101
|
Bolton PE, Balakrishnan CN. Behavioral Genetics: Dissecting a Supergene to Understand Behavior. Curr Biol 2020; 30:R1438-R1441. [PMID: 33290715 DOI: 10.1016/j.cub.2020.09.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Abstract
New research shows how alternative 'supergene' alleles of Estrogen Receptor 1 are differentially expressed in specific brain nuclei causing aggressive behavior in the white-throated sparrow.
Collapse
Affiliation(s)
- Peri E Bolton
- Department of Biology, East Carolina University, Greenville, NC 27858, USA; Department of Vertebrate Zoology, National Museum of Natural History, Smithsonian Institution, Washington, DC 20560, USA
| | | |
Collapse
|
102
|
First Draft Genome Assembly of the Malaysian Stingless Bee, Heterotrigona itama (Apidae, Meliponinae). DATA 2020. [DOI: 10.3390/data5040112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The Malaysian stingless bee industry is hugely dependent on wild colonies. Nevertheless, the availability of new queens to establish new colonies is insufficient to meet the growing demand for hives in the industry. Heterotrigona itama is primarily utilized for honey production in the region and the major source of stingless bee colonies comes from the wild. To propagate new colonies domestically, a fundamental understanding of the biology of queen development, especially from the genomics aspect, is necessary. The whole genome was sequenced using a paired-end 150 strategy on the Illumina HiSeq X platform. The shotgun sequencing generated approximately 89 million raw pair-end reads with a total output of 13.37 Gb and a GC content of 37.31%. The genome size of the species was estimated to be approximately 272 Mb. Phylogenetic analysis showed H. itama are much more closely related to the bumble bee (Bombus spp.) than they are to the modern honey bee (Apis spp.). The genome data provided here are expected to contribute to a better understanding of the genetic aspect of queen differentiation as well as of important molecular pathways which are crucial for stingless bee biology, management and conservation.
Collapse
|
103
|
Sinha S, Jones BM, Traniello IM, Bukhari SA, Halfon MS, Hofmann HA, Huang S, Katz PS, Keagy J, Lynch VJ, Sokolowski MB, Stubbs LJ, Tabe-Bordbar S, Wolfner MF, Robinson GE. Behavior-related gene regulatory networks: A new level of organization in the brain. Proc Natl Acad Sci U S A 2020; 117:23270-23279. [PMID: 32661177 PMCID: PMC7519311 DOI: 10.1073/pnas.1921625117] [Citation(s) in RCA: 41] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Neuronal networks are the standard heuristic model today for describing brain activity associated with animal behavior. Recent studies have revealed an extensive role for a completely distinct layer of networked activities in the brain-the gene regulatory network (GRN)-that orchestrates expression levels of hundreds to thousands of genes in a behavior-related manner. We examine emerging insights into the relationships between these two types of networks and discuss their interplay in spatial as well as temporal dimensions, across multiple scales of organization. We discuss properties expected of behavior-related GRNs by drawing inspiration from the rich literature on GRNs related to animal development, comparing and contrasting these two broad classes of GRNs as they relate to their respective phenotypic manifestations. Developmental GRNs also represent a third layer of network biology, playing out over a third timescale, which is believed to play a crucial mediatory role between neuronal networks and behavioral GRNs. We end with a special emphasis on social behavior, discuss whether unique GRN organization and cis-regulatory architecture underlies this special class of behavior, and review literature that suggests an affirmative answer.
Collapse
Affiliation(s)
- Saurabh Sinha
- Department of Computer Science, University of Illinois, Urbana-Champaign, IL 61801;
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
| | - Beryl M Jones
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544
| | - Ian M Traniello
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Neuroscience Program, University of Illinois, Urbana-Champaign, IL 61801
| | - Syed A Bukhari
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Informatics Program, University of Illinois, Urbana-Champaign, IL 61820
| | - Marc S Halfon
- Department of Biochemistry, University at Buffalo-State University of New York, Buffalo, NY 14203
| | - Hans A Hofmann
- Department of Integrative Biology, The University of Texas at Austin, Austin, TX 78712
- Institute for Cellular and Molecular Biology, The University of Texas at Austin, Austin, TX 78712
- Center for Computational Biology and Bioinformatics, The University of Texas at Austin, Austin, TX 78712
| | - Sui Huang
- Institute for Systems Biology, Seattle, WA 98109
| | - Paul S Katz
- Department of Biology, University of Massachusetts, Amherst, MA 01003
| | - Jason Keagy
- Department of Evolution, Ecology, and Behavior, School of Integrative Biology, University of Illinois, Urbana-Champaign, IL 61801
| | - Vincent J Lynch
- Department of Biological Sciences, University at Buffalo-State University of New York, Buffalo, NY 14260
| | - Marla B Sokolowski
- Department of Ecology and Evolutionary Biology, University of Toronto, Toronto, ON M5S 3B2, Canada
- Program in Child and Brain Development, Canadian Institute for Advanced Research, Toronto, ON M5G 1M1, Canada
| | - Lisa J Stubbs
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801
- Department of Cell and Developmental Biology, University of Illinois, Urbana-Champaign, IL 61801
| | - Shayan Tabe-Bordbar
- Department of Computer Science, University of Illinois, Urbana-Champaign, IL 61801
| | - Mariana F Wolfner
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, NY 14850
| | - Gene E Robinson
- Carl R. Woese Institute for Genomic Biology, University of Illinois, Urbana-Champaign, IL 61801;
- Neuroscience Program, University of Illinois, Urbana-Champaign, IL 61801
- Department of Entomology, University of Illinois, Urbana-Champaign, IL 61801
| |
Collapse
|
104
|
Holland JG, Bloch G. The Complexity of Social Complexity: A Quantitative Multidimensional Approach for Studies of Social Organization. Am Nat 2020; 196:525-540. [PMID: 33064587 DOI: 10.1086/710957] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
AbstractThe rapid increase in "big data" during the postgenomic era makes it crucial to appropriately measure the level of social complexity in comparative studies. We argue that commonly used qualitative classifications lump together species showing a broad range of social complexity and falsely imply that social evolution always progresses along a single linear stepwise trajectory that can be deduced from comparing extant species. To illustrate this point, we compared widely used social complexity measures in "primitively eusocial" bumble bees with "advanced eusocial" stingless bees, honey bees, and attine ants. We find that a single species can have both higher and lower levels of complexity compared with other taxa, depending on the social trait measured. We propose that measuring the complexity of individual social traits switches focus from semantic discussions and offers several directions for progress. First, quantitative social traits can be correlated with molecular, developmental, and physiological processes within and across lineages of social animals. This approach is particularly promising for identifying processes that influence or have been affected by social evolution. Second, key social complexity traits can be combined into multidimensional lineage-specific quantitative indices, enabling fine-scale comparison across species that are currently bundled within the same level of social complexity.
Collapse
|
105
|
Guoth AW, Chernyshova AM, Thompson GJ. Gene-regulatory context of honey bee worker sterility. Biosystems 2020; 198:104235. [PMID: 32882324 DOI: 10.1016/j.biosystems.2020.104235] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 07/29/2020] [Accepted: 08/25/2020] [Indexed: 12/30/2022]
Abstract
The highly organized societies of the Western honey bee Apis mellifera feature a highly reproductive queen at the center of attention and a large cohort of daughters that suppress their own reproduction to help rear more sisters, some of whom become queens themselves. This reproductive altruism is peculiar because in theory it evolves via indirect selection on genes for altruism that are expressed in the sterile workers but not in the reproductive queens. In this study we attempt to situate lists of genes previously implicated in queenright worker sterility into a broader regulatory framework. To do so we use a model bee brain transcriptional regulatory network as a template to infer how sets of genes responsive to ovary-suppressing queen pheromone are functionally interconnected over the model's topology. We predict that genes jointly involved in the regulation of worker sterility should be tightly networked, relative to genes whose functions are unrelated to each other. We find that sets of mapped genes - ranging in size from 17 to 250 - are well dispersed across the network's substructural scaffolds, suggesting that ovary de-activation involves genes that reside within more than one transcriptional regulatory module. For some sets, however, this dispersion is biased into certain areas of the network's substructure. Our analysis identifies the regions enriched for sterility genes and likewise identifies local hub genes that are presumably critical to subnetwork function. Our work offers a glimpse into the gene regulatory context of honey bee worker sterility and uses this context to identify new candidate gene targets for functional analysis. Finally, to the extent that any sterility-related modules identified here have evolved via selection for worker altruism, we can assume that this selection was indirect and of the type specifically invoked by inclusive fitness theory.
Collapse
Affiliation(s)
- Alex W Guoth
- Biology Department, Western University, London, Ontario, N6A 5B7, Canada
| | - Anna M Chernyshova
- Biology Department, Western University, London, Ontario, N6A 5B7, Canada
| | - Graham J Thompson
- Biology Department, Western University, London, Ontario, N6A 5B7, Canada.
| |
Collapse
|
106
|
Imrit MA, Dogantzis KA, Harpur BA, Zayed A. Eusociality influences the strength of negative selection on insect genomes. Proc Biol Sci 2020; 287:20201512. [PMID: 32811314 PMCID: PMC7482261 DOI: 10.1098/rspb.2020.1512] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 07/23/2020] [Indexed: 12/16/2022] Open
Abstract
While much of the focus of sociobiology concerns identifying genomic changes that influence social behaviour, we know little about the consequences of social behaviour on genome evolution. It has been hypothesized that social evolution can influence the strength of negative selection via two mechanisms. First, division of labour can influence the efficiency of negative selection in a caste-specific manner; indirect negative selection on worker traits is theoretically expected to be weaker than direct selection on queen traits. Second, increasing social complexity is expected to lead to relaxed negative selection because of its influence on effective population size. We tested these two hypotheses by estimating the strength of negative selection in honeybees, bumblebees, paper wasps, fire ants and six other insects that span the range of social complexity. We found no consistent evidence that negative selection was significantly stronger on queen-biased genes relative to worker-biased genes. However, we found strong evidence that increased social complexity reduced the efficiency of negative selection. Our study clearly illustrates how changes in behaviour can influence patterns of genome evolution by modulating the strength of natural selection.
Collapse
Affiliation(s)
- Mohammad A. Imrit
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada, M3 J 1P3
| | - Kathleen A. Dogantzis
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada, M3 J 1P3
| | - Brock A. Harpur
- Department of Entomology, Purdue University, 901 W State Street, West Lafayette, IN 47907, USA
| | - Amro Zayed
- Department of Biology, York University, 4700 Keele Street, Toronto, Ontario, Canada, M3 J 1P3
| |
Collapse
|
107
|
De Novo Genome Assemblies for Three North American Bumble Bee Species: Bombus bifarius, Bombus vancouverensis, and Bombus vosnesenskii. G3-GENES GENOMES GENETICS 2020; 10:2585-2592. [PMID: 32586847 PMCID: PMC7407468 DOI: 10.1534/g3.120.401437] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Bumble bees are ecologically and economically important insect pollinators. Three abundant and widespread species in western North America, Bombus bifarius, Bombus vancouverensis, and Bombus vosnesenskii, have been the focus of substantial research relating to diverse aspects of bumble bee ecology and evolutionary biology. We present de novo genome assemblies for each of the three species using hybrid assembly of Illumina and Oxford Nanopore Technologies sequences. All three assemblies are of high quality with large N50s (> 2.2 Mb), BUSCO scores indicating > 98% complete genes, and annotations producing 13,325 - 13,687 genes, comparing favorably with other bee genomes. Analysis of synteny against the most complete bumble bee genome, Bombus terrestris, reveals a high degree of collinearity. These genomes should provide a valuable resource for addressing questions relating to functional genomics and evolutionary biology in these species.
