indicative of a biomolecular condensate, one that contains +TIP proteins and excludes other known condensate markers. Moreover, bioinformatic studies demonstrate that the presence of intrinsically disordered regions is conserved in key +TIPs, implying that these regions are functionally significant. Together, these results indicate that the CLIP-170 induced patches in cells are phase-separated liquid condensates and raise the possibility that the endogenous +TIP network might form a liquid droplet at MT ends or other +TIP locations.
Collapse
Affiliation(s)
- Yueh-Fu O. Wu
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN, United States of America
| | - Annamarie T. Bryant
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN, United States of America
| | - Nora T. Nelson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
| | - Alexander G. Madey
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
| | - Gail F. Fernandes
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
| | - Holly V. Goodson
- Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, IN, United States of America
- Integrated Biomedical Sciences Graduate Program, University of Notre Dame, Notre Dame, IN, United States of America
- Department of Biological Sciences, University of Notre Dame, Notre Dame, IN, United States of America
- * E-mail:
| |
Collapse
|
134
|
Kroupova A, Ackle F, Asanović I, Weitzer S, Boneberg FM, Faini M, Leitner A, Chui A, Aebersold R, Martinez J, Jinek M. Molecular architecture of the human tRNA ligase complex. eLife 2021; 10:e71656. [PMID: 34854379 PMCID: PMC8668186 DOI: 10.7554/elife.71656] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 12/01/2021] [Indexed: 01/23/2023] Open
Abstract
RtcB enzymes are RNA ligases that play essential roles in tRNA splicing, unfolded protein response, and RNA repair. In metazoa, RtcB functions as part of a five-subunit tRNA ligase complex (tRNA-LC) along with Ddx1, Cgi-99, Fam98B, and Ashwin. The human tRNA-LC or its individual subunits have been implicated in additional cellular processes including microRNA maturation, viral replication, DNA double-strand break repair, and mRNA transport. Here, we present a biochemical analysis of the inter-subunit interactions within the human tRNA-LC along with crystal structures of the catalytic subunit RTCB and the N-terminal domain of CGI-99. We show that the core of the human tRNA-LC is assembled from RTCB and the C-terminal alpha-helical regions of DDX1, CGI-99, and FAM98B, all of which are required for complex integrity. The N-terminal domain of CGI-99 displays structural homology to calponin-homology domains, and CGI-99 and FAM98B associate via their N-terminal domains to form a stable subcomplex. The crystal structure of GMP-bound RTCB reveals divalent metal coordination geometry in the active site, providing insights into its catalytic mechanism. Collectively, these findings shed light on the molecular architecture and mechanism of the human tRNA ligase complex and provide a structural framework for understanding its functions in cellular RNA metabolism.
Collapse
Affiliation(s)
- Alena Kroupova
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Fabian Ackle
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Igor Asanović
- Max Perutz Labs, Vienna BioCenter (VBC)ViennaAustria
| | | | | | - Marco Faini
- Department of Biology, Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | - Alexander Leitner
- Department of Biology, Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | - Alessia Chui
- Department of Biochemistry, University of ZurichZurichSwitzerland
| | - Ruedi Aebersold
- Department of Biology, Institute of Molecular Systems Biology, ETH ZurichZurichSwitzerland
| | | | - Martin Jinek
- Department of Biochemistry, University of ZurichZurichSwitzerland
| |
Collapse
|
135
|
Behbahanipour M, García-Pardo J, Ventura S. Decoding the role of coiled-coil motifs in human prion-like proteins. Prion 2021; 15:143-154. [PMID: 34428113 PMCID: PMC8386614 DOI: 10.1080/19336896.2021.1961569] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 07/22/2021] [Accepted: 07/25/2021] [Indexed: 11/28/2022] Open
Abstract
Prions are self-propagating proteins that cause fatal neurodegenerative diseases in humans. However, increasing evidence suggests that eukaryotic cells exploit prion conformational conversion for functional purposes. A recent study delineated a group of twenty prion-like proteins in humans, characterized by the presence of low-complexity glutamine-rich sequences with overlapping coiled-coil (CCs) motifs. This is the case of Mediator complex subunit 15 (MED15), which is overexpressed in a wide range of human cancers. Biophysical studies demonstrated that the prion-like domain (PrLD) of MED15 forms homodimers in solution, sustained by CCs interactions. Furthermore, the same coiled-coil (CC) region plays a crucial role in the PrLD structural transition to a transmissible β-sheet amyloid state. In this review, we discuss the role of CCs motifs and their contribution to amyloid transitions in human prion-like domains (PrLDs), while providing a comprehensive overview of six predicted human prion-like proteins involved in transcription, gene expression, or DNA damage response and associated with human disease, whose PrLDs contain or overlap with CCs sequences. Finally, we try to rationalize how these molecular signatures might relate to both their function and involvement in disease.
