101
|
Paknia E, Chari A, Stark H, Fischer U. The Ribosome Cooperates with the Assembly Chaperone pICln to Initiate Formation of snRNPs. Cell Rep 2018; 16:3103-3112. [PMID: 27653676 DOI: 10.1016/j.celrep.2016.08.047] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/11/2016] [Accepted: 08/15/2016] [Indexed: 01/05/2023] Open
Abstract
The formation of macromolecular complexes within the crowded environment of cells often requires aid from assembly chaperones. PRMT5 and SMN complexes mediate this task for the assembly of the common core of pre-mRNA processing small nuclear ribonucleoprotein particles (snRNPs). Core formation is initiated by the PRMT5-complex subunit pICln, which pre-arranges the core proteins into spatial positions occupied in the assembled snRNP. The SMN complex then accepts these pICln-bound proteins and unites them with small nuclear RNA (snRNA). Here, we have analyzed how newly synthesized snRNP proteins are channeled into the assembly pathway to evade mis-assembly. We show that they initially remain bound to the ribosome near the polypeptide exit tunnel and dissociate upon association with pICln. Coincident with its release activity, pICln ensures the formation of cognate heterooligomers and their chaperoned guidance into the assembly pathway. Our study identifies the ribosomal quality control hub as a site where chaperone-mediated assembly of macromolecular complexes can be initiated.
Collapse
Affiliation(s)
- Elham Paknia
- Department of Biochemistry, University of Wuerzburg, 97074 Wuerzburg, Germany; Department for Structural Dynamics, Max-Planck-Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Ashwin Chari
- Department for Structural Dynamics, Max-Planck-Institute for Biophysical Chemistry, 37077 Goettingen, Germany.
| | - Holger Stark
- Department for Structural Dynamics, Max-Planck-Institute for Biophysical Chemistry, 37077 Goettingen, Germany
| | - Utz Fischer
- Department of Biochemistry, University of Wuerzburg, 97074 Wuerzburg, Germany; Department of Radiation Medicine and Applied Sciences, University of California at San Diego, San Diego, CA 92037, USA.
| |
Collapse
|
102
|
Co-translational control of protein complex formation: a fundamental pathway of cellular organization? Biochem Soc Trans 2018; 46:197-206. [PMID: 29432142 DOI: 10.1042/bst20170451] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Revised: 12/10/2017] [Accepted: 01/08/2018] [Indexed: 12/16/2022]
Abstract
Analyses of proteomes from a large number of organisms throughout the domains of life highlight the key role played by multiprotein complexes for the implementation of cellular function. While the occurrence of multiprotein assemblies is ubiquitous, the understanding of pathways that dictate the formation of quaternary structure remains enigmatic. Interestingly, there are now well-established examples of protein complexes that are assembled co-translationally in both prokaryotes and eukaryotes, and indications are that the phenomenon is widespread in cells. Here, we review complex assembly with an emphasis on co-translational pathways, which involve interactions of nascent chains with other nascent or mature partner proteins, respectively. In prokaryotes, such interactions are promoted by the polycistronic arrangement of mRNA and the associated co-translation of functionally related cell constituents in order to enhance otherwise diffusion-dependent processes. Beyond merely stochastic events, however, co-translational complex formation may be sensitive to subunit availability and allow for overall regulation of the assembly process. We speculate how co-translational pathways may constitute integral components of quality control systems to ensure the correct and complete formation of hundreds of heterogeneous assemblies in a single cell. Coupling of folding of intrinsically disordered domains with co-translational interaction of binding partners may furthermore enhance the efficiency and fidelity with which correct conformation is attained. Co-translational complex formation may constitute a fundamental pathway of cellular organization, with profound importance for health and disease.
Collapse
|
103
|
Non-equilibrium coupling of protein structure and function to translation-elongation kinetics. Curr Opin Struct Biol 2018; 49:94-103. [PMID: 29414517 DOI: 10.1016/j.sbi.2018.01.005] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2017] [Revised: 12/21/2017] [Accepted: 01/02/2018] [Indexed: 01/23/2023]
Abstract
Protein folding research has been dominated by the assumption that thermodynamics determines protein structure and function. And that when the folding process is compromised in vivo the proteostasis machinery-chaperones, deaggregases, the proteasome-work to restore proteins to their soluble, functional form or degrade them to maintain the cellular pool of proteins in a quasi-equilibrium state. During the past decade, however, more and more proteins have been identified for which altering only their speed of synthesis alters their structure and function, the efficiency of the down-stream processes they take part in, and cellular phenotype. Indeed, evidence has emerged that evolutionary selection pressures have encoded translation-rate information into mRNA molecules to coordinate diverse co-translational processes. Thus, non-equilibrium physics can play a fundamental role in influencing nascent protein behavior, mRNA sequence evolution, and disease. Here, we discuss how our understanding of this phenomenon is being advanced by the application of theoretical tools from the physical sciences.
Collapse
|
104
|
Abstract
Experimental methods for the characterization of protein complexes have been instrumental in achieving our current understanding of the protein universe and continue to progress with each year that passes. In this chapter, we review some of the most important tools and techniques in the field, covering the important points in X-ray crystallography, cryo-electron microscopy, NMR spectroscopy, and mass spectrometry. Novel developments are making it possible to study large protein complexes at near-atomic resolutions, and we also now have the ability to study the dynamics and assembly pathways of protein complexes across a range of sizes.
Collapse
Affiliation(s)
- Jonathan N Wells
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK.