Collapse
|
108
|
Kapheim KM, Jones BM, Søvik E, Stolle E, Waterhouse RM, Bloch G, Ben-Shahar Y. Brain microRNAs among social and solitary bees. ROYAL SOCIETY OPEN SCIENCE 2020; 7:200517. [PMID: 32874647 PMCID: PMC7428247 DOI: 10.1098/rsos.200517] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 06/15/2020] [Indexed: 05/03/2023]
Abstract
Evolutionary transitions to a social lifestyle in insects are associated with lineage-specific changes in gene expression, but the key nodes that drive these regulatory changes are unknown. We examined the relationship between social organization and lineage-specific microRNAs (miRNAs). Genome scans across 12 bee species showed that miRNA copy-number is mostly conserved and not associated with sociality. However, deep sequencing of small RNAs in six bee species revealed a substantial proportion (20-35%) of detected miRNAs had lineage-specific expression in the brain, 24-72% of which did not have homologues in other species. Lineage-specific miRNAs disproportionately target lineage-specific genes, and have lower expression levels than shared miRNAs. The predicted targets of lineage-specific miRNAs are not enriched for genes with caste-biased expression or genes under positive selection in social species. Together, these results suggest that novel miRNAs may coevolve with novel genes, and thus contribute to lineage-specific patterns of evolution in bees, but do not appear to have significant influence on social evolution. Our analyses also support the hypothesis that many new miRNAs are purged by selection due to deleterious effects on mRNA targets, and suggest genome structure is not as influential in regulating bee miRNA evolution as has been shown for mammalian miRNAs.
Collapse
Affiliation(s)
- Karen M. Kapheim
- Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT 84322, USA
- Author for correspondence: Karen M. Kapheim e-mail:
| | - Beryl M. Jones
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, NJ 08544, USA
| | - Eirik Søvik
- Department of Science and Mathematics, Volda University College, 6100 Volda, Norway
| | - Eckart Stolle
- Centre of Molecular Biodiversity Research, Forschungsmuseum Alexander Koenig, Adenauerallee 160, 53113 Bonn, Germany
| | - Robert M. Waterhouse
- Department of Ecology and Evolution, University of Lausanne and Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
| | - Guy Bloch
- Department of Ecology, Evolution and Behavior, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem 91904, Israel
| | - Yehuda Ben-Shahar
- Department of Biology, Washington University in St Louis, St Louis, MO 63130, USA
| |
Collapse
|
109
|
de Paula Freitas FC, Lourenço AP, Nunes FMF, Paschoal AR, Abreu FCP, Barbin FO, Bataglia L, Cardoso-Júnior CAM, Cervoni MS, Silva SR, Dalarmi F, Del Lama MA, Depintor TS, Ferreira KM, Gória PS, Jaskot MC, Lago DC, Luna-Lucena D, Moda LM, Nascimento L, Pedrino M, Oliveira FR, Sanches FC, Santos DE, Santos CG, Vieira J, Barchuk AR, Hartfelder K, Simões ZLP, Bitondi MMG, Pinheiro DG. The nuclear and mitochondrial genomes of Frieseomelitta varia - a highly eusocial stingless bee (Meliponini) with a permanently sterile worker caste. BMC Genomics 2020; 21:386. [PMID: 32493270 PMCID: PMC7268684 DOI: 10.1186/s12864-020-06784-8] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2019] [Accepted: 05/14/2020] [Indexed: 12/26/2022] Open
Abstract
BACKGROUND Most of our understanding on the social behavior and genomics of bees and other social insects is centered on the Western honey bee, Apis mellifera. The genus Apis, however, is a highly derived branch comprising less than a dozen species, four of which genomically characterized. In contrast, for the equally highly eusocial, yet taxonomically and biologically more diverse Meliponini, a full genome sequence was so far available for a single Melipona species only. We present here the genome sequence of Frieseomelitta varia, a stingless bee that has, as a peculiarity, a completely sterile worker caste. RESULTS The assembly of 243,974,526 high quality Illumina reads resulted in a predicted assembled genome size of 275 Mb composed of 2173 scaffolds. A BUSCO analysis for the 10,526 predicted genes showed that these represent 96.6% of the expected hymenopteran orthologs. We also predicted 169,371 repetitive genomic components, 2083 putative transposable elements, and 1946 genes for non-coding RNAs, largely long non-coding RNAs. The mitochondrial genome comprises 15,144 bp, encoding 13 proteins, 22 tRNAs and 2 rRNAs. We observed considerable rearrangement in the mitochondrial gene order compared to other bees. For an in-depth analysis of genes related to social biology, we manually checked the annotations for 533 automatically predicted gene models, including 127 genes related to reproductive processes, 104 to development, and 174 immunity-related genes. We also performed specific searches for genes containing transcription factor domains and genes related to neurogenesis and chemosensory communication. CONCLUSIONS The total genome size for F. varia is similar to the sequenced genomes of other bees. Using specific prediction methods, we identified a large number of repetitive genome components and long non-coding RNAs, which could provide the molecular basis for gene regulatory plasticity, including worker reproduction. The remarkable reshuffling in gene order in the mitochondrial genome suggests that stingless bees may be a hotspot for mtDNA evolution. Hence, while being just the second stingless bee genome sequenced, we expect that subsequent targeting of a selected set of species from this diverse clade of highly eusocial bees will reveal relevant evolutionary signals and trends related to eusociality in these important pollinators.
Collapse
Affiliation(s)
- Flávia C. de Paula Freitas
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG Brazil
| | - Anete P. Lourenço
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
- Departamento de Ciências Biológicas, Faculdade de Ciências Biológicas e da Saúde, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG Brazil
| | - Francis M. F. Nunes
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | | | - Fabiano C. P. Abreu
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Fábio O. Barbin
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Luana Bataglia
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Carlos A. M. Cardoso-Júnior
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Mário S. Cervoni
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Saura R. Silva
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, SP Brazil
| | - Fernanda Dalarmi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Marco A. Del Lama
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Thiago S. Depintor
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Kátia M. Ferreira
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Paula S. Gória
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Michael C. Jaskot
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Denyse C. Lago
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Danielle Luna-Lucena
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Livia M. Moda
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG Brazil
| | - Leonardo Nascimento
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Matheus Pedrino
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Franciene Rabiço Oliveira
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Fernanda C. Sanches
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
- Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP Brazil
| | - Douglas E. Santos
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Carolina G. Santos
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Joseana Vieira
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG Brazil
| | - Angel R. Barchuk
- Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG Brazil
| | - Klaus Hartfelder
- Departamento de Biologia Celular e Molecular e Bioagentes Patogênicos, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Av. Bandeirantes 3900, Ribeirão Preto, SP 14049-900 Brazil
| | - Zilá L. P. Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Márcia M. G. Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP Brazil
| | - Daniel G. Pinheiro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, SP Brazil
| |
Collapse
|
110
|
Cunningham CB. Functional genomics of parental care of insects. Horm Behav 2020; 122:104756. [PMID: 32353447 DOI: 10.1016/j.yhbeh.2020.104756] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 04/01/2020] [Accepted: 04/06/2020] [Indexed: 12/19/2022]
Abstract
Parental care was likely the first step most lineages made towards sociality. However, the molecular mechanisms that generate parental care are not broadly characterized. Insects are important as an evolutionary independent group from classic models of parental care, such as, house mice. They provide an opportunity to test the generality of our understanding. With this review, I survey the functional genomics of parental care of insects, summarize several recent advances in the broader framework for studying and understanding parental care, and finish with suggested priorities for further research. Although there are too few studies to draw definitive conclusions, I argue that natural selection appears to be rewiring existing gene networks to produce parental care, that the epigenetic mechanisms influencing parental care are not well understood, and, as an interesting early consensus, that genes strongly associated with carer/offspring interactions appear biased towards proteins that are secreted. I summarize the studies that have functionally validate candidate genes and highlight the increasing need to perform this work. I finish with arguments for both conceptual and practical changes moving forward. I argue that future work can increase the use of predictive frameworks, broaden its definition of conservation of mechanism to gene networks rather than single genes, and increase the use of more established comparative methods. I further highlight the practical considerations of standardizing analyses and reporting, increasing the sampling of both carers and offspring, better characterizing gene regulatory networks, better characterizing taxonomically restricted genes and any consistent role they have underpinning parental care, and using factorial designs to disentangle the influence of multiple variables on the expression of parental care.
Collapse
|
111
|
Termignoni-Garcia F, Louder MIM, Balakrishnan CN, O’Connell L, Edwards SV. Prospects for sociogenomics in avian cooperative breeding and parental care. Curr Zool 2020; 66:293-306. [PMID: 32440290 PMCID: PMC7233861 DOI: 10.1093/cz/zoz057] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 11/20/2019] [Indexed: 01/08/2023] Open
Abstract
For the last 40 years, the study of cooperative breeding (CB) in birds has proceeded primarily in the context of discovering the ecological, geographical, and behavioral drivers of helping. The advent of molecular tools in the early 1990s assisted in clarifying the relatedness of helpers to those helped, in some cases, confirming predictions of kin selection theory. Methods for genome-wide analysis of sequence variation, gene expression, and epigenetics promise to add new dimensions to our understanding of avian CB, primarily in the area of molecular and developmental correlates of delayed breeding and dispersal, as well as the ontogeny of achieving parental status in nature. Here, we outline key ways in which modern -omics approaches, in particular genome sequencing, transcriptomics, and epigenetic profiling such as ATAC-seq, can be used to add a new level of analysis of avian CB. Building on recent and ongoing studies of avian social behavior and sociogenomics, we review how high-throughput sequencing of a focal species or clade can provide a robust foundation for downstream, context-dependent destructive and non-destructive sampling of specific tissues or physiological states in the field for analysis of gene expression and epigenetics. -Omics approaches have the potential to inform not only studies of the diversification of CB over evolutionary time, but real-time analyses of behavioral interactions in the field or lab. Sociogenomics of birds represents a new branch in the network of methods used to study CB, and can help clarify ways in which the different levels of analysis of CB ultimately interact in novel and unexpected ways.
Collapse
Affiliation(s)
- Flavia Termignoni-Garcia
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Matthew I M Louder
- International Research Center for Neurointelligence, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | | | - Lauren O’Connell
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Scott V Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
112
|
Developmental plasticity shapes social traits and selection in a facultatively eusocial bee. Proc Natl Acad Sci U S A 2020; 117:13615-13625. [PMID: 32471944 PMCID: PMC7306772 DOI: 10.1073/pnas.2000344117] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Developmental processes are an important source of phenotypic variation, but the extent to which this variation contributes to evolutionary change is unknown. We used integrative genomic analyses to explore the relationship between developmental and social plasticity in a bee species that can adopt either a social or solitary lifestyle. We find genes regulating this social flexibility also regulate development, and positive selection on these genes is influenced by their function during development. This suggests that developmental plasticity may influence the evolution of sociality. Our additional finding of genetic variants linked to differences in social behavior sheds light on how phenotypic variation derived from development may become encoded into the genome, and thus contribute to evolutionary change. Developmental plasticity generates phenotypic variation, but how it contributes to evolutionary change is unclear. Phenotypes of individuals in caste-based (eusocial) societies are particularly sensitive to developmental processes, and the evolutionary origins of eusociality may be rooted in developmental plasticity of ancestral forms. We used an integrative genomics approach to evaluate the relationships among developmental plasticity, molecular evolution, and social behavior in a bee species (Megalopta genalis) that expresses flexible sociality, and thus provides a window into the factors that may have been important at the evolutionary origins of eusociality. We find that differences in social behavior are derived from genes that also regulate sex differentiation and metamorphosis. Positive selection on social traits is influenced by the function of these genes in development. We further identify evidence that social polyphenisms may become encoded in the genome via genetic changes in regulatory regions, specifically in transcription factor binding sites. Taken together, our results provide evidence that developmental plasticity provides the substrate for evolutionary novelty and shapes the selective landscape for molecular evolution in a major evolutionary innovation: Eusociality.
Collapse
|
113
|
He XR, Cheng YM, Yang Y, Xie JJ, Chu KH, Zhang YX, Chen GX, Liu H, Cao MJ, Liu GM. Cloning, expression and comparison of the properties of Scy p 9, a Scylla paramamosain allergen. Food Funct 2020; 11:3006-3019. [PMID: 32267266 DOI: 10.1039/d0fo00004c] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
This study investigated the properties of Scy p 9 in mud crab (Scylla paramamosain). The gene sequence of filamin C obtained from crabs, which was denoted as Scy p 9, contains a 2544 bp open reading frame and encodes 848 amino acid residues. Recombinant Scy p 9 (rScy p 9) is expressed in Escherichia coli, which exhibits tertiary structure changes, and the IgE binding activity of rScy p 9 is higher than that of native Scy p 9 (nScy p 9). Moreover, this study explored the possibility of the presence and cross-reactivity of filamin C in 8 shellfish. IgE-specific binding to nScy p 9 and rScy p 9 in patients allergic to shellfish revealed that rScy p 9 was more sensitive than nScy p 9. The gene sequence of filamin C fills in the blank in shellfish. This study contributes to the understanding of the properties of Scy p 9, and the results indicate that rScy p 9 can be used as a candidate for component-resolved diagnosis in shellfish.