Collapse
Affiliation(s)
- Molood Behbahanipour
- Institut De Biotecnologia I De Biomedicina (Ibb) and Departament De Bioquímica I Biologia Molecular, Universitat Autónoma De Barcelona, Barcelona, Spain
| | - Javier García-Pardo
- Institut De Biotecnologia I De Biomedicina (Ibb) and Departament De Bioquímica I Biologia Molecular, Universitat Autónoma De Barcelona, Barcelona, Spain
| | - Salvador Ventura
- Institut De Biotecnologia I De Biomedicina (Ibb) and Departament De Bioquímica I Biologia Molecular, Universitat Autónoma De Barcelona, Barcelona, Spain
| |
Collapse
|
136
|
Gomes G, do Amaral MJ, Bagri KM, Vasconcellos LM, Almeida MDS, Alvares LE, Mermelstein C. New Findings on LMO7 Transcripts, Proteins and Regulatory Regions in Human and Vertebrate Model Organisms and the Intracellular Distribution in Skeletal Muscle Cells. Int J Mol Sci 2021; 22:ijms222312885. [PMID: 34884689 PMCID: PMC8657913 DOI: 10.3390/ijms222312885] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 12/04/2022] Open
Abstract
LMO7 is a multifunctional PDZ–LIM protein that can interact with different molecular partners and is found in several intracellular locations. The aim of this work was to shed light on LMO7 evolution, alternative transcripts, protein structure and gene regulation through multiple in silico analyses. We also explored the intracellular distribution of the LMO7 protein in chicken and zebrafish embryonic skeletal muscle cells by means of confocal fluorescence microscopy. Our results revealed a single LMO7 gene in mammals, sauropsids, Xenopus and in the holostean fish spotted gar while two lmo7 genes (lmo7a and lmo7b) were identified in teleost fishes. In addition, several different transcripts were predicted for LMO7 in human and in major vertebrate model organisms (mouse, chicken, Xenopus and zebrafish). Bioinformatics tools revealed several structural features of the LMO7 protein including intrinsically disordered regions. We found the LMO7 protein in multiple intracellular compartments in chicken and zebrafish skeletal muscle cells, such as membrane adhesion sites and the perinuclear region. Curiously, the LMO7 protein was detected within the nuclei of muscle cells in chicken but not in zebrafish. Our data showed that a conserved regulatory element may be related to muscle-specific LMO7 expression. Our findings uncover new and important information about LMO7 and open new challenges to understanding how the diverse regulation, structure and distribution of this protein are integrated into highly complex vertebrate cellular milieux, such as skeletal muscle cells.
Collapse
Affiliation(s)
- Geyse Gomes
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (G.G.); (K.M.B.); (L.M.V.)
| | | | - Kayo Moreira Bagri
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (G.G.); (K.M.B.); (L.M.V.)
| | - Larissa Melo Vasconcellos
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (G.G.); (K.M.B.); (L.M.V.)
| | - Marcius da Silva Almeida
- Instituto de Bioquímica Médica Leopoldo de Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil;
| | - Lúcia Elvira Alvares
- Departamento de Bioquímica e Biologia Tecidual, Universidade de Campinas (UNICAMP), Campinas, São Paulo 13083-872, Brazil;
| | - Claudia Mermelstein
- Instituto de Ciências Biomédicas, Universidade Federal do Rio de Janeiro, Rio de Janeiro 21941-901, Brazil; (G.G.); (K.M.B.); (L.M.V.)
