101
|
Tsai M. Catalytic mechanism of DNA polymerases-Two metal ions or three? Protein Sci 2019; 28:288-291. [PMID: 30368961 PMCID: PMC6319748 DOI: 10.1002/pro.3542] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2018] [Revised: 10/24/2018] [Accepted: 10/24/2018] [Indexed: 12/21/2022]
Affiliation(s)
- Ming‐Daw Tsai
- Institute of Biological Chemistry, Academia SinicaTaipei115Taiwan
- Institute of Biochemical Sciences, National Taiwan UniversityTaipei106Taiwan
| |
Collapse
|
102
|
Wilson KA, Fernandes PA, Ramos MJ, Wetmore SD. Exploring the Identity of the General Base for a DNA Polymerase Catalyzed Reaction Using QM/MM: The Case Study of Human Translesion Synthesis Polymerase η. ACS Catal 2019. [DOI: 10.1021/acscatal.8b04889] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Katie A. Wilson
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4 Canada
| | - Pedro A. Fernandes
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Maria J. Ramos
- UCIBIO, REQUIMTE, Departamento de Química e Bioquímica, Faculdade de Ciências, Universidade do Porto, Rua do Campo Alegre s/n, 4169-007 Porto, Portugal
| | - Stacey D. Wetmore
- Department of Chemistry and Biochemistry, University of Lethbridge, 4401 University Drive West, Lethbridge, Alberta T1K 3M4 Canada
| |
Collapse
|
103
|
Beard WA, Wilson SH. DNA polymerase beta and other gap-filling enzymes in mammalian base excision repair. Enzymes 2019; 45:1-26. [PMID: 31627875 DOI: 10.1016/bs.enz.2019.08.002] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
DNA polymerase β plays a central role in the base excision DNA repair pathway that cleanses the genome of apurinic/apyrimidinic (AP) sites. AP sites arise in DNA from spontaneous base loss and DNA damage-specific glycosylases that hydrolyze the N-glycosidic bond between the deoxyribose and damaged base. AP sites are deleterious lesions because they can be mutagenic and/or cytotoxic. DNA polymerase β contributes two enzymatic activities, DNA synthesis and lyase, during the repair of AP sites; these activities reside on carboxyl- and amino-terminal domains, respectively. Accordingly, its cellular, structural, and kinetic attributes have been extensively characterized and it serves as model enzyme for the nucleotidyl transferase reaction utilized by other replicative, repair, and trans-lesion DNA polymerases.
Collapse
Affiliation(s)
- William A Beard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Science, National Institutes of Health, Durham, NC, United States
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Science, National Institutes of Health, Durham, NC, United States.
| |
Collapse
|
104
|
Wang J, Smithline ZB. Crystallographic evidence for two-metal-ion catalysis in human pol η. Protein Sci 2018; 28:439-447. [PMID: 30368948 DOI: 10.1002/pro.3541] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2018] [Revised: 10/01/2018] [Accepted: 10/02/2018] [Indexed: 02/06/2023]
Abstract
Extensive evidence exists that DNA polymerases use two metal ions to catalyze the phosphoryl transfer reaction. Recently, competing evidence emerged, suggesting that a third metal ion, known as MnC, may be involved in catalysis. The binding of MnC was observed in crystal structures of the replication complexes of human polymerase (pol) η, pol β, and pol μ. Its occupancy (qMnC ) in the pol η replication complexes exhibited a strong correlation with the occupancy of the formed product pyrophosphate (qPPi ), i.e., qMnC ∝ qPPi . However, a key piece of information was missing that is needed to distinguish between two possible sequences of events: (i) the chemical reaction occurs first with only two meal ions, followed by the binding of MnC in a "catch-the-product" mode; and (ii) MnC binds first, followed by the chemical reaction with all three metal ions in a "push-the-reaction-forward" mode. Both mechanisms can lead to a strong correlation between qMnC and qPPi . However, qMnC ≤ qPPi in the first scenario, whereas qMnC ≥ qPPi in the second. In this study, an analysis of crystallographic data published recently for pol η complexes shows that the formation of the product pyrophosphate definitely precedes the binding of MnC. Therefore, just like all other DNA polymerases, human pol η employs a two-metal-ion catalytic mechanism. Rather than help to catalyze the reaction, MnC stabilizes the formed product, which remains trapped inside the crystals, before it slowly diffuses out.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520
| | - Zachary B Smithline
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520
| |
Collapse
|
105
|
Dynamic coordination of two-metal-ions orchestrates λ-exonuclease catalysis. Nat Commun 2018; 9:4404. [PMID: 30353000 PMCID: PMC6199318 DOI: 10.1038/s41467-018-06750-9] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2018] [Accepted: 09/22/2018] [Indexed: 11/08/2022] Open
Abstract
Metal ions at the active site of an enzyme act as cofactors, and their dynamic fluctuations can potentially influence enzyme activity. Here, we use λ-exonuclease as a model enzyme with two Mg2+ binding sites and probe activity at various concentrations of magnesium by single-molecule-FRET. We find that while MgA2+ and MgB2+ have similar binding constants, the dissociation rate of MgA2+ is two order of magnitude lower than that of MgB2+ due to a kinetic-barrier-difference. At physiological Mg2+ concentration, the MgB2+ ion near the 5'-terminal side of the scissile phosphate dissociates each-round of degradation, facilitating a series of DNA cleavages via fast product-release concomitant with enzyme-translocation. At a low magnesium concentration, occasional dissociation and slow re-coordination of MgA2+ result in pauses during processive degradation. Our study highlights the importance of metal-ion-coordination dynamics in correlation with the enzymatic reaction-steps, and offers insights into the origin of dynamic heterogeneity in enzymatic catalysis.
Collapse
|
106
|
Affiliation(s)
- Vito Genna
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Elisa Donati
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery, Istituto Italiano di Tecnologia, Via Morego 30, 16163, Genoa, Italy
| |
Collapse
|
107
|
2.0 Å resolution crystal structure of human polκ reveals a new catalytic function of N-clasp in DNA replication. Sci Rep 2018; 8:15125. [PMID: 30310122 PMCID: PMC6181923 DOI: 10.1038/s41598-018-33371-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Accepted: 09/27/2018] [Indexed: 12/20/2022] Open
Abstract
Human polymerase kappa (polκ) is a distinct Y-family DNA polymerase with a unique N-terminal N-clasp domain. The N-clasp renders polκ’s high efficiency and accuracy in DNA replication and lesion bypass. How N-clasp empowers polκ in replication remains unclear due to the disordering of N-clasp. Here, we present a 2.0-Å resolution crystal structure of a polκ ternary complex with DNA and an incoming nucleotide. The structure-function study reveals an ordered N-clasp domain that brings conserved and functionally important residues in contact with the replicating basepair in the active site and contributes to the nucleotidyl transfer reaction. Particularly, a fully ordered Lys25 from the N-clasp domain is in H-bonding with the α- and γ-phosphates of the incoming nucleotide. K25A mutation reduces the polymerase activity of polκ significantly. This lysine is structurally analogous to a conserved lysine in the A-family DNA polymerases in the closed form. In contrast, Lys25 in the previous structures of polκ does not have any contacts with the incoming nucleotide, resembling an open form of a DNA polymerase. Based on structural and functional similarity, we propose a local open/closed mechanism for polκ in DNA replication catalysis, which mimics the common mechanism for all DNA polymerases.
Collapse
|
108
|
Bypassing a 8,5'-cyclo-2'-deoxyadenosine lesion by human DNA polymerase η at atomic resolution. Proc Natl Acad Sci U S A 2018; 115:10660-10665. [PMID: 30275308 DOI: 10.1073/pnas.1812856115] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Oxidatively induced DNA lesions 8,5'-cyclopurine-2'-deoxynucleosides (cdPus) are prevalent and cytotoxic by impeding DNA replication and transcription. Both the 5'R- and 5'S-diastereomers of cdPu can be removed by nucleotide excision repair; however, the 5'S-cdPu is more resistant to repair than the 5'R counterpart. Here, we report the crystal structures of human polymerase (Pol) η bypassing 5'S-8,5'-cyclo-2'-deoxyadenosine (cdA) in insertion and the following two extension steps. The cdA-containing DNA structures vary in response to the protein environment. Supported by the "molecular splint" of Pol η, the structure of 5'S-cdA at 1.75-Å resolution reveals that the backbone is pinched toward the minor groove and the adenine base is tilted. In the templating position, the cdA takes up the extra space usually reserved for the thymine dimer, and dTTP is efficiently incorporated by Pol η in the presence of Mn2+ Rigid distortions of the DNA duplex by cdA, however, prevent normal base pairing and hinder immediate primer extension by Pol η. Our results provide structural insights into the strong replication blockage effect and the mutagenic property of the cdPu lesions in cells.