Collapse
Affiliation(s)
- Xin-Rong He
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian, China.
| | - Yi-Meng Cheng
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian, China.
| | - Yang Yang
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian, China. and College of Environment and Public Health, Xiamen Huaxia University, 288 Tianma Road, Xiamen, Fujian 361024, China
| | - Jie-Jing Xie
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian, China.
| | - Ka-Hou Chu
- School of Life Sciences, The Chinese University of Hong Kong, Sha Tin, Hong Kong, China
| | - Yong-Xia Zhang
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian, China.
| | - Gui-Xia Chen
- Women and Children's Hospital Affiliated to Xiamen University, Xiamen, Fujian 361003, China
| | - Hong Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian, China.
| | - Min-Jie Cao
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian, China.
| | - Guang-Ming Liu
- College of Food and Biological Engineering, Xiamen Key Laboratory of Marine Functional Food, Fujian Provincial Engineering Technology Research Center of Marine Functional Food, Fujian Collaborative Innovation Center for Exploitation and Utilization of Marine Biological Resources, Jimei University, Xiamen, Fujian, China.
| |
Collapse
|
114
|
Tong C, Najm GM, Pinter-Wollman N, Pruitt JN, Linksvayer TA. Comparative Genomics Identifies Putative Signatures of Sociality in Spiders. Genome Biol Evol 2020; 12:122-133. [PMID: 31960912 PMCID: PMC7108510 DOI: 10.1093/gbe/evaa007] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/15/2020] [Indexed: 12/15/2022] Open
Abstract
Comparative genomics has begun to elucidate the genomic basis of social life in insects, but insight into the genomic basis of spider sociality has lagged behind. To begin, to characterize genomic signatures associated with the evolution of social life in spiders, we performed one of the first spider comparative genomics studies including five solitary species and two social species, representing two independent origins of sociality in the genus Stegodyphus. We found that the two social spider species had a large expansion of gene families associated with transport and metabolic processes and an elevated genome-wide rate of molecular evolution compared with the five solitary spider species. Genes that were rapidly evolving in the two social species relative to the five solitary species were enriched for transport, behavior, and immune functions, whereas genes that were rapidly evolving in the solitary species were enriched for energy metabolism processes. Most rapidly evolving genes in the social species Stegodyphus dumicola were broadly expressed across four tissues and enriched for transport functions, but 12 rapidly evolving genes showed brain-specific expression and were enriched for social behavioral processes. Altogether, our study identifies putative genomic signatures and potential candidate genes associated with spider sociality. These results indicate that future spider comparative genomic studies, including broader sampling and additional independent origins of sociality, can further clarify the genomic causes and consequences of social life.
Collapse
Affiliation(s)
- Chao Tong
- Department of Biology, University of Pennsylvania
| | - Gabriella M Najm
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles
| | - Noa Pinter-Wollman
- Department of Ecology and Evolutionary Biology, University of California, Los Angeles
| | - Jonathan N Pruitt
- Department of Psychology, Neurobiology & Behaviour, McMaster University, Hamilton, Ontario, Canada
| | | |
Collapse
|
115
|
Dohmen E, Klasberg S, Bornberg-Bauer E, Perrey S, Kemena C. The modular nature of protein evolution: domain rearrangement rates across eukaryotic life. BMC Evol Biol 2020; 20:30. [PMID: 32059645 PMCID: PMC7023805 DOI: 10.1186/s12862-020-1591-0] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 01/31/2020] [Indexed: 12/25/2022] Open
Abstract
BACKGROUND Modularity is important for evolutionary innovation. The recombination of existing units to form larger complexes with new functionalities spares the need to create novel elements from scratch. In proteins, this principle can be observed at the level of protein domains, functional subunits which are regularly rearranged to acquire new functions. RESULTS In this study we analyse the mechanisms leading to new domain arrangements in five major eukaryotic clades (vertebrates, insects, fungi, monocots and eudicots) at unprecedented depth and breadth. This allows, for the first time, to directly compare rates of rearrangements between different clades and identify both lineage specific and general patterns of evolution in the context of domain rearrangements. We analyse arrangement changes along phylogenetic trees by reconstructing ancestral domain content in combination with feasible single step events, such as fusion or fission. Using this approach we explain up to 70% of all rearrangements by tracing them back to their precursors. We find that rates in general and the ratio between these rates for a given clade in particular, are highly consistent across all clades. In agreement with previous studies, fusions are the most frequent event leading to new domain arrangements. A lineage specific pattern in fungi reveals exceptionally high loss rates compared to other clades, supporting recent studies highlighting the importance of loss for evolutionary innovation. Furthermore, our methodology allows us to link domain emergences at specific nodes in the phylogenetic tree to important functional developments, such as the origin of hair in mammals. CONCLUSIONS Our results demonstrate that domain rearrangements are based on a canonical set of mutational events with rates which lie within a relatively narrow and consistent range. In addition, gained knowledge about these rates provides a basis for advanced domain-based methodologies for phylogenetics and homology analysis which complement current sequence-based methods.
Collapse
Affiliation(s)
- Elias Dohmen
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, 48149, Germany.,Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, August-Schmidt-Ring 10, Recklinghausen, 45665, Germany
| | - Steffen Klasberg
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, 48149, Germany
| | - Erich Bornberg-Bauer
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, 48149, Germany
| | - Sören Perrey
- Institute for Bioinformatics and Chemoinformatics, Westphalian University of Applied Sciences, August-Schmidt-Ring 10, Recklinghausen, 45665, Germany
| | - Carsten Kemena
- Institute for Evolution and Biodiversity, University of Münster, Hüfferstrasse 1, Münster, 48149, Germany.
| |
Collapse
|
116
|
DeLory T, Funderburk K, Miller K, Smith WZ, McPherson S, Pirk CW, Costa C, Teixeira ÉW, Dahle B, Rueppell O. Local Variation in Recombination Rates of the Honey Bee ( Apis mellifera) Genome among Samples from Six Disparate Populations. INSECTES SOCIAUX 2020; 67:127-138. [PMID: 33311731 PMCID: PMC7732154 DOI: 10.1007/s00040-019-00736-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Meiotic recombination is an essential component of eukaryotic sexual reproduction but its frequency varies within and between genomes. Although it is well-established that honey bees have a high recombination rate with about 20 cM/Mbp, the proximate and ultimate causes of this exceptional rate are poorly understood. Here, we describe six linkage maps of the Western Honey Bee Apis mellifera that were produced with consistent methodology from samples from distinct parts of the species' near global distribution. We compared the genome-wide rates and distribution of meiotic crossovers among the six maps and found considerable differences. Overall similarity of local recombination rates among our samples was unrelated to geographic or phylogenetic distance of the populations that our samples were derived from. However, the limited sampling constrains the interpretation of our results because it is unclear how representative these samples are. In contrast to previous studies, we found only in two datasets a significant relation between local recombination rate and GC content. Focusing on regions of particularly increased or decreased recombination in specific maps, we identified several enriched gene ontologies in these regions and speculate about their local adaptive relevance. These data are contributing to an increasing comparative effort to gain an understanding of the intra-specific variability of recombination rates and their evolutionary role in honey bees and other social insects.
Collapse
Affiliation(s)
- Timothy DeLory
- Department of Biology, University of North Carolina at Greensboro, NC, USA
- Current address: Department of Biology, Utah State University, 5305 Old Main Hill, Logan, UT, USA
| | - Karen Funderburk
- Department of Biology, University of North Carolina at Greensboro, NC, USA
- Current address: Applied Mathematics for the Life & Social Sciences, College of Liberal Arts and Sciences, Arizona State University, Tempe, AZ, USA
| | - Katelyn Miller
- Department of Biology, University of North Carolina at Greensboro, NC, USA
| | | | - Samantha McPherson
- Department of Biology, University of North Carolina at Greensboro, NC, USA
- Current address: Current address: NCSU Department of Entomology & Plant Pathology, Campus Box 7613, 100 Derieux Place, Raleigh, NC, USA
| | - Christian W. Pirk
- Social Insects Research Group, Department of Zoology & Entomology, University of Pretoria, South Africa
| | - Cecilia Costa
- Consiglio per la Ricerca in Agricolturae l’Analisi dell’Economia Agraria, Via Po, 14 - 00198 Rome, Italy
| | - Érica Weinstein Teixeira
- Honey Bee Health Specialized Laboratory, Biological Institute, São Paulo State Agribusiness Technology Agency, Av. Prof. Manoel César Ribeiro, 1920, Pindamonhangaba, São Paulo 12411-010, Brazil
| | - Bjørn Dahle
- Norwegian Beekeepers Association, Kløfta, Norway
- Faculty of Environmental Sciences and Natural Resource Management, Norwegian University of Life Sciences, Ås, Norway
| | - Olav Rueppell
- Department of Biology, University of North Carolina at Greensboro, NC, USA
- Corresponding author: 312 Eberhart Bldg, 321 McIver Street, Greensboro NC 27403, USA. Phone: (+1) 336-2562591,
| |
Collapse
|
117
|
Blatti C, Emad A, Berry MJ, Gatzke L, Epstein M, Lanier D, Rizal P, Ge J, Liao X, Sobh O, Lambert M, Post CS, Xiao J, Groves P, Epstein AT, Chen X, Srinivasan S, Lehnert E, Kalari KR, Wang L, Weinshilboum RM, Song JS, Jongeneel CV, Han J, Ravaioli U, Sobh N, Bushell CB, Sinha S. Knowledge-guided analysis of "omics" data using the KnowEnG cloud platform. PLoS Biol 2020; 18:e3000583. [PMID: 31971940 PMCID: PMC6977717 DOI: 10.1371/journal.pbio.3000583] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2019] [Accepted: 12/19/2019] [Indexed: 12/19/2022] Open
Abstract
We present Knowledge Engine for Genomics (KnowEnG), a free-to-use computational system for analysis of genomics data sets, designed to accelerate biomedical discovery. It includes tools for popular bioinformatics tasks such as gene prioritization, sample clustering, gene set analysis, and expression signature analysis. The system specializes in "knowledge-guided" data mining and machine learning algorithms, in which user-provided data are analyzed in light of prior information about genes, aggregated from numerous knowledge bases and encoded in a massive "Knowledge Network." KnowEnG adheres to "FAIR" principles (findable, accessible, interoperable, and reuseable): its tools are easily portable to diverse computing environments, run on the cloud for scalable and cost-effective execution, and are interoperable with other computing platforms. The analysis tools are made available through multiple access modes, including a web portal with specialized visualization modules. We demonstrate the KnowEnG system's potential value in democratization of advanced tools for the modern genomics era through several case studies that use its tools to recreate and expand upon the published analysis of cancer data sets.
