101
|
Choe G, Lee JY. Push-pull strategy in the regulation of postembryonic root development. CURRENT OPINION IN PLANT BIOLOGY 2017; 35:158-164. [PMID: 28063383 DOI: 10.1016/j.pbi.2016.12.005] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/19/2016] [Accepted: 12/19/2016] [Indexed: 06/06/2023]
Abstract
Unlike animals, plants continue to grow throughout their lives. The stem cell niche, protected in meristems of shoots and roots, enables this process. In the root, stem cells produce precursors for highly organized cell types via asymmetric cell divisions. These precursors, which are "transit-amplifying cells," actively divide for several rounds before entering into differentiation programs. In this review, we highlight positive feedback regulation between shoot- and root-ward signals during the postembryonic root growth, which is reminiscent of a "push-pull strategy" in business parlance. This property of molecular networks underlies the regulation of stem cells and their organizer, the "quiescent center," as well as of the signaling between stem cell niche, transit-amplifying cells, and beyond.
Collapse
Affiliation(s)
- Goh Choe
- School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Ji-Young Lee
- School of Biological Sciences, College of Natural Science, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea; Plant Genomics and Breeding Institute, Seoul National University, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea.
| |
Collapse
|
102
|
Abstract
Plants, like other eukaryotes, have evolved complex mechanisms to coordinate gene expression during development, environmental response, and cellular homeostasis. Transcription factors (TFs), accompanied by basic cofactors and posttranscriptional regulators, are key players in gene-regulatory networks (GRNs). The coordinated control of gene activity is achieved by the interplay of these factors and by physical interactions between TFs and DNA. Here, we will briefly outline recent technological progress made to elucidate GRNs in plants. We will focus on techniques that allow us to characterize physical interactions in GRNs in plants and to analyze their regulatory consequences. Targeted manipulation allows us to test the relevance of specific gene-regulatory interactions. The combination of genome-wide experimental approaches with mathematical modeling allows us to get deeper insights into key-regulatory interactions and combinatorial control of important processes in plants.
Collapse
Affiliation(s)
- Kerstin Kaufmann
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.
| | - Dijun Chen
- Department for Plant Cell and Molecular Biology, Institute for Biology, Humboldt-Universität zu Berlin, 10115, Berlin, Germany.,Institute for Biochemistry and Biology, University of Potsdam, Potsdam, Germany
| |
Collapse
|
103
|
Birnbaum KD. How many ways are there to make a root? CURRENT OPINION IN PLANT BIOLOGY 2016; 34:61-67. [PMID: 27780106 DOI: 10.1016/j.pbi.2016.10.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 09/27/2016] [Accepted: 10/03/2016] [Indexed: 05/11/2023]
Abstract
Plants often make the same organ in different development contexts. Roots are a quintessential example, with embryonic, primary, lateral, adventitious, and regenerative roots common to many plants. The cellular origins and early morphologies of different roots can vary greatly, but the adult structures can be remarkably similar. Recent studies have highlighted the diversity of mechanisms that can initiate roots while late patterning mechanisms are frequently shared. In the middle stages when patterning emerges, evidence shows that antagonistic auxin-cytokinin interactions regulate tissue patterns in root embryogenesis, vascular organization, and regeneration but it is not yet clear if a common ontogeny for the root body plan exists.
Collapse
Affiliation(s)
- Kenneth D Birnbaum
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York 10003, USA.
| |
Collapse
|
104
|
Matt G, Umen J. Volvox: A simple algal model for embryogenesis, morphogenesis and cellular differentiation. Dev Biol 2016; 419:99-113. [PMID: 27451296 PMCID: PMC5101179 DOI: 10.1016/j.ydbio.2016.07.014] [Citation(s) in RCA: 56] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Revised: 07/15/2016] [Accepted: 07/15/2016] [Indexed: 11/20/2022]
Abstract
Patterning of a multicellular body plan involves a coordinated set of developmental processes that includes cell division, morphogenesis, and cellular differentiation. These processes have been most intensively studied in animals and land plants; however, deep insight can also be gained by studying development in simpler multicellular organisms. The multicellular green alga Volvox carteri (Volvox) is an excellent model for the investigation of developmental mechanisms and their evolutionary origins. Volvox has a streamlined body plan that contains only a few thousand cells and two distinct cell types: reproductive germ cells and terminally differentiated somatic cells. Patterning of the Volvox body plan is achieved through a stereotyped developmental program that includes embryonic cleavage with asymmetric cell division, morphogenesis, and cell-type differentiation. In this review we provide an overview of how these three developmental processes give rise to the adult form in Volvox and how developmental mutants have provided insights into the mechanisms behind these events. We highlight the accessibility and tractability of Volvox and its relatives that provide a unique opportunity for studying development.