Collapse
|
109
|
Okano H, Baba M, Kawato K, Hidese R, Yanagihara I, Kojima K, Takita T, Fujiwara S, Yasukawa K. High sensitive RNA detection by one-step RT-PCR using the genetically engineered variant of DNA polymerase with reverse transcriptase activity from hyperthermophilies. J Biosci Bioeng 2018; 125:275-281. [PMID: 29100684 DOI: 10.1016/j.jbiosc.2017.10.004] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2017] [Revised: 10/03/2017] [Accepted: 10/07/2017] [Indexed: 01/14/2023]
Abstract
One-step RT-PCR has not been widely used even though some thermostable DNA polymerases with reverse transcriptase (RT) activity were developed from bacterial and archaeal polymerases, which is owing to low cDNA synthesis activity from RNA. In the present study, we developed highly-sensitive one-step RT-PCR using the single variant of family A DNA polymerase with RT activity, K4polL329A (L329A), from the hyperthermophilic bacterium Thermotoga petrophila K4 or the 16-tuple variant of family B DNA polymerase with RT activity, RTX, from the hyperthermophilic archaeon Thermococcus kodakarensis. Optimization of reaction condition revealed that the activities for cDNA synthesis and PCR of K4polL329A and RTX were highly affected by the concentrations of MgCl2 and Mn(OCOCH3)2 as well as those of K4polL329A or RTX. Under the optimized condition, 300 copies/μl of target RNA in 10 μl reaction volumes were successfully detected by the one-step RT-PCR with K4polL329A or RTX, which was almost equally sensitive enough compared with the current RT-PCR condition using retroviral RT and thermostable DNA polymerase. Considering that K4polL329A and RTX are stable even at 90-100°C, our results suggest that the one-step RT-PCR with K4polL329A or RTX is more advantageous than the current one.
Collapse
Affiliation(s)
- Hiroyuki Okano
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan
| | - Misato Baba
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan
| | - Katsuhiro Kawato
- Department of Bioscience, School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Ryota Hidese
- Department of Bioscience, School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Itaru Yanagihara
- Department of Developmental Medicine, Research Institute, Osaka Women's and Children's Hospital, 840 Murodo-cho, Izumi 594-1101, Osaka, Japan
| | - Kenji Kojima
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan
| | - Teisuke Takita
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan
| | - Shinsuke Fujiwara
- Department of Bioscience, School of Science and Technology, Kwansei-Gakuin University, 2-1 Gakuen, Sanda, Hyogo 669-1337, Japan
| | - Kiyoshi Yasukawa
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Kitashirakawa Sakyo-ku, Kyoto 606-8502, Japan.
| |
Collapse
|
110
|
Samara NL, Yang W. Cation trafficking propels RNA hydrolysis. Nat Struct Mol Biol 2018; 25:715-721. [PMID: 30076410 DOI: 10.1038/s41594-018-0099-4] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2018] [Accepted: 06/22/2018] [Indexed: 11/09/2022]
Abstract
Catalysis by members of the RNase H superfamily of enzymes is generally believed to require only two Mg2+ ions that are coordinated by active-site carboxylates. By examining the catalytic process of Bacillus halodurans RNase H1 in crystallo, however, we found that the two canonical Mg2+ ions and an additional K+ failed to align the nucleophilic water for RNA cleavage. Substrate alignment and product formation required a second K+ and a third Mg2+, which replaced the first K+ and departed immediately after cleavage. A third transient Mg2+ has also been observed for DNA synthesis, but in that case it coordinates the leaving group instead of the nucleophile as in the case of the RNase H1 hydrolysis reaction. These transient cations have no contact with the enzymes. Other DNA and RNA enzymes that catalyze consecutive cleavage and strand-transfer reactions in a single active site may similarly require cation trafficking coordinated by the substrate.
Collapse
Affiliation(s)
- Nadine L Samara
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), US National Institutes of Health (NIH), Bethesda, MD, USA.,Section on Biological Chemistry, National Institute of Dental and Craniofacial Research (NIDCR), US National Institutes of Health, Bethesda, MD, USA
| | - Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases (NIDDK), US National Institutes of Health (NIH), Bethesda, MD, USA.
| |
Collapse
|
111
|
Accurate fidelity analysis of the reverse transcriptase by a modified next-generation sequencing. Enzyme Microb Technol 2018; 115:81-85. [DOI: 10.1016/j.enzmictec.2018.05.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2018] [Revised: 05/01/2018] [Accepted: 05/02/2018] [Indexed: 02/07/2023]
|
112
|
Microencapsulation of active ingredients in functional foods: From research stage to commercial food products. Trends Food Sci Technol 2018. [DOI: 10.1016/j.tifs.2018.05.025] [Citation(s) in RCA: 115] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
113
|
Oertell K, Kashemirov BA, Negahbani A, Minard C, Haratipour P, Alnajjar KS, Sweasy JB, Batra VK, Beard WA, Wilson SH, McKenna CE, Goodman MF. Probing DNA Base-Dependent Leaving Group Kinetic Effects on the DNA Polymerase Transition State. Biochemistry 2018; 57:3925-3933. [PMID: 29889506 DOI: 10.1021/acs.biochem.8b00417] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We examine the DNA polymerase β (pol β) transition state (TS) from a leaving group pre-steady-state kinetics perspective by measuring the rate of incorporation of dNTPs and corresponding novel β,γ-CXY-dNTP analogues, including individual β,γ-CHF and -CHCl diastereomers with defined stereochemistry at the bridging carbon, during the formation of right (R) and wrong (W) base pairs. Brønsted plots of log kpol versus p Ka4 of the leaving group bisphosphonic acids are used to interrogate the effects of the base identity, the dNTP analogue leaving group basicity, and the precise configuration of the C-X atom in R and S stereoisomers on the rate-determining step ( kpol). The dNTP analogues provide a range of leaving group basicity and steric properties by virtue of monohalogen, dihalogen, or methyl substitution at the carbon atom bridging the β,γ-bisphosphonate that mimics the natural pyrophosphate leaving group in dNTPs. Brønsted plot relationships with negative slopes are revealed by the data, as was found for the dGTP and dTTP analogues, consistent with a bond-breaking component to the TS energy. However, greater multiplicity was shown in the linear free energy relationship, revealing an unexpected dependence on the nucleotide base for both A and C. Strong base-dependent perturbations that modulate TS relative to ground-state energies are likely to arise from electrostatic effects on catalysis in the pol active site. Deviations from a uniform linear Brønsted plot relationship are discussed in terms of insights gained from structural features of the prechemistry DNA polymerase active site.
Collapse
Affiliation(s)
| | | | | | | | | | - Khadijeh S Alnajjar
- Department of Therapeutic Radiology and Department of Genetics , Yale University School of Medicine , New Haven , Connecticut 06520 , United States
| | - Joann B Sweasy
- Department of Therapeutic Radiology and Department of Genetics , Yale University School of Medicine , New Haven , Connecticut 06520 , United States
| | - Vinod K Batra
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle , North Carolina 27709 , United States
| | - William A Beard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle , North Carolina 27709 , United States
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences , National Institutes of Health , Research Triangle , North Carolina 27709 , United States
| | | | | |
Collapse
|
114
|
Raper AT, Reed AJ, Suo Z. Kinetic Mechanism of DNA Polymerases: Contributions of Conformational Dynamics and a Third Divalent Metal Ion. Chem Rev 2018; 118:6000-6025. [DOI: 10.1021/acs.chemrev.7b00685] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Austin T. Raper
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Andrew J. Reed
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry, Ohio State Biochemistry Program, The Ohio State University, Columbus, Ohio 43210, United States
| |
Collapse
|
115
|
Zhang W, Walton T, Li L, Szostak JW. Crystallographic observation of nonenzymatic RNA primer extension. eLife 2018; 7:36422. [PMID: 29851379 PMCID: PMC5980232 DOI: 10.7554/elife.36422] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Accepted: 04/26/2018] [Indexed: 12/31/2022] Open
Abstract
The importance of genome replication has inspired detailed crystallographic studies of enzymatic DNA/RNA polymerization. In contrast, the mechanism of nonenzymatic polymerization is less well understood, despite its critical role in the origin of life. Here we report the direct observation of nonenzymatic RNA primer extension through time-resolved crystallography. We soaked crystals of an RNA primer-template-dGMP complex with guanosine-5′-phosphoro-2-aminoimidazolide for increasing times. At early times we see the activated ribonucleotides bound to the template, followed by formation of the imidazolium-bridged dinucleotide intermediate. At later times, we see a new phosphodiester bond forming between the primer and the incoming nucleotide. The intermediate is pre-organized because of the constraints of base-pairing with the template and hydrogen bonding between the imidazole amino group and both flanking phosphates. Our results provide atomic-resolution insight into the mechanism of nonenzymatic primer extension, and set the stage for further structural dissection and optimization of the RNA copying process. Enzymes speed up chemical reactions that are essential to life. Most enzymes are proteins, but some are molecules of ribonucleic acid or RNA. Like DNA, RNA is made from a chain of building blocks called nucleotides. In modern organisms, protein-based enzymes build RNAs by linking nucleotides together, while the building blocks of proteins are linked by an RNA-based enzyme at the heart of a structure called a ribosome. The earliest life on Earth most likely relied only on RNA-based enzymes, but during the emergence of life, scientists believe that RNA molecules must have replicated spontaneously before dedicated RNA-based enzymes had evolved. How RNA could replicate without enzymes has been a puzzle for decades. Recently, scientists discovered a previously unsuspected chemical intermediate that forms during the process, and hypothesized that this molecule’s special structure is what enables the chemical reaction that adds new nucleotides to a growing strand of RNA. To test this hypothesis, Zhang et al. diffused free RNA nucleotides into a crystalized complex containing template strands of RNA attached to short pieces of RNA called primers, which kick-start replication. Then, the crystals were frozen at various intervals and viewed using X-rays. This allowed Zhang et al. to observe the structural changes that occurred over time as the compounds reacted. The approach first revealed that the free nucleotides had paired with complementary nucleotides on the RNA template strands. Then, pairs of free nucleotides reacted with each other to form the intermediate. Finally, the intermediate reacted with the primer, forming a new bond that connects the RNA primer to one of the nucleotides of the intermediate, while the other nucleotide of the intermediate was released as a free nucleotide. This experiment confirms that the specific structure of the intermediate molecule promotes RNA replication without help from enzymes. These findings will benefit chemists and biologists who study how RNA evolves and replicates. Future research building upon this work will deepen scientific understanding of the environmental conditions that were required for life to appear on Earth.
