101
|
Iyer LM, Burroughs AM, Anantharaman V, Aravind L. Apprehending the NAD +-ADPr-Dependent Systems in the Virus World. Viruses 2022; 14:1977. [PMID: 36146784 PMCID: PMC9503650 DOI: 10.3390/v14091977] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/01/2022] [Accepted: 09/05/2022] [Indexed: 11/19/2022] Open
Abstract
NAD+ and ADP-ribose (ADPr)-containing molecules are at the interface of virus-host conflicts across life encompassing RNA processing, restriction, lysogeny/dormancy and functional hijacking. We objectively defined the central components of the NAD+-ADPr networks involved in these conflicts and systematically surveyed 21,191 completely sequenced viral proteomes representative of all publicly available branches of the viral world to reconstruct a comprehensive picture of the viral NAD+-ADPr systems. These systems have been widely and repeatedly exploited by positive-strand RNA and DNA viruses, especially those with larger genomes and more intricate life-history strategies. We present evidence that ADP-ribosyltransferases (ARTs), ADPr-targeting Macro, NADAR and Nudix proteins are frequently packaged into virions, particularly in phages with contractile tails (Myoviruses), and deployed during infection to modify host macromolecules and counter NAD+-derived signals involved in viral restriction. Genes encoding NAD+-ADPr-utilizing domains were repeatedly exchanged between distantly related viruses, hosts and endo-parasites/symbionts, suggesting selection for them across the virus world. Contextual analysis indicates that the bacteriophage versions of ADPr-targeting domains are more likely to counter soluble ADPr derivatives, while the eukaryotic RNA viral versions might prefer macromolecular ADPr adducts. Finally, we also use comparative genomics to predict host systems involved in countering viral ADP ribosylation of host molecules.
Collapse
Affiliation(s)
| | | | | | - L. Aravind
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA
| |
Collapse
|
102
|
Abstract
EMBL-EBI The European Bioinformatics Institute; E. coli Escherichia coli; E. faecalis Enterobacter faecalis; B. fragilis Bacteroides fragilis; B. vulgatus Bacteroides vulgatus; SaPIs Staphylococcus aureus pathogenicity islands; ARGs Antibiotic resistance genes; STEC Shiga toxigenic E. coli; Stx Shiga toxin; BLAST Basic Local Alignment Search Tool; TSST-1 Toxic shock toxin 1; RBPs Receptor-binding proteins; LPS lipopolysaccharide; OMVs Outer membrane vesicles; PT Phosphorothioate; BREX Bacteriophage exclusion; OCR Overcome classical restriction; Pgl Phage growth limitation; DISARM Defense island system associated with restrictionmodification; R-M system Restriction-modification system; BREX system Bacteriophage exclusion system; CRISPR Clustered regularly interspaced short palindromic repeats; Cas CRISPR-associated; PAMs Prospacer adjacent motifs; crRNA CRISPR RNA; SIE; OMPs; Superinfection exclusion; Outer membrane proteins; Abi Abortive infection; TA Toxin-antitoxin; TLR Toll-like receptor; APCs Antigen-presenting cells; DSS Dextran sulfate sodium; IELs Intraepithelial lymphocytes; FMT Fecal microbiota transfer; IFN-γ Interferon-gamma; IBD Inflammatory bowel disease; AgNPs Silver nanoparticles; MDSC Myeloid-derived suppressor cell; CRC Colorectal cancer; VLPs Virus-like particles; TMP Tape measure protein; PSMB4 Proteasome subunit beta type-4; ALD Alcohol-related liver disease; GVHD Graft-versus-host disease; ROS Reactive oxygen species; RA Rheumatoid arthritis; CCP Cyclic citrullinated protein; AMGs Accessory metabolic genes; T1DM Type 1 diabetes mellitus; T2DM Type 2 diabetes mellitus; SCFAs Short-chain fatty acids; GLP-1 Glucagon-like peptide-1; A. baumannii Acinetobacter baumannii; CpG Deoxycytidylinate-phosphodeoxyguanosine; PEG Polyethylene glycol; MetS Metabolic syndrome; OprM Outer membrane porin M.
Collapse
Affiliation(s)
- Han Shuwen
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Department of Medical Oncology, Huzhou Central Hospital, Huzhou, China
| | - Ding Kefeng
- Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China,Department of Colorectal Surgery and Oncology, Cancer Center Zhejiang University, Hangzhou, China,CONTACT Ding Kefeng Department of Colorectal Surgery and Oncology, Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, The Second Affiliated Hospital, Zhejiang University School of Medicine, 88 Jiefang Road, Building 6 room 2018, Hangzhou, Zhejiang310009, China
| |
Collapse
|
103
|
Zhang M, Zhang T, Yu M, Chen YL, Jin M. The Life Cycle Transitions of Temperate Phages: Regulating Factors and Potential Ecological Implications. Viruses 2022; 14:1904. [PMID: 36146712 PMCID: PMC9502458 DOI: 10.3390/v14091904] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Phages are viruses that infect bacteria. They affect various microbe-mediated processes that drive biogeochemical cycling on a global scale. Their influence depends on whether the infection is lysogenic or lytic. Temperate phages have the potential to execute both infection types and thus frequently switch their infection modes in nature, potentially causing substantial impacts on the host-phage community and relevant biogeochemical cycling. Understanding the regulating factors and outcomes of temperate phage life cycle transition is thus fundamental for evaluating their ecological impacts. This review thus systematically summarizes the effects of various factors affecting temperate phage life cycle decisions in both culturable phage-host systems and natural environments. The review further elucidates the ecological implications of the life cycle transition of temperate phages with an emphasis on phage/host fitness, host-phage dynamics, microbe diversity and evolution, and biogeochemical cycles.
Collapse
Affiliation(s)
- Menghui Zhang
- School of Advanced Manufacturing, Fuzhou University, Fuzhou 350000, China
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| | - Tianyou Zhang
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| | - Meishun Yu
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| | - Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361000, China
| | - Min Jin
- School of Advanced Manufacturing, Fuzhou University, Fuzhou 350000, China
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| |
Collapse
|
104
|
O’Hara BJ, Alam M, Ng WL. The Vibrio cholerae Seventh Pandemic Islands act in tandem to defend against a circulating phage. PLoS Genet 2022; 18:e1010250. [PMID: 36026491 PMCID: PMC9455884 DOI: 10.1371/journal.pgen.1010250] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Revised: 09/08/2022] [Accepted: 08/02/2022] [Indexed: 11/19/2022] Open
Abstract
The current circulating pandemic El Tor biotype of Vibrio cholerae has persisted for over sixty years and is characterized by its acquisition of two unique genomic islands called the Vibrio Seventh Pandemic Islands 1 and 2 (VSP-I and VSP-II). However, the functions of most of the genes on VSP-I and VSP-II are unknown and the advantages realized by El Tor through these two islands are not clear. Recent studies have broadly implicated these two mobile genetic elements with phage defense. Still, protection against phage infection through these islands has not been observed directly in any V. cholerae El Tor biotype. Here we report the isolation of a circulating phage from a cholera patient stool sample and demonstrate that propagation of this phage in its native host is inhibited by elements in both VSP-I and VSP-II, providing direct evidence for the role of these genomic islands in phage defense. Moreover, we show that these defense systems are regulated by quorum sensing and active only at certain cell densities. Finally, we have isolated a naturally occurring phage variant that is resistant to the defense conferred by the VSP islands, illustrating the countermeasures used by phages to evade these defense mechanisms. Together, this work demonstrates a functional role for the VSPs in V. cholerae and highlights the key regulatory and mechanistic insights that can be gained by studying anti-phage systems in their native contexts. The current pandemic strain of Vibrio cholerae carries two unique genomic islands. How these two islands confer evolutionary advantage to the pathogen is unknown. We show here the identification of a circulating phage that is sensitive to the defense systems present on these two islands and demonstrate how phage variants can evade these defenses. Our studies provide the first direct evidence showing the importance of these genomic islands in defending against phage in their native environments; and in doing so provide novel insight into the mechanisms of these highly conserved defense elements.
Collapse
Affiliation(s)
- Brendan J. O’Hara
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Program of Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
| | - Munirul Alam
- Infectious Diseases Division, International Center for Diarrheal Disease Research, Dhaka, Bangladesh
| | - Wai-Leung Ng
- Department of Molecular Biology and Microbiology, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- Program of Molecular Microbiology, Graduate School of Biomedical Sciences, Tufts University School of Medicine, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
105
|
Inglis LK, Edwards RA. How Metagenomics Has Transformed Our Understanding of Bacteriophages in Microbiome Research. Microorganisms 2022; 10:microorganisms10081671. [PMID: 36014086 PMCID: PMC9415785 DOI: 10.3390/microorganisms10081671] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/16/2022] Open
Abstract
The microbiome is an essential part of most ecosystems. It was originally studied mostly through culturing but relatively few microbes can be cultured, so much of the microbiome was left unexplored. The emergence of metagenomic sequencing techniques changed that and allowed the study of microbiomes from all sorts of habitats. Metagenomic sequencing also allowed for a more thorough exploration of prophages, viruses that integrate into bacterial genomes, and how they benefit their hosts. One issue with using open-access metagenomic data is that sequences added to databases often have little to no metadata to work with, so finding enough sequences can be difficult. Many metagenomes have been manually curated but this is a time-consuming process and relies heavily on the uploader to be accurate and thorough when filling in metadata fields and the curators to be working with the same ontologies. Using algorithms to automatically sort metagenomes based on either the taxonomic profile or the functional profile may be a viable solution to the issues with manually curated metagenomes, but it requires that the algorithm is trained on carefully curated datasets and using the most informative profile possible in order to minimize errors.
Collapse
|
106
|
de Almeida JCF, da Silva Xavier A, Cascardo RDS, de Rezende RR, de Souza FO, Lopes CA, Alfenas-Zerbini P. Genomic and Biological Characterization of Ralstonia solanacearum Inovirus Brazil 1, an Inovirus that Alters the Pathogenicity of the Phytopathogen Ralstonia pseudosolanacearum. MICROBIAL ECOLOGY 2022; 84:527-538. [PMID: 34557947 DOI: 10.1007/s00248-021-01874-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Accepted: 09/15/2021] [Indexed: 06/13/2023]
Abstract
Filamentous bacteriophages contain a single-stranded DNA genome and have a peculiar lifestyle, since they do not cause host cell lysis, but establish a persistent association with the host, often causing behavioral changes, with effects on bacterial ecology. Over the years, a gradual reduction in the incidence of bacterial wilt has been observed in some fields from Brazil. This event, which has been associated with the loss of pathogenicity of Rasltonia spp. isolates due to infection by filamentous viruses of the inovirus group, is widely reported for Ralstonia spp. Asian isolates infected by inoviruses. In an attempt to elucidate which factors are associated with the phenomenon reported in Brazil, we investigated one isolate of R. solanacearum (UB-2014), with unusual characteristics for R. solanacearum, obtained from eggplant with mild wilt symptoms. To verify if the presence of filamentous bacteriophage was related to this phenotype, we performed viral purification and nucleic acid extraction. The phage genome was sequenced, and phylogenetic analyses demonstrated that the virus belongs to the family Inoviridae and was named as Ralstonia solanacerarum inovirus Brazil 1 (RSIBR1). RSIBR1 was transmitted to R. pseudosolanacearum GMI1000, and the virus-infected GMI1000 (GMI1000 VI) isolate showed alterations in phenotypic characteristics, as well as loss of pathogenicity, similarly to that observed in R. solanacearum isolate UB-2014. The presence of virus-infected UB-2014 and GMI1000 VI plants without symptoms, after 3 months, confirms that the infected isolates can colonize the plant without causing disease, which demonstrates that the phage infection changed the behavior of these pathogens.