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics & Molecular Medicine, University of Edinburgh, Edinburgh, UK
| |
Collapse
|
105
|
Komar AA. Unraveling co-translational protein folding: Concepts and methods. Methods 2017; 137:71-81. [PMID: 29221924 DOI: 10.1016/j.ymeth.2017.11.007] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Accepted: 11/13/2017] [Indexed: 12/26/2022] Open
Abstract
Advances in techniques such as nuclear magnetic resonance spectroscopy, cryo-electron microscopy, and single-molecule and time-resolved fluorescent approaches are transforming our ability to study co-translational protein folding both in vivo in living cells and in vitro in reconstituted cell-free translation systems. These approaches provide comprehensive information on the spatial organization and dynamics of nascent polypeptide chains and the kinetics of co-translational protein folding. This information has led to an improved understanding of the process of protein folding in living cells and should allow remaining key questions in the field, such as what structures are formed within nascent chains during protein synthesis and when, to be answered. Ultimately, studies using these techniques will facilitate development of a unified concept of protein folding, a process that is essential for proper cell function and organism viability. This review describes current methods for analysis of co-translational protein folding with an emphasis on some of the recently developed techniques that allow monitoring of co-translational protein folding in real-time.
Collapse
Affiliation(s)
- Anton A Komar
- Center for Gene Regulation in Health and Disease and Department of Biological, Geological and Environmental Sciences, Cleveland State University, Cleveland, OH 44115, USA; Department of Biochemistry and the Center for RNA Science and Therapeutics, Case Western Reserve University, Cleveland, OH 44106, USA; Genomic Medicine Institute, Lerner Research Institute, Cleveland Clinic, Cleveland, OH 44195, USA.
| |
Collapse
|
106
|
Coat Protein Mutations That Alter the Flux of Morphogenetic Intermediates through the ϕX174 Early Assembly Pathway. J Virol 2017; 91:JVI.01384-17. [PMID: 28978706 DOI: 10.1128/jvi.01384-17] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2017] [Accepted: 09/25/2017] [Indexed: 11/20/2022] Open
Abstract
Two scaffolding proteins orchestrate ϕX174 morphogenesis. The internal scaffolding protein B mediates the formation of pentameric assembly intermediates, whereas the external scaffolding protein D organizes 12 of these intermediates into procapsids. Aromatic amino acid side chains mediate most coat-internal scaffolding protein interactions. One residue in the internal scaffolding protein and three in the coat protein constitute the core of the B protein binding cleft. The three coat gene codons were randomized separately to ascertain the chemical requirements of the encoded amino acids and the morphogenetic consequences of mutation. The resulting mutants exhibited a wide range of recessive phenotypes, which could generally be explained within a structural context. Mutants with phenylalanine, tyrosine, and methionine substitutions were phenotypically indistinguishable from the wild type. However, tryptophan substitutions were detrimental at two sites. Charged residues were poorly tolerated, conferring extreme temperature-sensitive and lethal phenotypes. Eighteen lethal and conditional lethal mutants were genetically and biochemically characterized. The primary defect associated with the missense substitutions ranged from inefficient internal scaffolding protein B binding to faulty procapsid elongation reactions mediated by external scaffolding protein D. Elevating B protein concentrations above wild-type levels via exogenous, cloned-gene expression compensated for inefficient B protein binding, as did suppressing mutations within gene B. Similarly, elevating D protein concentrations above wild-type levels or compensatory mutations within gene D suppressed faulty elongation. Some of the parental mutations were pleiotropic, affecting multiple morphogenetic reactions. This progressively reduced the flux of intermediates through the pathway. Accordingly, multiple mechanisms, which may be unrelated, could restore viability.IMPORTANCE Genetic analyses have been instrumental in deciphering the temporal events of many biochemical pathways. However, pleiotropic effects can complicate analyses. Vis-à-vis virion morphogenesis, an improper protein-protein interaction within an early assembly intermediate can influence the efficiency of all subsequent reactions. Consequently, the flux of assembly intermediates cumulatively decreases as the pathway progresses. During morphogenesis, ϕX174 coat protein participates in at least four well-defined reactions, each one characterized by an interaction with a scaffolding or structural protein. In this study, genetic analyses, biochemical characterizations, and physiological assays, i.e., elevating the protein levels with which the coat protein interacts, were used to elucidate pleiotropic effects that may alter the flux of intermediates through a morphogenetic pathway.
Collapse
|
107
|
Abstract
3'-untranslated regions (3'-UTRs) are the noncoding parts of mRNAs. Compared to yeast, in humans, median 3'-UTR length has expanded approximately tenfold alongside an increased generation of alternative 3'-UTR isoforms. In contrast, the number of coding genes, as well as coding region length, has remained similar. This suggests an important role for 3'-UTRs in the biology of higher organisms. 3'-UTRs are best known to regulate diverse fates of mRNAs, including degradation, translation, and localization, but they can also function like long noncoding or small RNAs, as has been shown for whole 3'-UTRs as well as for cleaved fragments. Furthermore, 3'-UTRs determine the fate of proteins through the regulation of protein-protein interactions. They facilitate cotranslational protein complex formation, which establishes a role for 3'-UTRs as evolved eukaryotic operons. Whereas bacterial operons promote the interaction of two subunits, 3'-UTRs enable the formation of protein complexes with diverse compositions. All of these 3'-UTR functions are accomplished by effector proteins that are recruited by RNA-binding proteins that bind to 3'-UTR cis-elements. In summary, 3'-UTRs seem to be major players in gene regulation that enable local functions, compartmentalization, and cooperativity, which makes them important tools for the regulation of phenotypic diversity of higher organisms.