Collapse
Affiliation(s)
- Wen Zhang
- Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, United States
| | - Travis Walton
- Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, United States
| | - Li Li
- Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, United States
| | - Jack W Szostak
- Department of Molecular Biology, Howard Hughes Medical Institute, Massachusetts General Hospital, Boston, United States.,Department of Genetics, Harvard Medical School, Boston, United States.,Center for Computational and Integrative Biology, Massachusetts General Hospital, Boston, United States
| |
Collapse
|
116
|
Abstract
The number of DNA polymerases identified in each organism has mushroomed in the past two decades. Most newly found DNA polymerases specialize in translesion synthesis and DNA repair instead of replication. Although intrinsic error rates are higher for translesion and repair polymerases than for replicative polymerases, the specialized polymerases increase genome stability and reduce tumorigenesis. Reflecting the numerous types of DNA lesions and variations of broken DNA ends, translesion and repair polymerases differ in structure, mechanism, and function. Here, we review the unique and general features of polymerases specialized in lesion bypass, as well as in gap-filling and end-joining synthesis.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| | - Yang Gao
- Laboratory of Molecular Biology, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland 20892, USA;
| |
Collapse
|
117
|
Genna V, Carloni P, De Vivo M. A Strategically Located Arg/Lys Residue Promotes Correct Base Paring During Nucleic Acid Biosynthesis in Polymerases. J Am Chem Soc 2018; 140:3312-3321. [PMID: 29424536 DOI: 10.1021/jacs.7b12446] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Polymerases (Pols) synthesize the double-stranded nucleic acids in the Watson-Crick (W-C) conformation, which is critical for DNA and RNA functioning. Yet, the molecular basis to catalyze the W-C base pairing during Pol-mediated nucleic acids biosynthesis remains unclear. Here, through bioinformatics analyses on a large data set of Pol/DNA structures, we first describe the conserved presence of one positively charged residue (Lys or Arg), which is similarly located near the enzymatic two-metal active site, always interacting directly with the incoming substrate (d)NTP. Incidentally, we noted that some Pol/DNA structures showing the alternative Hoogsteen base pairing were often solved with this specific residue either mutated, displaced, or missing. We then used quantum and classical simulations coupled to free-energy calculations to illustrate how, in human DNA Pol-η, the conserved Arg61 favors W-C base pairing through defined interactions with the incoming nucleotide. Taken together, these structural observations and computational results suggest a structural framework in which this specific residue is critical for stabilizing the incoming (d)NTP nucleotide and base pairing during Pol-mediated nucleic acid biosynthesis. These results may benefit enzyme engineering for nucleic acid processing and encourage new drug discovery strategies to modulate Pols function.
Collapse
Affiliation(s)
- Vito Genna
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy.,Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9 , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Paolo Carloni
- Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9 , Forschungszentrum Jülich , 52425 Jülich , Germany
| | - Marco De Vivo
- Laboratory of Molecular Modeling and Drug Discovery , Istituto Italiano di Tecnologia , Via Morego 30 , 16163 Genoa , Italy.,Computational Biophysics, German Research School for Simulation Sciences, and Computational Biomedicine, Institute for Advanced Simulation IAS-5 and Institute of Neuroscience and Medicine INM-9 , Forschungszentrum Jülich , 52425 Jülich , Germany
| |
Collapse
|
118
|
Manjari SR, Banavali NK. Structural Articulation of Biochemical Reactions Using Restrained Geometries and Topology Switching. J Chem Inf Model 2018; 58:453-463. [PMID: 29357231 DOI: 10.1021/acs.jcim.7b00699] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
A strategy named "restrained geometries and topology switching" (RGATS) is presented to obtain detailed trajectories for complex biochemical reactions using molecular mechanics (MM) methods. It enables prediction of realistic dynamical pathways for chemical reactions, especially for accurately characterizing the structural adjustments of highly complex environments to any proximal biochemical reaction. It can be used to generate reactive conformations, model stepwise or concerted reactions in complex environments, and probe the influence of changes in the environment. Its ability to take reactively nonoptimal conformations and generate favorable starting conformations for a biochemical reaction is illustrated for a proton transfer between two model compounds. Its ability to study concerted reactions in explicit solvent is illustrated using proton transfers between an ammonium ion and two conserved histidines in an ammonia transporter channel embedded in a lipid membrane. Its ability to characterize the changes induced by subtle differences in the active site environment is illustrated using nucleotide addition by a DNA polymerase in the presence of two versus three Mg2+ ions. RGATS can be employed within any MM program and requires no additional software implementation. This allows the full assortment of computational methods implemented in all available MM programs to be used to tackle virtually any question about biochemical reactions that is answerable without using a quantum mechanical (QM) model. It can also be applied to generate reasonable starting structures for more detailed and expensive QM or QM/MM methods. In particular, this strategy enables rapid prediction of reactant, intermediary, or product state structures in any macromolecular context, with the only requirement being that the structure in any one of these states is either known or can be accurately modeled.
Collapse
Affiliation(s)
- Swati R Manjari
- Laboratory of Computational and Structural Biology, Division of Genetics, NYS Department of Health , CMS 2008, Biggs Laboratory, Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, United States
| | - Nilesh K Banavali
- Laboratory of Computational and Structural Biology, Division of Genetics, NYS Department of Health , CMS 2008, Biggs Laboratory, Wadsworth Center, Empire State Plaza, Albany, New York 12201-0509, United States.,Department of Biomedical Sciences, School of Public Health, State University of New York at Albany , Albany, New York 12222, United States
| |
Collapse
|
119
|
Kumar Vashishtha A, H. Konigsberg W. Effect of Different Divalent Cations on the Kinetics and Fidelity of DNA Polymerases. AIMS BIOPHYSICS 2018. [DOI: 10.3934/biophy.2018.4.272] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
|
120
|
Ralec C, Henry E, Lemor M, Killelea T, Henneke G. Calcium-driven DNA synthesis by a high-fidelity DNA polymerase. Nucleic Acids Res 2017; 45:12425-12440. [PMID: 29040737 PMCID: PMC5716173 DOI: 10.1093/nar/gkx927] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 10/04/2017] [Indexed: 11/14/2022] Open
Abstract
Divalent metal ions, usually Mg2+, are required for both DNA synthesis and proofreading functions by DNA polymerases (DNA Pol). Although used as a non-reactive cofactor substitute for binding and crystallographic studies, Ca2+ supports DNA polymerization by only one DNA Pol, Dpo4. Here, we explore whether Ca2+-driven catalysis might apply to high-fidelity (HiFi) family B DNA Pols. The consequences of replacing Mg2+ by Ca2+ on base pairing at the polymerase active site as well as the editing of terminal nucleotides at the exonuclease active site of the archaeal Pyrococcus abyssi DNA Pol (PabPolB) are characterized and compared to other (families B, A, Y, X, D) DNA Pols. Based on primer extension assays, steady-state kinetics and ion-chased experiments, we demonstrate that Ca2+ (and other metal ions) activates DNA synthesis by PabPolB. While showing a slower rate of phosphodiester bond formation, nucleotide selectivity is improved over that of Mg2+. Further mechanistic studies show that the affinities for primer/template are higher in the presence of Ca2+ and reinforced by a correct incoming nucleotide. Conversely, no exonuclease degradation of the terminal nucleotides occurs with Ca2+. Evolutionary and mechanistic insights among DNA Pols are thus discussed.