Collapse
Affiliation(s)
- Juliana Cristina Fraleon de Almeida
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - André da Silva Xavier
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Renan de Souza Cascardo
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Rafael Reis de Rezende
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Flavia Oliveira de Souza
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil
| | - Carlos Alberto Lopes
- EMBRAPA - National Center for Research on Vegetables (CNPH), Gama, DF, 70359-970, Brazil
| | - Poliane Alfenas-Zerbini
- Departamento de Microbiologia, Instituto de Biotecnologia Aplicada à Agropecuária (BIOAGRO), Universidade Federal de Viçosa, Viçosa, MG, 36570-000, Brazil.
| |
Collapse
|
107
|
Protozoal food vacuoles enhance transformation in Vibrio cholerae through SOS-regulated DNA integration. THE ISME JOURNAL 2022; 16:1993-2001. [PMID: 35577916 PMCID: PMC9296650 DOI: 10.1038/s41396-022-01249-0] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Revised: 04/20/2022] [Accepted: 04/29/2022] [Indexed: 11/08/2022]
Abstract
Vibrio cholerae, the bacterial pathogen responsible for the diarrheal disease cholera, resides in the aquatic environment between outbreaks. For bacteria, genetic variation by lateral gene transfer (LGT) is important for survival and adaptation. In the aquatic environment, V. cholerae is predominantly found in biofilms associated with chitinous organisms or with chitin "rain". Chitin induces competency in V. cholerae, which can lead to LGT. In the environment, V. cholerae is also subjected to predation pressure by protist. Here we investigated whether protozoal predation affected LGT using the integron as a model. Integrons facilitate the integration of mobile DNA (gene cassettes) into the bacterial chromosome. We report that protozoal predation enhances transformation of a gene cassette by as much as 405-fold. We show that oxidative radicals produced in the protozoal phagosome induces the universal SOS response, which in turn upregulates the integron-integrase, the recombinase that facilitates cassette integration. Additionally, we show that during predation, V. cholerae requires the type VI secretion system to acquire the gene cassette from Escherichia coli. These results show that protozoal predation enhances LGT thus producing genetic variants that may have increased capacity to survive grazing. Additionally, the conditions in the food vacuole may make it a "hot spot" for LGT by accumulating diverse bacteria and inducing the SOS response helping drive genetic diversification and evolution.
Collapse
|
108
|
Ribeiro HG, Nilsson A, Melo LDR, Oliveira A. Analysis of intact prophages in genomes of Paenibacillus larvae: An important pathogen for bees. Front Microbiol 2022; 13:903861. [PMID: 35923395 PMCID: PMC9341999 DOI: 10.3389/fmicb.2022.903861] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2022] [Accepted: 06/24/2022] [Indexed: 11/13/2022] Open
Abstract
Paenibacillus larvae is the etiological agent of American Foulbrood (AFB), a highly contagious and worldwide spread bacterial disease that affects honeybee brood. In this study, all complete P. larvae genomes available on the NCBI database were analyzed in order to detect presence of prophages using the PHASTER software. A total of 55 intact prophages were identified in 11 P. larvae genomes (5.0 ± 2.3 per genome) and were further investigated for the presence of genes encoding relevant traits related to P. larvae. A closer look at the prophage genomes revealed the presence of several putative genes such as metabolic and antimicrobial resistance genes, toxins or bacteriocins, potentially influencing host performance. Some of the coding DNA sequences (CDS) were present in all ERIC-genotypes, while others were only found in a specific genotype. While CDS encoding toxins and antitoxins such as HicB and MazE were found in prophages of all bacterial genotypes, others, from the same category, were provided by prophages particularly to ERIC I (enhancin-like toxin), ERIC II (antitoxin SocA) and ERIC V strains (subunit of Panton-Valentine leukocidin system (PVL) LukF-PV). This is the first in-depth analysis of P. larvae prophages. It provides better knowledge on their impact in the evolution of virulence and fitness of P. larvae, by discovering new features assigned by the viruses.
Collapse
Affiliation(s)
- Henrique G. Ribeiro
- LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, Centre of Biological Engineering, University of Minho, Braga, Portugal
| | - Anna Nilsson
- Department of Ecology, Swedish University of Agricultural Sciences, Uppsala, Sweden
| | - Luís D. R. Melo
- LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, Centre of Biological Engineering, University of Minho, Braga, Portugal
- *Correspondence: Luís D. R. Melo,
| | - Ana Oliveira
- LIBRO – Laboratório de Investigação em Biofilmes Rosário Oliveira, Centre of Biological Engineering, University of Minho, Braga, Portugal
- LABBELS – Associate Laboratory on Biotechnology and Bioengineering, and Electromechanical Systems, Centre of Biological Engineering, University of Minho, Braga, Portugal
- Ana Oliveira,
| |
Collapse
|
109
|
Venturini C, Petrovic Fabijan A, Fajardo Lubian A, Barbirz S, Iredell J. Biological foundations of successful bacteriophage therapy. EMBO Mol Med 2022; 14:e12435. [PMID: 35620963 PMCID: PMC9260219 DOI: 10.15252/emmm.202012435] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2022] [Revised: 04/13/2022] [Accepted: 04/19/2022] [Indexed: 12/20/2022] Open
Abstract
Bacteriophages (phages) are selective viral predators of bacteria. Abundant and ubiquitous in nature, phages can be used to treat bacterial infections (phage therapy), including refractory infections and those resistant to antibiotics. However, despite an abundance of anecdotal evidence of efficacy, significant hurdles remain before routine implementation of phage therapy into medical practice, including a dearth of robust clinical trial data. Phage-bacterium interactions are complex and diverse, characterized by co-evolution trajectories that are significantly influenced by the environments in which they occur (mammalian body sites, water, soil, etc.). An understanding of the molecular mechanisms underpinning these dynamics is essential for successful clinical translation. This review aims to cover key aspects of bacterium-phage interactions that affect bacterial killing by describing the most relevant published literature and detailing the current knowledge gaps most likely to influence therapeutic success.
Collapse
Affiliation(s)
- Carola Venturini
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of ScienceSydney School of Veterinary ScienceThe University of SydneySydneyNSWAustralia
| | - Aleksandra Petrovic Fabijan
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Alicia Fajardo Lubian
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
| | - Stefanie Barbirz
- Department of MedicineScience FacultyMSB Medical School BerlinBerlinGermany
| | - Jonathan Iredell
- Centre for Infectious Diseases and MicrobiologyWestmead Institute for Medical ResearchWestmeadNSWAustralia
- Faculty of Health and MedicineSchool of MedicineSydney Medical SchoolThe University of SydneySydneyNSWAustralia
- Westmead HospitalWestern Sydney Local Health DistrictWestmeadNSWAustralia
| |
Collapse
|
110
|
Heyerhoff B, Engelen B, Bunse C. Auxiliary Metabolic Gene Functions in Pelagic and Benthic Viruses of the Baltic Sea. Front Microbiol 2022; 13:863620. [PMID: 35875520 PMCID: PMC9301287 DOI: 10.3389/fmicb.2022.863620] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Marine microbial communities are facing various ecosystem fluctuations (e.g., temperature, organic matter concentration, salinity, or redox regimes) and thus have to be highly adaptive. This might be supported by the acquisition of auxiliary metabolic genes (AMGs) originating from virus infections. Marine bacteriophages frequently contain AMGs, which allow them to augment their host’s metabolism or enhance virus fitness. These genes encode proteins for the same metabolic functions as their highly similar host homologs. In the present study, we analyzed the diversity, distribution, and composition of marine viruses, focusing on AMGs to identify their putative ecologic role. We analyzed viruses and assemblies of 212 publicly available metagenomes obtained from sediment and water samples across the Baltic Sea. In general, the virus composition in both compartments differed compositionally. While the predominant viral lifestyle was found to be lytic, lysogeny was more prevalent in sediments than in the pelagic samples. The highest proportion of AMGs was identified in the genomes of Myoviridae. Overall, the most abundantly occurring AMGs are encoded for functions that protect viruses from degradation by their hosts, such as methylases. Additionally, some detected AMGs are known to be involved in photosynthesis, 7-cyano-7-deazaguanine synthesis, and cobalamin biosynthesis among other functions. Several AMGs that were identified in this study were previously detected in a large-scale analysis including metagenomes from various origins, i.e., different marine sites, wastewater, and the human gut. This supports the theory of globally conserved core AMGs that are spread over virus genomes, regardless of host or environment.
Collapse
|
111
|
Zhang Y, Chen L, Jiang Y, Yang B, Chen J, Zhan L, Mei L, Chen H, Zhang J, Zhang Z, Zhang Y, Jiang J, Zhang P. Epidemiological and Whole-Genome Sequencing Analysis of a Gastroenteritis Outbreak Caused by a New Emerging Serotype of Vibrio parahaemolyticus in China. Foodborne Pathog Dis 2022; 19:550-557. [PMID: 35787152 DOI: 10.1089/fpd.2022.0002] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Vibrio parahaemolyticus is an important foodborne pathogen with diverse serotypes. In May 2021, we investigated a gastroenteritis outbreak that occurred in China, caused by V. parahaemolyticus O10:K4 infection. Based on the epidemiological curve, this outbreak was identified as a homologous exposure event. A case-control study demonstrated that emperor crab with mashed garlic (odds ratio [OR] = 4.60, p = 0.030; 95% confidence interval [95% CI]: 1.11-19.14), goose liver geoduck (OR = 4.50, p = 0.029; 95% CI: 1.12-18.13), shrimp (OR = 4.89, p = 0.021; 95% CI: 1.22-19.65), and sea cucumber (OR = 7.36, p = 0.005; 95% CI: 1.68-32.26) were the potential sources of the food poisoning. V. parahaemolyticus isolates from 18 laboratory-confirmed cases were all serotyped O10:K4, and determined to be sequence type ST3 via multilocus sequence typing. Pulsed field gel electrophoresis and whole-genome sequencing analysis revealed the identical pattern and 0-2 single nucleotide variation among these isolates. tdh was positive in all isolates, while trh and Orf8 were absent. Seven essential base positions in toxRS for pandemic clone identification were identical between the O10:K4 and O3:K6 pandemic clones. Phylogenetic analysis with 45 additional genomes of 13 different serotypes showed the closest genetic relationship between O10:K4 and O1: KUT. O10:K4 was thought to evolve from the O3:K6 pandemic clone. The new serovariant of O3:K6 poses a challenge for the prevention and control of V. parahaemolyticus disease outbreaks, or even epidemics, in the future.