Collapse
Affiliation(s)
- Christine Mayr
- Department of Cancer Biology and Genetics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA;
| |
Collapse
|
108
|
Döring K, Ahmed N, Riemer T, Suresh HG, Vainshtein Y, Habich M, Riemer J, Mayer MP, O'Brien EP, Kramer G, Bukau B. Profiling Ssb-Nascent Chain Interactions Reveals Principles of Hsp70-Assisted Folding. Cell 2017; 170:298-311.e20. [PMID: 28708998 DOI: 10.1016/j.cell.2017.06.038] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2017] [Revised: 04/04/2017] [Accepted: 06/23/2017] [Indexed: 12/21/2022]
Abstract
The yeast Hsp70 chaperone Ssb interacts with ribosomes and nascent polypeptides to assist protein folding. To reveal its working principle, we determined the nascent chain-binding pattern of Ssb at near-residue resolution by in vivo selective ribosome profiling. Ssb associates broadly with cytosolic, nuclear, and hitherto unknown substrate classes of mitochondrial and endoplasmic reticulum (ER) nascent proteins, supporting its general chaperone function. Ssb engages most substrates by multiple binding-release cycles to a degenerate sequence enriched in positively charged and aromatic amino acids. Timely association with this motif upon emergence at the ribosomal tunnel exit requires ribosome-associated complex (RAC) but not nascent polypeptide-associated complex (NAC). Ribosome footprint densities along orfs reveal faster translation at times of Ssb binding, mainly imposed by biases in mRNA secondary structure, codon usage, and Ssb action. Ssb thus employs substrate-tailored dynamic nascent chain associations to coordinate co-translational protein folding, facilitate accelerated translation, and support membrane targeting of organellar proteins.
Collapse
Affiliation(s)
- Kristina Döring
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Nabeel Ahmed
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA
| | - Trine Riemer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany
| | - Harsha Garadi Suresh
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany; The Donnelly Centre, University of Toronto, 160 College Street, Toronto ON, Canada
| | - Yevhen Vainshtein
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany
| | - Markus Habich
- Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47, Cologne, Germany
| | - Jan Riemer
- Institute of Biochemistry, University of Cologne, Zuelpicher Str. 47, Cologne, Germany
| | - Matthias P Mayer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany
| | - Edward P O'Brien
- Bioinformatics and Genomics Graduate Program, The Huck Institutes of the Life Sciences, Pennsylvania State University, University Park, PA, USA; Department of Chemistry, Pennsylvania State University, University Park, PA, USA
| | - Günter Kramer
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany.
| | - Bernd Bukau
- Center for Molecular Biology of Heidelberg University (ZMBH), DKFZ-ZMBH Alliance, Im Neuenheimer Feld 282, Heidelberg, Germany; German Cancer Research Center (DKFZ), Im Neuenheimer Feld 280, Heidelberg, Germany.
| |
Collapse
|
109
|
Iwasaki S, Ingolia NT. The Growing Toolbox for Protein Synthesis Studies. Trends Biochem Sci 2017; 42:612-624. [PMID: 28566214 DOI: 10.1016/j.tibs.2017.05.004] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 04/24/2017] [Accepted: 05/05/2017] [Indexed: 12/29/2022]
Abstract
Protein synthesis stands at the last stage of the central dogma of molecular biology, providing a final regulatory layer for gene expression. Reacting to environmental cues and internal signals, the translation machinery can quickly tune the translatome from a pre-existing pool of RNAs, before the transcriptome changes. Although the translation reaction itself has been known since the 1950s, the quantitative or even qualitative measurement of its efficacy in cells has posed experimental and analytic hurdles. In this review, we outline the array of state-of-the-art methods that have emerged to tackle the hidden aspects of translational control.
Collapse
Affiliation(s)
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
110
|
Prabhakar A, Choi J, Wang J, Petrov A, Puglisi JD. Dynamic basis of fidelity and speed in translation: Coordinated multistep mechanisms of elongation and termination. Protein Sci 2017; 26:1352-1362. [PMID: 28480640 DOI: 10.1002/pro.3190] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2017] [Accepted: 05/03/2017] [Indexed: 12/11/2022]
Abstract
As the universal machine that transfers genetic information from RNA to protein, the ribosome synthesizes proteins with remarkably high fidelity and speed. This is a result of the accurate and efficient decoding of mRNA codons via multistep mechanisms during elongation and termination stages of translation. These mechanisms control how the correct sense codon is recognized by a tRNA for peptide elongation, how the next codon is presented to the decoding center without change of frame during translocation, and how the stop codon is discriminated for timely release of the nascent peptide. These processes occur efficiently through coupling of chemical energy expenditure, ligand interactions, and conformational changes. Understanding this coupling in detail required integration of many techniques that were developed in the past two decades. This multidisciplinary approach has revealed the dynamic nature of translational control and uncovered how external cellular factors such as tRNA abundance and mRNA modifications affect the synthesis of the protein product. Insights from these studies will aid synthetic biology and therapeutic approaches to translation.
Collapse
Affiliation(s)
- Arjun Prabhakar
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305.,Program in Biophysics, Stanford University, Stanford, California, 94305
| | - Junhong Choi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305.,Department of Applied Physics, Stanford University, Stanford, California, 94305
| | - Jinfan Wang
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305
| | - Alexey Petrov
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305
| | - Joseph D Puglisi
- Department of Structural Biology, Stanford University School of Medicine, Stanford, California, 94305
| |
Collapse
|
111
|
Liu K, Rehfus JE, Mattson E, Kaiser CM. The ribosome destabilizes native and non-native structures in a nascent multidomain protein. Protein Sci 2017; 26:1439-1451. [PMID: 28474852 DOI: 10.1002/pro.3189] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2017] [Revised: 04/30/2017] [Accepted: 05/02/2017] [Indexed: 11/07/2022]
Abstract
Correct folding is a prerequisite for the biological activity of most proteins. Folding has largely been studied using in vitro refolding assays with isolated small, robustly folding proteins. A substantial fraction of all cellular proteomes is composed of multidomain proteins that are often not amenable to this approach, and their folding remains poorly understood. These large proteins likely begin to fold during their synthesis by the ribosome, a large molecular machine that translates the genetic code. The ribosome affects how folding proceeds, but the underlying mechanisms remain largely obscure. We have utilized optical tweezers to study the folding of elongation factor G, a multidomain protein composed of five domains. We find that interactions among unfolded domains interfere with productive folding in the full-length protein. The N-terminal G-domain constitutes an independently folding unit that, upon in vitro refolding, adopts two similar states that correspond to the natively folded and a non-native, possibly misfolded structure. The ribosome destabilizes both of these states, suggesting a mechanism by which terminal misfolding into highly stable, non-native structures is avoided. The ribosome may thus directly contribute to efficient folding by modulating the folding of nascent multidomain proteins.