- Correspondence:
| |
Collapse
|
137
|
Calle García J, Guadagno A, Paytuvi-Gallart A, Saera-Vila A, Amoroso CG, D'Esposito D, Andolfo G, Aiese Cigliano R, Sanseverino W, Ercolano MR. PRGdb 4.0: an updated database dedicated to genes involved in plant disease resistance process. Nucleic Acids Res 2021; 50:D1483-D1490. [PMID: 34850118 PMCID: PMC8729912 DOI: 10.1093/nar/gkab1087] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 10/11/2021] [Accepted: 11/19/2021] [Indexed: 12/03/2022] Open
Abstract
The Plant Resistance Genes database (PRGdb; http://prgdb.org/prgdb4/) has been greatly expanded, keeping pace with the increasing amount of available knowledge and data (sequenced proteomes, cloned genes, public analysis data, etc.). The easy-to-use style of the database website has been maintained, while an updated prediction tool, more data and a new section have been added. This new section will contain plant resistance transcriptomic experiments, providing additional easy-to-access experimental information. DRAGO3, the tool for automatic annotation and prediction of plant resistance genes behind PRGdb, has been improved in both accuracy and sensitivity, leading to more reliable predictions. PRGdb offers 199 reference resistance genes and 586.652 putative resistance genes from 182 sequenced proteomes. Compared to the previous release, PRGdb 4.0 has increased the number of reference resistance genes from 153 to 199, the number of putative resistance genes from 177K from 76 proteomes to 586K from 182 sequenced proteomes. A new section has been created that collects plant-pathogen transcriptomic data for five species of agricultural interest. Thereby, with these improvements and data expansions, PRGdb 4.0 aims to serve as a reference to the plant scientific community and breeders worldwide, helping to further study plant resistance mechanisms that contribute to fighting pathogens.
Collapse
Affiliation(s)
- Joan Calle García
- Sequentia Biotech SL, Calle Comte D'Urgell 240, 08036 Barcelona, Spain
| | - Anna Guadagno
- Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| | | | | | - Ciro Gianmaria Amoroso
- Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| | - Daniela D'Esposito
- Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| | - Giuseppe Andolfo
- Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| | | | | | - Maria Raffaella Ercolano
- Dipartimento di Agraria, Università di Napoli 'Federico II', Via Università 100, 80055 Portici, Italy
| |
Collapse
|
138
|
Huang B, Li X, Zhu X. The Role of GM130 in Nervous System Diseases. Front Neurol 2021; 12:743787. [PMID: 34777211 PMCID: PMC8581157 DOI: 10.3389/fneur.2021.743787] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 09/29/2021] [Indexed: 11/24/2022] Open
Abstract
Golgi matrix protein 130 (GM130) is a Golgi-shaping protein located on the cis surface of the Golgi apparatus (GA). It is one of the most studied Golgin proteins so far. Its biological functions are involved in many aspects of life processes, including mitosis, autophagy, apoptosis, cell polarity, and directed migration at the cellular level, as well as intracellular lipid and protein transport, microtubule formation and assembly, lysosome function maintenance, and glycosylation modification. Mutation inactivation or loss of expression of GM130 has been detected in patients with different diseases. GM130 plays an important role in the development of the nervous system, but the studies on it are limited. This article reviewed the current research progress of GM130 in nervous system diseases. It summarized the physiological functions of GM130 in the occurrence and development of Alzheimer's disease (AD), Parkinson's disease (PD), amyotrophic lateral sclerosis (ALS), microcephaly (MCPH), sepsis associated encephalopathy (SAE), and Ataxia, aiming to provide ideas for the further study of GM130 in nervous system disease detection and treatment.
Collapse
Affiliation(s)
- Bei Huang
- Operational Management Office, West China Second University Hospital, Sichuan University, Chengdu, China.,Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China
| | - Xihong Li
- Key Laboratory of Birth Defects and Related Diseases of Women and Children (Sichuan University), Ministry of Education, Chengdu, China.,Emergency Department, West China Second University Hospital, Sichuan University, Chengdu, China
| | - Xiaoshi Zhu
- Pediatric Intensive Care Unit, Sichuan Provincial People's Hospital, Chengdu, China
| |
Collapse
|
139
|
SdhA blocks disruption of the Legionella-containing vacuole by hijacking the OCRL phosphatase. Cell Rep 2021; 37:109894. [PMID: 34731604 PMCID: PMC8669613 DOI: 10.1016/j.celrep.2021.109894] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 07/27/2021] [Accepted: 10/06/2021] [Indexed: 11/21/2022] Open
Abstract
Legionella pneumophila grows intracellularly within a replication vacuole via action of Icm/Dot-secreted proteins. One such protein, SdhA, maintains the integrity of the vacuolar membrane, thereby preventing cytoplasmic degradation of bacteria. We show here that SdhA binds and blocks the action of OCRL (OculoCerebroRenal syndrome of Lowe), an inositol 5-phosphatase pivotal for controlling endosomal dynamics. OCRL depletion results in enhanced vacuole integrity and intracellular growth of a sdhA mutant, consistent with OCRL participating in vacuole disruption. Overexpressed SdhA alters OCRL function, enlarging endosomes, driving endosomal accumulation of phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2), and interfering with endosomal trafficking. SdhA interrupts Rab guanosine triphosphatase (GTPase)-OCRL interactions by binding to the OCRL ASPM-SPD2-Hydin (ASH) domain, without directly altering OCRL 5-phosphatase activity. The Legionella vacuole encompassing the sdhA mutant accumulates OCRL and endosomal antigen EEA1 (Early Endosome Antigen 1), consistent with SdhA blocking accumulation of OCRL-containing endosomal vesicles. Therefore, SdhA hijacking of OCRL is associated with blocking trafficking events that disrupt the pathogen vacuole.