Collapse
Affiliation(s)
- Yunyi Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Liping Chen
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| | - Yan Jiang
- Department of Infectious Diseases, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Bing Yang
- Wuxing District Center for Disease Control and Prevention, Huzhou, China
| | - Jiancai Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Li Zhan
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Lingling Mei
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Honghu Chen
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Junyan Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Zheng Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Yanjun Zhang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Jianmin Jiang
- Zhejiang Provincial Center for Disease Control and Prevention, Hangzhou, China
| | - Peng Zhang
- Huzhou Center for Disease Control and Prevention, Huzhou, China
| |
Collapse
|
112
|
Orazi G, Collins AJ, Whitaker RJ. Prediction of Prophages and Their Host Ranges in Pathogenic and Commensal Neisseria Species. mSystems 2022; 7:e0008322. [PMID: 35418239 PMCID: PMC9238386 DOI: 10.1128/msystems.00083-22] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 03/24/2022] [Indexed: 01/03/2023] Open
Abstract
The genus Neisseria includes two pathogenic species, N. gonorrhoeae and N. meningitidis, and numerous commensal species. Neisseria species frequently exchange DNA with one another, primarily via transformation and homologous recombination and via multiple types of mobile genetic elements (MGEs). Few Neisseria bacteriophages (phages) have been identified, and their impact on bacterial physiology is poorly understood. Furthermore, little is known about the range of species that Neisseria phages can infect. In this study, we used three virus prediction tools to scan 248 genomes of 21 different Neisseria species and identified 1,302 unique predicted prophages. Using comparative genomics, we found that many predictions are dissimilar from prophages and other MGEs previously described to infect Neisseria species. We also identified similar predicted prophages in genomes of different Neisseria species. Additionally, we examined CRISPR-Cas targeting of each Neisseria genome and predicted prophage. While CRISPR targeting of chromosomal DNA appears to be common among several Neisseria species, we found that 20% of the prophages we predicted are targeted significantly more than the rest of the bacterial genome in which they were identified (i.e., backbone). Furthermore, many predicted prophages are targeted by CRISPR spacers encoded by other species. We then used these results to infer additional host species of known Neisseria prophages and predictions that are highly targeted relative to the backbone. Together, our results suggest that we have identified novel Neisseria prophages, several of which may infect multiple Neisseria species. These findings have important implications for understanding horizontal gene transfer between members of this genus. IMPORTANCE Drug-resistant Neisseria gonorrhoeae is a major threat to human health. Commensal Neisseria species are thought to serve as reservoirs of antibiotic resistance and virulence genes for the pathogenic species N. gonorrhoeae and N. meningitidis. Therefore, it is important to understand both the diversity of mobile genetic elements (MGEs) that can mediate horizontal gene transfer within this genus and the breadth of species these MGEs can infect. In particular, few bacteriophages (phages) are known to infect Neisseria species. In this study, we identified a large number of candidate phages integrated in the genomes of commensal and pathogenic Neisseria species, many of which appear to be novel phages. Importantly, we discovered extensive interspecies targeting of predicted phages by Neisseria CRISPR-Cas systems, which may reflect their movement between different species. Uncovering the diversity and host range of phages is essential for understanding how they influence the evolution of their microbial hosts.
Collapse
Affiliation(s)
- Giulia Orazi
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Alan J. Collins
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| | - Rachel J. Whitaker
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
- Department of Microbiology, University of Illinois at Urbana-Champaign, Urbana, Illinois, USA
| |
Collapse
|
113
|
Abstract
Cholera is a severe diarrheal disease caused by the bacterium Vibrio cholerae and constitutes a significant public health threat in many areas of the world. V. cholerae infection elicits potent and long-lasting immunity, and efforts to develop cholera vaccines have been ongoing for more than a century. Currently available inactivated two-dose oral cholera vaccines are increasingly deployed to both prevent and actively curb cholera outbreaks, and they are key components of the global effort to eradicate cholera. However, these killed whole-cell vaccines have several limitations, and a variety of new oral and nonoral cholera vaccine platforms have recently been developed. Here, we review emerging concepts in cholera vaccine design and implementation that have been driven by insights from human and animal studies. As a prototypical vaccine-preventable disease, cholera continues to be an excellent target for the development and application of cutting-edge technologies and platforms that may transform vaccinology. Expected final online publication date for the Annual Review of Microbiology, Volume 76 is September 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Brandon Sit
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA; .,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Bolutife Fakoya
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA; .,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA
| | - Matthew K Waldor
- Division of Infectious Diseases, Brigham and Women's Hospital, Boston, Massachusetts, USA; .,Department of Microbiology, Harvard Medical School, Boston, Massachusetts, USA.,Department of Immunology and Infectious Diseases, Harvard T.H. Chan School of Public Health, Massachusetts, USA.,Howard Hughes Medical Institute, Bethesda, Maryland, USA
| |
Collapse
|
114
|
Miele S, Provan JI, Vergne J, Possoz C, Ochsenbein F, Barre FX. The Xer activation factor of TLCΦ expands the possibilities for Xer recombination. Nucleic Acids Res 2022; 50:6368-6383. [PMID: 35657090 PMCID: PMC9226527 DOI: 10.1093/nar/gkac429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 05/03/2022] [Accepted: 06/01/2022] [Indexed: 11/13/2022] Open
Abstract
The chromosome dimer resolution machinery of bacteria is generally composed of two tyrosine recombinases, XerC and XerD. They resolve chromosome dimers by adding a crossover between sister copies of a specific site, dif. The reaction depends on a cell division protein, FtsK, which activates XerD by protein-protein interactions. The toxin-linked cryptic satellite phage (TLCΦ) of Vibrio cholerae, which participates in the emergence of cholera epidemic strains, carries a dif-like attachment site (attP). TLCΦ exploits the Xer machinery to integrate into the dif site of its host chromosomes. The TLCΦ integration reaction escapes the control of FtsK because TLCΦ encodes for its own XerD-activation factor, XafT. Additionally, TLCΦ attP is a poor substrate for XerD binding, in apparent contradiction with the high integration efficiency of the phage. Here, we present a sequencing-based methodology to analyse the integration and excision efficiency of thousands of synthetic mini-TLCΦ plasmids with differing attP sites in vivo. This methodology is applicable to the fine-grained analyses of DNA transactions on a wider scale. In addition, we compared the efficiency with which XafT and the XerD-activation domain of FtsK drive recombination reactions in vitro. Our results suggest that XafT not only activates XerD-catalysis but also helps form and/or stabilize synaptic complexes between imperfect Xer recombination sites.
Collapse
Affiliation(s)
- Solange Miele
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - James Iain Provan
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Justine Vergne
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Christophe Possoz
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - Françoise Ochsenbein
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| | - François-Xavier Barre
- Institute for Integrative Biology of the Cell (I2BC), Université Paris-Saclay, CEA, CNRS, 1 Avenue de la Terrasse, 91198 Gif-sur-Yvette, France
| |
Collapse
|
115
|
Rouard C, Njamkepo E, Quilici ML, Weill FX. Contribution of microbial genomics to cholera epidemiology. C R Biol 2022; 345:37-56. [DOI: 10.5802/crbiol.77] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Accepted: 03/28/2022] [Indexed: 11/24/2022]
|
116
|
Influence of the Phagemid PfNC7401 on Cereulide-Producing Bacillus cereus NC7401. Microorganisms 2022; 10:microorganisms10050953. [PMID: 35630395 PMCID: PMC9143728 DOI: 10.3390/microorganisms10050953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/22/2022] [Accepted: 04/29/2022] [Indexed: 02/04/2023] Open
Abstract
A phagemid-cured strain, NC7401-∆Pf, was constructed to survey the biological function of the plasmidal prophage PfNC7401 in cereulide-producing Bacillus cereus NC7401. The transcriptome analysis between the mutant and the wild strains revealed a series of differentially expressed genes mainly involved in different function classifications, including the two-component signal transduction system, bacterial structure, transporters, related antibiotic response, purine biosynthesis, non-ribosomal peptide synthetases (NRPS) and related secondary metabolites, and aromatic or other amino acid synthesis. BIOLOG and phenotypic experiment analyses confirmed that PfNC7401 may affect phage immunity and the metabolism of several amino acids, including L-Alanine, which was suggested to be related to one precursor (D-Alanine) of cereulide synthesis. However, neither the transcription levels of the cereulide production-related genes (e.g., ilvB, cesA, cesB, and cesH) nor the cereulide production nor cell cytotoxicity were affected by the presence or absence of PfNC7401, corresponding with the transcriptome data, in which only four genes unrelated to cereulide synthesis on the plasmid-carrying ces gene cluster were affected by the curing of PfNC7401.
Collapse
|
117
|
Comparative Genomics of Xylella fastidiosa Explores Candidate Host-Specificity Determinants and Expands the Known Repertoire of Mobile Genetic Elements and Immunity Systems. Microorganisms 2022; 10:microorganisms10050914. [PMID: 35630358 PMCID: PMC9148166 DOI: 10.3390/microorganisms10050914] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 04/24/2022] [Accepted: 04/26/2022] [Indexed: 02/06/2023] Open
Abstract
Xylella fastidiosa causes diseases in many plant species. Originally confined to the Americas, infecting mainly grapevine, citrus, and coffee, X. fastidiosa has spread to several plant species in Europe causing devastating diseases. Many pathogenicity and virulence factors have been identified, which enable the various X. fastidiosa strains to successfully colonize the xylem tissue and cause disease in specific plant hosts, but the mechanisms by which this happens have not been fully elucidated. Here we present thorough comparative analyses of 94 whole-genome sequences of X. fastidiosa strains from diverse plant hosts and geographic regions. Core-genome phylogeny revealed clades with members sharing mostly a geographic region rather than a host plant of origin. Phylogenetic trees for 1605 orthologous CDSs were explored for potential candidates related to host specificity using a score of mapping metrics. However, no candidate host-specificity determinants were strongly supported using this approach. We also show that X. fastidiosa accessory genome is represented by an abundant and heterogeneous mobilome, including a diversity of prophage regions. Our findings provide a better understanding of the diversity of phylogenetically close genomes and expand the knowledge of X. fastidiosa mobile genetic elements and immunity systems.
Collapse
|
118
|
Kanungo S, Azman AS, Ramamurthy T, Deen J, Dutta S. Cholera. Lancet 2022; 399:1429-1440. [PMID: 35397865 DOI: 10.1016/s0140-6736(22)00330-0] [Citation(s) in RCA: 77] [Impact Index Per Article: 25.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 12/14/2021] [Accepted: 02/07/2022] [Indexed: 12/11/2022]
Abstract
Cholera was first described in the areas around the Bay of Bengal and spread globally, resulting in seven pandemics during the past two centuries. It is caused by toxigenic Vibrio cholerae O1 or O139 bacteria. Cholera is characterised by mild to potentially fatal acute watery diarrhoeal disease. Prompt rehydration therapy is the cornerstone of management. We present an overview of cholera and its pathogenesis, natural history, bacteriology, and epidemiology, while highlighting advances over the past 10 years in molecular epidemiology, immunology, and vaccine development and deployment. Since 2014, the Global Task Force on Cholera Control, a WHO coordinated network of partners, has been working with several countries to develop national cholera control strategies. The global roadmap for cholera control focuses on stopping transmission in cholera hotspots through vaccination and improved water, sanitation, and hygiene, with the aim to reduce cholera deaths by 90% and eliminate local transmission in at least 20 countries by 2030.
Collapse
Affiliation(s)
- Suman Kanungo
- National Institute of Cholera and Enteric Diseases, Kolkata, India
| | - Andrew S Azman
- Department of Epidemiology, Johns Hopkins University, Baltimore, MD, USA; Institute of Global Health, Faculty of Medicine, University of Geneva, Geneva, Switzerland
| | | | - Jaqueline Deen
- Institute of Child Health and Human Development, National Institutes of Health, University of the Philippines-Manila, Manila, Philippines
| | - Shanta Dutta
- National Institute of Cholera and Enteric Diseases, Kolkata, India.