Collapse
Affiliation(s)
- Gavriel Matt
- Donald Danforth Plant Science Center, 975 N Warson Rd, St. Louis, MO 63132, USA; Washington University in St. Louis, Division of Biology & Biomedical Science, Campus Box 8226, 660 South Euclid Ave, St. Louis, MO 63110, USA.
| | - James Umen
- Donald Danforth Plant Science Center, 975 N Warson Rd, St. Louis, MO 63132, USA.
| |
Collapse
|
105
|
Palovaara J, de Zeeuw T, Weijers D. Tissue and Organ Initiation in the Plant Embryo: A First Time for Everything. Annu Rev Cell Dev Biol 2016; 32:47-75. [PMID: 27576120 DOI: 10.1146/annurev-cellbio-111315-124929] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Land plants can grow to tremendous body sizes, yet even the most complex architectures are the result of iterations of the same developmental processes: organ initiation, growth, and pattern formation. A central question in plant biology is how these processes are regulated and coordinated to allow for the formation of ordered, 3D structures. All these elementary processes first occur in early embryogenesis, during which, from a fertilized egg cell, precursors for all major tissues and stem cells are initiated, followed by tissue growth and patterning. Here we discuss recent progress in our understanding of this phase of plant life. We consider the cellular basis for multicellular development in 3D and focus on the genetic regulatory mechanisms that direct specific steps during early embryogenesis.
Collapse
Affiliation(s)
- Joakim Palovaara
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands;
| | - Thijs de Zeeuw
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands;
| | - Dolf Weijers
- Laboratory of Biochemistry, Wageningen University, 6703 HA Wageningen, The Netherlands;
| |
Collapse
|
106
|
Abstract
One of the central goals in biology is to understand how and how much of the phenotype of an organism is encoded in its genome. Although many genes that are crucial for organismal processes have been identified, much less is known about the genetic bases underlying quantitative phenotypic differences in natural populations. We discuss the fundamental gap between the large body of knowledge generated over the past decades by experimental genetics in the laboratory and what is needed to understand the genotype-to-phenotype problem on a broader scale. We argue that systems genetics, a combination of systems biology and the study of natural variation using quantitative genetics, will help to address this problem. We present major advances in these two mostly disconnected areas that have increased our understanding of the developmental processes of flowering time control and root growth. We conclude by illustrating and discussing the efforts that have been made toward systems genetics specifically in plants.
Collapse
Affiliation(s)
- Takehiko Ogura
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| | - Wolfgang Busch
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna Biocenter (VBC), 1030 Vienna, Austria;
| |
Collapse
|
107
|
Yoon EK, Dhar S, Lee MH, Song JH, Lee SA, Kim G, Jang S, Choi JW, Choe JE, Kim JH, Lee MM, Lim J. Conservation and Diversification of the SHR-SCR-SCL23 Regulatory Network in the Development of the Functional Endodermis in Arabidopsis Shoots. MOLECULAR PLANT 2016; 9:1197-1209. [PMID: 27353361 DOI: 10.1016/j.molp.2016.06.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2016] [Revised: 05/04/2016] [Accepted: 06/20/2016] [Indexed: 05/25/2023]
Abstract
Development of the functional endodermis of Arabidopsis thaliana roots is controlled, in part, by GRAS transcription factors, namely SHORT-ROOT (SHR), SCARECROW (SCR), and SCARECROW-LIKE 23 (SCL23). Recently, it has been shown that the SHR-SCR-SCL23 regulatory module is also essential for specification of the endodermis (known as the bundle sheath) in leaves. Nevertheless, compared with what is known about the role of the SHR-SCR-SCL23 regulatory network in roots, the molecular interactions of SHR, SCR, and SCL23 are much less understood in shoots. Here, we show that SHR forms protein complexes with SCL23 to regulate transcription of SCL23 in shoots, similar to the regulation mode of SCR expression. Our results indicate that SHR acts as master regulator to directly activate the expression of SCR and SCL23. In the SHR-SCR-SCL23 network, we found a previously uncharacterized negative feedback loop whereby SCL23 modulates SHR levels. Through molecular, genetic, physiological, and morphological analyses, we also reveal that the SHR-SCR-SCL23 module plays a key role in the formation of the endodermis (known as the starch sheath) in hypocotyls. Taken together, our results provide new insights into the regulatory role of the SHR-SCR-SCL23 network in the endodermis development in both roots and shoots.