Collapse
Affiliation(s)
- Charles Blatti
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Amin Emad
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Electrical and Computer Engineering, McGill University, Montreal, Canada
| | - Matthew J. Berry
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Lisa Gatzke
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Milt Epstein
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Daniel Lanier
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Pramod Rizal
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jing Ge
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Xiaoxia Liao
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Omar Sobh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Mike Lambert
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Corey S. Post
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jinfeng Xiao
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Peter Groves
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Aidan T. Epstein
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Xi Chen
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Subhashini Srinivasan
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Erik Lehnert
- Seven Bridges Genomics, Charlestown, Massachusetts, United States of America
| | - Krishna R. Kalari
- Department of Health Sciences Research, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Liewei Wang
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Richard M. Weinshilboum
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic, Rochester, Minnesota, United States of America
| | - Jun S. Song
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Physics, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - C. Victor Jongeneel
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Jiawei Han
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Umberto Ravaioli
- Department of Electrical and Computer Engineering, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Nahil Sobh
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Colleen B. Bushell
- National Center for Supercomputing Applications, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
| | - Saurabh Sinha
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Department of Computer Science, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- Cancer Center at Illinois, University of Illinois at Urbana-Champaign, Urbana, Illinois, United States of America
- * E-mail:
| |
Collapse
|
118
|
Sharko FS, Nedoluzhko AV, Lê BM, Tsygankova SV, Boulygina ES, Rastorguev SM, Sokolov AS, Rodriguez F, Mazur AM, Polilov AA, Benton R, Evgen'ev MB, Arkhipova IR, Prokhortchouk EB, Skryabin KG. A partial genome assembly of the miniature parasitoid wasp, Megaphragma amalphitanum. PLoS One 2019; 14:e0226485. [PMID: 31869362 PMCID: PMC6927652 DOI: 10.1371/journal.pone.0226485] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2019] [Accepted: 11/26/2019] [Indexed: 12/18/2022] Open
Abstract
Body size reduction, also known as miniaturization, is an important evolutionary process that affects a number of physiological and phenotypic traits and helps animals conquer new ecological niches. However, this process is poorly understood at the molecular level. Here, we report genomic and transcriptomic features of arguably the smallest known insect-the parasitoid wasp, Megaphragma amalphitanum (Hymenoptera: Trichogrammatidae). In contrast to expectations, we find that the genome and transcriptome sizes of this parasitoid wasp are comparable to other members of the Chalcidoidea superfamily. Moreover, compared to other chalcid wasps the gene content of M. amalphitanum is remarkably conserved. Intriguingly, we observed significant changes in M. amalphitanum transposable element dynamics over time, in which an initial burst was followed by suppression of activity, possibly due to a recent reinforcement of the genome defense machinery. Overall, while the M. amalphitanum genomic data reveal certain features that may be linked to the unusual biological properties of this organism, miniaturization is not associated with a large decrease in genome complexity.
Collapse
Affiliation(s)
- Fedor S. Sharko
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- National Research Center “Kurchatov Institute”, Moscow, Russia
| | - Artem V. Nedoluzhko
- National Research Center “Kurchatov Institute”, Moscow, Russia
- Nord University, Faculty of Biosciences and Aquaculture, Bodø, Norway
| | - Brandon M. Lê
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | | | | | | | - Alexey S. Sokolov
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Fernando Rodriguez
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Alexander M. Mazur
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
| | - Alexey A. Polilov
- Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Richard Benton
- Center for Integrative Genomics, Faculty of Biology and Medicine, University of Lausanne, Lausanne, Switzerland
| | | | - Irina R. Arkhipova
- Josephine Bay Paul Center for Comparative Molecular Biology and Evolution, Marine Biological Laboratory, Woods Hole, Massachusetts, United States of America
| | - Egor B. Prokhortchouk
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| | - Konstantin G. Skryabin
- Institute of Bioengineering, Research Center of Biotechnology of the Russian Academy of Sciences, Moscow, Russia
- National Research Center “Kurchatov Institute”, Moscow, Russia
- Lomonosov Moscow State University, Faculty of Biology, Moscow, Russia
| |
Collapse
|
119
|
Hines HM, Rahman SR. Evolutionary genetics in insect phenotypic radiations: the value of a comparative genomic approach. CURRENT OPINION IN INSECT SCIENCE 2019; 36:90-95. [PMID: 31541856 DOI: 10.1016/j.cois.2019.08.013] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 08/22/2019] [Accepted: 08/26/2019] [Indexed: 06/10/2023]
Abstract
Expanding genome sequencing and transgenic technologies are enabling the discovery of genes driving phenotypic diversity across insect taxa. Limitations in downstream functional genetic approaches, however, have been an obstacle for developing non-model systems for evolutionary genetics. Phenotypically diverse radiations, such as those exhibiting convergence and divergence as a result of mimicry, are ideal for evolutionary genetics as they can lead to insights using comparative genomic approaches alone. The varied and repeated instances of phenotypes in highly polymorphic systems allow assessment of whether similar loci are repeatedly targeted by selection and can inform how alleles sort across lineages. Comparative genomics of these taxa can be used to decipher components of gene regulatory networks, dissect regulatory regions, and validate genes.
Collapse
Affiliation(s)
- Heather M Hines
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA.
| | - Sarthok Rasique Rahman
- Department of Biology, The Pennsylvania State University, 208 Mueller Laboratory, University Park, PA, 16802, USA
| |
Collapse
|
120
|
Freitas FCP, Depintor TS, Agostini LT, Luna-Lucena D, Nunes FMF, Bitondi MMG, Simões ZLP, Lourenço AP. Evaluation of reference genes for gene expression analysis by real-time quantitative PCR (qPCR) in three stingless bee species (Hymenoptera: Apidae: Meliponini). Sci Rep 2019; 9:17692. [PMID: 31776359 PMCID: PMC6881334 DOI: 10.1038/s41598-019-53544-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Accepted: 10/17/2019] [Indexed: 12/11/2022] Open
Abstract
Stingless bees are generalist pollinators distributed through the pantropical region. There is growing evidence that their wild populations are experiencing substantial decline in response to habitat degradation and pesticides. Policies for conservation of endangered species will benefit from studies focusing on genetic and molecular aspects of their development and behavior. The most common method for looking at gene expression is real-time quantitative polymerase chain reaction preceded by reverse transcription (RT-qPCR) of the mRNA of interest. This method requires the identification of reliable reference genes to correctly estimate fluctuations in transcript levels. To contribute to molecular studies on stingless bees, we used Frieseomelitta varia, Melipona quadrifasciata, and Scaptotrigona bipunctata species to test the expression stability of eight reference genes (act, ef1-α, gapdh, rpl32, rps5, rps18, tbp, and tbp-af) in RT-qPCR procedures in five physiological and experimental conditions (development, sex, tissues, bacteria injection, and pesticide exposure). In general, the rpl32, rps5 and rps18 ribosomal protein genes and tpb-af gene showed the highest stability, thus being identified as suitable reference genes for the three stingless bee species and defined conditions. Our results also emphasized the need to evaluate the stability of candidate genes for any designed experimental condition and stingless bee species.
Collapse
Affiliation(s)
- Flávia C P Freitas
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Instituto de Ciências Biomédicas, Universidade Federal de Alfenas, Alfenas, MG, Brazil
| | - Thiago S Depintor
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Lucas T Agostini
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Danielle Luna-Lucena
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Francis M F Nunes
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Departamento de Genética e Evolução, Centro de Ciências Biológicas e da Saúde, Universidade Federal de São Carlos, São Carlos, SP, Brazil
| | - Márcia M G Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Zilá L P Simões
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil.,Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil
| | - Anete P Lourenço
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, SP, Brazil. .,Departamento de Ciências Biológicas, Universidade Federal dos Vales do Jequitinhonha e Mucuri, Diamantina, MG, Brazil.
| |
Collapse
|
121
|
Hayward A, Beadle K, Singh KS, Exeler N, Zaworra M, Almanza MT, Nikolakis A, Garside C, Glaubitz J, Bass C, Nauen R. The leafcutter bee, Megachile rotundata, is more sensitive to N-cyanoamidine neonicotinoid and butenolide insecticides than other managed bees. Nat Ecol Evol 2019; 3:1521-1524. [PMID: 31666734 DOI: 10.1038/s41559-019-1011-2] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2019] [Accepted: 09/18/2019] [Indexed: 01/24/2023]
Abstract
Recent research has shown that several managed bee species have specific P450 enzymes that are preadapted to confer intrinsic tolerance to some insecticides including certain neonicotinoids. However, the universality of this finding across managed bee pollinators is unclear. Here we show that the alfalfa leafcutter bee, Megachile rotundata, lacks such P450 enzymes and is >2,500-fold more sensitive to the neonicotinoid thiacloprid and 170-fold more sensitive to the butenolide insecticide flupyradifurone than other managed bee pollinators. These findings have important implications for the safe use of insecticides in crops where M. rotundata is used for pollination, and ensuring that regulatory pesticide risk assessment frameworks are protective of this species.
Collapse
Affiliation(s)
- Angela Hayward
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn, UK
| | - Katherine Beadle
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn, UK
| | - Kumar Saurabh Singh
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn, UK
| | - Nina Exeler
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| | | | | | | | | | | | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn, UK.
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Monheim, Germany.
| |
Collapse
|
122
|
Genetics in the Honey Bee: Achievements and Prospects toward the Functional Analysis of Molecular and Neural Mechanisms Underlying Social Behaviors. INSECTS 2019; 10:insects10100348. [PMID: 31623209 PMCID: PMC6835989 DOI: 10.3390/insects10100348] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 10/13/2019] [Accepted: 10/14/2019] [Indexed: 12/31/2022]
Abstract
The European honey bee is a model organism for studying social behaviors. Comprehensive analyses focusing on the differential expression profiles of genes between the brains of nurse bees and foragers, or in the mushroom bodies—the brain structure related to learning and memory, and multimodal sensory integration—has identified candidate genes related to honey bee behaviors. Despite accumulating knowledge on the expression profiles of genes related to honey bee behaviors, it remains unclear whether these genes actually regulate social behaviors in the honey bee, in part because of the scarcity of genetic manipulation methods available for application to the honey bee. In this review, we describe the genetic methods applied to studies of the honey bee, ranging from classical forward genetics to recently developed gene modification methods using transposon and CRISPR/Cas9. We then discuss future functional analyses using these genetic methods targeting genes identified by the preceding research. Because no particular genes or neurons unique to social insects have been found yet, further exploration of candidate genes/neurons correlated with sociality through comprehensive analyses of mushroom bodies in the aculeate species can provide intriguing targets for functional analyses, as well as insight into the molecular and neural bases underlying social behaviors.
Collapse
|
123
|
Sun P, Li G, Jian J, Liu L, Chen J, Yu S, Xu H, Lei C, Zhou X, Huang Q. Transcriptomic and Functional Analyses of Phenotypic Plasticity in a Higher Termite, Macrotermes barneyi Light. Front Genet 2019; 10:964. [PMID: 31681415 PMCID: PMC6797822 DOI: 10.3389/fgene.2019.00964] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2018] [Accepted: 09/10/2019] [Indexed: 12/04/2022] Open
Abstract
Eusocial termites have a complex caste system, which leads to the division of labor. Previous studies offered some insight into the caste differentiation in lower termites; however, few studies were focusing on the molecular mechanisms of higher termites with sophisticated societies. Comparative transcriptomic analyses of five immature castes of a higher termite, Macrotermes barneyi Light, suggest that phenotypic plasticity is modulated by an array of transcriptional changes, including differentially expressed genes (e.g., caste-biased genes Vtg and TnC), co-expression networks (e.g., genes associated with nymph reproduction), and alternative splicing (e.g., events related to muscle development in presoldiers). Transcriptional (RT-PCR and RT-qPCR) and functional (in vivo RNAi) validation studies reveal multiple molecular mechanisms contributing to the phenotypic plasticity in eusocial termites. Molecular mechanisms governing the phenotypic plasticity in M. barneyi could be a rule rather than an exception in the evolution of sociality.