| |
Collapse
|
119
|
Wang W, Li Y, Tang K, Lin J, Gao X, Guo Y, Wang X. Filamentous Prophage Capsid Proteins Contribute to Superinfection Exclusion and Phage Defense in Pseudomonas aeruginosa. Environ Microbiol 2022; 24:4285-4298. [PMID: 35384225 DOI: 10.1111/1462-2920.15991] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2021] [Revised: 03/30/2022] [Accepted: 03/30/2022] [Indexed: 11/29/2022]
Abstract
Filamentous prophages in Pseudomonas aeruginosa PAO1 are converted to superinfective phage virions during biofilm development. Superinfection exclusion is necessary for the development of resistance against superinfective phage virions in host cells. However, the molecular mechanisms underlying the exclusion of superinfective Pf phages are unknown. In this study, we found that filamentous prophage-encoded structural proteins allow exclusion of superinfective Pf phages by interfering with type IV pilus (T4P) function. Specifically, the phage minor capsid protein pVII inhibits Pf phage adsorption by interacting with PilC and PilJ of T4P, and overproduction of pVII completely abrogates twitching motility. The minor capsid protein pIII provides partial superinfection exclusion and interacts with the PilJ and TolR/TolA proteins. Furthermore, pVII provides full host protection against infection by pilus-dependent lytic phages, and pIII provides partial protection against infection by pilus-independent lytic phages. Considering that filamentous prophages are common in clinical Pseudomonas isolates and their induction is often activated during biofilm formation, this study suggests the need to rethink the strategy of using lytic phages to treat P. aeruginosa biofilm-related infections. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Weiquan Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yangmei Li
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Kaihao Tang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Jianzhong Lin
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xinyu Gao
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yunxue Guo
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaoxue Wang
- Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Key Laboratory of Marine Materia Medica, Innovation Academy of South China Sea Ecology and Environmental Engineering, South China Sea Institute of Oceanology, Chinese Academy of Sciences, No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), No.1119, Haibin Road, Nansha District, Guangzhou, 511458, China.,University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
120
|
Nawel Z, Rima O, Amira B. An overview on Vibrio temperate phages: Integration mechanisms, pathogenicity, and lysogeny regulation. Microb Pathog 2022; 165:105490. [DOI: 10.1016/j.micpath.2022.105490] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Revised: 03/14/2022] [Accepted: 03/15/2022] [Indexed: 12/21/2022]
|
121
|
Jaskólska M, Adams DW, Blokesch M. Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae. Nature 2022; 604:323-329. [PMID: 35388218 PMCID: PMC7613841 DOI: 10.1038/s41586-022-04546-y] [Citation(s) in RCA: 85] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Accepted: 02/11/2022] [Indexed: 12/16/2022]
Abstract
Horizontal gene transfer can trigger rapid shifts in bacterial evolution. Driven by a variety of mobile genetic elements-in particular bacteriophages and plasmids-the ability to share genes within and across species underpins the exceptional adaptability of bacteria. Nevertheless, invasive mobile genetic elements can also present grave risks to the host; bacteria have therefore evolved a vast array of defences against these elements1. Here we identify two plasmid defence systems conserved in the Vibrio cholerae El Tor strains responsible for the ongoing seventh cholera pandemic2-4. These systems, termed DdmABC and DdmDE, are encoded on two major pathogenicity islands that are a hallmark of current pandemic strains. We show that the modules cooperate to rapidly eliminate small multicopy plasmids by degradation. Moreover, the DdmABC system is widespread and can defend against bacteriophage infection by triggering cell suicide (abortive infection, or Abi). Notably, we go on to show that, through an Abi-like mechanism, DdmABC increases the burden of large low-copy-number conjugative plasmids, including a broad-host IncC multidrug resistance plasmid, which creates a fitness disadvantage that counterselects against plasmid-carrying cells. Our results answer the long-standing question of why plasmids, although abundant in environmental strains, are rare in pandemic strains; have implications for understanding the dissemination of antibiotic resistance plasmids; and provide insights into how the interplay between two defence systems has shaped the evolution of the most successful lineage of pandemic V. cholerae.
Collapse
Affiliation(s)
- Milena Jaskólska
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland
| | - David W Adams
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| | - Melanie Blokesch
- Laboratory of Molecular Microbiology, Global Health Institute, School of Life Sciences, Station 19, EPFL-SV-UPBLO, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland.
| |
Collapse
|
122
|
Peng H, Rossetto D, Mansy SS, Jordan MC, Roos KP, Chen IA. Treatment of Wound Infections in a Mouse Model Using Zn 2+-Releasing Phage Bound to Gold Nanorods. ACS NANO 2022; 16:4756-4774. [PMID: 35239330 PMCID: PMC8981316 DOI: 10.1021/acsnano.2c00048] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2022] [Accepted: 02/09/2022] [Indexed: 05/20/2023]
Abstract
Infections caused by drug-resistant bacteria, particularly Gram-negative organisms, are increasingly difficult to treat using antibiotics. A potential alternative is "phage therapy", in which phages infect and lyse the bacterial host. However, phage therapy poses serious drawbacks and safety concerns, such as the risk of genetic transduction of antibiotic resistance genes, inconsistent pharmacokinetics, and unknown evolutionary potential. In contrast, metallic nanoparticles possess precise, tunable properties, including efficient conversion of electronic excitation into heat. In this work, we demonstrate that engineered phage-nanomaterial conjugates that target the Gram-negative pathogen Pseudomonas aeruginosa are highly effective as a treatment of infected wounds in mice. Photothermal heating, performed as a single treatment (15 min) or as two treatments on consecutive days, rapidly reduced the bacterial load and released Zn2+ to promote wound healing. The phage-nanomaterial treatment was significantly more effective than systemic standard-of-care antibiotics, with a >10× greater reduction in bacterial load and ∼3× faster healing as measured by wound size reduction when compared to fluoroquinolone treatment. Notably, the phage-nanomaterial was also effective against a P. aeruginosa strain resistant to polymyxins, a last-line antibiotic therapy. Unlike these antibiotics, the phage-nanomaterial showed no detectable toxicity or systemic effects in mice, consistent with the short duration and localized nature of phage-nanomaterial treatment. Our results demonstrate that phage therapy controlled by inorganic nanomaterials can be a safe and effective antimicrobial strategy in vivo.
Collapse
Affiliation(s)
- Huan Peng
- Department
of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| | - Daniele Rossetto
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- CIBIO, University of Trento, 38123 Povo, Trento, Italy
| | - Sheref S. Mansy
- Department
of Chemistry, University of Alberta, Edmonton, Alberta T6G 2G2, Canada
- CIBIO, University of Trento, 38123 Povo, Trento, Italy
| | - Maria C. Jordan
- Department
of Physiology, David Geffen School of Medicine
at the University of California, Los Angeles, California 90095, United States
| | - Kenneth P. Roos
- Department
of Physiology, David Geffen School of Medicine
at the University of California, Los Angeles, California 90095, United States
| | - Irene A. Chen
- Department
of Chemical and Biomolecular Engineering, University of California, Los Angeles, California 90095, United States
| |
Collapse
|
123
|
A Potent Inhibitor of the Cystic Fibrosis Transmembrane Conductance Regulator Blocks Disease and Morbidity Due to Toxigenic Vibrio cholerae. Toxins (Basel) 2022; 14:toxins14030225. [PMID: 35324722 PMCID: PMC8948642 DOI: 10.3390/toxins14030225] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/09/2022] [Accepted: 03/11/2022] [Indexed: 01/24/2023] Open
Abstract
Vibrio cholerae uses cholera toxin (CT) to cause cholera, a severe diarrheal disease in humans that can lead to death within hours of the onset of symptoms. The catalytic activity of CT in target epithelial cells increases cellular levels of 3',5'-cyclic AMP (cAMP), leading to the activation of the cystic fibrosis transmembrane conductance regulator (CFTR), an apical ion channel that transports chloride out of epithelial cells, resulting in an electrolyte imbalance in the intestinal lumen and massive water loss. Here we report that when administered perorally, benzopyrimido-pyrrolo-oxazinedione, (R)-BPO-27), a potent small molecule inhibitor of CFTR, blocked disease symptoms in a mouse model for acute diarrhea caused by toxigenic V. cholerae. We show that both (R)-BPO-27 and its racemic mixture, (R/S)-BPO-27, are able to protect mice from CT-dependent diarrheal disease and death. Furthermore, we show that, consistent with the ability of the compound to block the secretory diarrhea induced by CT, BPO-27 has a measurable effect on suppressing the gut replication and survival of V. cholerae, including a 2010 isolate from Haiti that is representative of the most predominant 'variant strains' that are causing epidemic and pandemic cholera worldwide. Our results suggest that BPO-27 should advance to human Phase I studies that could further address its safety and efficacy as therapeutic or preventative drug intervention for diarrheal syndromes, including cholera, that are mediated by CFTR channel activation.
Collapse
|
124
|
Spencer L, Olawuni B, Singh P. Gut Virome: Role and Distribution in Health and Gastrointestinal Diseases. Front Cell Infect Microbiol 2022; 12:836706. [PMID: 35360104 PMCID: PMC8960297 DOI: 10.3389/fcimb.2022.836706] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 02/10/2022] [Indexed: 12/11/2022] Open
Abstract
The study of the intestinal microbiome is an evolving field of research that includes comprehensive analysis of the vast array of microbes – bacterial, archaeal, fungal, and viral. Various gastrointestinal (GI) diseases, such as Crohn’s disease and ulcerative colitis, have been associated with instability of the gut microbiota. Many studies have focused on importance of bacterial communities with relation to health and disease in humans. The role of viruses, specifically bacteriophages, have recently begin to emerge and have profound impact on the host. Here, we comprehensively review the importance of viruses in GI diseases and summarize their influence in the complex intestinal environment, including their biochemical and genetic activities. We also discuss the distribution of the gut virome as it relates with treatment and immunological advantages. In conclusion, we suggest the need for further studies on this critical component of the intestinal microbiome to decipher the role of the gut virome in human health and disease.
Collapse
|
125
|
Roles of the Tol/Pal System in Bacterial Pathogenesis and Its Application to Antibacterial Therapy. Vaccines (Basel) 2022; 10:vaccines10030422. [PMID: 35335056 PMCID: PMC8953051 DOI: 10.3390/vaccines10030422] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Revised: 03/03/2022] [Accepted: 03/08/2022] [Indexed: 01/27/2023] Open
Abstract
The Tol/Pal system (also written as “The Tol-Pal system”) is a set of protein complexes produced by most Gram-negative bacteria. It comprises the inner membrane-associated and the outer membrane-anchored subunits composed of the TolA, TolQ, and TolR proteins and the TolB and Pal proteins, respectively. Although the Tol/Pal system was first defined as bacterial proteins involved in colicin uptake of Escherichia coli, its global roles have been characterized in several studies as mentioned in this article. Pathogenesis of many Gram-negative pathogens is sustained by the Tol/Pal system. It is also essential for cell growth and fitness in some pathogens. Therefore, the Tol/Pal system is proposed as a potential target for antimicrobial chemotherapy. Although the tol/pal mutants are low in virulence, they still have the ability to stimulate the immune system. The Pal protein is highly immunogenic and induces both adaptive and innate immune responses. Therefore, the tol/pal mutant strains and Pal proteins also have potential vaccine properties. For these reasons, the Tol/Pal system represents a promising research target in the development of antibacterial therapeutic strategies for refractory infections caused by multi-drug-resistant (MDR), Gram-negative pathogens. In this paper, we summarize studies on the Tol/Pal system associated with bacterial pathogenesis and vaccine development.
Collapse
|
126
|
Balasubramanian D, López-Pérez M, Grant TA, Ogbunugafor CB, Almagro-Moreno S. Molecular mechanisms and drivers of pathogen emergence. Trends Microbiol 2022; 30:898-911. [DOI: 10.1016/j.tim.2022.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2021] [Revised: 02/05/2022] [Accepted: 02/10/2022] [Indexed: 12/21/2022]
|
127
|
Biswas Q, Purohit A, Kumar A, Rakshit D, Maiti D, Das B, Bhadra RK. Genetic and mutational analysis of virulence traits and their modulation in an environmental toxigenic Vibrio cholerae non-O1/non-O139 strain, VCE232. MICROBIOLOGY (READING, ENGLAND) 2022; 168. [PMID: 35113781 DOI: 10.1099/mic.0.001135] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Vibrio cholerae O1 and O139 isolates deploy cholera toxin (CT) and toxin-coregulated pilus (TCP) to cause the diarrhoeal disease cholera. The ctxAB and tcpA genes encoding CT and TCP are part of two acquired genetic elements, the CTX phage and Vibrio pathogenicity island-1 (VPI-1), respectively. ToxR and ToxT proteins are the key regulators of virulence genes of V. cholerae O1 and O139. V. cholerae isolates belonging to serogroups other than O1/O139, called non-O1/non-O139, are usually devoid of virulence-related elements and are non-pathogenic. Here, we have analysed the available whole genome sequence of an environmental toxigenic V. cholerae non-O1/non-O139 strain, VCE232, carrying the CTX phage and VPI-1. Extensive bioinformatics and phylogenetic analyses indicated high similarity of the VCE232 genome sequence with the genome of V. cholerae O1 strains, including organization of the VPI-1 locus, ctxAB, tcpA and toxT genes, and promoters. We established that the VCE232 strain produces an optimal amount of CT at 30 °C under AKI conditions. To investigate the role of ToxT and ToxR in the regulation of virulence factors, we constructed ΔtoxT, ΔtoxR and ΔtoxTΔtoxR deletion mutants of VCE232. Extensive genetic analyses of these mutants indicated that the toxT and toxR genes of VCE232 are crucial for CT and TCP production. However, unlike O1 isolates, the presence of either toxT or toxR gene is sufficient for optimal CT production in VCE232. In addition, the VCE232 ΔtoxR mutant showed differential regulation of the major outer membrane proteins, OmpT and OmpU. This is the first attempt to explore the regulation of expression of major virulence genes and regulators in an environmental toxigenic V. cholerae non-O1/non-O139 strain.