Collapse
Affiliation(s)
- Kaixian Liu
- Department of Biology, Johns Hopkins University, Baltimore, Maryland.,Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Joseph E Rehfus
- Department of Biology, Johns Hopkins University, Baltimore, Maryland.,Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Elliot Mattson
- Department of Biology, Johns Hopkins University, Baltimore, Maryland.,Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland
| | - Christian M Kaiser
- Department of Biology, Johns Hopkins University, Baltimore, Maryland.,Program in Cell, Molecular, Developmental Biology, and Biophysics, Johns Hopkins University, Baltimore, Maryland.,Department of Biophysics, Johns Hopkins University, Baltimore, Maryland.,Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, Maryland
| |
Collapse
|
112
|
Koubek J, Chang YC, Yang SYC, Huang JJT. Trigger Factor-Induced Nascent Chain Dynamics Changes Suggest Two Different Chaperone-Nascent Chain Interactions during Translation. J Mol Biol 2017; 429:1733-1745. [PMID: 28385637 DOI: 10.1016/j.jmb.2017.03.029] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2016] [Revised: 03/30/2017] [Accepted: 03/30/2017] [Indexed: 11/25/2022]
Abstract
Protein biogenesis is poorly understood due to the ribosome that perturbs measurement attempted on the ribosome-bound nascent chain (RNC). Investigating nascent chain dynamics may provide invaluable insight into the co-translational processes such as structure formation or interaction with a chaperone [e.g., the bacterial trigger factor (TF)]. In this study, we aim to establish a platform for studying nascent chain dynamics by exploring the local environment near the fluorescent dye on site-specifically labeled RNCs with time-resolved fluorescence anisotropy. To prepare a quantitative model of fluorescence depolarization, we utilized intrinsically disordered protein bound to ribosome, which helped us couple the sub-nanosecond depolarization with the motion of the nascent chain backbone. This was consistent with zinc-finger-domain-containing RNCs, where the extent of sub-nanosecond motion decreased upon the addition of zinc when the fluorophore was in close proximity of the domain. After the characterization of disordered nascent chain dynamics, we investigated the synthesis of a model cytosolic protein, Entner-Doudoroff aldolase, labeled at different sites during various stages of translation. Depending on the stage of translation, the addition of the TF to the nascent chain led to two different responses in the nascent chain dynamics serendipitously, suggesting steric hindrance between the nascent chain and the chaperone as a mechanism for TF dissociation from the ribosome during translation. Overall, our study demonstrates the possible use of site-specific labeling and time-resolved anisotropy to gain insight on chaperone binding event at various stages of translation and hints on TF co-translational mechanism.
Collapse
Affiliation(s)
- Jiří Koubek
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, 11529, R.O.C
| | - Yi-Che Chang
- Institute of Chemistry, Academia Sinica, Taipei, Taiwan, 11529, R.O.C
| | | | | |
Collapse
|
113
|
Post-Translational Dosage Compensation Buffers Genetic Perturbations to Stoichiometry of Protein Complexes. PLoS Genet 2017; 13:e1006554. [PMID: 28121980 PMCID: PMC5266272 DOI: 10.1371/journal.pgen.1006554] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Accepted: 12/28/2016] [Indexed: 01/07/2023] Open
Abstract
Understanding buffering mechanisms for various perturbations is essential for understanding robustness in cellular systems. Protein-level dosage compensation, which arises when changes in gene copy number do not translate linearly into protein level, is one mechanism for buffering against genetic perturbations. Here, we present an approach to identify genes with dosage compensation by increasing the copy number of individual genes using the genetic tug-of-war technique. Our screen of chromosome I suggests that dosage-compensated genes constitute approximately 10% of the genome and consist predominantly of subunits of multi-protein complexes. Importantly, because subunit levels are regulated in a stoichiometry-dependent manner, dosage compensation plays a crucial role in maintaining subunit stoichiometries. Indeed, we observed changes in the levels of a complex when its subunit stoichiometries were perturbed. We further analyzed compensation mechanisms using a proteasome-defective mutant as well as ribosome profiling, which provided strong evidence for compensation by ubiquitin-dependent degradation but not reduced translational efficiency. Thus, our study provides a systematic understanding of dosage compensation and highlights that this post-translational regulation is a critical aspect of robustness in cellular systems. Cells are exposed to environmental changes leading to fluctuations in biological processes. For example, changes in gene copy number are a source of such fluctuations. An increase in gene copy number generally leads to a linear increase in the amount of protein; however, a small number of genes do not show a proportional increase in protein level. We investigated how many of the genes exhibit this nonlinearity between gene copy number and protein level. Our screen of chromosome I suggests that genes with such nonlinear relationships constitute approximately 10% of the genome and consist predominantly of subunits of multi-protein complexes. Because previous studies showed that an imbalance of complex subunits is very toxic for cell growth, a function of the nonlinear relationship may be to correct the balance of complex subunits. We also investigated the underlying mechanisms of the nonlinearity by focusing on protein synthesis and degradation. Our data indicate that protein degradation, but not synthesis, is responsible for maintaining a balance of complex subunits. Thus, this study provides insight into the mechanisms for coping with the fluctuations in biological processes.