Collapse
Affiliation(s)
- Pengdong Sun
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Ganghua Li
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Jianbo Jian
- Marine Biology Institute, Shantou University, Shantou, China
| | - Long Liu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Junhui Chen
- School of Bioscience and Bioengineering, Guangdong Provincial Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou, China
| | - Shuxin Yu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Huan Xu
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Chaoliang Lei
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| | - Xuguo Zhou
- Department of Entomology, University of Kentucky, Lexington, KY, United States
| | - Qiuying Huang
- Hubei Insect Resources Utilization and Sustainable Pest Management Key Laboratory, College of Plant Science and Technology, Huazhong Agricultural University, Wuhan, China
| |
Collapse
|
124
|
Wu F, Ma C, Han B, Meng L, Hu H, Fang Y, Feng M, Zhang X, Rueppell O, Li J. Behavioural, physiological and molecular changes in alloparental caregivers may be responsible for selection response for female reproductive investment in honey bees. Mol Ecol 2019; 28:4212-4227. [DOI: 10.1111/mec.15207] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Revised: 07/31/2019] [Accepted: 07/31/2019] [Indexed: 12/16/2022]
Affiliation(s)
- Fan Wu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Chuan Ma
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Bin Han
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Lifeng Meng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Han Hu
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Yu Fang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Mao Feng
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Xufeng Zhang
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| | - Olav Rueppell
- Department of Biology University of North Carolina at Greensboro Greensboro NC USA
| | - Jianke Li
- Institute of Apicultural Research/Key Laboratory of Pollinating Insect Biology Ministry of Agriculture Chinese Academy of Agricultural Science Beijing China
| |
Collapse
|
125
|
Yunusbaev UB, Kaskinova MD, Ilyasov RA, Gaifullina LR, Saltykova ES, Nikolenko AG. The Role of Whole-Genome Studies in the Investigation of Honey Bee Biology. RUSS J GENET+ 2019. [DOI: 10.1134/s102279541906019x] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
126
|
Metabolomics-based biomarker discovery for bee health monitoring: A proof of concept study concerning nutritional stress in Bombus terrestris. Sci Rep 2019; 9:11423. [PMID: 31388077 PMCID: PMC6684606 DOI: 10.1038/s41598-019-47896-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 06/24/2019] [Indexed: 02/06/2023] Open
Abstract
Bee pollinators are exposed to multiple natural and anthropogenic stressors. Understanding the effects of a single stressor in the complex environmental context of antagonistic/synergistic interactions is critical to pollinator monitoring and may serve as early warning system before a pollination crisis. This study aimed to methodically improve the diagnosis of bee stressors using a simultaneous untargeted and targeted metabolomics-based approach. Analysis of 84 Bombus terrestris hemolymph samples found 8 metabolites retained as potential biomarkers that showed excellent discrimination for nutritional stress. In parallel, 8 significantly altered metabolites, as revealed by targeted profiling, were also assigned as candidate biomarkers. Furthermore, machine learning algorithms were applied to the above-described two biomarker sets, whereby the untargeted eight components showed the best classification performance with sensitivity and specificity up to 99% and 100%, respectively. Based on pathway and biochemistry analysis, we propose that gluconeogenesis contributed significantly to blood sugar stability in bumblebees maintained on a low carbohydrate diet. Taken together, this study demonstrates that metabolomics-based biomarker discovery holds promising potential for improving bee health monitoring and to identify stressor related to energy intake and other environmental stressors.
Collapse
|
127
|
Arsenault SV, Glastad KM, Hunt BG. Leveraging technological innovations to investigate evolutionary transitions to eusociality. CURRENT OPINION IN INSECT SCIENCE 2019; 34:27-32. [PMID: 31247414 DOI: 10.1016/j.cois.2019.03.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 02/19/2019] [Accepted: 03/12/2019] [Indexed: 06/09/2023]
Abstract
The study of the major transition to eusociality presents several challenges to researchers, largely resulting from the importance of complex behavioral phenotypes and the shift from individual to group level selection. These challenges are being met with corresponding technological improvements. Advances in resource development for non-model taxa, behavioral tracking, nucleic acid sequencing, and reverse genetics are facilitating studies of hypotheses that were previously intractable. These innovations are resulting in the development of new model systems tailored to the exploration of specific behavioral phenotypes and the querying of underlying molecular mechanisms that drive eusocial behaviors. Here, we present a brief overview of how methodological innovations are advancing our understanding of the evolution of eusociality.
Collapse
Affiliation(s)
- Samuel V Arsenault
- Department of Entomology, University of Georgia, Athens, GA 30602, United States
| | - Karl M Glastad
- Department of Cell & Developmental Biology, University of Pennsylvania, Philadelphia, PA 19104, United States
| | - Brendan G Hunt
- Department of Entomology, University of Georgia, Athens, GA 30602, United States.
| |
Collapse
|
128
|
Linksvayer TA, Johnson BR. Re-thinking the social ladder approach for elucidating the evolution and molecular basis of insect societies. CURRENT OPINION IN INSECT SCIENCE 2019; 34:123-129. [PMID: 31401545 DOI: 10.1016/j.cois.2019.07.003] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2019] [Revised: 06/21/2019] [Accepted: 07/03/2019] [Indexed: 06/10/2023]
Abstract
The evolution of large insect societies is a major evolutionary transition that occurred in the long-extinct ancestors of termites, ants, corbiculate bees, and vespid wasps. Researchers have long used 'social ladder thinking': assuming progressive stepwise phenotypic evolution and asserting that extant species with simple societies (e.g. some halictid bees) represent the ancestors of species with complex societies, and thus provide insight into general early steps of eusocial evolution. We discuss how this is inconsistent with data and modern evolutionary 'tree thinking'. Phylogenetic comparative methods with broad sampling provide the best means to make rigorous inferences about ancestral traits and evolutionary transitions that occurred within each lineage, and to determine whether consistent phenotypic and genomic changes occurred across independent lineages.
Collapse
Affiliation(s)
| | - Brian R Johnson
- Department of Entomology and Nematology, University of California Davis, United States
| |
Collapse
|
129
|
Lamichhaney S, Card DC, Grayson P, Tonini JFR, Bravo GA, Näpflin K, Termignoni-Garcia F, Torres C, Burbrink F, Clarke JA, Sackton TB, Edwards SV. Integrating natural history collections and comparative genomics to study the genetic architecture of convergent evolution. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180248. [PMID: 31154982 PMCID: PMC6560268 DOI: 10.1098/rstb.2018.0248] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/25/2019] [Indexed: 12/20/2022] Open
Abstract
Evolutionary convergence has been long considered primary evidence of adaptation driven by natural selection and provides opportunities to explore evolutionary repeatability and predictability. In recent years, there has been increased interest in exploring the genetic mechanisms underlying convergent evolution, in part, owing to the advent of genomic techniques. However, the current 'genomics gold rush' in studies of convergence has overshadowed the reality that most trait classifications are quite broadly defined, resulting in incomplete or potentially biased interpretations of results. Genomic studies of convergence would be greatly improved by integrating deep 'vertical', natural history knowledge with 'horizontal' knowledge focusing on the breadth of taxonomic diversity. Natural history collections have and continue to be best positioned for increasing our comprehensive understanding of phenotypic diversity, with modern practices of digitization and databasing of morphological traits providing exciting improvements in our ability to evaluate the degree of morphological convergence. Combining more detailed phenotypic data with the well-established field of genomics will enable scientists to make progress on an important goal in biology: to understand the degree to which genetic or molecular convergence is associated with phenotypic convergence. Although the fields of comparative biology or comparative genomics alone can separately reveal important insights into convergent evolution, here we suggest that the synergistic and complementary roles of natural history collection-derived phenomic data and comparative genomics methods can be particularly powerful in together elucidating the genomic basis of convergent evolution among higher taxa. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.
Collapse
Affiliation(s)
- Sangeet Lamichhaney
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Daren C. Card
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
- Department of Biology, University of Texas Arlington, Arlington, TX 76019, USA
| | - Phil Grayson
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - João F. R. Tonini
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Gustavo A. Bravo
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Kathrin Näpflin
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Flavia Termignoni-Garcia
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| | - Christopher Torres
- Department of Biology, The University of Texas at Austin, Austin, MA 78712, USA
- Department of Geological Sciences, The University of Texas at Austin, Austin, MA 78712, USA
| | - Frank Burbrink
- Department of Herpetology, The American Museum of Natural History, New York, NY 10024, USA
| | - Julia A. Clarke
- Department of Biology, The University of Texas at Austin, Austin, MA 78712, USA
- Department of Geological Sciences, The University of Texas at Austin, Austin, MA 78712, USA
| | | | - Scott V. Edwards
- Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA 02138, USA
- Museum of Comparative Zoology, Harvard University, Cambridge, MA 02138, USA
| |
Collapse
|
130
|
Rubin BER, Jones BM, Hunt BG, Kocher SD. Rate variation in the evolution of non-coding DNA associated with social evolution in bees. Philos Trans R Soc Lond B Biol Sci 2019; 374:20180247. [PMID: 31154980 PMCID: PMC6560270 DOI: 10.1098/rstb.2018.0247] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/14/2019] [Indexed: 11/12/2022] Open
Abstract
The evolutionary origins of eusociality represent increases in complexity from individual to caste-based, group reproduction. These behavioural transitions have been hypothesized to go hand in hand with an increased ability to regulate when and where genes are expressed. Bees have convergently evolved eusociality up to five times, providing a framework to test this hypothesis. To examine potential links between putative gene regulatory elements and social evolution, we compare alignable, non-coding sequences in 11 diverse bee species, encompassing three independent origins of reproductive division of labour and two elaborations of eusocial complexity. We find that rates of evolution in a number of non-coding sequences correlate with key social transitions in bees. Interestingly, while we find little evidence for convergent rate changes associated with independent origins of social behaviour, a number of molecular pathways exhibit convergent rate changes in conjunction with subsequent elaborations of social organization. We also present evidence that many novel non-coding regions may have been recruited alongside the origin of sociality in corbiculate bees; these loci could represent gene regulatory elements associated with division of labour within this group. Thus, our findings are consistent with the hypothesis that gene regulatory innovations are associated with the evolution of eusociality and illustrate how a thorough examination of both coding and non-coding sequence can provide a more complete understanding of the molecular mechanisms underlying behavioural evolution. This article is part of the theme issue 'Convergent evolution in the genomics era: new insights and directions'.
Collapse
Affiliation(s)
- Benjamin E. R. Rubin
- Department of Ecology and Evolutionary Biology; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| | - Beryl M. Jones
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois, Urbana, IL, USA
| | - Brendan G. Hunt
- Department of Entomology, University of Georgia, Griffin, GA, USA
| | - Sarah D. Kocher
- Department of Ecology and Evolutionary Biology; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, USA
| |
Collapse
|
131
|
Langer BE, Roscito JG, Hiller M. REforge Associates Transcription Factor Binding Site Divergence in Regulatory Elements with Phenotypic Differences between Species. Mol Biol Evol 2019; 35:3027-3040. [PMID: 30256993 PMCID: PMC6278867 DOI: 10.1093/molbev/msy187] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Elucidating the genomic determinants of morphological differences between species is key to understanding how morphological diversity evolved. While differences in cis-regulatory elements are an important genetic source for morphological evolution, it remains challenging to identify regulatory elements involved in phenotypic differences. Here, we present Regulatory Element forward genomics (REforge), a computational approach that detects associations between transcription factor binding site divergence in putative regulatory elements and phenotypic differences between species. By simulating regulatory element evolution in silico, we show that this approach has substantial power to detect such associations. To validate REforge on real data, we used known binding motifs for eye-related transcription factors and identified significant binding site divergence in vision-impaired subterranean mammals in 1% of all conserved noncoding elements. We show that these genomic regions are significantly enriched in regulatory elements that are specifically active in mouse eye tissues, and that several of them are located near genes, which are required for eye development and photoreceptor function and are implicated in human eye disorders. Thus, our genome-wide screen detects widespread divergence of eye-regulatory elements and highlights regulatory regions that likely contributed to eye degeneration in subterranean mammals. REforge has broad applicability to detect regulatory elements that could be involved in many other phenotypes, which will help to reveal the genomic basis of morphological diversity.
Collapse
Affiliation(s)
- Björn E Langer
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| | - Juliana G Roscito
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| | - Michael Hiller
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.,Max Planck Institute for the Physics of Complex Systems, Dresden, Germany.,Center for Systems Biology, Dresden, Germany
| |
Collapse
|
132
|
Hamilton AR, Traniello IM, Ray AM, Caldwell AS, Wickline SA, Robinson GE. Division of labor in honey bees is associated with transcriptional regulatory plasticity in the brain. J Exp Biol 2019; 222:jeb200196. [PMID: 31138635 PMCID: PMC6679348 DOI: 10.1242/jeb.200196] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Accepted: 05/16/2019] [Indexed: 12/19/2022]
Abstract
Studies in evolutionary and developmental biology show that relationships between transcription factors (TFs) and their target genes can be altered to result in novel regulatory relationships that generate phenotypic plasticity. We hypothesized that context-dependent shifts in the nervous system associated with behavior may also be linked to changes in TF-target relationships over physiological time scales. We tested this hypothesis using honey bee (Apis mellifera) division of labor as a model system by performing bioinformatic analyses of previously published brain transcriptomic profiles together with new RNAi and behavioral experiments. The bioinformatic analyses identified five TFs that exhibited strong signatures of regulatory plasticity as a function of division of labor. RNAi targeting of one of these TFs (broad complex) and a related TF that did not exhibit plasticity (fushi tarazu transcription factor 1) was administered in conjunction with automated analyses of foraging behavior in the field, laboratory assays of aggression and brood care behavior, and endocrine treatments. The results showed that changes in the regulatory relationships of these TFs were associated with behavioral state, social context and endocrine state. These findings provide the first empirical evidence that TF-target relationships in the brain are altered in conjunction with behavior and social context. They also suggest that one mechanism for this plasticity involves pleiotropic TFs high up in regulatory hierarchies producing behavior-specific transcriptional responses by activating different downstream TFs to induce discrete context-dependent transcriptional cascades. These findings provide new insights into the dynamic nature of the transcriptional regulatory architecture underlying behavior in the brain.