Collapse
Affiliation(s)
- Céline Ralec
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| | - Etienne Henry
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| | - Mélanie Lemor
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| | - Tom Killelea
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| | - Ghislaine Henneke
- Ifremer, Centre de Brest, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,CNRS, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France.,Université de Brest Occidentale, UBO, LM2E, UMR 6197, Technopole Brest-Iroise, 29280 Plouzané, France
| |
Collapse
|
121
|
Second-Shell Basic Residues Expand the Two-Metal-Ion Architecture of DNA and RNA Processing Enzymes. Structure 2017; 26:40-50.e2. [PMID: 29225080 PMCID: PMC5758106 DOI: 10.1016/j.str.2017.11.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Revised: 09/12/2017] [Accepted: 11/12/2017] [Indexed: 02/01/2023]
Abstract
Synthesis and scission of phosphodiester bonds in DNA and RNA regulate vital processes within the cell. Enzymes that catalyze these reactions operate mostly via the recognized two-metal-ion mechanism. Our analysis reveals that basic amino acids and monovalent cations occupy structurally conserved positions nearby the active site of many two-metal-ion enzymes for which high-resolution (<3 Å) structures are known, including DNA and RNA polymerases, nucleases such as Cas9, and splicing ribozymes. Integrating multiple-sequence and structural alignments with molecular dynamics simulations, electrostatic potential maps, and mutational data, we found that these elements always interact with the substrates, suggesting that they may play an active role for catalysis, in addition to their electrostatic contribution. We discuss possible mechanistic implications of this expanded two-metal-ion architecture, including inferences on medium-resolution cryoelectron microscopy structures. Ultimately, our analysis may inspire future experiments and strategies for enzyme engineering or drug design to modulate nucleic acid processing. Basic residues in the active site of two-metal-ion enzymes are structurally conserved These residues are also conserved in evolution Mutagenesis suggests these residues may exert an effect on DNA- and RNA processing Our work offers insights into CRISPR/Cas9, spliceosome, and DNA/RNA polymerases
Collapse
|
122
|
Crystal structures of ternary complexes of archaeal B-family DNA polymerases. PLoS One 2017; 12:e0188005. [PMID: 29211756 PMCID: PMC5718519 DOI: 10.1371/journal.pone.0188005] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/30/2017] [Indexed: 01/04/2023] Open
Abstract
Archaeal B-family polymerases drive biotechnology by accepting a wide substrate range of chemically modified nucleotides. By now no structural data for archaeal B-family DNA polymerases in a closed, ternary complex are available, which would be the basis for developing next generation nucleotides. We present the ternary crystal structures of KOD and 9°N DNA polymerases complexed with DNA and the incoming dATP. The structures reveal a third metal ion in the active site, which was so far only observed for the eukaryotic B-family DNA polymerase δ and no other B-family DNA polymerase. The structures reveal a wide inner channel and numerous interactions with the template strand that provide space for modifications within the enzyme and may account for the high processivity, respectively. The crystal structures provide insights into the superiority over other DNA polymerases concerning the acceptance of modified nucleotides.
Collapse
|
123
|
Recent progress in dissecting molecular recognition by DNA polymerases with non-native substrates. Curr Opin Chem Biol 2017; 41:43-49. [PMID: 29096323 DOI: 10.1016/j.cbpa.2017.10.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Accepted: 10/05/2017] [Indexed: 11/22/2022]
Abstract
DNA polymerases must discriminate the correct Watson-Crick base pair-forming deoxynucleoside triphosphate (dNTP) substrate from three other dNTPs and additional triphosphates found in the cell. The rarity of misincorporations in vivo, then, belies the high tolerance for dNTP analogs observed in vitro. Advances over the last 10 years in single-molecule fluorescence and electronic detection of dNTP analog incorporation enable exploration of the mechanism and limits to base discrimination by DNA polymerases. Such studies reveal transient motions of DNA polymerase during substrate recognition and mutagenesis in the context of erroneous dNTP incorporation that can lead to evolution and genetic disease. Further improvements in time resolution and noise reduction of single-molecule studies will uncover deeper mechanistic understanding of this critical, first step in evolution.
Collapse
|
124
|
Wang J. Determination of chemical identity and occupancy from experimental density maps. Protein Sci 2017; 27:411-420. [PMID: 29027293 DOI: 10.1002/pro.3325] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2017] [Revised: 10/11/2017] [Accepted: 10/11/2017] [Indexed: 12/13/2022]
Abstract
Three basic electronic properties of molecules, electron density (ED), charge density (CD), and electrostatic potentials (ESP), are dependent on both atomic mobility and occupancy of components in the molecules. Small protein subunits may bind large macromolecular complexes with a reduced occupancy or an increased atomic mobility or both due to affinity-based functional regulation, and so may substrates, products, cofactors, ions or solvent molecule to the active sites of enzymes. A quantitative theory is presented in this study that describes the dependence of atomic functions on atomic B-factor in Fourier transforms of the corresponding maps. An application of this theory is described to an experimental ED map at 1.73-Å resolution, and to an experimental CD map at 2.2-Å resolution. All the three density functions are linearly proportional to occupancy when the structure factor F(000) term of Fourier transforms of experimental density maps is included. Upon application of this theory to both experimental CD and ESP maps recently reported for photosystem II-light harvesting complex II supercomplex at 3.2-Å resolution, the occupancy of two extrinsic protein subunits PsbQ and PsbP is determined to be 20.4 ± 0.2%, and the negative mean ESP value of vitreous ice displaced by the supercomplex on electron scattering path is estimated to be 3% of the mean ESP value of protein α-helices.
Collapse
Affiliation(s)
- Jimin Wang
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut, 06520
| |
Collapse
|
125
|
Mechanism of error-free replication across benzo[a]pyrene stereoisomers by Rev1 DNA polymerase. Nat Commun 2017; 8:965. [PMID: 29042535 PMCID: PMC5645340 DOI: 10.1038/s41467-017-01013-5] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2017] [Accepted: 08/11/2017] [Indexed: 12/21/2022] Open
Abstract
Benzo[a]pyrene (BP) is a carcinogen in cigarette smoke which, after metabolic activation, can react with the exocyclic N2 amino group of guanine to generate four stereoisomeric BP-N2-dG adducts. Rev1 is unique among translesion synthesis DNA polymerases in employing a protein-template-directed mechanism of DNA synthesis opposite undamaged and damaged guanine. Here we report high-resolution structures of yeast Rev1 with three BP-N2-dG adducts, namely the 10S (+)-trans-BP-N2-dG, 10R (+)-cis-BP-N2-dG, and 10S ( − )-cis-BP-N2-dG. Surprisingly, in all three structures, the bulky and hydrophobic BP pyrenyl residue is entirely solvent-exposed in the major groove of the DNA. This is very different from the adduct alignments hitherto observed in free or protein-bound DNA. All complexes are well poised for dCTP insertion. Our structures provide a view of cis-BP-N2-dG adducts in a DNA polymerase active site, and offer a basis for understanding error-free replication of the BP-derived stereoisomeric guanine adducts. Benzo[a]pyrene (BP) is a carcinogen in cigarette smoke that upon metabolic activation reacts with guanine. Here, the authors present the structures of the translesion DNA synthesis polymerase Rev1 in complex with three of the four possible stereoisomeric BP-N2 -dG adducts, which gives insights how Rev1 achieves error-free replication.
Collapse
|
126
|
Trakselis MA, Cranford MT, Chu AM. Coordination and Substitution of DNA Polymerases in Response to Genomic Obstacles. Chem Res Toxicol 2017; 30:1956-1971. [PMID: 28881136 DOI: 10.1021/acs.chemrestox.7b00190] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
The ability for DNA polymerases (Pols) to overcome a variety of obstacles in its path to maintain genomic stability during replication is a complex endeavor. It requires the coordination of multiple Pols with differing specificities through molecular control and access to the replisome. Although a number of contacts directly between Pols and accessory proteins have been identified, forming the basis of a variety of holoenzyme complexes, the dynamics of Pol active site substitutions remain uncharacterized. Substitutions can occur externally by recruiting new Pols to replisome complexes through an "exchange" of enzyme binding or internally through a "switch" in the engagement of DNA from preformed associated enzymes contained within supraholoenzyme complexes. Models for how high fidelity (HiFi) replication Pols can be substituted by translesion synthesis (TLS) Pols at sites of damage during active replication will be discussed. These substitution mechanisms may be as diverse as the number of Pol families and types of damage; however, common themes can be recognized across species. Overall, Pol substitutions will be controlled by explicit protein contacts, complex multiequilibrium processes, and specific kinetic activities. Insight into how these dynamic processes take place and are regulated will be of utmost importance for our greater understanding of the specifics of TLS as well as providing for future novel chemotherapeutic and antimicrobial strategies.