Collapse
Affiliation(s)
- Quoelee Biswas
- Infectious Diseases and Immunology Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Ayushi Purohit
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121 001, India
| | - Ashok Kumar
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121 001, India
- School of Life Sciences, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Dipayan Rakshit
- Infectious Diseases and Immunology Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Diganta Maiti
- Infectious Diseases and Immunology Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| | - Bhabatosh Das
- Translational Health Science and Technology Institute, NCR Biotech Science Cluster, Faridabad 121 001, India
- School of Life Sciences, Manipal Academy of Higher Education, Manipal 576 104, Karnataka, India
| | - Rupak K Bhadra
- Infectious Diseases and Immunology Division, CSIR - Indian Institute of Chemical Biology, Kolkata 700 032, India
| |
Collapse
|
128
|
Zareitaher T, Sadat Ahmadi T, Latif Mousavi Gargari S. Immunogenic efficacy of DNA and protein-based vaccine from a chimeric gene consisting OmpW, TcpA and CtxB, ofVibrio cholerae. Immunobiology 2022; 227:152190. [DOI: 10.1016/j.imbio.2022.152190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 01/30/2022] [Accepted: 02/12/2022] [Indexed: 11/16/2022]
|
129
|
Igler C, Schwyter L, Gehrig D, Wendling CC. Conjugative plasmid transfer is limited by prophages but can be overcome by high conjugation rates. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200470. [PMID: 34839704 PMCID: PMC8628080 DOI: 10.1098/rstb.2020.0470] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Accepted: 10/05/2021] [Indexed: 11/12/2022] Open
Abstract
Antibiotic resistance spread via plasmids is a serious threat to successfully fight infections and makes understanding plasmid transfer in nature crucial to prevent the rise of antibiotic resistance. Studies addressing the dynamics of plasmid conjugation have yet neglected one omnipresent factor: prophages (viruses integrated into bacterial genomes), whose activation can kill host and surrounding bacterial cells. To investigate the impact of prophages on conjugation, we combined experiments and mathematical modelling. Using Escherichia coli, prophage λ and the multidrug-resistant plasmid RP4 we find that prophages can substantially limit the spread of conjugative plasmids. This inhibitory effect was strongly dependent on environmental conditions and bacterial genetic background. Our empirically parameterized model reproduced experimental dynamics of cells acquiring either the prophage or the plasmid well but could only reproduce the number of cells acquiring both elements by assuming complex interactions between conjugative plasmids and prophages in sequential infections. Varying phage and plasmid infection parameters over empirically realistic ranges revealed that plasmids can overcome the negative impact of prophages through high conjugation rates. Overall, the presence of prophages introduces an additional death rate for plasmid carriers, the magnitude of which is determined in non-trivial ways by the environment, the phage and the plasmid. This article is part of the theme issue 'The secret lives of microbial mobile genetic elements'.
Collapse
Affiliation(s)
- Claudia Igler
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| | - Lukas Schwyter
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| | - Daniel Gehrig
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| | - Carolin Charlotte Wendling
- Department of Environmental Systems Science, Institute of Integrative Biology, ETH Zürich, Zurich, Switzerland
| |
Collapse
|
130
|
AB 5 Enterotoxin-Mediated Pathogenesis: Perspectives Gleaned from Shiga Toxins. Toxins (Basel) 2022; 14:toxins14010062. [PMID: 35051039 PMCID: PMC8779504 DOI: 10.3390/toxins14010062] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/12/2022] [Accepted: 01/12/2022] [Indexed: 02/01/2023] Open
Abstract
Foodborne diseases affect an estimated 600 million people worldwide annually, with the majority of these illnesses caused by Norovirus, Vibrio, Listeria, Campylobacter, Salmonella, and Escherichia coli. To elicit infections in humans, bacterial pathogens express a combination of virulence factors and toxins. AB5 toxins are an example of such toxins that can cause various clinical manifestations, including dehydration, diarrhea, kidney damage, hemorrhagic colitis, and hemolytic uremic syndrome (HUS). Treatment of most bacterial foodborne illnesses consists of fluid replacement and antibiotics. However, antibiotics are not recommended for infections caused by Shiga toxin-producing E. coli (STEC) because of the increased risk of HUS development, although there are conflicting views and results in this regard. Lack of effective treatment strategies for STEC infections pose a public health threat during outbreaks; therefore, the debate on antibiotic use for STEC infections could be further explored, along with investigations into antibiotic alternatives. The overall goal of this review is to provide a succinct summary on the mechanisms of action and the pathogenesis of AB5 and related toxins, as expressed by bacterial foodborne pathogens, with a primary focus on Shiga toxins (Stx). The role of Stx in human STEC disease, detection methodologies, and available treatment options are also briefly discussed.
Collapse
|
131
|
Igere BE, Okoh AI, Nwodo UU. Atypical and dual biotypes variant of virulent SA-NAG-Vibrio cholerae: an evidence of emerging/evolving patho-significant strain in municipal domestic water sources. ANN MICROBIOL 2022. [DOI: 10.1186/s13213-021-01661-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Introduction and purpose
The recent cholera spread, new cases, and fatality continue to arouse concern in public health systems; however, interventions on control is at its peak yet statistics show continuous report. This study characterized atypical and patho-significant environmental Vibrio cholerae retrieved from ground/surface/domestic water in rural-urban-sub-urban locations of Amathole District municipality and Chris Hani District municipality, Eastern Cape Province, South Africa.
Methods
Domestic/surface water was sampled and 759 presumptive V. cholerae isolates were retrieved using standard microbiological methods. Virulence phenotypic test: toxin co-regulated pili (tcp), choleragen red, protease production, lecithinase production, and lipase test were conducted. Serotyping using polyvalent antisera (Bengal and Ogawa/Inaba/Hikojima) and molecular typing: 16SrRNA, OmpW, serogroup (Vc-O1/O139), biotype (tcpAClas/El Tor, HlyAClas/El Tor, rstRClas/El Tor, RS1, rtxA, rtxC), and virulence (ctxA, ctxB, zot, ace, cep, prt, toxR, hlyA) genes were targeted.
Result
Result of 16SrRNA typing confirmed 508 (66.9%) while OmpW detected/confirmed 61 (12.01%) V. cholerae strains. Phenotypic-biotyping scheme showed positive test to polymyxin B (68.9%), Voges proskauer (6.6%), and Bengal serology (11.5%). Whereas Vc-O1/O139 was negative, yet two of the isolates harbored the cholera toxin with a gene-type ctxB and hlyAClas: 2/61, revealing atypical/unusual/dual biotype phenotypic/genotypic features. Other potential atypical genotypes detected include rstR: 7/61, Cep: 15/61, ace: 20/61, hlyAElTor: 53/61, rtxA: 30/61, rtxC: 11/61, and prtV: 15/61 respectively.
Conclusion
Although additional patho-significant/virulent genotypes associated with epidemic/sporadic cholera cases were detected, an advanced, bioinformatics, and post-molecular evaluation is necessary. Such stride possesses potential to adequately minimize future cholera cases associated with dynamic/atypical environmental V. cholerae strains.
Collapse
|
132
|
Yan H, Pang B, Lu X, Gao Z, Lu P, Zhang X, Wang M, Shen L, Zhao W, Zhao J, Liang W, Jia L, Zhou H, Cui Z, Du X, Kan B, Wang Q. Cholera Caused by a New Clone of Serogroup O1 Vibrio cholerae — Beijing Municipality, China, June 2021. China CDC Wkly 2022; 4:31-32. [PMID: 35586521 PMCID: PMC8796729 DOI: 10.46234/ccdcw2021.279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 12/14/2021] [Indexed: 11/14/2022] Open
Affiliation(s)
- Hanqiu Yan
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Bo Pang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhiyong Gao
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Pan Lu
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xin Zhang
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Mengyu Wang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lingyu Shen
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Wenxuan Zhao
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Jianhong Zhao
- Beijing Chaoyang Center for Disease Prevention and Control, Beijing, China
| | - Weili Liang
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Lei Jia
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
| | - Haijian Zhou
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Zhigang Cui
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Xiaoli Du
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
| | - Biao Kan
- State Key Laboratory of Infectious Disease Prevention and Control, National Institute for Communicable Disease Control and Prevention, Chinese Center for Disease Control and Prevention, Beijing, China
- Biao Kan,
| | - Quanyi Wang
- Beijing Center for Disease Prevention and Control, Beijing Research Center for Preventive Medicine, Beijing Key Laboratory of Diagnostic and Traceability Technologies for Food Poisoning, Beijing, China
- Quanyi Wang,
| |
Collapse
|
133
|
Sicard A, Saponari M, Vanhove M, Castillo AI, Giampetruzzi A, Loconsole G, Saldarelli P, Boscia D, Neema C, Almeida RPP. Introduction and adaptation of an emerging pathogen to olive trees in Italy. Microb Genom 2021; 7. [PMID: 34904938 PMCID: PMC8767334 DOI: 10.1099/mgen.0.000735] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
The invasive plant pathogen Xylella fastidiosa currently threatens European flora through the loss of economically and culturally important host plants. This emerging vector-borne bacterium, native to the Americas, causes several important diseases in a wide range of plants including crops, ornamentals, and trees. Previously absent from Europe, and considered a quarantine pathogen, X. fastidiosa was first detected in Apulia, Italy in 2013 associated with a devastating disease of olive trees (Olive Quick Decline Syndrome, OQDS). OQDS has led to significant economic, environmental, cultural, as well as political crises. Although the biology of X. fastidiosa diseases have been studied for over a century, there is still no information on the determinants of specificity between bacterial genotypes and host plant species, which is particularly relevant today as X. fastidiosa is expanding in the naive European landscape. We analysed the genomes of 79 X. fastidiosa samples from diseased olive trees across the affected area in Italy as well as genomes of the most genetically closely related strains from Central America. We provided insights into the ecological and evolutionary emergence of this pathogen in Italy. We first showed that the outbreak in Apulia is due to a single introduction from Central America that we estimated to have occurred in 2008 [95 % HPD: 1930–2016]. By using a combination of population genomic approaches and evolutionary genomics methods, we further identified a short list of genes that could play a major role in the adaptation of X. fastidiosa to this new environment. We finally provided experimental evidence for the adaptation of the strain to this new environment.