Collapse
|
140
|
Guardia CM, Jain A, Mattera R, Friefeld A, Li Y, Bonifacino JS. RUSC2 and WDR47 oppositely regulate kinesin-1-dependent distribution of ATG9A to the cell periphery. Mol Biol Cell 2021; 32:ar25. [PMID: 34432492 PMCID: PMC8693955 DOI: 10.1091/mbc.e21-06-0295] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 08/10/2021] [Accepted: 08/18/2021] [Indexed: 01/12/2023] Open
Abstract
Autophagy-related protein 9 (ATG9) is a transmembrane protein component of the autophagy machinery that cycles between the trans-Golgi network (TGN) in the perinuclear area and other compartments in the peripheral area of the cell. In mammalian cells, export of the ATG9A isoform from the TGN into ATG9A-containing vesicles is mediated by the adaptor protein 4 (AP-4) complex. However, the mechanisms responsible for the subsequent distribution of these vesicles to the cell periphery are unclear. Herein we show that the AP-4-accessory protein RUSC2 couples ATG9A-containing vesicles to the plus-end-directed microtubule motor kinesin-1 via an interaction between a disordered region of RUSC2 and the kinesin-1 light chain. This interaction is counteracted by the microtubule-associated protein WDR47. These findings uncover a mechanism for the peripheral distribution of ATG9A-containing vesicles involving the function of RUSC2 as a kinesin-1 adaptor and WDR47 as a negative regulator of this function.
Collapse
Affiliation(s)
- Carlos M. Guardia
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development
| | - Akansha Jain
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development
| | - Rafael Mattera
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development
| | - Alex Friefeld
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development
| | - Yan Li
- Proteomics Core Facility, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD 20892
| | - Juan S. Bonifacino
- Neurosciences and Cellular and Structural Biology Division, Eunice Kennedy Shriver National Institute of Child Health and Human Development
| |
Collapse
|
141
|
Jiao C, Sun X, Yan X, Xu X, Yan Q, Gao M, Fei Z, Wang X. Grape Transcriptome Response to Powdery Mildew Infection: Comparative Transcriptome Profiling of Chinese Wild Grapes Provides Insights Into Powdery Mildew Resistance. PHYTOPATHOLOGY 2021; 111:2041-2051. [PMID: 33870727 DOI: 10.1094/phyto-01-21-0006-r] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Erysiphe necator, the fungal pathogen of grape powdery mildew disease, poses a great threat to the grape market and the wine industry. To better understand the molecular basis of grape responses to E. necator, we performed comparative transcriptome profiling on two Chinese wild grape accessions with varying degrees of resistance to E. necator. At 6-, 24-, and 96-h postinoculation of E. necator, 2,856, 2,678, and 1,542 differentially expressed genes (DEGs) were identified in the susceptible accession Vitis pseudoreticulata 'Hunan-1', and at those same time points, 1,921, 2,498, and 3,249 DEGs, respectively, were identified in the resistant accession V. quinquangularis 'Shang-24'. 'Hunan-1' had a substantially larger fraction of down-regulated genes than 'Shang-24' at every infection stage. Analysis of DEGs revealed that up-regulated genes were mostly associated with defense response and disease resistance-related metabolite biosynthesis, and such signaling genes were significantly suppressed in 'Hunan-1'. Interestingly, fatty acid biosynthesis- and elongation-related genes were suppressed by the fungus in the 'Shang-24' accession but somehow induced in the 'Hunan-1' accession, consistent with the concept that E. necator is likely to be a fatty acid auxotroph that requires lipids from the host. Moreover, genes involved in biosynthesis and signaling of phytohormones, such as jasmonic acid and cytokinin, as well as genes encoding protein kinases and nucleotide-binding domain leucine-rich repeat proteins, differentially responded to E. necator in the two wild grapes. The variation of gene regulation associated with nutrient uptake by the fungus and with signaling transduction and pathogen recognition suggests a multilayered regulatory network that works in concert to assist in the establishment of fungal pathogen infections.