Collapse
Affiliation(s)
- Eun Kyung Yoon
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Souvik Dhar
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Mi-Hyun Lee
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jae Hyo Song
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Shin Ae Lee
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Gyuree Kim
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Sejeong Jang
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Ji Won Choi
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jeong-Eun Choe
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea
| | - Jeong Hoe Kim
- Department of Biology, Kyungpook National University, Daegu 41566, Korea
| | - Myeong Min Lee
- Department of Systems Biology, Yonsei University, Seoul 03722, Korea
| | - Jun Lim
- Department of Systems Biotechnology, Konkuk University, Seoul 05029, Korea.
| |
Collapse
|
108
|
Muhammad D, Schmittling S, Williams C, Long TA. More than meets the eye: Emergent properties of transcription factors networks in Arabidopsis. BIOCHIMICA ET BIOPHYSICA ACTA-GENE REGULATORY MECHANISMS 2016; 1860:64-74. [PMID: 27485161 DOI: 10.1016/j.bbagrm.2016.07.017] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 07/10/2016] [Accepted: 07/27/2016] [Indexed: 11/30/2022]
Abstract
Uncovering and mathematically modeling Transcription Factor Networks (TFNs) are the first steps in engineering plants with traits that are better equipped to respond to changing environments. Although several plant TFNs are well known, the framework for systematically modeling complex characteristics such as switch-like behavior, oscillations, and homeostasis that emerge from them remain elusive. This review highlights literature that provides, in part, experimental and computational techniques for characterizing TFNs. This review also outlines methodologies that have been used to mathematically model the dynamic characteristics of TFNs. We present several examples of TFNs in plants that are involved in developmental and stress response. In several cases, advanced algorithms capture or quantify emergent properties that serve as the basis for robustness and adaptability in plant responses. Increasing the use of mathematical approaches will shed new light on these regulatory properties that control plant growth and development, leading to mathematical models that predict plant behavior. This article is part of a Special Issue entitled: Plant Gene Regulatory Mechanisms and Networks, edited by Dr. Erich Grotewold and Dr. Nathan Springer.
Collapse
Affiliation(s)
| | - Selene Schmittling
- Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
| | - Cranos Williams
- Electrical and Computer Engineering, North Carolina State University, Raleigh, NC, USA
| | - Terri A Long
- Plant and Microbial Biology, North Carolina State University, Raleigh, NC, USA.
| |
Collapse
|
109
|
Clark NM, Hinde E, Winter CM, Fisher AP, Crosti G, Blilou I, Gratton E, Benfey PN, Sozzani R. Tracking transcription factor mobility and interaction in Arabidopsis roots with fluorescence correlation spectroscopy. eLife 2016; 5. [PMID: 27288545 PMCID: PMC4946880 DOI: 10.7554/elife.14770] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2016] [Accepted: 06/10/2016] [Indexed: 01/17/2023] Open
Abstract
To understand complex regulatory processes in multicellular organisms, it is critical to be able to quantitatively analyze protein movement and protein-protein interactions in time and space. During Arabidopsis development, the intercellular movement of SHORTROOT (SHR) and subsequent interaction with its downstream target SCARECROW (SCR) control root patterning and cell fate specification. However, quantitative information about the spatio-temporal dynamics of SHR movement and SHR-SCR interaction is currently unavailable. Here, we quantify parameters including SHR mobility, oligomeric state, and association with SCR using a combination of Fluorescent Correlation Spectroscopy (FCS) techniques. We then incorporate these parameters into a mathematical model of SHR and SCR, which shows that SHR reaches a steady state in minutes, while SCR and the SHR-SCR complex reach a steady-state between 18 and 24 hr. Our model reveals the timing of SHR and SCR dynamics and allows us to understand how protein movement and protein-protein stoichiometry contribute to development.