Collapse
Affiliation(s)
- Michael A Trakselis
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| | - Matthew T Cranford
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| | - Aurea M Chu
- Department of Chemistry and Biochemistry, Baylor University , Waco, Texas 76798, United States
| |
Collapse
|
127
|
Wu WJ, Yang W, Tsai MD. How DNA polymerases catalyse replication and repair with contrasting fidelity. Nat Rev Chem 2017. [DOI: 10.1038/s41570-017-0068] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
128
|
Okafor CD, Lanier KA, Petrov AS, Athavale SS, Bowman JC, Hud NV, Williams LD. Iron mediates catalysis of nucleic acid processing enzymes: support for Fe(II) as a cofactor before the great oxidation event. Nucleic Acids Res 2017; 45:3634-3642. [PMID: 28334877 PMCID: PMC5397171 DOI: 10.1093/nar/gkx171] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 03/08/2017] [Indexed: 12/19/2022] Open
Abstract
Life originated in an anoxic, Fe2+-rich environment. We hypothesize that on early Earth, Fe2+ was a ubiquitous cofactor for nucleic acids, with roles in RNA folding and catalysis as well as in processing of nucleic acids by protein enzymes. In this model, Mg2+ replaced Fe2+ as the primary cofactor for nucleic acids in parallel with known metal substitutions of metalloproteins, driven by the Great Oxidation Event. To test predictions of this model, we assay the ability of nucleic acid processing enzymes, including a DNA polymerase, an RNA polymerase and a DNA ligase, to use Fe2+ in place of Mg2+ as a cofactor during catalysis. Results show that Fe2+ can indeed substitute for Mg2+ in catalytic function of these enzymes. Additionally, we use calculations to unravel differences in energetics, structures and reactivities of relevant Mg2+ and Fe2+ complexes. Computation explains why Fe2+ can be a more potent cofactor than Mg2+ in a variety of folding and catalytic functions. We propose that the rise of O2 on Earth drove a Fe2+ to Mg2+ substitution in proteins and nucleic acids, a hypothesis consistent with a general model in which some modern biochemical systems retain latent abilities to revert to primordial Fe2+-based states when exposed to pre-GOE conditions.
Collapse
Affiliation(s)
- C Denise Okafor
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 0400, USA
| | - Kathryn A Lanier
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 0400, USA
| | - Anton S Petrov
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 0400, USA
| | - Shreyas S Athavale
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 0400, USA
| | - Jessica C Bowman
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 0400, USA
| | - Nicholas V Hud
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 0400, USA
| | - Loren Dean Williams
- School of Chemistry and Biochemistry, Georgia Institute of Technology, Atlanta, GA 30332 0400, USA
| |
Collapse
|
129
|
Jamsen JA, Beard WA, Pedersen LC, Shock DD, Moon AF, Krahn JM, Bebenek K, Kunkel TA, Wilson SH. Time-lapse crystallography snapshots of a double-strand break repair polymerase in action. Nat Commun 2017; 8:253. [PMID: 28811466 PMCID: PMC5557891 DOI: 10.1038/s41467-017-00271-7] [Citation(s) in RCA: 50] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/15/2017] [Indexed: 11/08/2022] Open
Abstract
DNA polymerase (pol) μ is a DNA-dependent polymerase that incorporates nucleotides during gap-filling synthesis in the non-homologous end-joining pathway of double-strand break repair. Here we report time-lapse X-ray crystallography snapshots of catalytic events during gap-filling DNA synthesis by pol μ. Unique catalytic intermediates and active site conformational changes that underlie catalysis are uncovered, and a transient third (product) metal ion is observed in the product state. The product manganese coordinates phosphate oxygens of the inserted nucleotide and PPi. The product metal is not observed during DNA synthesis in the presence of magnesium. Kinetic analyses indicate that manganese increases the rate constant for deoxynucleoside 5'-triphosphate insertion compared to magnesium. The likely product stabilization role of the manganese product metal in pol μ is discussed. These observations provide insight on structural attributes of this X-family double-strand break repair polymerase that impact its biological function in genome maintenance.DNA polymerase (pol) μ functions in DNA double-strand break repair. Here the authors use time-lapse X-ray crystallography to capture the states of pol µ during the conversion from pre-catalytic to product complex and observe a third transiently bound metal ion in the product state.
Collapse
Affiliation(s)
- Joonas A Jamsen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - William A Beard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Lars C Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - David D Shock
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Andrea F Moon
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Juno M Krahn
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Katarzyna Bebenek
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Thomas A Kunkel
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, Research Triangle Park, NC, 27709, USA.
| |
Collapse
|
130
|
Perera L, Freudenthal BD, Beard WA, Pedersen LG, Wilson SH. Revealing the role of the product metal in DNA polymerase β catalysis. Nucleic Acids Res 2017; 45:2736-2745. [PMID: 28108654 PMCID: PMC5389463 DOI: 10.1093/nar/gkw1363] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2016] [Accepted: 12/28/2016] [Indexed: 11/14/2022] Open
Abstract
DNA polymerases catalyze a metal-dependent nucleotidyl transferase reaction during extension of a DNA strand using the complementary strand as a template. The reaction has long been considered to require two magnesium ions. Recently, a third active site magnesium ion was identified in some DNA polymerase product crystallographic structures, but its role is not known. Using quantum mechanical/ molecular mechanical calculations of polymerase β, we find that a third magnesium ion positioned near the newly identified product metal site does not alter the activation barrier for the chemical reaction indicating that it does not have a role in the forward reaction. This is consistent with time-lapse crystallographic structures following insertion of Sp-dCTPαS. Although sulfur substitution deters product metal binding, this has only a minimal effect on the rate of the forward reaction. Surprisingly, monovalent sodium or ammonium ions, positioned in the product metal site, lowered the activation barrier. These calculations highlight the impact that an active site water network can have on the energetics of the forward reaction and how metals or enzyme side chains may interact with the network to modulate the reaction barrier. These results also are discussed in the context of earlier findings indicating that magnesium at the product metal position blocks the reverse pyrophosphorolysis reaction.
Collapse
Affiliation(s)
- Lalith Perera
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Research Triangle Park, NC 27709-2233, USA
| | - Bret D Freudenthal
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Research Triangle Park, NC 27709-2233, USA.,Department of Biochemistry and Molecular Biology, The University of Kansas Medical Center, 3901 Rainbow Boulevard, 1080 HLSIC, Mailstop 3030, Kansas City, KS 66160-7421, USA
| | - William A Beard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Research Triangle Park, NC 27709-2233, USA
| | - Lee G Pedersen
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Research Triangle Park, NC 27709-2233, USA.,Department of Chemistry, University of North Carolina at Chapel Hill, P.O. Box 3290, Chapel Hill, NC 27517, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, National Institutes of Health, P.O. Box 12233, Research Triangle Park, NC 27709-2233, USA
| |
Collapse
|
131
|
Shock DD, Freudenthal BD, Beard WA, Wilson SH. Modulating the DNA polymerase β reaction equilibrium to dissect the reverse reaction. Nat Chem Biol 2017; 13:1074-1080. [PMID: 28759020 PMCID: PMC5605435 DOI: 10.1038/nchembio.2450] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 06/28/2017] [Indexed: 12/20/2022]
Abstract
DNA polymerases catalyze efficient and high fidelity DNA synthesis. While this reaction favors nucleotide incorporation, polymerases also catalyze a reverse reaction, pyrophosphorolysis, removing the DNA primer terminus and generating deoxynucleoside triphosphates. Since pyrophosphorolysis can influence polymerase fidelity and sensitivity to chain-terminating nucleosides, we analyzed pyrophosphorolysis with human DNA polymerase β and found the reaction to be inefficient. The lack of a thio-elemental effect indicated that it was limited by a non-chemical step. Utilizing a pyrophosphate analog, where the bridging oxygen is replaced with an imido-group (PNP), increased the rate of the reverse reaction and displayed a large thio-elemental effect indicating that chemistry was now rate determining. Time-lapse crystallography with PNP captured structures consistent with a chemical equilibrium that favored the reverse reaction. These results highlight the importance of the bridging atom between the β- and γ-phosphates of the incoming nucleotide in reaction chemistry, enzyme conformational changes, and overall reaction equilibrium.