Collapse
Affiliation(s)
- Chen Jiao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Institute of Biotechnology, Zhejiang University, Hangzhou 310058, China
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca 14853, U.S.A
| | - Xuepeng Sun
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca 14853, U.S.A
- College of Agriculture and Food Science, Zhejiang A&F University, Hangzhou 311300, China
| | - Xiaoxiao Yan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Xiaozhao Xu
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Qin Yan
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Min Gao
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| | - Zhangjun Fei
- Boyce Thompson Institute for Plant Research, Cornell University, Ithaca 14853, U.S.A
- Agricultural Research Service, U.S. Department of Agriculture, Robert W. Holley Center for Agriculture and Health, Ithaca 14853, U.S.A
| | - Xiping Wang
- State Key Laboratory of Crop Stress Biology in Arid Areas, College of Horticulture, Northwest A&F University, Yangling, Shaanxi 712100, China
- Key Laboratory of Horticultural Plant Biology and Germplasm Innovation in Northwest China, Ministry of Agriculture, Northwest A&F University, Yangling, Shaanxi 712100, China
| |
Collapse
|
142
|
AKIRIN2 controls the nuclear import of proteasomes in vertebrates. Nature 2021; 599:491-496. [PMID: 34711951 DOI: 10.1038/s41586-021-04035-8] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 09/16/2021] [Indexed: 02/08/2023]
Abstract
Protein expression and turnover are controlled through a complex interplay of transcriptional, post-transcriptional and post-translational mechanisms to enable spatial and temporal regulation of cellular processes. To systematically elucidate such gene regulatory networks, we developed a CRISPR screening assay based on time-controlled Cas9 mutagenesis, intracellular immunostaining and fluorescence-activated cell sorting that enables the identification of regulatory factors independent of their effects on cellular fitness. We pioneered this approach by systematically probing the regulation of the transcription factor MYC, a master regulator of cell growth1-3. Our screens uncover a highly conserved protein, AKIRIN2, that is essentially required for nuclear protein degradation. We found that AKIRIN2 forms homodimers that directly bind to fully assembled 20S proteasomes to mediate their nuclear import. During mitosis, proteasomes are excluded from condensing chromatin and re-imported into newly formed daughter nuclei in a highly dynamic, AKIRIN2-dependent process. Cells undergoing mitosis in the absence of AKIRIN2 become devoid of nuclear proteasomes, rapidly causing accumulation of MYC and other nuclear proteins. Collectively, our study reveals a dedicated pathway controlling the nuclear import of proteasomes in vertebrates and establishes a scalable approach to decipher regulators in essential cellular processes.
Collapse
|
143
|
Coscia F, Löwe J. Cryo-EM structure of the full-length Lon protease from Thermus thermophilus. FEBS Lett 2021; 595:2691-2700. [PMID: 34591981 PMCID: PMC8835725 DOI: 10.1002/1873-3468.14199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Revised: 09/24/2021] [Accepted: 09/24/2021] [Indexed: 11/30/2022]
Abstract
In bacteria, Lon is a large hexameric ATP-dependent protease that targets misfolded and also folded substrates, some of which are involved in cell division and survival of cellular stress. The N-terminal domain of Lon facilitates substrate recognition, but how the domains confer such activity has remained unclear. Here, we report the full-length structure of Lon protease from Thermus thermophilus at 3.9 Å resolution in a substrate-engaged state. The six N-terminal domains are arranged in three pairs, stabilized by coiled-coil segments and forming an additional channel for substrate sensing and entry into the AAA+ ring. Sequence conservation analysis and proteolysis assays confirm that this architecture is required for the degradation of both folded and unfolded substrates in bacteria.