Collapse
|
114
|
Regulation, evolution and consequences of cotranslational protein complex assembly. Curr Opin Struct Biol 2016; 42:90-97. [PMID: 27969102 DOI: 10.1016/j.sbi.2016.11.023] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2016] [Accepted: 11/28/2016] [Indexed: 01/05/2023]
Abstract
Most proteins assemble into complexes, which are involved in almost all cellular processes. Thus it is crucial for cell viability that mechanisms for correct assembly exist. The timing of assembly plays a key role in determining the fate of the protein: if the protein is allowed to diffuse into the crowded cellular milieu, it runs the risk of forming non-specific interactions, potentially leading to aggregation or other deleterious outcomes. It is therefore expected that strong regulatory mechanisms should exist to ensure efficient assembly. In this review we discuss the cotranslational assembly of protein complexes and discuss how it occurs, ways in which it is regulated, potential disadvantages of cotranslational interactions between proteins and the implications for the inheritance of dominant-negative genetic disorders.
Collapse
|
115
|
Thommen M, Holtkamp W, Rodnina MV. Co-translational protein folding: progress and methods. Curr Opin Struct Biol 2016; 42:83-89. [PMID: 27940242 DOI: 10.1016/j.sbi.2016.11.020] [Citation(s) in RCA: 81] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 11/22/2016] [Indexed: 11/19/2022]
Abstract
Proteins are synthesized as linear polymers and have to fold into their native structure to fulfil various functions in the cell. Folding can start co-translationally when the emerging peptide is still attached to the ribosome and is guided by the environment of the polypeptide exit tunnel and the kinetics of translation. Major questions are: When does co-translational folding begin? What is the role of the ribosome in guiding the nascent peptide towards its native structure? How does translation elongation kinetics modulate protein folding? Here we suggest how novel structural and biophysical approaches can help to probe the interplay between the ribosome and the emerging peptide and present future challenges in understanding co-translational folding.
Collapse
Affiliation(s)
- Michael Thommen
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen 37077, Germany
| | - Wolf Holtkamp
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen 37077, Germany
| | - Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Goettingen 37077, Germany.
| |
Collapse
|
116
|
Holland IB, Peherstorfer S, Kanonenberg K, Lenders M, Reimann S, Schmitt L. Type I Protein Secretion-Deceptively Simple yet with a Wide Range of Mechanistic Variability across the Family. EcoSal Plus 2016; 7. [PMID: 28084193 PMCID: PMC11575716 DOI: 10.1128/ecosalplus.esp-0019-2015] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2015] [Indexed: 01/08/2023]
Abstract
A very large type I polypeptide begins to reel out from a ribosome; minutes later, the still unidentifiable polypeptide, largely lacking secondary structure, is now in some cases a thousand or more residues longer. Synthesis of the final hundred C-terminal residues commences. This includes the identity code, the secretion signal within the last 50 amino acids, designed to dock with a waiting ATP binding cassette (ABC) transporter. What happens next is the subject of this review, with the main, but not the only focus on hemolysin HlyA, an RTX protein toxin secreted by the type I system. Transport substrates range from small peptides to giant proteins produced by many pathogens. These molecules, without detectable cellular chaperones, overcome enormous barriers, crossing two membranes before final folding on the cell surface, involving a unique autocatalytic process.Unfolded HlyA is extruded posttranslationally, C-terminal first. The transenvelope "tunnel" is formed by HlyB (ABC transporter), HlyD (membrane fusion protein) straddling the inner membrane and periplasm and TolC (outer membrane). We present a new evaluation of the C-terminal secretion code, and the structure function of HlyD and HlyB at the heart of this nanomachine. Surprisingly, key details of the secretion mechanism are remarkably variable in the many type I secretion system subtypes. These include alternative folding processes, an apparently distinctive secretion code for each type I subfamily, and alternative forms of the ABC transporter; most remarkably, the ABC protein probably transports peptides or polypeptides by quite different mechanisms. Finally, we suggest a putative structure for the Hly-translocon, HlyB, the multijointed HlyD, and the TolC exit.
Collapse
Affiliation(s)
- I Barry Holland
- Institute for Integrative Biology (I2BC) and Institute of Genetics and Microbiology, University Paris-Sud, Orsay 91450, France
| | - Sandra Peherstorfer
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Kerstin Kanonenberg
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Michael Lenders
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Sven Reimann
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| | - Lutz Schmitt
- Institute of Biochemistry, Heinrich Heine University, 40225 Düsseldorf, Germany
| |
Collapse
|
117
|
Freeman MF, Helf MJ, Bhushan A, Morinaka BI, Piel J. Seven enzymes create extraordinary molecular complexity in an uncultivated bacterium. Nat Chem 2016; 9:387-395. [DOI: 10.1038/nchem.2666] [Citation(s) in RCA: 99] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/29/2016] [Accepted: 10/02/2016] [Indexed: 12/20/2022]
|
118
|
Abstract
Bacterial toxin–antitoxin (TA) systems, in which a labile antitoxin binds and inhibits the toxin, can promote adaptation and persistence by modulating bacterial growth in response to stress. Some atypical TA systems, known as tripartite toxin–antitoxin–chaperone (TAC) modules, include a molecular chaperone that facilitates folding and protects the antitoxin from degradation. Here we use a TAC module from Mycobacterium tuberculosis as a model to investigate the molecular mechanisms by which classical TAs can become ‘chaperone-addicted'. The chaperone specifically binds the antitoxin at a short carboxy-terminal sequence (chaperone addiction sequence, ChAD) that is not present in chaperone-independent antitoxins. In the absence of chaperone, the ChAD sequence destabilizes the antitoxin, thus preventing toxin inhibition. Chaperone–ChAD pairs can be transferred to classical TA systems or to unrelated proteins and render them chaperone-dependent. This mechanism might be used to optimize the expression and folding of heterologous proteins in bacterial hosts for biotechnological or medical purposes. Some bacterial toxin-antitoxin systems consist of a labile antitoxin that inhibits a toxin, and a chaperone that stabilizes the antitoxin. Here, Bordes et al. identify a sequence within the antitoxin to which the chaperone binds and which can be transferred to other proteins to make them chaperone-dependent.