Collapse
Affiliation(s)
- David D Shock
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Bret D Freudenthal
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA.,Department of Biochemistry and Molecular Biology, University of Kansas Medical Center, Kansas City, Kansas, USA
| | - William A Beard
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| | - Samuel H Wilson
- Genome Integrity and Structural Biology Laboratory, National Institute of Environmental Health Sciences, NIH, Research Triangle Park, North Carolina, USA
| |
Collapse
|
132
|
Modulation of RNA primer formation by Mn(II)-substituted T7 DNA primase. Sci Rep 2017; 7:5797. [PMID: 28724886 PMCID: PMC5517523 DOI: 10.1038/s41598-017-05534-3] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2017] [Accepted: 06/19/2017] [Indexed: 12/22/2022] Open
Abstract
Lagging strand DNA synthesis by DNA polymerase requires RNA primers produced by DNA primase. The N-terminal primase domain of the gene 4 protein of phage T7 comprises a zinc-binding domain that recognizes a specific DNA sequence and an RNA polymerase domain that catalyzes RNA polymerization. Based on its crystal structure, the RNA polymerase domain contains two Mg(II) ions. Mn(II) substitution leads to elevated RNA primer synthesis by T7 DNA primase. NMR analysis revealed that upon binding Mn(II), T7 DNA primase undergoes conformational changes near the metal cofactor binding site that are not observed when the enzyme binds Mg(II). A machine-learning algorithm called linear discriminant analysis (LDA) was trained by using the large collection of Mn(II) and Mg(II) binding sites available in the protein data bank (PDB). Application of the model to DNA primase revealed a preference in the enzyme's second metal binding site for Mn(II) over Mg(II), suggesting that T7 DNA primase activity modulation when bound to Mn(II) is based on structural changes in the enzyme.
Collapse
|
133
|
Reed AJ, Suo Z. Time-Dependent Extension from an 8-Oxoguanine Lesion by Human DNA Polymerase Beta. J Am Chem Soc 2017; 139:9684-9690. [PMID: 28682600 DOI: 10.1021/jacs.7b05048] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The oxidative DNA lesion 7,8-dihydro-2'-deoxyguanine (8-oxoG) often occurs in double-stranded DNA and poses a threat to genomic integrity due to the ability of 8-oxoG to form stable Watson-Crick base pairs with deoxycytidine (8-oxoG:dC) and Hoogsteen base pairs with deoxyadenosine (8-oxoG:dA). In humans, short-patch base excision repair of 8-oxoG:dA base pairs requires human DNA polymerase β (hPolβ) to bypass 8-oxoG. Previously, we have shown hPolβ-catalyzed 8-oxoG bypass to exhibit low fidelity and identified a unique stacking interaction between the newly incorporated nucleotide (dCMP or dAMP) and the templating 8-oxoG. The effect of this stacking on the ability of hPolβ to extend from 8-oxoG during long-patch base excision repair was unknown. Here we report pre-steady-state kinetics and time-dependent crystal structures to demonstrate that extension from both 8-oxoG:dC and 8-oxoG:dA base pairs is 18- to 580-fold less efficient compared to 8-oxoG bypass and that extension from 8-oxoG:dC over 8-oxoG:dA is favored by 15-fold. The overall decrease in efficiency of extension relative to 8-oxoG bypass is due to an alternative nucleotide binding conformation in the precatalytic ternary structures (hPolβ·DNA·dNTP) for both extension contexts, wherein the incoming nucleotide is bound in either the canonical Watson-Crick base pair or a nonplanar base pair. In addition, the decreased stability of the ternary complex of 8-oxoG:dA extension results in further loss of efficiency when compared to 8-oxoG:dC extension. Therefore, we hypothesize that the inefficient extension from 8-oxoG:dA serves as a newly discovered fidelity checkpoint during base excision repair.
Collapse
Affiliation(s)
- Andrew J Reed
- Department of Chemistry and Biochemistry, The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry, The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
134
|
Phosphate steering by Flap Endonuclease 1 promotes 5'-flap specificity and incision to prevent genome instability. Nat Commun 2017; 8:15855. [PMID: 28653660 PMCID: PMC5490271 DOI: 10.1038/ncomms15855] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Accepted: 05/05/2017] [Indexed: 12/13/2022] Open
Abstract
DNA replication and repair enzyme Flap Endonuclease 1 (FEN1) is vital for genome integrity, and FEN1 mutations arise in multiple cancers. FEN1 precisely cleaves single-stranded (ss) 5′-flaps one nucleotide into duplex (ds) DNA. Yet, how FEN1 selects for but does not incise the ss 5′-flap was enigmatic. Here we combine crystallographic, biochemical and genetic analyses to show that two dsDNA binding sites set the 5′polarity and to reveal unexpected control of the DNA phosphodiester backbone by electrostatic interactions. Via ‘phosphate steering’, basic residues energetically steer an inverted ss 5′-flap through a gateway over FEN1’s active site and shift dsDNA for catalysis. Mutations of these residues cause an 18,000-fold reduction in catalytic rate in vitro and large-scale trinucleotide (GAA)n repeat expansions in vivo, implying failed phosphate-steering promotes an unanticipated lagging-strand template-switch mechanism during replication. Thus, phosphate steering is an unappreciated FEN1 function that enforces 5′-flap specificity and catalysis, preventing genomic instability. Flap Endonuclease 1 is a DNA replication and repair enzyme indispensable for maintaining genomic stability. Here the authors provide mechanistic details on how FEN1 selects for 5′-flaps and promotes catalysis to avoid large-scale repeat expansion by a process termed ‘phosphate steering’.
Collapse
|
135
|
Houlihan G, Arangundy-Franklin S, Holliger P. Engineering and application of polymerases for synthetic genetics. Curr Opin Biotechnol 2017; 48:168-179. [PMID: 28601700 DOI: 10.1016/j.copbio.2017.04.004] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 11/26/2022]
Abstract
Organic chemistry has systematically probed the chemical determinants of function in nucleic acids by variation to the nucleobase, sugar ring and backbone moieties to build synthetic genetic polymers. Concomitantly, protein engineering has advanced to allow the discovery of polymerases capable of utilizing modified nucleotide analogs. A conjunction of these two lines of investigation in nucleotide chemistry and molecular biology has given rise to a new field of synthetic genetics dedicated to the exploration of the capacity of these novel, synthetic nucleic acids for the storage and propagation of genetic information, for evolution and for crosstalk, that is, information exchange with the natural genetic system. Here we summarize recent progress in synthetic genetics, specifically in the design of novel unnatural basepairs to expand the genetic alphabet as well as progress in engineering polymerases capable of templated synthesis, reverse transcription and evolution of synthetic genetic polymers.
Collapse
Affiliation(s)
- Gillian Houlihan
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK
| | | | - Philipp Holliger
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge Biomedical Campus, Cambridge CB2 0QH, UK.
| |
Collapse
|
136
|
Yoon H, Warshel A. Simulating the fidelity and the three Mg mechanism of pol η and clarifying the validity of transition state theory in enzyme catalysis. Proteins 2017; 85:1446-1453. [PMID: 28383109 DOI: 10.1002/prot.25305] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Revised: 03/20/2017] [Accepted: 03/27/2017] [Indexed: 11/06/2022]
Abstract
Pol η belongs to the important Y family of DNA polymerases that can catalyze translesion synthesis across sites of damaged DNA. This activity involves the reduced fidelity of Pol η for 8-oxo-7,8-dhyedro-2'-deoxoguanosin(8-oxoG). The fundamental interest in Pol η has grown recently with the demonstration of the importance of a 3rd Mg2+ ion. The current work explores both the fidelity of Pol η and the role of the 3rd metal ion, by using empirical valence bond (EVB) simulations. The simulations reproduce the observed trend in fidelity and shed a new light on the role of the 3rd metal ion. It is found that this ion does not lead to a major catalytic effect, but most probably plays an important role in reducing the product release barrier. Furthermore, it is concluded, in contrast to some implications, that the effect of this metal does not violate transition state theory, and the evaluation of the catalytic effect must conserve the molecular composition upon moving from the reactant to the transition state. Proteins 2017; 85:1446-1453. © 2017 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Hanwool Yoon
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Ave, Los Angeles, California, 90089-1062
| | - Arieh Warshel
- Department of Chemistry, University of Southern California, 418 SGM Building, 3620 McClintock Ave, Los Angeles, California, 90089-1062
| |
Collapse
|
137
|
Samara NL, Gao Y, Wu J, Yang W. Detection of Reaction Intermediates in Mg 2+-Dependent DNA Synthesis and RNA Degradation by Time-Resolved X-Ray Crystallography. Methods Enzymol 2017; 592:283-327. [PMID: 28668125 DOI: 10.1016/bs.mie.2017.03.022] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/03/2022]
Abstract
Structures of enzyme-substrate/product complexes have been studied for over four decades but have been limited to either before or after a chemical reaction. Recently using in crystallo catalysis combined with X-ray diffraction, we have discovered that many enzymatic reactions in nucleic acid metabolism require additional metal ion cofactors that are not present in the substrate or product state. By controlling metal ions essential for catalysis, the in crystallo approach has revealed unprecedented details of reaction intermediates. Here we present protocols used for successful studies of Mg2+-dependent DNA polymerases and ribonucleases that are applicable to analyses of a variety of metal ion-dependent reactions.