Collapse
Affiliation(s)
- Francesca Coscia
- MRC Laboratory of Molecular BiologyCambridge Biomedical CampusCambridgeUK
| | - Jan Löwe
- MRC Laboratory of Molecular BiologyCambridge Biomedical CampusCambridgeUK
| |
Collapse
|
144
|
Vaidyanathan VV, Binz T. Ability of human SNAP-23 to generate high molecular weight SDS-resistant ternary SNARE complexes is influenced by C-terminal coil content. Biochem Biophys Rep 2021; 28:101150. [PMID: 34703905 PMCID: PMC8524102 DOI: 10.1016/j.bbrep.2021.101150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2020] [Revised: 08/23/2021] [Accepted: 09/21/2021] [Indexed: 11/26/2022] Open
Abstract
Using in vitro protein complex formation assay, ability of SNAP-25 isoforms to generate SDS-resistant ternary SNARE complexes with Syntaxin-1 and VAMP-2 was investigated. Major SNAP-25 family proteins were found to generate heat-resistant ternary complexes with varying efficiency. Compared to human SNAP-25, its non-neuronal counterparts SNAP-23 and SNAP-29 formed lower amounts of ternary complexes. Changing Pro182 in human SNAP-23 to Arg182 (SNAP-23 P182R) improved its ability to bind partners and form complexes. In silico analysis of C-terminal helical content in various SNAP-25 family members showed that except human SNAP-23, all others displayed secondary α-helical conformation. We also report that human SNAP-29 is resistant to the proteolytic action of botulinum neurotoxin A even when applied at large concentration. Human SNAP-23 forms reduced amounts of ternary SNARE complexes than human SNAP-25. SNAP-25 family proteins show varying levels of secondary structure at the C-terminus. C-terminal coil content influences neurotoxin sensitivity and ability to form stable ternary SNARE complexes.
Collapse
Affiliation(s)
| | - Thomas Binz
- Institute of Cellular Biochemistry, Hannover Medical School, Hannover, 30625, Germany
| |
Collapse
|
145
|
Liprins in oncogenic signaling and cancer cell adhesion. Oncogene 2021; 40:6406-6416. [PMID: 34654889 PMCID: PMC8602034 DOI: 10.1038/s41388-021-02048-1] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 09/21/2021] [Accepted: 09/28/2021] [Indexed: 12/30/2022]
Abstract
Liprins are a multifunctional family of scaffold proteins, identified by their involvement in several important neuronal functions related to signaling and organization of synaptic structures. More recently, the knowledge on the liprin family has expanded from neuronal functions to processes relevant to cancer progression, including cell adhesion, cell motility, cancer cell invasion, and signaling. These proteins consist of regions, which by prediction are intrinsically disordered, and may be involved in the assembly of supramolecular structures relevant for their functions. This review summarizes the current understanding of the functions of liprins in different cellular processes, with special emphasis on liprins in tumor progression. The available data indicate that liprins may be potential biomarkers for cancer progression and may have therapeutic importance.
Collapse
|
146
|
Stenzel L, Schreiner A, Zuccoli E, Üstüner S, Mehler J, Zanin E, Mikeladze-Dvali T. PCMD-1 bridges the centrioles and the pericentriolar material scaffold in C. elegans. Development 2021; 148:dev198416. [PMID: 34545391 PMCID: PMC10659035 DOI: 10.1242/dev.198416] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 09/15/2021] [Indexed: 12/29/2022]
Abstract
Correct cell division relies on the formation of a bipolar spindle. In animal cells, microtubule nucleation at the spindle poles is facilitated by the pericentriolar material (PCM), which assembles around a pair of centrioles. Although centrioles are essential for PCM assembly, the proteins that anchor the PCM to the centrioles are less known. Here, we investigate the molecular function of PCMD-1 in bridging the PCM and the centrioles in Caenorhabditis elegans. We demonstrate that the centrosomal recruitment of PCMD-1 is dependent on the outer centriolar protein SAS-7. The most C-terminal part of PCMD-1 is sufficient to target it to the centrosome, and the coiled-coil domain promotes its accumulation by facilitating self-interaction. We reveal that PCMD-1 interacts with the PCM scaffold protein SPD-5, the mitotic kinase PLK-1 and the centriolar protein SAS-4. Using an ectopic translocation assay, we show that PCMD-1 can selectively recruit downstream PCM scaffold components to an ectopic location in the cell, indicating that PCMD-1 is able to anchor the PCM scaffold proteins at the centrioles. Our work suggests that PCMD-1 is an essential functional bridge between the centrioles and the PCM.