Collapse
Affiliation(s)
- Adam R Hamilton
- Neuroscience Program, University of Illinois at Champaign-Urbana, Urbana, IL 61801, USA
| | - Ian M Traniello
- Neuroscience Program, University of Illinois at Champaign-Urbana, Urbana, IL 61801, USA
| | - Allyson M Ray
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Champaign-Urbana, Urbana, IL 61801, USA
| | - Arminius S Caldwell
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Champaign-Urbana, Urbana, IL 61801, USA
| | - Samuel A Wickline
- Department of Computation and Molecular Biophysics, School of Medicine, Washington University, St. Louis, MO 63110, USA
| | - Gene E Robinson
- Neuroscience Program, University of Illinois at Champaign-Urbana, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Champaign-Urbana, Urbana, IL 61801, USA
- Department of Entomology, University of Illinois at Champaign-Urbana, Urbana, IL 61801, USA
| |
Collapse
|
133
|
Warner MR, Qiu L, Holmes MJ, Mikheyev AS, Linksvayer TA. Convergent eusocial evolution is based on a shared reproductive groundplan plus lineage-specific plastic genes. Nat Commun 2019; 10:2651. [PMID: 31201311 PMCID: PMC6570765 DOI: 10.1038/s41467-019-10546-w] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 05/14/2019] [Indexed: 12/31/2022] Open
Abstract
Eusociality has convergently evolved multiple times, but the genomic basis of caste-based division of labor and degree to which independent origins of eusociality have utilized common genes remain largely unknown. Here we characterize caste-specific transcriptomic profiles across development and adult body segments from pharaoh ants (Monomorium pharaonis) and honey bees (Apis mellifera), representing two independent origins of eusociality. We identify a substantial shared core of genes upregulated in the abdomens of queen ants and honey bees that also tends to be upregulated in mated female flies, suggesting that these genes are part of a conserved insect reproductive groundplan. Outside of this shared groundplan, few genes are differentially expressed in common. Instead, the majority of the thousands of caste-associated genes are plastically expressed, rapidly evolving, and relatively evolutionarily young. These results emphasize that the recruitment of both highly conserved and lineage-specific genes underlie the convergent evolution of novel traits such as eusociality. Eusocial caste systems have evolved independently multiple times. Here, Warner et al. investigate the amount of shared vs. lineage-specific genes involved in the evolution of caste in pharaoh ants and honey bees by comparing transcriptomes across tissues, developmental stages, and castes.
Collapse
Affiliation(s)
| | - Lijun Qiu
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan
| | - Michael J Holmes
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan.,School of Life and Environmental Science, University of Sydney, Sydney, 2006, Australia
| | - Alexander S Mikheyev
- Okinawa Institute of Science and Technology, Okinawa, 904-0495, Japan.,Research School of Biology, Australian National University, Canberra, 0200, Australia
| | | |
Collapse
|
134
|
Sackton TB, Clark N. Convergent evolution in the genomics era: new insights and directions. Philos Trans R Soc Lond B Biol Sci 2019; 374:20190102. [PMID: 31154976 DOI: 10.1098/rstb.2019.0102] [Citation(s) in RCA: 62] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Affiliation(s)
| | - Nathan Clark
- 2 Computational and Systems Biology, University of Pittsburgh , PA , USA
| |
Collapse
|
135
|
Jones JC, Wallberg A, Christmas MJ, Kapheim KM, Webster MT. Extreme Differences in Recombination Rate between the Genomes of a Solitary and a Social Bee. Mol Biol Evol 2019; 36:2277-2291. [DOI: 10.1093/molbev/msz130] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Abstract
Social insect genomes exhibit the highest rates of crossing over observed in plants and animals. The evolutionary causes of these extreme rates are unknown. Insight can be gained by comparing recombination rate variation across the genomes of related social and solitary insects. Here, we compare the genomic recombination landscape of the highly social honey bee, Apis mellifera, with the solitary alfalfa leafcutter bee, Megachile rotundata, by analyzing patterns of linkage disequilibrium in population-scale genome sequencing data. We infer that average recombination rates are extremely elevated in A. mellifera compared with M. rotundata. However, our results indicate that similar factors control the distribution of crossovers in the genomes of both species. Recombination rate is significantly reduced in coding regions in both species, with genes inferred to be germline methylated having particularly low rates. Genes with worker-biased patterns of expression in A. mellifera and their orthologs in M. rotundata have higher than average recombination rates in both species, suggesting that selection for higher diversity in genes involved in worker caste functions in social taxa is not the explanation for these elevated rates. Furthermore, we find no evidence that recombination has modulated the efficacy of selection among genes during bee evolution, which does not support the hypothesis that high recombination rates facilitated positive selection for new functions in social insects. Our results indicate that the evolution of sociality in insects likely entailed selection on modifiers that increased recombination rates genome wide, but that the genomic recombination landscape is determined by the same factors.
Collapse
Affiliation(s)
- Julia C Jones
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Andreas Wallberg
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | - Matthew J Christmas
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| | | | - Matthew T Webster
- Department of Medical Biochemistry and Microbiology, Uppsala University, Uppsala, Sweden
| |
Collapse
|
136
|
Rubenstein DR, Ågren JA, Carbone L, Elde NC, Hoekstra HE, Kapheim KM, Keller L, Moreau CS, Toth AL, Yeaman S, Hofmann HA. Coevolution of Genome Architecture and Social Behavior. Trends Ecol Evol 2019; 34:844-855. [PMID: 31130318 DOI: 10.1016/j.tree.2019.04.011] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Revised: 04/03/2019] [Accepted: 04/17/2019] [Indexed: 01/02/2023]
Abstract
Although social behavior can have a strong genetic component, it can also result in selection on genome structure and function, thereby influencing the evolution of the genome itself. Here we explore the bidirectional links between social behavior and genome architecture by considering variation in social and/or mating behavior among populations (social polymorphisms) and across closely related species. We propose that social behavior can influence genome architecture via associated demographic changes due to social living. We establish guidelines to exploit emerging whole-genome sequences using analytical approaches that examine genome structure and function at different levels (regulatory vs structural variation) from the perspective of both molecular biology and population genetics in an ecological context.
Collapse
Affiliation(s)
- Dustin R Rubenstein
- Columbia University, Department of Ecology, Evolution, and Environmental Biology and Center for Integrative Animal Behavior, New York, NY 10027, USA.
| | - J Arvid Ågren
- Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA 02138, USA
| | - Lucia Carbone
- Oregon Health & Science University, Department of Medicine, KCVI, Portland, OR 97239, USA; Oregon National Primate Research Center, Division of Genetics, Beaverton, OR 97006, USA
| | - Nels C Elde
- University of Utah School of Medicine, Department of Human Genetics, Salt Lake City, UT 84112, USA
| | - Hopi E Hoekstra
- Harvard University, Department of Organismic and Evolutionary Biology, Cambridge, MA 02138, USA; Harvard University, Howard Hughes Medical Institute, Department of Molecular and Cellular Biology, Cambridge, MA 02138, USA
| | - Karen M Kapheim
- Utah State University, Department of Biology, Logan, UT 84322, USA
| | - Laurent Keller
- University of Lausanne, Department of Ecology and Evolution, Biophore, UNIL, 1015 Lausanne, Switzerland
| | - Corrie S Moreau
- Cornell University, Departments of Entomology and Ecology and Evolutionary Biology, Ithaca, NY 14850, USA
| | - Amy L Toth
- Iowa State University, Department of Ecology, Evolution, and Organismal Biology and Department of Entomology, Ames, IA 50011, USA
| | - Sam Yeaman
- University of Calgary, Department of Biological Sciences, Calgary, AB T2N 1N4, Canada
| | - Hans A Hofmann
- The University of Texas at Austin, Department of Integrative Biology and Institute for Cellular and Molecular Biology, 2415 Speedway C-0990, Austin, TX 78712, USA.
| |
Collapse
|
137
|
Falcon T, Pinheiro DG, Ferreira-Caliman MJ, Turatti ICC, de Abreu FCP, Galaschi-Teixeira JS, Martins JR, Elias-Neto M, Soares MPM, Laure MB, Figueiredo VLC, Lopes NP, Simões ZLP, Garófalo CA, Bitondi MMG. Exploring integument transcriptomes, cuticle ultrastructure, and cuticular hydrocarbons profiles in eusocial and solitary bee species displaying heterochronic adult cuticle maturation. PLoS One 2019; 14:e0213796. [PMID: 30870522 PMCID: PMC6417726 DOI: 10.1371/journal.pone.0213796] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Accepted: 02/28/2019] [Indexed: 12/26/2022] Open
Abstract
Differences in the timing of exoskeleton melanization and sclerotization are evident when comparing eusocial and solitary bees. This cuticular maturation heterochrony may be associated with life style, considering that eusocial bees remain protected inside the nest for many days after emergence, while the solitary bees immediately start outside activities. To address this issue, we characterized gene expression using large-scale RNA sequencing (RNA-seq), and quantified cuticular hydrocarbon (CHC) through gas chromatography-mass spectrometry in comparative studies of the integument (cuticle plus its underlying epidermis) of two eusocial and a solitary bee species. In addition, we used transmission electron microscopy (TEM) for studying the developing cuticle of these and other three bee species also differing in life style. We found 13,200, 55,209 and 30,161 transcript types in the integument of the eusocial Apis mellifera and Frieseomelitta varia, and the solitary Centris analis, respectively. In general, structural cuticle proteins and chitin-related genes were upregulated in pharate-adults and newly-emerged bees whereas transcripts for odorant binding proteins, cytochrome P450 and antioxidant proteins were overrepresented in foragers. Consistent with our hypothesis, a distance correlation analysis based on the differentially expressed genes suggested delayed cuticle maturation in A. mellifera in comparison to the solitary bee. However, this was not confirmed in the comparison with F. varia. The expression profiles of 27 of 119 genes displaying functional attributes related to cuticle formation/differentiation were positively correlated between A. mellifera and F. varia, and negatively or non-correlated with C. analis, suggesting roles in cuticular maturation heterochrony. However, we also found transcript profiles positively correlated between each one of the eusocial species and C. analis. Gene co-expression networks greatly differed between the bee species, but we identified common gene interactions exclusively between the eusocial species. Except for F. varia, the TEM analysis is consistent with cuticle development timing adapted to the social or solitary life style. In support to our hypothesis, the absolute quantities of n-alkanes and unsaturated CHCs were significantly higher in foragers than in the earlier developmental phases of the eusocial bees, but did not discriminate newly-emerged from foragers in C. analis. By highlighting differences in integument gene expression, cuticle ultrastructure, and CHC profiles between eusocial and solitary bees, our data provided insights into the process of heterochronic cuticle maturation associated to the way of life.