Collapse
|
119
|
Abstract
For more than four decades now, I have been studying how genetic information is transformed into protein-based cellular functions. This has included investigations into the mechanisms supporting cellular localization of proteins, disulfide bond formation, quality control of membranes, and translation. I tried to extract new principles and concepts that are universal among living organisms from our observations of Escherichia coli. While I wanted to distill complex phenomena into basic principles, I also tried not to overlook any serendipitous observations. In the first part of this article, I describe personal experiences during my studies of the Sec pathway, which have centered on the SecY translocon. In the second part, I summarize my views of the recent revival of translation studies, which has given rise to the concept that nonuniform polypeptide chain elongation is relevant for the subsequent fates of newly synthesized proteins. Our studies of a class of regulatory nascent polypeptides advance this concept by showing that the dynamic behaviors of the extraribosomal part of the nascent chain affect the ongoing translation process. Vibrant and regulated molecular interactions involving the ribosome, mRNA, and nascent polypeptidyl-tRNA are based, at least partly, on their autonomously interacting properties.
Collapse
Affiliation(s)
- Koreaki Ito
- Faculty of Life Sciences, Kyoto Sangyo University, Kyoto 603-8555, Japan;
| |
Collapse
|
120
|
Chowdhury C, Chun S, Sawaya MR, Yeates TO, Bobik TA. The function of the PduJ microcompartment shell protein is determined by the genomic position of its encoding gene. Mol Microbiol 2016; 101:770-83. [PMID: 27561553 PMCID: PMC5003431 DOI: 10.1111/mmi.13423] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/11/2016] [Indexed: 12/20/2022]
Abstract
Bacterial microcompartments (MCPs) are complex organelles that consist of metabolic enzymes encapsulated within a protein shell. In this study, we investigate the function of the PduJ MCP shell protein. PduJ is 80% identical in amino acid sequence to PduA and both are major shell proteins of the 1,2-propanediol (1,2-PD) utilization (Pdu) MCP of Salmonella. Prior studies showed that PduA mediates the transport of 1,2-PD (the substrate) into the Pdu MCP. Surprisingly, however, results presented here establish that PduJ has no role 1,2-PD transport. The crystal structure revealed that PduJ was nearly identical to that of PduA and, hence, offered no explanation for their differential functions. Interestingly, however, when a pduJ gene was placed at the pduA chromosomal locus, the PduJ protein acquired a new function, the ability to mediate 1,2-PD transport into the Pdu MCP. To our knowledge, these are the first studies to show that that gene location can determine the function of a MCP shell protein. We propose that gene location dictates protein-protein interactions essential to the function of the MCP shell.
Collapse
Affiliation(s)
- Chiranjit Chowdhury
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011
| | - Sunny Chun
- Department of Energy Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Michael R. Sawaya
- Department of Energy Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095
| | - Todd O. Yeates
- Department of Energy Institute for Genomics and Proteomics, University of California, Los Angeles, Los Angeles, CA 90095
- Molecular Biology Institute, University of California, Los Angeles, Los Angeles, CA 90095
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095
| | - Thomas A Bobik
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011
| |
Collapse
|
121
|
Keasey SL, Natesan M, Pugh C, Kamata T, Wuchty S, Ulrich RG. Cell-free Determination of Binary Complexes That Comprise Extended Protein-Protein Interaction Networks of Yersinia pestis. Mol Cell Proteomics 2016; 15:3220-3232. [PMID: 27489291 DOI: 10.1074/mcp.m116.059337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2016] [Indexed: 11/06/2022] Open
Abstract
Binary protein interactions form the basic building blocks of molecular networks and dynamic assemblies that control all cellular functions of bacteria. Although these protein interactions are a potential source of targets for the development of new antibiotics, few high-confidence data sets are available for the large proteomes of most pathogenic bacteria. We used a library of recombinant proteins from the plague bacterium Yersinia pestis to probe planar microarrays of immobilized proteins that represented ∼85% (3552 proteins) of the bacterial proteome, resulting in >77,000 experimentally determined binary interactions. Moderate (KD ∼μm) to high-affinity (KD ∼nm) interactions were characterized for >1600 binary complexes by surface plasmon resonance imaging of microarrayed proteins. Core binary interactions that were in common with other gram-negative bacteria were identified from the results of both microarray methods. Clustering of proteins within the interaction network by function revealed statistically enriched complexes and pathways involved in replication, biosynthesis, virulence, metabolism, and other diverse biological processes. The interaction pathways included many proteins with no previously known function. Further, a large assembly of proteins linked to transcription and translation were contained within highly interconnected subregions of the network. The two-tiered microarray approach used here is an innovative method for detecting binary interactions, and the resulting data will serve as a critical resource for the analysis of protein interaction networks that function within an important human pathogen.
Collapse
Affiliation(s)
- Sarah L Keasey
- From the ‡Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702; §Biological Sciences Department, University of Maryland Baltimore County, Baltimore, Maryland 21250
| | - Mohan Natesan
- From the ‡Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702
| | - Christine Pugh
- From the ‡Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702
| | - Teddy Kamata
- From the ‡Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702
| | - Stefan Wuchty
- ¶National Center for Biotechnology Information, National Institutes of Health, Bethesda, Maryland 20892
| | - Robert G Ulrich
- From the ‡Molecular and Translational Sciences Division, U.S. Army Medical Research Institute of Infectious Diseases, Frederick, Maryland 21702;
| |
Collapse
|
122
|
Schaefer RM, Heasley LR, Odde DJ, McMurray MA. Kinetic partitioning during de novo septin filament assembly creates a critical G1 "window of opportunity" for mutant septin function. Cell Cycle 2016; 15:2441-53. [PMID: 27398993 DOI: 10.1080/15384101.2016.1196304] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Septin proteins form highly conserved cytoskeletal filaments composed of hetero-oligomers with strict subunit stoichiometry. Mutations within one hetero-oligomerization interface (the "G" interface) bias the mutant septin toward conformations that are incompatible with filament assembly, causing disease in humans and, in budding yeast cells, temperature-sensitive defects in cytokinesis. We previously found that, when the amount of other hetero-oligomerization partners is limiting, wild-type and G interface-mutant alleles of a given yeast septin "compete" along parallel but distinct folding pathways for occupancy of a limited number of positions within septin hetero-octamers. Here, we synthesize a mathematical model that outlines the requirements for this phenomenon: if a wild-type septin traverses a folding pathway that includes a single rate-limiting folding step, the acquisition by a mutant septin of additional slow folding steps creates an initially large disparity between wild-type and mutant in the cellular concentrations of oligomerization-competent monomers. When the 2 alleles are co-expressed, this kinetic disparity results in mutant exclusion from hetero-oligomers, even when the folded mutant monomer is oligomerization-competent. To test this model experimentally, we first visualize the kinetic delay in mutant oligomerization in living cells, and then narrow or widen the "window of opportunity" for mutant septin oligomerization by altering the length of the G1 phase of the yeast cell cycle, and observe the predicted exacerbation or suppression, respectively, of mutant cellular phenotypes. These findings reveal a fundamental kinetic principle governing in vivo assembly of multiprotein complexes, independent of the ability of the subunits to associate with each other.