Collapse
Affiliation(s)
- Lisa Stenzel
- Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | - Alina Schreiner
- Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | - Elisa Zuccoli
- Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | - Sim Üstüner
- Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | - Judith Mehler
- Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| | - Esther Zanin
- Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
- Department Biologie, Friedrich-Alexander-Universität Erlangen-Nürnberg, 91058 Erlangen, Germany
| | - Tamara Mikeladze-Dvali
- Department Biology II, Ludwig-Maximilians-University, Munich, 82152 Planegg-Martinsried, Germany
| |
Collapse
|
147
|
Wang C, Hao X, Wang Y, Shi M, Zhou ZG, Kai G. Genome-Wide Identification and Comparative Analysis of the Teosinte Branched 1/Cycloidea/Proliferating Cell Factors 1/2 Transcription Factors Related to Anti-cancer Drug Camptothecin Biosynthesis in Ophiorrhiza pumila. FRONTIERS IN PLANT SCIENCE 2021; 12:746648. [PMID: 34691124 PMCID: PMC8529195 DOI: 10.3389/fpls.2021.746648] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2021] [Accepted: 09/09/2021] [Indexed: 05/27/2023]
Abstract
Ophiorrhiza pumila (O. pumila; Op) is a medicinal herbaceous plant, which can accumulate camptothecin (CPT). CPT and its derivatives are widely used as chemotherapeutic drugs for treating malignant tumors. Its biosynthesis pathway has been attracted significant attention. Teosinte branched 1/cycloidea/proliferating cell factors 1/2 (TCP) transcription factors (TFs) regulate a variety of physiological processes, while TCP TFs are involved in the regulation of CPT biosynthesis remain unclear. In this study, a systematic analysis of the TCP TFs family in O. pumila was performed. A total of 16 O. pumila TCP (OpTCP) genes were identified and categorized into two subgroups based on their phylogenetic relationships with those in Arabidopsis thaliana. Tissue-specific expression patterns revealed that nine OpTCP genes showed the highest expression levels in leaves, while the other seven OpTCPs showed a higher expression level in the stems. Co-expression, phylogeny analysis, and dual-luciferase (Dual-LUC) assay revealed that OpTCP15 potentially plays important role in CPT and its precursor biosynthesis. In addition, the subcellular localization experiment of candidate OpTCP genes showed that they are all localized in the nucleus. Our study lays a foundation for further functional characterization of the candidate OpTCP genes involved in CPT biosynthesis regulation and provides new strategies for increasing CPT production.
Collapse
Affiliation(s)
- Can Wang
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, China
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Xiaolong Hao
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Yao Wang
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Min Shi
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zhi-Gang Zhou
- Key Laboratory of Exploration and Utilization of Aquatic Genetic Resources Conferred by Ministry of Education, Shanghai Ocean University, Shanghai, China
| | - Guoyin Kai
- Laboratory for Core Technology of TCM Quality Improvement and Transformation, School of Pharmaceutical Sciences, The Third Affiliated Hospital, Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
148
|
Li K, Jiang W, Hui Y, Kong M, Feng LY, Gao LZ, Li P, Lu S. Gapless indica rice genome reveals synergistic contributions of active transposable elements and segmental duplications to rice genome evolution. MOLECULAR PLANT 2021; 14:1745-1756. [PMID: 34171481 DOI: 10.1016/j.molp.2021.06.017] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/18/2021] [Accepted: 06/22/2021] [Indexed: 05/04/2023]
Abstract
The ultimate goal of genome assembly is a high-accuracy gapless genome. Here, we report a new assembly pipeline that is used to produce a gapless genome for the indica rice cultivar Minghui 63. The resulting 397.71-Mb final assembly is composed of 12 contigs with a contig N50 size of 31.93 Mb. Each chromosome is represented by a single contig and the genomic sequences of all chromosomes are gapless. Quality evaluation of this gapless genome assembly showed that gene regions in our assembly have the highest completeness compared with the other 15 reported high-quality rice genomes. Further comparison with the japonica rice genome revealed that the gapless indica genome assembly contains more transposable elements (TEs) and segmental duplications (SDs), the latter of which produce many duplicated genes that can affect agronomic traits through dose effect or sub-/neo-functionalization. The insertion of TEs can also affect the expression of duplicated genes, which may drive the evolution of these genes. Furthermore, we found the expansion of nucleotide-binding site with leucine-rich repeat disease-resistance genes and cis-zeatin-O-glucosyltransferase growth-related genes in SDs in the gapless indica genome assembly, suggesting that SDs contribute to the adaptive evolution of rice disease resistance and developmental processes. Collectively, our findings suggest that active TEs and SDs synergistically contribute to rice genome evolution.