Collapse
Affiliation(s)
- Nadine L Samara
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States; Section on Biological Chemistry, NIDCR, National Institutes of Health, Bethesda, MD, United States
| | - Yang Gao
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Jinjun Wu
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States
| | - Wei Yang
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, Bethesda, MD, United States.
| |
Collapse
|
138
|
Okano H, Baba M, Yamasaki T, Hidese R, Fujiwara S, Yanagihara I, Ujiiye T, Hayashi T, Kojima K, Takita T, Yasukawa K. High sensitive one-step RT-PCR using MMLV reverse transcriptase, DNA polymerase with reverse transcriptase activity, and DNA/RNA helicase. Biochem Biophys Res Commun 2017; 487:128-133. [DOI: 10.1016/j.bbrc.2017.04.030] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2017] [Accepted: 04/07/2017] [Indexed: 02/01/2023]
|
139
|
Yang Y, Huang S, Wang J, Jan G, Jeantet R, Chen X. Mg2+improves the thermotolerance of probioticLactobacillus rhamnosusGG,Lactobacillus caseiZhang andLactobacillus plantarumP-8. Lett Appl Microbiol 2017; 64:283-288. [DOI: 10.1111/lam.12716] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2016] [Revised: 12/10/2016] [Accepted: 12/29/2016] [Indexed: 01/25/2023]
Affiliation(s)
- Y. Yang
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen City China
| | - S. Huang
- Suzhou Key Lab of Green Chemical Engineering; School of Chemical and Environmental Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou City China
- STLO; Agrocampus Ouest; INRA; Rennes France
| | - J. Wang
- Suzhou Key Lab of Green Chemical Engineering; School of Chemical and Environmental Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou City China
| | - G. Jan
- STLO; Agrocampus Ouest; INRA; Rennes France
| | - R. Jeantet
- STLO; Agrocampus Ouest; INRA; Rennes France
| | - X.D. Chen
- Department of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering; Xiamen University; Xiamen City China
- Suzhou Key Lab of Green Chemical Engineering; School of Chemical and Environmental Engineering; College of Chemistry; Chemical Engineering and Materials Science; Soochow University; Suzhou City China
| |
Collapse
|
140
|
Pan X, He Y, Lei J, Huang X, Zhao Y. Crystallographic Snapshots of Class A β-Lactamase Catalysis Reveal Structural Changes That Facilitate β-Lactam Hydrolysis. J Biol Chem 2017; 292:4022-4033. [PMID: 28100776 DOI: 10.1074/jbc.m116.764340] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2016] [Revised: 12/22/2016] [Indexed: 11/06/2022] Open
Abstract
β-Lactamases confer resistance to β-lactam-based antibiotics. There is great interest in understanding their mechanisms to enable the development of β-lactamase-specific inhibitors. The mechanism of class A β-lactamases has been studied extensively, revealing Lys-73 and Glu-166 as general bases that assist the catalytic residue Ser-70. However, the specific roles of these two residues within the catalytic cycle remain not fully understood. To help resolve this, we first identified an E166H mutant that is functional but is kinetically slow. We then carried out time-resolved crystallographic study of a full cycle of the catalytic reaction. We obtained structures that represent apo, ES*-acylation, and ES*-deacylation states and analyzed the conformational changes of His-166. The "in" conformation in the apo structure allows His-166 to form a hydrogen bond with Lys-73. The unexpected "flipped-out" conformation of His-166 in the ES*-acylation structure was further examined by molecular dynamics simulations, which suggested deprotonated Lys-73 serving as the general base for acylation. The "revert-in" conformation in the ES*-deacylation structure aligns His-166 toward the water molecule that hydrolyzes the acyl adduct. Finally, when the acyl adduct is fully hydrolyzed, His-166 rotates back to the "in" conformation of the apo-state, restoring the Lys-73/His-166 interaction. Using His-166 as surrogate, our study identifies distinct conformational changes within the active site during catalysis. We suggest that the native Glu-166 executes similar changes in a less constricted way. Taken together, this structural series improves our understanding of β-lactam hydrolysis in this important class of enzymes.
Collapse
Affiliation(s)
- Xuehua Pan
- From the Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.,the Shenzhen Research Institute, Hong Kong Polytechnic University, Shenzhen, and
| | - Yunjiao He
- From the Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jinping Lei
- the Department of Chemistry, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Xuhui Huang
- the Department of Chemistry, Center of Systems Biology and Human Health, Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Yanxiang Zhao
- From the Department of Applied Biology and Chemical Technology, State Key Laboratory of Chirosciences, Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong,
| |
Collapse
|
141
|
Alphonse S, Ghose R. Cystoviral RNA-directed RNA polymerases: Regulation of RNA synthesis on multiple time and length scales. Virus Res 2017; 234:135-152. [PMID: 28104452 PMCID: PMC5476504 DOI: 10.1016/j.virusres.2017.01.006] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2016] [Revised: 01/04/2017] [Accepted: 01/09/2017] [Indexed: 12/18/2022]
Abstract
Role of the RNA polymerase in the cystoviral life-cycle. Spatio-temporal regulation of RNA synthesis in cystoviruses. Emerging role of conformational dynamics in polymerase function.
P2, an RNA-directed RNA polymerase (RdRP), is encoded on the largest of the three segments of the double-stranded RNA genome of cystoviruses. P2 performs the dual tasks of replication and transcription de novo on single-stranded RNA templates, and plays a critical role in the viral life-cycle. Work over the last few decades has yielded a wealth of biochemical and structural information on the functional regulation of P2, on its role in the spatiotemporal regulation of RNA synthesis and its variability across the Cystoviridae family. These range from atomic resolution snapshots of P2 trapped in functionally significant states, in complex with catalytic/structural metal ions, polynucleotide templates and substrate nucleoside triphosphates, to P2 in the context of viral capsids providing structural insight into the assembly of supramolecular complexes and regulatory interactions therein. They include in vitro biochemical studies using P2 purified to homogeneity and in vivo studies utilizing infectious core particles. Recent advances in experimental techniques have also allowed access to the temporal dimension and enabled the characterization of dynamics of P2 on the sub-nanosecond to millisecond timescale through measurements of nuclear spin relaxation in solution and single molecule studies of transcription from seconds to minutes. Below we summarize the most significant results that provide critical insight into the role of P2 in regulating RNA synthesis in cystoviruses.
Collapse
Affiliation(s)
- Sébastien Alphonse
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, United States.
| | - Ranajeet Ghose
- Department of Chemistry and Biochemistry, The City College of New York, New York, NY 10031, United States; Graduate Programs in Biochemistry, The Graduate Center of CUNY, New York, NY 10016, United States; Graduate Programs in Chemistry, The Graduate Center of CUNY, New York, NY 10016, United States; Graduate Programs in Physics, The Graduate Center of CUNY, New York, NY 10016, United States.
| |
Collapse
|
142
|
Reed AJ, Vyas R, Raper AT, Suo Z. Structural Insights into the Post-Chemistry Steps of Nucleotide Incorporation Catalyzed by a DNA Polymerase. J Am Chem Soc 2016; 139:465-471. [PMID: 27959534 DOI: 10.1021/jacs.6b11258] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
DNA polymerases are essential enzymes that faithfully and efficiently replicate genomic information.1-3 The mechanism of nucleotide incorporation by DNA polymerases has been extensively studied structurally and kinetically, but several key steps following phosphodiester bond formation remain structurally uncharacterized due to utilization of natural nucleotides. It is thought that the release of pyrophosphate (PPi) triggers reverse conformational changes in a polymerase in order to complete a full catalytic cycle as well as prepare for DNA translocation and subsequent incorporation events. Here, by using the triphosphates of chain-terminating antiviral drugs lamivudine ((-)3TC-TP) and emtricitabine ((-)FTC-TP), we structurally reveal the correct sequence of post-chemistry steps during nucleotide incorporation by human DNA polymerase β (hPolβ) and provide a structural basis for PPi release. These post-catalytic structures reveal hPolβ in an open conformation with PPi bound in the active site, thereby strongly suggesting that the reverse conformational changes occur prior to PPi release. The results also help to refine the role of the newly discovered third divalent metal ion for DNA polymerase-catalyzed nucleotide incorporation. Furthermore, a post-chemistry structure of hPolβ in the open conformation, following incorporation of (-)3TC-MP, with a second (-)3TC-TP molecule bound to the active site in the absence of PPi, suggests that nucleotide binding stimulates PPi dissociation and occurs before polymerase translocation. Our structural characterization defines the order of the elusive post-chemistry steps in the canonical mechanism of a DNA polymerase.