Collapse
Affiliation(s)
- Anne Sicard
- UC Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA 94720, U.S.A.,PHIM Plant Health Institute, Univ Montpellier, INRAE, Institut Agro, CIRAD, IRD, Montpellier, France
| | - Maria Saponari
- National Research Council (CNR), Institute for Sustainable Plant Protection, Via Amendola 122/D, 70126 Bari, Italy
| | - Mathieu Vanhove
- UC Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA 94720, U.S.A
| | - Andreina I Castillo
- UC Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA 94720, U.S.A
| | - Annalisa Giampetruzzi
- University of Bari Aldo Moro, Department of Soil, Plant and Food Sciences, Piazza Umberto I, 70121 Bari, Italy
| | - Giuliana Loconsole
- National Research Council (CNR), Institute for Sustainable Plant Protection, Via Amendola 122/D, 70126 Bari, Italy
| | - Pasquale Saldarelli
- National Research Council (CNR), Institute for Sustainable Plant Protection, Via Amendola 122/D, 70126 Bari, Italy
| | - Donato Boscia
- National Research Council (CNR), Institute for Sustainable Plant Protection, Via Amendola 122/D, 70126 Bari, Italy
| | - Claire Neema
- PHIM Plant Health Institute, Univ Montpellier, INRAE, Institut Agro, CIRAD, IRD, Montpellier, France
| | - Rodrigo P P Almeida
- UC Berkeley, Department of Environmental Science, Policy, and Management, Berkeley, CA 94720, U.S.A
| |
Collapse
|
134
|
Hu J, Ye H, Wang S, Wang J, Han D. Prophage Activation in the Intestine: Insights Into Functions and Possible Applications. Front Microbiol 2021; 12:785634. [PMID: 34966370 PMCID: PMC8710666 DOI: 10.3389/fmicb.2021.785634] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Accepted: 11/25/2021] [Indexed: 01/20/2023] Open
Abstract
Prophage activation in intestinal environments has been frequently reported to affect host adaptability, pathogen virulence, gut bacterial community composition, and intestinal health. Prophage activation is mostly caused by various stimulators, such as diet, antibiotics, some bacterial metabolites, gastrointestinal transit, inflammatory environment, oxidative stress, and quorum sensing. Moreover, with advancements in biotechnology and the deepening cognition of prophages, prophage activation regulation therapy is currently applied to the treatment of some bacterial intestinal diseases such as Shiga toxin-producing Escherichia coli infection. This review aims to make headway on prophage induction in the intestine, in order to make a better understanding of dynamic changes of prophages, effects of prophage activation on physiological characteristics of bacteria and intestinal health, and subsequently provide guidance on prophage activation regulation therapy.
Collapse
Affiliation(s)
| | | | | | | | - Dandan Han
- State Key Laboratory of Animal Nutrition, College of Animal Science and Technology, China Agricultural University, Beijing, China
| |
Collapse
|
135
|
Rahimi-Midani A, Lee SW, Choi TJ. Potential Solutions Using Bacteriophages against Antimicrobial Resistant Bacteria. Antibiotics (Basel) 2021; 10:antibiotics10121496. [PMID: 34943708 PMCID: PMC8698741 DOI: 10.3390/antibiotics10121496] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2021] [Revised: 12/02/2021] [Accepted: 12/03/2021] [Indexed: 01/01/2023] Open
Abstract
Bacteriophages are viruses that specifically infect a bacterial host. They play a great role in the modern biotechnology and antibiotic-resistant microbe era. Since the discovery of phages, their application as a control agent has faced challenges that made antibiotics a better fit for combating pathogenic bacteria. Recently, with the novel sequencing technologies providing new insight into the nature of bacteriophages, their application has a second chance to be used. However, novel challenges need to be addressed to provide proper strategies for their practical application. This review focuses on addressing these challenges by initially introducing the nature of bacteriophages and describing the phage-host-dependent strategies for phage application. We also describe the effect of the long-term application of phages in natural environments and other bacterial communities. Overall, this review gathered crucial information for the future application of phages. We predict the use of phages will not be the only control strategy against pathogenic bacteria. Therefore, more studies must be done for low-risk control methods against antimicrobial-resistant bacteria.
Collapse
Affiliation(s)
- Aryan Rahimi-Midani
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea; (A.R.-M.); (S.-W.L.)
- Department of Microbiology, Pukyong National University, Busan 48513, Korea
| | - Seon-Woo Lee
- Department of Applied Bioscience, Dong-A University, Busan 49315, Korea; (A.R.-M.); (S.-W.L.)
| | - Tae-Jin Choi
- Department of Microbiology, Pukyong National University, Busan 48513, Korea
- Correspondence:
| |
Collapse
|
136
|
Cook R, Brown N, Redgwell T, Rihtman B, Barnes M, Clokie M, Stekel DJ, Hobman J, Jones MA, Millard A. INfrastructure for a PHAge REference Database: Identification of Large-Scale Biases in the Current Collection of Cultured Phage Genomes. PHAGE (NEW ROCHELLE, N.Y.) 2021; 2:214-223. [PMID: 36159887 PMCID: PMC9041510 DOI: 10.1089/phage.2021.0007] [Citation(s) in RCA: 144] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Background: With advances in sequencing technology and decreasing costs, the number of phage genomes that have been sequenced has increased markedly in the past decade. Materials and Methods: We developed an automated retrieval and analysis system for phage genomes (https://github.com/RyanCook94/inphared) to produce the INfrastructure for a PHAge REference Database (INPHARED) of phage genomes and associated metadata. Results: As of January 2021, 14,244 complete phage genomes have been sequenced. The INPHARED data set is dominated by phages that infect a small number of bacterial genera, with 75% of phages isolated on only 30 bacterial genera. There is further bias, with significantly more lytic phage genomes (∼70%) than temperate (∼30%) within our database. Collectively, this results in ∼54% of temperate phage genomes originating from just three host genera. With much debate on the carriage of antibiotic resistance genes and their potential safety in phage therapy, we searched for putative antibiotic resistance genes. Frequency of antibiotic resistance gene carriage was found to be higher in temperate phages than in lytic phages and again varied with host. Conclusions: Given the bias of currently sequenced phage genomes, we suggest to fully understand phage diversity, efforts should be made to isolate and sequence a larger number of phages, in particular temperate phages, from a greater diversity of hosts.
Collapse
Affiliation(s)
- Ryan Cook
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Nathan Brown
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Tamsin Redgwell
- COPSAC, Copenhagen Prospective Studies on Asthma in Childhood, Herlev and Gentofte Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Branko Rihtman
- School of Life Sciences, University of Warwick, Coventry, United Kingdom
| | - Megan Barnes
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Martha Clokie
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom
| | - Dov J. Stekel
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Jon Hobman
- School of Biosciences, University of Nottingham, Loughborough, United Kingdom
| | - Michael A. Jones
- School of Veterinary Medicine and Science, University of Nottingham, Loughborough, United Kingdom
| | - Andrew Millard
- Department of Genetics and Genome Biology, University of Leicester, Leicester, United Kingdom.,Address correspondence to: Andrew Millard, PhD, Department of Genetics and Genome Biology, University of Leicester, University Road, Leicester, Leicestershire LE1 7RH, United Kingdom
| |
Collapse
|
137
|
Frye KA, Piamthai V, Hsiao A, Degnan PH. Mobilization of vitamin B12 transporters alters competitive dynamics in a human gut microbe. Cell Rep 2021; 37:110164. [PMID: 34965410 PMCID: PMC8759732 DOI: 10.1016/j.celrep.2021.110164] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Revised: 06/29/2021] [Accepted: 12/02/2021] [Indexed: 02/07/2023] Open
|
138
|
Junghans S, Rojas SV, Skusa R, Püschel A, Grambow E, Kohlen J, Warnke P, Gummert J, Gross J. Bacteriophages for the Treatment of Graft Infections in Cardiovascular Medicine. Antibiotics (Basel) 2021; 10:antibiotics10121446. [PMID: 34943658 PMCID: PMC8698116 DOI: 10.3390/antibiotics10121446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/20/2021] [Accepted: 11/22/2021] [Indexed: 11/22/2022] Open
Abstract
Bacterial infections of vascular grafts represent a major burden in cardiovascular medicine, which is related to an increase in morbidity and mortality. Different factors that are associated with this medical field such as patient frailty, biofilm formation, or immunosuppression negatively influence antibiotic treatment, inhibiting therapy success. Thus, further treatment strategies are required. Bacteriophage antibacterial properties were discovered 100 years ago, but the focus on antibiotics in Western medicine since the mid-20th century slowed the further development of bacteriophage therapy. Therefore, the experience and knowledge gained until then in bacteriophage mechanisms of action, handling, clinical uses, and limitations were largely lost. However, the parallel emergence of antimicrobial resistance and individualized medicine has provoked a radical reassessment of this approach and cardiovascular surgery is one area in which phages may play an important role to cope with this new scenario. In this context, bacteriophages might be applicable for both prophylactic and therapeutic use, serving as a stand-alone therapy or in combination with antibiotics. From another perspective, standardization of phage application is also required. The ideal surgical bacteriophage application method should be less invasive, enabling highly localized concentrations, and limiting bacteriophage distribution to the infection site during a prolonged time lapse. This review describes the latest reports of phage therapy in cardiovascular surgery and discusses options for their use in implant and vascular graft infections.
Collapse
Affiliation(s)
- Simon Junghans
- G. Pohl-Boskamp GmbH & Co. KG, 25551 Hohenlockstedt, Germany;
| | - Sebastian V. Rojas
- Department of Cardio-Thoracic Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany; (S.V.R.); (J.G.)
| | - Romy Skusa
- Department for General, Visceral, Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (R.S.); (A.P.); (E.G.); (J.K.)
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany;
| | - Anja Püschel
- Department for General, Visceral, Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (R.S.); (A.P.); (E.G.); (J.K.)
| | - Eberhard Grambow
- Department for General, Visceral, Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (R.S.); (A.P.); (E.G.); (J.K.)
| | - Juliane Kohlen
- Department for General, Visceral, Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (R.S.); (A.P.); (E.G.); (J.K.)
| | - Philipp Warnke
- Institute for Medical Microbiology, Virology and Hygiene, University Medicine Rostock, 18057 Rostock, Germany;
| | - Jan Gummert
- Department of Cardio-Thoracic Surgery, Heart and Diabetes Centre NRW, University Hospital of the Ruhr-University Bochum, 32545 Bad Oeynhausen, Germany; (S.V.R.); (J.G.)
| | - Justus Gross
- Department for General, Visceral, Thoracic, Vascular and Transplantation Surgery, Rostock University Medical Center, 18057 Rostock, Germany; (R.S.); (A.P.); (E.G.); (J.K.)
- Correspondence: ; Tel.:+49-381-494-146007
| |
Collapse
|
139
|
Li N, Zeng Y, Hu B, Zhu T, Svenningsen SL, Middelboe M, Tan D. Interactions between the Prophage 919TP and Its Vibrio cholerae Host: Implications of gmd Mutation for Phage Resistance, Cell Auto-Aggregation, and Motility. Viruses 2021; 13:v13122342. [PMID: 34960610 PMCID: PMC8706939 DOI: 10.3390/v13122342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Revised: 11/18/2021] [Accepted: 11/18/2021] [Indexed: 01/21/2023] Open
Abstract
Prophage 919TP is widely distributed among Vibrio cholera and is induced to produce free φ919TP phage particles. However, the interactions between prophage φ919TP, the induced phage particle, and its host remain unknown. In particular, phage resistance mechanisms and potential fitness trade-offs, resulting from phage resistance, are unresolved. In this study, we examined a prophage 919TP-deleted variant of V. cholerae and its interaction with a modified lytic variant of the induced prophage (φ919TP cI-). Specifically, the phage-resistant mutant was isolated by challenging a prophage-deleted variant with lytic phage φ919TP cI-. Further, the comparative genomic analysis of wild-type and φ919TP cI--resistant mutant predicted that phage φ919TP cI- selects for phage-resistant mutants harboring a mutation in key steps of lipopolysaccharide (LPS) O-antigen biosynthesis, causing a single-base-pair deletion in gene gmd. Our study showed that the gmd-mediated O-antigen defect can cause pleiotropic phenotypes, e.g., cell autoaggregation and reduced swarming motility, emphasizing the role of phage-driven diversification in V. cholerae. The developed approach assists in the identification of genetic determinants of host specificity and is used to explore the molecular mechanism underlying phage-host interactions. Our findings contribute to the understanding of prophage-facilitated horizontal gene transfer and emphasize the potential for developing new strategies to optimize the use of phages in bacterial pathogen control.