Collapse
Affiliation(s)
- Natalie M Clark
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States.,Biomathematics Graduate Program, North Carolina State University, Raleigh, United States
| | - Elizabeth Hinde
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, United States
| | - Cara M Winter
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, United States
| | - Adam P Fisher
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States
| | - Giuseppe Crosti
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, United States
| | - Ikram Blilou
- Plant Developmental Biology, Wageningen University, Wageningen, Netherlands
| | - Enrico Gratton
- Laboratory for Fluorescence Dynamics, University of California, Irvine, Irvine, United States
| | - Philip N Benfey
- Department of Biology, Howard Hughes Medical Institute, Duke University, Durham, United States
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, United States
| |
Collapse
|
110
|
Efroni I, Mello A, Nawy T, Ip PL, Rahni R, DelRose N, Powers A, Satija R, Birnbaum KD. Root Regeneration Triggers an Embryo-like Sequence Guided by Hormonal Interactions. Cell 2016; 165:1721-1733. [PMID: 27212234 DOI: 10.1016/j.cell.2016.04.046] [Citation(s) in RCA: 196] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 03/02/2016] [Accepted: 04/14/2016] [Indexed: 01/09/2023]
Abstract
Plant roots can regenerate after excision of their tip, including the stem cell niche. To determine which developmental program mediates such repair, we applied a combination of lineage tracing, single-cell RNA sequencing, and marker analysis to test different models of tissue reassembly. We show that multiple cell types can reconstitute stem cells, demonstrating the latent potential of untreated plant cells. The transcriptome of regenerating cells prior to stem cell activation resembles that of an embryonic root progenitor. Regeneration defects are more severe in embryonic than in adult root mutants. Furthermore, the signaling domains of the hormones auxin and cytokinin mirror their embryonic dynamics and manipulation of both hormones alters the position of new tissues and stem cell niche markers. Our findings suggest that plant root regeneration follows, on a larger scale, the developmental stages of embryonic patterning and is guided by spatial information provided by complementary hormone domains.
Collapse
Affiliation(s)
- Idan Efroni
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Alison Mello
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Tal Nawy
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Pui-Leng Ip
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Ramin Rahni
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | - Nicholas DelRose
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA
| | | | - Rahul Satija
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA; New York Genome Center, New York, NY 10013, USA
| | - Kenneth D Birnbaum
- Center for Genomics and Systems Biology, Department of Biology, New York University, New York, NY 10003, USA.
| |
Collapse
|
111
|
Fisher AP, Sozzani R. Uncovering the networks involved in stem cell maintenance and asymmetric cell division in the Arabidopsis root. CURRENT OPINION IN PLANT BIOLOGY 2016; 29:38-43. [PMID: 26707611 DOI: 10.1016/j.pbi.2015.11.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2015] [Revised: 11/02/2015] [Accepted: 11/04/2015] [Indexed: 06/05/2023]
Abstract
Stem cells are the source of different cell types and tissues in all multicellular organisms. In plants, the balance between stem cell self-renewal and differentiation of their progeny is crucial for correct tissue and organ formation. How transcriptional programs precisely control stem cell maintenance and identity, and what are the regulatory programs influencing stem cell asymmetric cell division (ACD), are key questions that researchers have sought to address for the past decade. Successful efforts in genetic, molecular, and developmental biology, along with mathematical modeling, have identified some of the players involved in stem cell regulation. In this review, we will discuss several studies that characterized many of the genetic programs and molecular mechanisms regulating stem cell ACD and their identity in the Arabidopsis root. We will also highlight how the growing use of mathematical modeling provides a comprehensive and quantitative perspective on the design rules governing stem cell ACDs.
Collapse
Affiliation(s)
- Adam P Fisher
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States
| | - Rosangela Sozzani
- Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC, United States.
| |
Collapse
|
112
|
Brutnell TP, Wang L, Swartwood K, Goldschmidt A, Jackson D, Zhu XG, Kellogg E, Van Eck J. Setaria viridis: a model for C4 photosynthesis. THE PLANT CELL 2010; 22:2537-2544. [PMID: 20693355 DOI: 10.1007/978-3-319-45105-3_17] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
C(4) photosynthesis drives productivity in several major food crops and bioenergy grasses, including maize (Zea mays), sugarcane (Saccharum officinarum), sorghum (Sorghum bicolor), Miscanthus x giganteus, and switchgrass (Panicum virgatum). Gains in productivity associated with C(4) photosynthesis include improved water and nitrogen use efficiencies. Thus, engineering C(4) traits into C(3) crops is an attractive target for crop improvement. However, the lack of a small, rapid cycling genetic model system to study C(4) photosynthesis has limited progress in dissecting the regulatory networks underlying the C(4) syndrome. Setaria viridis is a member of the Panicoideae clade and is a close relative of several major feed, fuel, and bioenergy grasses. It is a true diploid with a relatively small genome of ~510 Mb. Its short stature, simple growth requirements, and rapid life cycle will greatly facilitate genetic studies of the C(4) grasses. Importantly, S. viridis uses an NADP-malic enzyme subtype C(4) photosynthetic system to fix carbon and therefore is a potentially powerful model system for dissecting C(4) photosynthesis. Here, we summarize some of the recent advances that promise greatly to accelerate the use of S. viridis as a genetic system. These include our recent successful efforts at regenerating plants from seed callus, establishing a transient transformation system, and developing stable transformation.
Collapse
Affiliation(s)
- Thomas P Brutnell
- Boyce Thompson Institute, Cornell University, Ithaca, New York 14853, USA.
| | | | | | | | | | | | | | | |
Collapse
|