Collapse
Affiliation(s)
- Rachel M Schaefer
- a Department of Cell and Developmental Biology , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - Lydia R Heasley
- a Department of Cell and Developmental Biology , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| | - David J Odde
- b Department of Biomedical Engineering , University of Minnesota , Minneapolis , MN , USA
| | - Michael A McMurray
- a Department of Cell and Developmental Biology , University of Colorado Anschutz Medical Campus , Aurora , CO , USA
| |
Collapse
|
123
|
Balchin D, Hayer-Hartl M, Hartl FU. In vivo aspects of protein folding and quality control. Science 2016; 353:aac4354. [DOI: 10.1126/science.aac4354] [Citation(s) in RCA: 832] [Impact Index Per Article: 92.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Most proteins must fold into unique three-dimensional structures to perform their biological functions. In the crowded cellular environment, newly synthesized proteins are at risk of misfolding and forming toxic aggregate species. To ensure efficient folding, different classes of molecular chaperones receive the nascent protein chain emerging from the ribosome and guide it along a productive folding pathway. Because proteins are structurally dynamic, constant surveillance of the proteome by an integrated network of chaperones and protein degradation machineries is required to maintain protein homeostasis (proteostasis). The capacity of this proteostasis network declines during aging, facilitating neurodegeneration and other chronic diseases associated with protein aggregation. Understanding the proteostasis network holds the promise of identifying targets for pharmacological intervention in these pathologies.
Collapse
|
124
|
Affiliation(s)
- Shintaro Iwasaki
- Department of Molecular and Cell Biology, Center for RNA Systems Biology, University of California, Berkeley, CA 94720, USA
| | - Nicholas T Ingolia
- Department of Molecular and Cell Biology, Center for RNA Systems Biology, University of California, Berkeley, CA 94720, USA.
| |
Collapse
|
125
|
Rodnina MV. The ribosome in action: Tuning of translational efficiency and protein folding. Protein Sci 2016; 25:1390-406. [PMID: 27198711 DOI: 10.1002/pro.2950] [Citation(s) in RCA: 127] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2016] [Revised: 05/17/2016] [Accepted: 05/18/2016] [Indexed: 12/28/2022]
Abstract
The cellular proteome is shaped by the combined activities of the gene expression and quality control machineries. While transcription plays an undoubtedly important role, in recent years also translation emerged as a key step that defines the composition and quality of the proteome and the functional activity of proteins in the cell. Among the different post-transcriptional control mechanisms, translation initiation and elongation provide multiple checkpoints that can affect translational efficiency. A multitude of specific signals in mRNAs can determine the frequency of translation initiation, choice of the open reading frame, global and local elongation velocities, and the folding of the emerging protein. In addition to specific signatures in the mRNAs, also variations in the global pools of translation components, including ribosomes, tRNAs, mRNAs, and translation factors can alter translational efficiencies. The cellular outcomes of phenomena such as mRNA codon bias are sometimes difficult to understand due to the staggering complexity of covariates that affect codon usage, translation, and protein folding. Here we summarize the experimental evidence on how the ribosome-together with the other components of the translational machinery-can alter translational efficiencies of mRNA at the initiation and elongation stages and how translation velocity affects protein folding. We seek to explain these findings in the context of mechanistic work on the ribosome. The results argue in favour of a new understanding of translation control as a hub that links mRNA homeostasis to production and quality control of proteins in the cell.
Collapse
Affiliation(s)
- Marina V Rodnina
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, Göttingen, 37077, Germany
| |
Collapse
|
126
|
Morisaki T, Lyon K, DeLuca KF, DeLuca JG, English BP, Zhang Z, Lavis LD, Grimm JB, Viswanathan S, Looger LL, Lionnet T, Stasevich TJ. Real-time quantification of single RNA translation dynamics in living cells. Science 2016; 352:1425-9. [PMID: 27313040 DOI: 10.1126/science.aaf0899] [Citation(s) in RCA: 264] [Impact Index Per Article: 29.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2015] [Accepted: 04/28/2016] [Indexed: 12/14/2022]
Abstract
Although messenger RNA (mRNA) translation is a fundamental biological process, it has never been imaged in real time in vivo with single-molecule precision. To achieve this, we developed nascent chain tracking (NCT), a technique that uses multi-epitope tags and antibody-based fluorescent probes to quantify protein synthesis dynamics at the single-mRNA level. NCT reveals an elongation rate of ~10 amino acids per second, with initiation occurring stochastically every ~30 seconds. Polysomes contain ~1 ribosome every 200 to 900 nucleotides and are globular rather than elongated in shape. By developing multicolor probes, we showed that most polysomes act independently; however, a small fraction (~5%) form complexes in which two distinct mRNAs can be translated simultaneously. The sensitivity and versatility of NCT make it a powerful new tool for quantifying mRNA translation kinetics.