Collapse
Affiliation(s)
- Na Li
- Zhongshan Hospital, Fudan University, Shanghai 200032, China; (N.L.); (B.H.); (T.Z.)
| | - Yigang Zeng
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China;
| | - Bijie Hu
- Zhongshan Hospital, Fudan University, Shanghai 200032, China; (N.L.); (B.H.); (T.Z.)
| | - Tongyu Zhu
- Zhongshan Hospital, Fudan University, Shanghai 200032, China; (N.L.); (B.H.); (T.Z.)
| | | | - Mathias Middelboe
- Department of Biology, University of Copenhagen, 2200 Copenhagen, Denmark;
- Correspondence: (M.M.); (D.T.)
| | - Demeng Tan
- Shanghai Public Health Clinical Center, Fudan University, Shanghai 201508, China;
- Correspondence: (M.M.); (D.T.)
| |
Collapse
|
140
|
Motor-independent retraction of type IV pili is governed by an inherent property of the pilus filament. Proc Natl Acad Sci U S A 2021; 118:2102780118. [PMID: 34789573 DOI: 10.1073/pnas.2102780118] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/05/2021] [Indexed: 12/21/2022] Open
Abstract
Type IV pili (T4P) are dynamic surface appendages that promote virulence, biofilm formation, horizontal gene transfer, and motility in diverse bacterial species. Pilus dynamic activity is best characterized in T4P that use distinct ATPase motors for pilus extension and retraction. Many T4P systems, however, lack a dedicated retraction motor, and the mechanism underlying this motor-independent retraction remains a mystery. Using the Vibrio cholerae competence pilus as a model system, we identify mutations in the major pilin gene that enhance motor-independent retraction. These mutants likely diminish pilin-pilin interactions within the filament to produce less-stable pili. One mutation adds a bulky residue to α1C, a universally conserved feature of T4P. We found that inserting a bulky residue into α1C of the retraction motor-dependent Acinetobacter baylyi competence T4P enhances motor-independent retraction. Conversely, removing bulky residues from α1C of the retraction motor-independent, V. cholerae toxin-coregulated T4P stabilizes the filament and diminishes pilus retraction. Furthermore, alignment of pilins from the broader type IV filament (T4F) family indicated that retraction motor-independent T4P, gram-positive Com pili, and type II secretion systems generally encode larger residues within α1C oriented toward the pilus core compared to retraction motor-dependent T4P. Together, our data demonstrate that motor-independent retraction relies, in part, on the inherent instability of the pilus filament, which may be a conserved feature of diverse T4Fs. This provides evidence for a long-standing yet previously untested model in which pili retract in the absence of a motor by spontaneous depolymerization.
Collapse
|
141
|
Knezevic P, Petrovic Fabijan A, Gavric D, Pejic J, Doffkay Z, Rakhely G. Phages from Genus Bruynoghevirus and Phage Therapy: Pseudomonas Phage Delta Case. Viruses 2021; 13:1965. [PMID: 34696396 PMCID: PMC8540360 DOI: 10.3390/v13101965] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2021] [Accepted: 09/23/2021] [Indexed: 11/17/2022] Open
Abstract
The applicability and safety of bacteriophage Delta as a potential anti-Pseudomonas aeruginosa agent belonging to genus Bruynoghevirus (family Podoviridae) was characterised. Phage Delta belongs to the species Pseudomonas virus PaP3, which has been described as a temperate, with cos sites at the end of the genome. The phage Delta possesses a genome of 45,970 bp that encodes tRNA for proline (Pro), aspartic acid (Asp) and asparagine (Asn) and does not encode any known protein involved in lysogeny formation or persistence. Analysis showed that phage Delta has 182 bp direct terminal repeats at the end of genome and lysogeny was confirmed, neither upon infection at low nor at high multiplicity of infection (MOI). The turbid plaques that appear on certain host lawns can result from bacteriophage insensitive mutants that occur with higher frequency (10-4). In silico analysis showed that the genome of Delta phage does not encode any known bacterial toxin or virulence factor, determinants of antibiotic resistance and known human allergens. Based on the broad host range and high lytic activity against planktonic and biofilm cells, phage Delta represents a promising candidate for phage therapy.
Collapse
Affiliation(s)
- Petar Knezevic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000 Novi Sad, Serbia; (A.P.F.); (D.G.); (J.P.)
| | - Aleksandra Petrovic Fabijan
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000 Novi Sad, Serbia; (A.P.F.); (D.G.); (J.P.)
| | - Damir Gavric
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000 Novi Sad, Serbia; (A.P.F.); (D.G.); (J.P.)
| | - Jovana Pejic
- Department of Biology and Ecology, Faculty of Sciences, University of Novi Sad, Trg Dositeja Obradovica 3, 21 000 Novi Sad, Serbia; (A.P.F.); (D.G.); (J.P.)
| | - Zsolt Doffkay
- Department of Biotechnology, University of Szeged, Temesvari krt. 62, H-6726 Szeged, Hungary; (Z.D.); (G.R.)
| | - Gábor Rakhely
- Department of Biotechnology, University of Szeged, Temesvari krt. 62, H-6726 Szeged, Hungary; (Z.D.); (G.R.)
| |
Collapse
|
142
|
Natural transformation in Gram-negative bacteria thriving in extreme environments: from genes and genomes to proteins, structures and regulation. Extremophiles 2021; 25:425-436. [PMID: 34542714 PMCID: PMC8578077 DOI: 10.1007/s00792-021-01242-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 08/30/2021] [Indexed: 01/25/2023]
Abstract
Extremophilic prokaryotes live under harsh environmental conditions which require far-reaching cellular adaptations. The acquisition of novel genetic information via natural transformation plays an important role in bacterial adaptation. This mode of DNA transfer permits the transfer of genetic information between microorganisms of distant evolutionary lineages and even between members of different domains. This phenomenon, known as horizontal gene transfer (HGT), significantly contributes to genome plasticity over evolutionary history and is a driving force for the spread of fitness-enhancing functions including virulence genes and antibiotic resistances. In particular, HGT has played an important role for adaptation of bacteria to extreme environments. Here, we present a survey of the natural transformation systems in bacteria that live under extreme conditions: the thermophile Thermus thermophilus and two desiccation-resistant members of the genus Acinetobacter such as Acinetobacter baylyi and Acinetobacter baumannii. The latter is an opportunistic pathogen and has become a world-wide threat in health-care institutions. We highlight conserved and unique features of the DNA transporter in Thermus and Acinetobacter and present tentative models of both systems. The structure and function of both DNA transporter are described and the mechanism of DNA uptake is discussed.
Collapse
|
143
|
Mäntynen S, Laanto E, Oksanen HM, Poranen MM, Díaz-Muñoz SL. Black box of phage-bacterium interactions: exploring alternative phage infection strategies. Open Biol 2021; 11:210188. [PMID: 34520699 PMCID: PMC8440029 DOI: 10.1098/rsob.210188] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
The canonical lytic-lysogenic binary has been challenged in recent years, as more evidence has emerged on alternative bacteriophage infection strategies. These infection modes are little studied, and yet they appear to be more abundant and ubiquitous in nature than previously recognized, and can play a significant role in the ecology and evolution of their bacterial hosts. In this review, we discuss the extent, causes and consequences of alternative phage lifestyles, and clarify conceptual and terminological confusion to facilitate research progress. We propose distinct definitions for the terms 'pseudolysogeny' and 'productive or non-productive chronic infection', and distinguish them from the carrier state life cycle, which describes a population-level phenomenon. Our review also finds that phages may change their infection modes in response to environmental conditions or the physiological state of the host cell. We outline known molecular mechanisms underlying the alternative phage-host interactions, including specific genetic pathways and their considerable biotechnological potential. Moreover, we discuss potential implications of the alternative phage lifestyles for microbial biology and ecosystem functioning, as well as applied topics such as phage therapy.
Collapse
Affiliation(s)
- Sari Mäntynen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland,Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA
| | - Elina Laanto
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland,Department of Biological and Environmental Science and Nanoscience Center, University of Jyväskylä, Survontie 9, 40014 Jyväskylä, Finland
| | - Hanna M. Oksanen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Minna M. Poranen
- Molecular and Integrative Biosciences Research Programme, Faculty of Biological and Environmental Sciences, University of Helsinki, Viikinkaari 9, 00014 Helsinki, Finland
| | - Samuel L. Díaz-Muñoz
- Department of Microbiology and Molecular Genetics, University of California, One Shields Avenue, Davis, CA 95616, USA,Genome Center, University of California, One Shields Avenue, Davis, CA 95616, USA
| |
Collapse
|
144
|
Diner RE, Kaul D, Rabines A, Zheng H, Steele JA, Griffith JF, Allen AE. Pathogenic Vibrio Species Are Associated with Distinct Environmental Niches and Planktonic Taxa in Southern California (USA) Aquatic Microbiomes. mSystems 2021; 6:e0057121. [PMID: 34227831 PMCID: PMC8407410 DOI: 10.1128/msystems.00571-21 10.1128/msystems.00571-21] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/08/2021] [Indexed: 04/26/2025] Open
Abstract
Interactions between vibrio bacteria and the planktonic community impact marine ecology and human health. Many coastal Vibrio spp. can infect humans, representing a growing threat linked to increasing seawater temperatures. Interactions with eukaryotic organisms may provide attachment substrate and critical nutrients that facilitate the persistence, diversification, and spread of pathogenic Vibrio spp. However, vibrio interactions with planktonic organisms in an environmental context are poorly understood. We quantified the pathogenic Vibrio species V. cholerae, V. parahaemolyticus, and V. vulnificus monthly for 1 year at five sites and observed high abundances, particularly during summer months, with species-specific temperature and salinity distributions. Using metabarcoding, we established a detailed profile of both prokaryotic and eukaryotic coastal microbial communities. We found that pathogenic Vibrio species were frequently associated with distinct eukaryotic amplicon sequence variants (ASVs), including diatoms and copepods. Shared environmental conditions, such as high temperatures and low salinities, were associated with both high concentrations of pathogenic vibrios and potential environmental reservoirs, which may influence vibrio infection risks linked to climate change and should be incorporated into predictive ecological models and experimental laboratory systems. IMPORTANCE Many species of coastal vibrio bacteria can infect humans, representing a growing health threat linked to increasing seawater temperatures. However, their interactions with surrounding microbes in the environment, especially eukaryotic organisms that may provide nutrients and attachment substrate, are poorly understood. We quantified three pathogenic Vibrio species monthly for a duration of 1 year, finding that all three species were abundant and exhibited species-specific temperature and salinity distributions. Using metabarcoding, we investigated associations between these pathogenic species and prokaryotic and eukaryotic microbes, revealing genus and amplicon sequence variant (ASV)-specific relationships with potential functional implications. For example, pathogenic species were frequently associated with chitin-producing eukaryotes, such as diatoms in the genus Thalassiosira and copepods. These associations between high concentrations of pathogenic vibrios and potential environmental reservoirs should be considered when predicting infection risk and developing ecologically relevant model systems.