Collapse
Affiliation(s)
- Tiago Falcon
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
- Núcleo de Bioinformática, Hospital de Clínicas de Porto Alegre, Porto Alegre, Brazil
| | - Daniel G. Pinheiro
- Departamento de Tecnologia, Faculdade de Ciências Agrárias e Veterinárias, Universidade Estadual Paulista “Júlio de Mesquita Filho”, Jaboticabal, Brazil
| | - Maria Juliana Ferreira-Caliman
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Izabel C. C. Turatti
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Fabiano C. Pinto de Abreu
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Juliana S. Galaschi-Teixeira
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Juliana R. Martins
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Moysés Elias-Neto
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Michelle P. M. Soares
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Marcela B. Laure
- Departamento de Genética, Faculdade de Medicina de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Vera L. C. Figueiredo
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Norberto Peporine Lopes
- Departamento de Física e Química, Faculdade de Ciências Farmacêuticas de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Zilá L. P. Simões
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Carlos A. Garófalo
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| | - Márcia M. G. Bitondi
- Departamento de Biologia, Faculdade de Filosofia, Ciências e Letras de Ribeirão Preto, Universidade de São Paulo, Ribeirão Preto, Brazil
| |
Collapse
|
138
|
Kapheim KM, Pan H, Li C, Blatti C, Harpur BA, Ioannidis P, Jones BM, Kent CF, Ruzzante L, Sloofman L, Stolle E, Waterhouse RM, Zayed A, Zhang G, Wcislo WT. Draft Genome Assembly and Population Genetics of an Agricultural Pollinator, the Solitary Alkali Bee (Halictidae: Nomia melanderi). G3 (BETHESDA, MD.) 2019; 9:625-634. [PMID: 30642875 PMCID: PMC6404593 DOI: 10.1534/g3.118.200865] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/05/2018] [Accepted: 01/12/2019] [Indexed: 02/07/2023]
Abstract
Alkali bees (Nomia melanderi) are solitary relatives of the halictine bees, which have become an important model for the evolution of social behavior, but for which few solitary comparisons exist. These ground-nesting bees defend their developing offspring against pathogens and predators, and thus exhibit some of the key traits that preceded insect sociality. Alkali bees are also efficient native pollinators of alfalfa seed, which is a crop of major economic value in the United States. We sequenced, assembled, and annotated a high-quality draft genome of 299.6 Mbp for this species. Repetitive content makes up more than one-third of this genome, and previously uncharacterized transposable elements are the most abundant type of repetitive DNA. We predicted 10,847 protein coding genes, and identify 479 of these undergoing positive directional selection with the use of population genetic analysis based on low-coverage whole genome sequencing of 19 individuals. We found evidence of recent population bottlenecks, but no significant evidence of population structure. We also identify 45 genes enriched for protein translation and folding, transcriptional regulation, and triglyceride metabolism evolving slower in alkali bees compared to other halictid bees. These resources will be useful for future studies of bee comparative genomics and pollinator health research.
Collapse
Affiliation(s)
- Karen M Kapheim
- Department of Biology, Utah State University, Logan, UT 84322
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| | - Hailin Pan
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- China National Genebank, BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
- Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - Cai Li
- The Francis Crick Institute, London NW1 1AT, United Kingdom
| | - Charles Blatti
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Brock A Harpur
- Department of Entomology, Purdue University, W. Lafayette, IN, 47907
| | - Panagiotis Ioannidis
- Foundation for Research and Technology Hellas, Institute of Molecular Biology and Biotechnology, 70013 Vassilika Vouton, Heraklion, Greece
| | - Beryl M Jones
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801
| | - Clement F Kent
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Livio Ruzzante
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Laura Sloofman
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL
| | - Eckart Stolle
- Institute of Biology, Martin-Luther-University Halle-Wittenberg, 06120 Halle, Germany
| | - Robert M Waterhouse
- Swiss Institute of Bioinformatics, 1015 Lausanne, Switzerland
- Department of Ecology and Evolution, University of Lausanne, 1015 Lausanne, Switzerland
| | - Amro Zayed
- Department of Biology, York University, Toronto, Ontario, M3J 1P3, Canada
| | - Guojie Zhang
- State Key Laboratory of Genetic Resources and Evolution, Kunming Institute of Zoology, Chinese Academy of Sciences, 650223, Kunming, China
- China National Genebank, BGI-Shenzhen, 518083, Shenzhen, Guangdong, China
- Centre for Social Evolution, Department of Biology, Universitetsparken 15, University of Copenhagen, DK-2100, Copenhagen, Denmark
| | - William T Wcislo
- Smithsonian Tropical Research Institute, Panama City, Republic of Panama
| |
Collapse
|
139
|
Tupec M, Buček A, Janoušek V, Vogel H, Prchalová D, Kindl J, Pavlíčková T, Wenzelová P, Jahn U, Valterová I, Pichová I. Expansion of the fatty acyl reductase gene family shaped pheromone communication in Hymenoptera. eLife 2019; 8:e39231. [PMID: 30714899 PMCID: PMC6361591 DOI: 10.7554/elife.39231] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 01/10/2019] [Indexed: 12/20/2022] Open
Abstract
Fatty acyl reductases (FARs) are involved in the biosynthesis of fatty alcohols that serve a range of biological roles. Insects typically harbor numerous FAR gene family members. While some FARs are involved in pheromone biosynthesis, the biological significance of the large number of FARs in insect genomes remains unclear. Using bumble bee (Bombini) FAR expression analysis and functional characterization, hymenopteran FAR gene tree reconstruction, and inspection of transposable elements (TEs) in the genomic environment of FARs, we uncovered a massive expansion of the FAR gene family in Hymenoptera, presumably facilitated by TEs. The expansion occurred in the common ancestor of bumble bees and stingless bees (Meliponini). We found that bumble bee FARs from the expanded FAR-A ortholog group contribute to the species-specific pheromone composition. Our results indicate that expansion and functional diversification of the FAR gene family played a key role in the evolution of pheromone communication in Hymenoptera.
Collapse
Affiliation(s)
- Michal Tupec
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
- Department of Biochemistry, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Aleš Buček
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
- Okinawa Institute of Science and Technology Graduate UniversityOkinawaJapan
| | - Václav Janoušek
- Department of Zoology, Faculty of ScienceCharles UniversityPragueCzech Republic
| | - Heiko Vogel
- Department of EntomologyMax Planck Institute for Chemical EcologyJenaGermany
| | - Darina Prchalová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Jiří Kindl
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Tereza Pavlíčková
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Petra Wenzelová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Ullrich Jahn
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Irena Valterová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| | - Iva Pichová
- Institute of Organic Chemistry and Biochemistry of the Czech Academy of SciencesPragueCzech Republic
| |
Collapse
|
140
|
Sackton TB. Comparative genomics and transcriptomics of host-pathogen interactions in insects: evolutionary insights and future directions. CURRENT OPINION IN INSECT SCIENCE 2019; 31:106-113. [PMID: 31109663 DOI: 10.1016/j.cois.2018.12.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2018] [Revised: 12/21/2018] [Accepted: 12/22/2018] [Indexed: 06/09/2023]
Abstract
Classical evolutionary studies of protein-coding genes have established that genes in the canonical immune system are often among the most rapidly evolving within and between species. As more genomes and transcriptomes across insects are sequenced, it is becoming clear that duplications and losses of immune genes are also a likely consequence of host-pathogen interactions. Furthermore, particular species respond to diverse pathogenic challenges with a wide range of challenge-specific responses that are still poorly understood. Transcriptional studies, using RNA-seq to characterize the infection-regulated transcriptome of diverse insects, are crucial for additional progress in understanding the ecology and evolution of the full complexity of the host response.
Collapse
Affiliation(s)
- Timothy B Sackton
- Informatics Group, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, United States.
| |
Collapse
|
141
|
Matsunami M, Nozawa M, Suzuki R, Toga K, Masuoka Y, Yamaguchi K, Maekawa K, Shigenobu S, Miura T. Caste-specific microRNA expression in termites: insights into soldier differentiation. INSECT MOLECULAR BIOLOGY 2019; 28:86-98. [PMID: 30126008 DOI: 10.1111/imb.12530] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Eusocial insects have polyphenic caste systems in which each caste exhibits characteristic morphology and behaviour. In insects, caste systems arose independently in different lineages, such as Isoptera and Hymenoptera. Although partial molecular mechanisms for the development of eusociality in termites have been clarified by the functional analysis of genes and hormones, the contribution of microRNAs (miRNAs) to caste differentiation is unknown. To understand the role of miRNAs in termite caste polyphenism, we performed small RNA sequencing in a subterranean termite (Reticulitermes speratus) and identified the miRNAs that were specifically expressed in the soldier and worker castes. Of the 550 miRNAs annotated in the R. speratus genome, 74 were conserved in insects and 174 were conserved in other termite species. We found that eight miRNAs (mir-1, mir-125, mir-133, mir-2765, mir-87a and three termite-specific miRNAs) are differentially expressed (DE) in soldiers and workers of R. speratus. This differential expression was experimentally verified for five miRNAs by real-time quantitative PCR. Further, four of the eight DE miRNAs in soldier and worker termite castes were also differentially expressed in hymenopteran castes. The finding that Isoptera and Hymenoptera shared several DE miRNAs amongst castes suggests that these miRNAs evolved independently in these phylogenetically distinct lineages.
Collapse
Affiliation(s)
- M Matsunami
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
- Graduate School of Medicine, University of the Ryukyus, Nishihara-cho, Japan
| | - M Nozawa
- Department of Biological Sciences, Tokyo Metropolitan University, Hachioji, Japan
| | - R Suzuki
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - K Toga
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- Department of Biosciences, College of Humanities and Sciences, Nihon University, Tokyo, Japan
| | - Y Masuoka
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
- Institute of Agrobiological Sciences, National Agriculture and Food Research Organization, Tsukuba, Ibaraki, Japan
| | - K Yamaguchi
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - K Maekawa
- Graduate School of Science and Engineering, University of Toyama, Toyama, Japan
| | - S Shigenobu
- Functional Genomics Facility, National Institute for Basic Biology, Okazaki, Japan
| | - T Miura
- Laboratory of Ecological Genetics, Graduate School of Environmental Science, Hokkaido University, Sapporo, Japan
- Misaki Marine Biological Station, University of Tokyo, Miura, Kanagawa, Japan
| |
Collapse
|
142
|
Beadle K, Singh KS, Troczka BJ, Randall E, Zaworra M, Zimmer CT, Hayward A, Reid R, Kor L, Kohler M, Buer B, Nelson DR, Williamson MS, Davies TGE, Field LM, Nauen R, Bass C. Genomic insights into neonicotinoid sensitivity in the solitary bee Osmia bicornis. PLoS Genet 2019; 15:e1007903. [PMID: 30716069 PMCID: PMC6375640 DOI: 10.1371/journal.pgen.1007903] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2018] [Revised: 02/14/2019] [Accepted: 12/17/2018] [Indexed: 01/25/2023] Open
Abstract
The impact of pesticides on the health of bee pollinators is determined in part by the capacity of bee detoxification systems to convert these compounds to less toxic forms. For example, recent work has shown that cytochrome P450s of the CYP9Q subfamily are critically important in defining the sensitivity of honey bees and bumblebees to pesticides, including neonicotinoid insecticides. However, it is currently unclear if solitary bees have functional equivalents of these enzymes with potentially serious implications in relation to their capacity to metabolise certain insecticides. To address this question, we sequenced the genome of the red mason bee, Osmia bicornis, the most abundant and economically important solitary bee species in Central Europe. We show that O. bicornis lacks the CYP9Q subfamily of P450s but, despite this, exhibits low acute toxicity to the N-cyanoamidine neonicotinoid thiacloprid. Functional studies revealed that variation in the sensitivity of O. bicornis to N-cyanoamidine and N-nitroguanidine neonicotinoids does not reside in differences in their affinity for the nicotinic acetylcholine receptor or speed of cuticular penetration. Rather, a P450 within the CYP9BU subfamily, with recent shared ancestry to the Apidae CYP9Q subfamily, metabolises thiacloprid in vitro and confers tolerance in vivo. Our data reveal conserved detoxification pathways in model solitary and eusocial bees despite key differences in the evolution of specific pesticide-metabolising enzymes in the two species groups. The discovery that P450 enzymes of solitary bees can act as metabolic defence systems against certain pesticides can be leveraged to avoid negative pesticide impacts on these important pollinators.