Collapse
Affiliation(s)
- Kui Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Wenkai Jiang
- Novogene Bioinformatics Institute, Building 301, Zone A10 Jiuxianqiao North Road, Chaoyang District, Beijing 100083, China
| | - Yuanyuan Hui
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Mengjuan Kong
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China
| | - Li-Ying Feng
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China
| | - Li-Zhi Gao
- Institution of Genomics and Bioinformatics, South China Agricultural University, Guangzhou 510642, China.
| | - Pengfu Li
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China.
| | - Shan Lu
- State Key Laboratory of Pharmaceutical Biotechnology, School of Life Sciences, Nanjing University, Nanjing 210023, China; Shenzhen Research Institute of Nanjing University, Shenzhen 518000, China.
| |
Collapse
|
149
|
Sanchez-Pulido L, Ponting CP. Extending the Horizon of Homology Detection with Coevolution-based Structure Prediction. J Mol Biol 2021; 433:167106. [PMID: 34139218 PMCID: PMC8527833 DOI: 10.1016/j.jmb.2021.167106] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 06/09/2021] [Accepted: 06/09/2021] [Indexed: 12/12/2022]
Abstract
Traditional sequence analysis algorithms fail to identify distant homologies when they lie beyond a detection horizon. In this review, we discuss how co-evolution-based contact and distance prediction methods are pushing back this homology detection horizon, thereby yielding new functional insights and experimentally testable hypotheses. Based on correlated substitutions, these methods divine three-dimensional constraints among amino acids in protein sequences that were previously devoid of all annotated domains and repeats. The new algorithms discern hidden structure in an otherwise featureless sequence landscape. Their revelatory impact promises to be as profound as the use, by archaeologists, of ground-penetrating radar to discern long-hidden, subterranean structures. As examples of this, we describe how triplicated structures reflecting longin domains in MON1A-like proteins, or UVR-like repeats in DISC1, emerge from their predicted contact and distance maps. These methods also help to resolve structures that do not conform to a "beads-on-a-string" model of protein domains. In one such example, we describe CFAP298 whose ubiquitin-like domain was previously challenging to perceive owing to a large sequence insertion within it. More generally, the new algorithms permit an easier appreciation of domain families and folds whose evolution involved structural insertion or rearrangement. As we exemplify with α1-antitrypsin, coevolution-based predicted contacts may also yield insights into protein dynamics and conformational change. This new combination of structure prediction (using innovative co-evolution based methods) and homology inference (using more traditional sequence analysis approaches) shows great promise for bringing into view a sea of evolutionary relationships that had hitherto lain far beyond the horizon of homology detection.
Collapse
Affiliation(s)
- Luis Sanchez-Pulido
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK.
| | - Chris P Ponting
- Medical Research Council Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh EH4 2XU, UK.
| |
Collapse
|
150
|
Kourelis J, Sakai T, Adachi H, Kamoun S. RefPlantNLR is a comprehensive collection of experimentally validated plant disease resistance proteins from the NLR family. PLoS Biol 2021; 19:e3001124. [PMID: 34669691 PMCID: PMC8559963 DOI: 10.1371/journal.pbio.3001124] [Citation(s) in RCA: 76] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 11/01/2021] [Accepted: 09/23/2021] [Indexed: 11/19/2022] Open
Abstract
Reference datasets are critical in computational biology. They help define canonical biological features and are essential for benchmarking studies. Here, we describe a comprehensive reference dataset of experimentally validated plant nucleotide-binding leucine-rich repeat (NLR) immune receptors. RefPlantNLR consists of 481 NLRs from 31 genera belonging to 11 orders of flowering plants. This reference dataset has several applications. We used RefPlantNLR to determine the canonical features of functionally validated plant NLRs and to benchmark 5 NLR annotation tools. This revealed that although NLR annotation tools tend to retrieve the majority of NLRs, they frequently produce domain architectures that are inconsistent with the RefPlantNLR annotation. Guided by this analysis, we developed a new pipeline, NLRtracker, which extracts and annotates NLRs from protein or transcript files based on the core features found in the RefPlantNLR dataset. The RefPlantNLR dataset should also prove useful for guiding comparative analyses of NLRs across the wide spectrum of plant diversity and identifying understudied taxa. We hope that the RefPlantNLR resource will contribute to moving the field beyond a uniform view of NLR structure and function.
Collapse
Affiliation(s)
- Jiorgos Kourelis
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Toshiyuki Sakai
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Hiroaki Adachi
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| | - Sophien Kamoun
- The Sainsbury Laboratory, University of East Anglia, Norwich Research Park, Norwich, United Kingdom
| |
Collapse
|