Collapse
Affiliation(s)
- Tatsuya Morisaki
- Department of Biochemistry and Molecular Biology and Institute for Genome Architecture and Function, Colorado State University, Fort Collins, CO, USA
| | - Kenneth Lyon
- Department of Biochemistry and Molecular Biology and Institute for Genome Architecture and Function, Colorado State University, Fort Collins, CO, USA
| | - Keith F DeLuca
- Department of Biochemistry and Molecular Biology and Institute for Genome Architecture and Function, Colorado State University, Fort Collins, CO, USA
| | - Jennifer G DeLuca
- Department of Biochemistry and Molecular Biology and Institute for Genome Architecture and Function, Colorado State University, Fort Collins, CO, USA
| | - Brian P English
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Zhengjian Zhang
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Sarada Viswanathan
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Loren L Looger
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Timothee Lionnet
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, VA, USA
| | - Timothy J Stasevich
- Department of Biochemistry and Molecular Biology and Institute for Genome Architecture and Function, Colorado State University, Fort Collins, CO, USA
| |
Collapse
|
127
|
Ellgaard L, McCaul N, Chatsisvili A, Braakman I. Co- and Post-Translational Protein Folding in the ER. Traffic 2016; 17:615-38. [PMID: 26947578 DOI: 10.1111/tra.12392] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2015] [Revised: 02/26/2016] [Accepted: 03/03/2016] [Indexed: 12/19/2022]
Abstract
The biophysical rules that govern folding of small, single-domain proteins in dilute solutions are now quite well understood. The mechanisms underlying co-translational folding of multidomain and membrane-spanning proteins in complex cellular environments are often less clear. The endoplasmic reticulum (ER) produces a plethora of membrane and secretory proteins, which must fold and assemble correctly before ER exit - if these processes fail, misfolded species accumulate in the ER or are degraded. The ER differs from other cellular organelles in terms of the physicochemical environment and the variety of ER-specific protein modifications. Here, we review chaperone-assisted co- and post-translational folding and assembly in the ER and underline the influence of protein modifications on these processes. We emphasize how method development has helped advance the field by allowing researchers to monitor the progression of folding as it occurs inside living cells, while at the same time probing the intricate relationship between protein modifications during folding.
Collapse
Affiliation(s)
- Lars Ellgaard
- Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Nicholas McCaul
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Anna Chatsisvili
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| | - Ineke Braakman
- Cellular Protein Chemistry, Faculty of Science, Utrecht University, Utrecht, The Netherlands
| |
Collapse
|
128
|
Archaeal Mo-Containing Glyceraldehyde Oxidoreductase Isozymes Exhibit Diverse Substrate Specificities through Unique Subunit Assemblies. PLoS One 2016; 11:e0147333. [PMID: 26808202 PMCID: PMC4726530 DOI: 10.1371/journal.pone.0147333] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2015] [Accepted: 01/01/2016] [Indexed: 11/19/2022] Open
Abstract
Archaea use glycolytic pathways distinct from those found in bacteria and eukaryotes, where unique enzymes catalyze each reaction step. In this study, we isolated three isozymes of glyceraldehyde oxidoreductase (GAOR1, GAOR2 and GAOR3) from the thermoacidophilic archaeon Sulfolobus tokodaii. GAOR1-3 belong to the xanthine oxidoreductase superfamily, and are composed of a molybdo-pyranopterin subunit (L), a flavin subunit (M), and an iron-sulfur subunit (S), forming an LMS hetero-trimer unit. We found that GAOR1 is a tetramer of the STK17810/STK17830/STK17820 hetero-trimer, GAOR2 is a dimer of the STK23390/STK05620/STK05610 hetero-trimer, and GAOR3 is the STK24840/STK05620/STK05610 hetero-trimer. GAOR1-3 exhibited diverse substrate specificities for their electron donors and acceptors, due to their different L-subunits, and probably participate in the non-phosphorylative Entner-Doudoroff glycolytic pathway. We determined the crystal structure of GAOR2, as the first three-dimensional structure of an archaeal molybdenum-containing hydroxylase, to obtain structural insights into their substrate specificities and subunit assemblies. The gene arrangement and the crystal structure suggested that the M/S-complex serves as a structural scaffold for the binding of the L-subunit, to construct the three enzymes with different specificities. Collectively, our findings illustrate a novel principle of a prokaryotic multicomponent isozyme system.
Collapse
|
129
|
Wells JN, Bergendahl LT, Marsh JA. Operon Gene Order Is Optimized for Ordered Protein Complex Assembly. Cell Rep 2016; 14:679-685. [PMID: 26804901 PMCID: PMC4742563 DOI: 10.1016/j.celrep.2015.12.085] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2015] [Revised: 11/07/2015] [Accepted: 12/17/2015] [Indexed: 01/07/2023] Open
Abstract
The assembly of heteromeric protein complexes is an inherently stochastic process in which multiple genes are expressed separately into proteins, which must then somehow find each other within the cell. Here, we considered one of the ways by which prokaryotic organisms have attempted to maximize the efficiency of protein complex assembly: the organization of subunit-encoding genes into operons. Using structure-based assembly predictions, we show that operon gene order has been optimized to match the order in which protein subunits assemble. Exceptions to this are almost entirely highly expressed proteins for which assembly is less stochastic and for which precisely ordered translation offers less benefit. Overall, these results show that ordered protein complex assembly pathways are of significant biological importance and represent a major evolutionary constraint on operon gene organization. Operon-encoded subunits tend to be encoded by neighboring genes and form large interfaces Operon gene order is often optimized for the order of protein complex assembly Exceptions are mostly highly expressed proteins for which assembly is less stochastic
Collapse
Affiliation(s)
- Jonathan N Wells
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - L Therese Bergendahl
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, University of Edinburgh, Western General Hospital, Edinburgh EH4 2XU, United Kingdom.
| |
Collapse
|