Collapse
Affiliation(s)
- Katherine Beadle
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| | - Kumar Saurabh Singh
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| | - Bartlomiej J. Troczka
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Emma Randall
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| | | | - Christoph T. Zimmer
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| | - Angela Hayward
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| | - Rebecca Reid
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Laura Kor
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Maxie Kohler
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| | - Benjamin Buer
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| | - David R. Nelson
- Department of Microbiology, Immunology and Biochemistry, University of Tennessee Health Science Center, Memphis, TN, United States of America
| | - Martin S. Williamson
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - T. G. Emyr Davies
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Linda M. Field
- Department of Biointeractions and Crop Protection, Rothamsted Research, Harpenden, United Kingdom
| | - Ralf Nauen
- Bayer AG, Crop Science Division, R&D, Monheim, Germany
| | - Chris Bass
- College of Life and Environmental Sciences, Biosciences, University of Exeter, Penryn Campus, Penryn, Cornwall, United Kingdom
| |
Collapse
|
143
|
Brain evolution in social insects: advocating for the comparative approach. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2019; 205:13-32. [DOI: 10.1007/s00359-019-01315-7] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2018] [Revised: 01/09/2019] [Accepted: 01/11/2019] [Indexed: 10/27/2022]
|
144
|
Robertson HM. Molecular Evolution of the Major Arthropod Chemoreceptor Gene Families. ANNUAL REVIEW OF ENTOMOLOGY 2019; 64:227-242. [PMID: 30312552 DOI: 10.1146/annurev-ento-020117-043322] [Citation(s) in RCA: 144] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
The evolutionary origins of the three major families of chemoreceptors in arthropods-the odorant receptor (OR), gustatory receptor (GR), and ionotropic receptor (IR) families-occurred at the base of the Insecta, Animalia, and Protostomia, respectively. Comparison of receptor family sizes across arthropods reveals a generally positive correlation with their widely disparate complexity of chemical ecology. Closely related species reveal the ongoing processes of gene family evolution, including gene duplication, divergence, pseudogenization, and loss, that mediate these larger patterns. Sets of paralogous receptors within species reveal positive selection on amino acids in regions likely to contribute to ligand binding and specificity. Ligands of many ORs and some GRs and IRs have been identified; however, ligand identification for many more chemoreceptors is needed, as are structures for the OR/GR superfamily, to improve our understanding of the molecular evolution of these ecologically important receptors in arthropods.
Collapse
Affiliation(s)
- Hugh M Robertson
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, Illinois 61801, USA;
| |
Collapse
|
145
|
Blaz J, Barrera-Redondo J, Vázquez-Rosas-Landa M, Canedo-Téxon A, Aguirre von Wobeser E, Carrillo D, Stouthamer R, Eskalen A, Villafán E, Alonso-Sánchez A, Lamelas A, Ibarra-Juarez LA, Pérez-Torres CA, Ibarra-Laclette E. Genomic Signals of Adaptation towards Mutualism and Sociality in Two Ambrosia Beetle Complexes. Life (Basel) 2018; 9:E2. [PMID: 30583535 PMCID: PMC6463014 DOI: 10.3390/life9010002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2018] [Revised: 12/08/2018] [Accepted: 12/20/2018] [Indexed: 01/03/2023] Open
Abstract
Mutualistic symbiosis and eusociality have developed through gradual evolutionary processes at different times in specific lineages. Like some species of termites and ants, ambrosia beetles have independently evolved a mutualistic nutritional symbiosis with fungi, which has been associated with the evolution of complex social behaviors in some members of this group. We sequenced the transcriptomes of two ambrosia complexes (Euwallacea sp. near fornicatus⁻Fusarium euwallaceae and Xyleborus glabratus⁻Raffaelea lauricola) to find evolutionary signatures associated with mutualism and behavior evolution. We identified signatures of positive selection in genes related to nutrient homeostasis; regulation of gene expression; development and function of the nervous system, which may be involved in diet specialization; behavioral changes; and social evolution in this lineage. Finally, we found convergent changes in evolutionary rates of proteins across lineages with phylogenetically independent origins of sociality and mutualism, suggesting a constrained evolution of conserved genes in social species, and an evolutionary rate acceleration related to changes in selective pressures in mutualistic lineages.
Collapse
Affiliation(s)
- Jazmín Blaz
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Josué Barrera-Redondo
- Departamento de Ecología Evolutiva, Instituto de Ecología, Universidad Nacional Autónoma de México, Ciudad de México 04500, Mexico.
| | | | - Anahí Canedo-Téxon
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | | | - Daniel Carrillo
- Tropical Research and Education Center, University of Florida, Homestead, FL 33031, USA.
| | - Richard Stouthamer
- Department of Plant Pathology, University of California⁻Riverside, Riverside, CA 92521, USA.
| | - Akif Eskalen
- Department of Plant Pathology, University of California, Davis, CA 95616-8751, USA.
| | - Emanuel Villafán
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Alexandro Alonso-Sánchez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Araceli Lamelas
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| | - Luis Arturo Ibarra-Juarez
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
- Cátedras CONACyT/Instituto de Ecología A.C., Xalapa, Veracruz 91070, Mexico.
| | - Claudia Anahí Pérez-Torres
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
- Cátedras CONACyT/Instituto de Ecología A.C., Xalapa, Veracruz 91070, Mexico.
| | - Enrique Ibarra-Laclette
- Red de Estudios Moleculares Avanzados, Instituto de Ecología A.C, Xalapa, Veracruz 91070, Mexico.
| |
Collapse
|
146
|
Zhao X, Su L, Schaack S, Sadd BM, Sun C. Tandem Repeats Contribute to Coding Sequence Variation in Bumblebees (Hymenoptera: Apidae). Genome Biol Evol 2018; 10:3176-3187. [PMID: 30398620 PMCID: PMC6286909 DOI: 10.1093/gbe/evy244] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/03/2018] [Indexed: 01/02/2023] Open
Abstract
Tandem repeats (TRs) are highly dynamic regions of the genome. Mutations at these loci represent a significant source of genetic variation and can facilitate rapid adaptation. Bumblebees are important pollinating insects occupying a wide range of habitats. However, to date, molecular mechanisms underlying the potential adaptation of bumblebees to diverse habitats are largely unknown. In the present study, we investigate how TRs contribute to genetic variation in bumblebees, thus potentially facilitating adaptation. We identified 26,595 TRs from the assembled 18 chromosome sequences of the buff-tailed bumblebee (Bombus terrestris), 66.7% of which reside in genic regions. We also compared TRs found in B. terrestris with those present in the assembled genome sequence of a congener, B. impatiens. We found that a total of 1,137 TRs were variable in length between the two sequenced bumblebee species, and further analysis reveals that 101 of them are located within coding regions. These 101 TRs are responsible for coding sequence variation and correspond to protein sequence length variation between the two bumblebee species. The variability of identified TRs in coding regions between bumblebees was confirmed by PCR amplification of a subset of loci. Functional classification of bumblebee genes where coding sequences include variable-length TRs suggests that a majority of genes (87%) that could be assigned to a protein class are related to transcriptional regulation. Our results show that TRs contribute to coding sequence variation in bumblebees, and thus may facilitate the adaptation of bumblebees through diversifying proteins involved in controlling gene expression.
Collapse
Affiliation(s)
- Xiaomeng Zhao
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Long Su
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| | - Sarah Schaack
- Department of Biology, Reed College, Portland, Oregon, USA
| | - Ben M Sadd
- School of Biological Sciences, Illinois State University, Normal, Illinois, USA
| | - Cheng Sun
- Key Laboratory of Pollinating Insect Biology of the Ministry of Agriculture, Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing, China
| |
Collapse
|
147
|
Jones BM, Robinson GE. Genetic accommodation and the role of ancestral plasticity in the evolution of insect eusociality. J Exp Biol 2018; 221:jeb153163. [PMID: 30478152 PMCID: PMC6288071 DOI: 10.1242/jeb.153163] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
For over a century, biologists have proposed a role for phenotypic plasticity in evolution, providing an avenue for adaptation in addition to 'mutation-first' models of evolutionary change. According to the various versions of this idea, the ability of organisms to respond adaptively to their environment through phenotypic plasticity may lead to novel phenotypes that can be screened by natural selection. If these initially environmentally induced phenotypes increase fitness, then genetic accommodation can lead to allele frequency change, influencing the expression of those phenotypes. Despite the long history of 'plasticity-first' models, the importance of genetic accommodation in shaping evolutionary change has remained controversial - it is neither fully embraced nor completely discarded by most evolutionary biologists. We suggest that the lack of acceptance of genetic accommodation in some cases is related to a lack of information on its molecular mechanisms. However, recent reports of epigenetic transgenerational inheritance now provide a plausible mechanism through which genetic accommodation may act, and we review this research here. We also discuss current evidence supporting a role for genetic accommodation in the evolution of eusociality in social insects, which have long been models for studying the influence of the environment on phenotypic variation, and may be particularly good models for testing hypotheses related to genetic accommodation. Finally, we introduce 'eusocial engineering', a method by which novel social phenotypes are first induced by environmental modification and then studied mechanistically to understand how environmentally induced plasticity may lead to heritable changes in social behavior. We believe the time is right to incorporate genetic accommodation into models of the evolution of complex traits, armed with new molecular tools and a better understanding of non-genetic heritable elements.
Collapse
Affiliation(s)
- Beryl M Jones
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Gene E Robinson
- Program in Ecology, Evolution, and Conservation Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Department of Entomology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Carl R. Woese Institute for Genomic Biology, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
- Neuroscience Program, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| |
Collapse
|
148
|
|
149
|
Faragalla KM, Chernyshova AM, Gallo AJ, Thompson GJ. From gene list to gene network: Recognizing functional connections that regulate behavioral traits. JOURNAL OF EXPERIMENTAL ZOOLOGY PART B-MOLECULAR AND DEVELOPMENTAL EVOLUTION 2018; 330:317-329. [DOI: 10.1002/jez.b.22829] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2018] [Accepted: 09/10/2018] [Indexed: 12/27/2022]
|
150
|
Kocher SD, Mallarino R, Rubin BER, Yu DW, Hoekstra HE, Pierce NE. The genetic basis of a social polymorphism in halictid bees. Nat Commun 2018; 9:4338. [PMID: 30337532 PMCID: PMC6194137 DOI: 10.1038/s41467-018-06824-8] [Citation(s) in RCA: 54] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2018] [Accepted: 09/17/2018] [Indexed: 11/09/2022] Open
Abstract
The emergence of eusociality represents a major evolutionary transition from solitary to group reproduction. The most commonly studied eusocial species, honey bees and ants, represent the behavioral extremes of social evolution but lack close relatives that are non-social. Unlike these species, the halictid bee Lasioglossum albipes produces both solitary and eusocial nests and this intraspecific variation has a genetic basis. Here, we identify genetic variants associated with this polymorphism, including one located in the intron of syntaxin 1a (syx1a), a gene that mediates synaptic vesicle release. We show that this variant can alter gene expression in a pattern consistent with differences between social and solitary bees. Surprisingly, syx1a and several other genes associated with sociality in L. albipes have also been implicated in autism spectrum disorder in humans. Thus, genes underlying behavioral variation in L. albipes may also shape social behaviors across a wide range of taxa, including humans. The halictid bee Lasioglossum albipes has both solitary and eusocial individuals, making it a model for social evolution. Here, Kocher et al. identify a genetic variation associated with this social polymorphism, including a variant that can regulate the expression of an autism-associated gene, syntaxin 1a.
Collapse
Affiliation(s)
- Sarah D Kocher
- Department of Ecology and Evoutionary Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA. .,Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 28 Oxford St, Cambridge, MA, 02138, USA.
| | - Ricardo Mallarino
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 28 Oxford St, Cambridge, MA, 02138, USA.,Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, 52 Oxford St, Cambridge, MA, 01238, USA.,Department of Molecular Biology, Princeton University, Princeton, NJ, 08544, USA
| | - Benjamin E R Rubin
- Department of Ecology and Evoutionary Biology, Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ, 08544, USA
| | - Douglas W Yu
- Kunming Institute for Zoology, 32 Jiaochang Donglu, Kunming, Yunnan, 650223, China.,Center for Excellence in Animal Evolution and Genetics, Chinese Academy of Sciences, 32 Jiaochang Donglu, Kunming, Yunnan, 650223, China.,School of Biological Sciences, University of East Anglia, Norwich Research Park, Norwich, NR4 7TJ, UK
| | - Hopi E Hoekstra
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 28 Oxford St, Cambridge, MA, 02138, USA.,Department of Molecular and Cellular Biology, Howard Hughes Medical Institute, Harvard University, 52 Oxford St, Cambridge, MA, 01238, USA
| | - Naomi E Pierce
- Department of Organismic and Evolutionary Biology, Museum of Comparative Zoology, Harvard University, 28 Oxford St, Cambridge, MA, 02138, USA.
| |
Collapse
|