Collapse
Affiliation(s)
- Rachel E. Diner
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Drishti Kaul
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Ariel Rabines
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Hong Zheng
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Joshua A. Steele
- Southern California Coastal Water Research Project, Costa Mesa, California, USA
| | - John F. Griffith
- Southern California Coastal Water Research Project, Costa Mesa, California, USA
| | - Andrew E. Allen
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, California, USA
| |
Collapse
|
145
|
Diner RE, Kaul D, Rabines A, Zheng H, Steele JA, Griffith JF, Allen AE. Pathogenic Vibrio Species Are Associated with Distinct Environmental Niches and Planktonic Taxa in Southern California (USA) Aquatic Microbiomes. mSystems 2021; 6:e0057121. [PMID: 34227831 PMCID: PMC8407410 DOI: 10.1128/msystems.00571-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2021] [Accepted: 06/08/2021] [Indexed: 01/04/2023] Open
Abstract
Interactions between vibrio bacteria and the planktonic community impact marine ecology and human health. Many coastal Vibrio spp. can infect humans, representing a growing threat linked to increasing seawater temperatures. Interactions with eukaryotic organisms may provide attachment substrate and critical nutrients that facilitate the persistence, diversification, and spread of pathogenic Vibrio spp. However, vibrio interactions with planktonic organisms in an environmental context are poorly understood. We quantified the pathogenic Vibrio species V. cholerae, V. parahaemolyticus, and V. vulnificus monthly for 1 year at five sites and observed high abundances, particularly during summer months, with species-specific temperature and salinity distributions. Using metabarcoding, we established a detailed profile of both prokaryotic and eukaryotic coastal microbial communities. We found that pathogenic Vibrio species were frequently associated with distinct eukaryotic amplicon sequence variants (ASVs), including diatoms and copepods. Shared environmental conditions, such as high temperatures and low salinities, were associated with both high concentrations of pathogenic vibrios and potential environmental reservoirs, which may influence vibrio infection risks linked to climate change and should be incorporated into predictive ecological models and experimental laboratory systems. IMPORTANCE Many species of coastal vibrio bacteria can infect humans, representing a growing health threat linked to increasing seawater temperatures. However, their interactions with surrounding microbes in the environment, especially eukaryotic organisms that may provide nutrients and attachment substrate, are poorly understood. We quantified three pathogenic Vibrio species monthly for a duration of 1 year, finding that all three species were abundant and exhibited species-specific temperature and salinity distributions. Using metabarcoding, we investigated associations between these pathogenic species and prokaryotic and eukaryotic microbes, revealing genus and amplicon sequence variant (ASV)-specific relationships with potential functional implications. For example, pathogenic species were frequently associated with chitin-producing eukaryotes, such as diatoms in the genus Thalassiosira and copepods. These associations between high concentrations of pathogenic vibrios and potential environmental reservoirs should be considered when predicting infection risk and developing ecologically relevant model systems.
Collapse
Affiliation(s)
- Rachel E. Diner
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Department of Pediatrics, University of California San Diego, La Jolla, California, USA
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Drishti Kaul
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Ariel Rabines
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Hong Zheng
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, California, USA
| | - Joshua A. Steele
- Southern California Coastal Water Research Project, Costa Mesa, California, USA
| | - John F. Griffith
- Southern California Coastal Water Research Project, Costa Mesa, California, USA
| | - Andrew E. Allen
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, California, USA
- Microbial and Environmental Genomics Group, J. Craig Venter Institute, La Jolla, California, USA
| |
Collapse
|
146
|
Alqahtani A, Mena L, Scholl D, Kruczek C, Colmer-Hamood JA, Jeter RM, Hamood AN. Recombinant R2-pyocin cream is effective in treating Pseudomonas aeruginosa-infected wounds. Can J Microbiol 2021; 67:919-932. [PMID: 34437812 DOI: 10.1139/cjm-2021-0207] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Pseudomonas aeruginosa, a gram-negative opportunistic pathogen, is one of the major species isolated from infected chronic wounds. The multidrug resistance exhibited by P. aeruginosa and its ability to form biofilms that are difficult to eradicate, along with the rising cost of producing new antibiotics, has necessitated the search for alternatives to standard antibiotics. Pyocins are antimicrobial compounds produced by P. aeruginosa that protect themselves from their competitors. We synthesized and purified recombinant P. aeruginosa R2 pyocin and used it in an aqueous solution (rR2P) or formulated in polyethylene glycol (rR2PC) to treat P. aeruginosa-infected wounds. Clinical strains of P. aeruginosa were found to be sensitive (completely), partially sensitive, or resistant to rR2P. In the in vitro biofilm model, rR2P inhibited biofilm development by rR2P-sensitive isolates, while rR2PC eliminated partial biofilms formed by these strains in an in vitro wound biofilm model. In the murine model of excision wounds, and at 24 h post-infection, rR2PC application significantly reduced the bioburden of the clinical isolate BPI86. Application of rR2PC containing two glycoside hydrolase antibiofilm agents eliminated BPI86 from infected wounds. These results suggest that the topical application of rR2PC is an effective therapy for treating wounds infected with R2P-senstive P. aeruginosa strains.
Collapse
Affiliation(s)
| | - London Mena
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Dean Scholl
- Pylum Biosciences, San Francisco, California, USA
| | - Cassandra Kruczek
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Jane A Colmer-Hamood
- Department of Medical Education, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| | - Randall M Jeter
- Department of Biological Sciences, Texas Tech University, Lubbock, TX, USA
| | - Abdul N Hamood
- Department of Surgery, Texas Tech University Health Sciences Center, Lubbock, TX, USA.,Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center, Lubbock, TX, USA
| |
Collapse
|
147
|
H-NS and ToxT Inversely Control Cholera Toxin Production by Binding to Overlapping DNA Sequences. J Bacteriol 2021; 203:e0018721. [PMID: 34228499 DOI: 10.1128/jb.00187-21] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Vibrio cholerae infects human hosts following ingestion of contaminated food or water, resulting in the severe diarrheal disease cholera. The watery diarrhea that is characteristic of the disease is directly caused by the production of cholera toxin (CT). A complex regulatory cascade controls the production of CT and other virulence factors. However, ultimately, a single protein, ToxT, directly binds to virulence gene promoters and activates their transcription. Previously, we identified two ToxT binding sites, or toxboxes, within the cholera toxin promoter (PctxAB). The toxboxes overlap the two promoter-proximal GATTTTT heptad repeats found within PctxAB in classical biotype V. cholerae strain O395. These heptad repeats were previously found to be located within a large DNA region bound by H-NS, a global transcriptional repressor present in Gram-negative bacteria. The current model for the control of PctxAB transcription proposes complete H-NS displacement from the DNA by ToxT, followed by direct activation by ToxT-RNA polymerase (RNAP) contacts. The goal of this study was to determine more precisely where H-NS binds to PctxAB and test the hypothesis that ToxT completely displaces H-NS from the PctxAB promoter before activating transcription. The results suggest that H-NS binds only to the region of PctxAB encompassing the heptad repeats and that ToxT displaces H-NS only from its most promoter-proximal binding sites, calling for a revision of the current model involving H-NS and ToxT at PctxAB. IMPORTANCE H-NS is a global negative regulator of transcription in Gram-negative bacteria, particularly in horizontally acquired genetic islands. Previous work in Vibrio cholerae suggested that H-NS represses the transcription of cholera toxin genes by binding to a large region upstream of its promoter and that the virulence activator ToxT derepresses transcription by removing H-NS from the promoter. Here, new data support a revised model in which ToxT displaces only H-NS bound to the most promoter-proximal DNA sites that overlap the ToxT binding sites, leaving the upstream sites occupied by H-NS. This introduces a higher-resolution mechanism for the antirepression of H-NS in the control of cholera toxin production.
Collapse
|
148
|
Phages in the infant gut: a framework for virome development during early life. ISME JOURNAL 2021; 16:323-330. [PMID: 34417565 PMCID: PMC8776839 DOI: 10.1038/s41396-021-01090-x] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/04/2021] [Accepted: 08/09/2021] [Indexed: 01/21/2023]
|
149
|
Schroven K, Aertsen A, Lavigne R. Bacteriophages as drivers of bacterial virulence and their potential for biotechnological exploitation. FEMS Microbiol Rev 2021; 45:5902850. [PMID: 32897318 DOI: 10.1093/femsre/fuaa041] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2020] [Accepted: 09/03/2020] [Indexed: 12/20/2022] Open
Abstract
Bacteria-infecting viruses (phages) and their hosts maintain an ancient and complex relationship. Bacterial predation by lytic phages drives an ongoing phage-host arms race, whereas temperate phages initiate mutualistic relationships with their hosts upon lysogenization as prophages. In human pathogens, these prophages impact bacterial virulence in distinct ways: by secretion of phage-encoded toxins, modulation of the bacterial envelope, mediation of bacterial infectivity and the control of bacterial cell regulation. This review builds the argument that virulence-influencing prophages hold extensive, unexplored potential for biotechnology. More specifically, it highlights the development potential of novel therapies against infectious diseases, to address the current antibiotic resistance crisis. First, designer bacteriophages may serve to deliver genes encoding cargo proteins which repress bacterial virulence. Secondly, one may develop small molecules mimicking phage-derived proteins targeting central regulators of bacterial virulence. Thirdly, bacteria equipped with phage-derived synthetic circuits which modulate key virulence factors could serve as vaccine candidates to prevent bacterial infections. The development and exploitation of such antibacterial strategies will depend on the discovery of other prophage-derived, virulence control mechanisms and, more generally, on the dissection of the mutualistic relationship between temperate phages and bacteria, as well as on continuing developments in the synthetic biology field.
Collapse
Affiliation(s)
- Kaat Schroven
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| | - Abram Aertsen
- Laboratory of Food Microbiology, KU Leuven, Kasteelpark Arenberg 23, 3001 Leuven, Belgium
| | - Rob Lavigne
- Laboratory of Gene Technology, KU Leuven, Kasteelpark Arenberg 21, 3001 Leuven, Belgium
| |
Collapse
|
150
|
Kloub L, Gosselin S, Fullmer M, Graf J, Gogarten JP, Bansal MS. Systematic Detection of Large-Scale Multigene Horizontal Transfer in Prokaryotes. Mol Biol Evol 2021; 38:2639-2659. [PMID: 33565580 PMCID: PMC8136488 DOI: 10.1093/molbev/msab043] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022] Open
Abstract
Horizontal gene transfer (HGT) is central to prokaryotic evolution. However, little is known about the “scale” of individual HGT events. In this work, we introduce the first computational framework to help answer the following fundamental question: How often does more than one gene get horizontally transferred in a single HGT event? Our method, called HoMer, uses phylogenetic reconciliation to infer single-gene HGT events across a given set of species/strains, employs several techniques to account for inference error and uncertainty, combines that information with gene order information from extant genomes, and uses statistical analysis to identify candidate horizontal multigene transfers (HMGTs) in both extant and ancestral species/strains. HoMer is highly scalable and can be easily used to infer HMGTs across hundreds of genomes. We apply HoMer to a genome-scale data set of over 22,000 gene families from 103 Aeromonas genomes and identify a large number of plausible HMGTs of various scales at both small and large phylogenetic distances. Analysis of these HMGTs reveals interesting relationships between gene function, phylogenetic distance, and frequency of multigene transfer. Among other insights, we find that 1) the observed relative frequency of HMGT increases as divergence between genomes increases, 2) HMGTs often have conserved gene functions, and 3) rare genes are frequently acquired through HMGT. We also analyze in detail HMGTs involving the zonula occludens toxin and type III secretion systems. By enabling the systematic inference of HMGTs on a large scale, HoMer will facilitate a more accurate and more complete understanding of HGT and microbial evolution.
Collapse
Affiliation(s)
- Lina Kloub
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA
| | - Sean Gosselin
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA
| | - Matthew Fullmer
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.,Bioinformatics Institute, School of Biological Sciences, The University of Auckland, Auckland, New Zealand
| | - Joerg Graf
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.,The Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Johann Peter Gogarten
- Department of Molecular and Cell Biology, University of Connecticut, Storrs, CT, USA.,The Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| | - Mukul S Bansal
- Department of Computer Science and Engineering, University of Connecticut, Storrs, CT, USA.,The Institute for Systems Genomics, University of Connecticut, Storrs, CT, USA
| |
Collapse
|