Collapse
Affiliation(s)
- Andrew J Reed
- Department of Chemistry and Biochemistry and ‡The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Rajan Vyas
- Department of Chemistry and Biochemistry and ‡The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Austin T Raper
- Department of Chemistry and Biochemistry and ‡The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry and ‡The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
143
|
Raper AT, Reed AJ, Gadkari VV, Suo Z. Advances in Structural and Single-Molecule Methods for Investigating DNA Lesion Bypass and Repair Polymerases. Chem Res Toxicol 2016; 30:260-269. [PMID: 28092942 DOI: 10.1021/acs.chemrestox.6b00342] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Innovative advances in X-ray crystallography and single-molecule biophysics have yielded unprecedented insight into the mechanisms of DNA lesion bypass and damage repair. Time-dependent X-ray crystallography has been successfully applied to view the bypass of 8-oxo-7,8-dihydro-2'-deoxyguanine (8-oxoG), a major oxidative DNA lesion, and the incorporation of the triphosphate form, 8-oxo-dGTP, catalyzed by human DNA polymerase β. Significant findings of these studies are highlighted here, and their contributions to the current mechanistic understanding of mutagenic translesion DNA synthesis (TLS) and base excision repair are discussed. In addition, single-molecule Förster resonance energy transfer (smFRET) techniques have recently been adapted to investigate nucleotide binding and incorporation opposite undamaged dG and 8-oxoG by Sulfolobus solfataricus DNA polymerase IV (Dpo4), a model Y-family DNA polymerase. The mechanistic response of Dpo4 to a DNA lesion and the complex smFRET technique are described here. In this perspective, we also describe how time-dependent X-ray crystallography and smFRET can be used to achieve the spatial and temporal resolutions necessary to answer some of the mechanistic questions that remain in the fields of TLS and DNA damage repair.
Collapse
Affiliation(s)
- Austin T Raper
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Andrew J Reed
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Varun V Gadkari
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| | - Zucai Suo
- Department of Chemistry and Biochemistry and The Ohio State Biochemistry Program, The Ohio State University , Columbus, Ohio 43210, United States
| |
Collapse
|
144
|
Yang W, Weng PJ, Gao Y. A new paradigm of DNA synthesis: three-metal-ion catalysis. Cell Biosci 2016; 6:51. [PMID: 27602203 PMCID: PMC5012070 DOI: 10.1186/s13578-016-0118-2] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2016] [Accepted: 09/01/2016] [Indexed: 01/11/2023] Open
Abstract
Enzyme catalysis has been studied for over a century. How it actually occurs has not been visualized until recently. By combining in crystallo reaction and X-ray diffraction analysis of reaction intermediates, we have obtained unprecedented atomic details of the DNA synthesis process. Contrary to the established theory that enzyme-substrate complexes and transition states have identical atomic composition and catalysis occurs by the two-metal-ion mechanism, we have discovered that an additional divalent cation has to be captured en route to product formation. Unlike the canonical two metal ions, which are coordinated by DNA polymerases, this third metal ion is free of enzyme coordination. Its location between the α- and β-phosphates of dNTP suggests that the third metal ion may drive the phosphoryltransfer from the leaving group opposite to the 3'-OH nucleophile. Experimental data indicate that binding of the third metal ion may be the rate-limiting step in DNA synthesis and the free energy associated with the metal-ion binding can overcome the activation barrier to the DNA synthesis reaction.
Collapse
Affiliation(s)
- Wei Yang
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Peter J Weng
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| | - Yang Gao
- Laboratory of Molecular Biology, NIDDK, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892 USA
| |
Collapse
|
145
|
Genna V, Vidossich P, Ippoliti E, Carloni P, De Vivo M. A Self-Activated Mechanism for Nucleic Acid Polymerization Catalyzed by DNA/RNA Polymerases. J Am Chem Soc 2016; 138:14592-14598. [PMID: 27530537 DOI: 10.1021/jacs.6b05475] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The enzymatic polymerization of DNA and RNA is the basis for genetic inheritance for all living organisms. It is catalyzed by the DNA/RNA polymerase (Pol) superfamily. Here, bioinformatics analysis reveals that the incoming nucleotide substrate always forms an H-bond between its 3'-OH and β-phosphate moieties upon formation of the Michaelis complex. This previously unrecognized H-bond implies a novel self-activated mechanism (SAM), which synergistically connects the in situ nucleophile formation with subsequent nucleotide addition and, importantly, nucleic acid translocation. Thus, SAM allows an elegant and efficient closed-loop sequence of chemical and physical steps for Pol catalysis. This is markedly different from previous mechanistic hypotheses. Our proposed mechanism is corroborated via ab initio QM/MM simulations on a specific Pol, the human DNA polymerase-η, an enzyme involved in repairing damaged DNA. The structural conservation of DNA and RNA Pols supports the possible extension of SAM to Pol enzymes from the three domains of life.
Collapse
Affiliation(s)
- Vito Genna
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia , Via Morego 30, 16163, Genoa, Italy.,IAS-5/INM-9 Computational Biomedicine and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Strasse, 52428 Jülich, Germany
| | - Pietro Vidossich
- IAS-5/INM-9 Computational Biomedicine and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Strasse, 52428 Jülich, Germany
| | - Emiliano Ippoliti
- IAS-5/INM-9 Computational Biomedicine and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Strasse, 52428 Jülich, Germany
| | - Paolo Carloni
- IAS-5/INM-9 Computational Biomedicine and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Strasse, 52428 Jülich, Germany
| | - Marco De Vivo
- Laboratory of Molecular Modeling & Drug Discovery, Istituto Italiano di Tecnologia , Via Morego 30, 16163, Genoa, Italy.,IAS-5/INM-9 Computational Biomedicine and JARA-HPC, Forschungszentrum Jülich , Wilhelm-Johnen-Strasse, 52428 Jülich, Germany
| |
Collapse
|
146
|
Choi JY, Patra A, Yeom M, Lee YS, Zhang Q, Egli M, Guengerich FP. Kinetic and Structural Impact of Metal Ions and Genetic Variations on Human DNA Polymerase ι. J Biol Chem 2016; 291:21063-21073. [PMID: 27555320 DOI: 10.1074/jbc.m116.748285] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/13/2016] [Indexed: 12/13/2022] Open
Abstract
DNA polymerase (pol) ι is a Y-family polymerase involved in translesion synthesis, exhibiting higher catalytic activity with Mn2+ than Mg2+ The human germline R96G variant impairs both Mn2+-dependent and Mg2+-dependent activities of pol ι, whereas the Δ1-25 variant selectively enhances its Mg2+-dependent activity. We analyzed pre-steady-state kinetic and structural effects of these two metal ions and genetic variations on pol ι using pol ι core (residues 1-445) proteins. The presence of Mn2+ (0.15 mm) instead of Mg2+ (2 mm) caused a 770-fold increase in efficiency (kpol/Kd,dCTP) of pol ι for dCTP insertion opposite G, mainly due to a 450-fold decrease in Kd,dCTP The R96G and Δ1-25 variants displayed a 53-fold decrease and a 3-fold increase, respectively, in kpol/Kd,dCTP for dCTP insertion opposite G with Mg2+ when compared with wild type, substantially attenuated by substitution with Mn2+ Crystal structures of pol ι ternary complexes, including the primer terminus 3'-OH and a non-hydrolyzable dCTP analogue opposite G with the active-site Mg2+ or Mn2+, revealed that Mn2+ achieves more optimal octahedral coordination geometry than Mg2+, with lower values in average coordination distance geometry in the catalytic metal A-site. Crystal structures of R96G revealed the loss of three H-bonds of residues Gly-96 and Tyr-93 with an incoming dNTP, due to the lack of an arginine, as well as a destabilized Tyr-93 side chain secondary to the loss of a cation-π interaction between both side chains. These results provide a mechanistic basis for alteration in pol ι catalytic function with coordinating metals and genetic variation.
Collapse
Affiliation(s)
- Jeong-Yun Choi
- From the Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Gyeonggi-do 16419, Republic of Korea
| | - Amritaj Patra
- the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, and
| | - Mina Yeom
- From the Division of Pharmacology, Department of Molecular Cell Biology, Samsung Biomedical Research Institute, Sungkyunkwan University School of Medicine, Gyeonggi-do 16419, Republic of Korea
| | - Young-Sam Lee
- the Department of New Biology, Daegu Gyeongbuk Institute of Science and Technology, Daegu 42988, Republic of Korea
| | - Qianqian Zhang
- the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, and
| | - Martin Egli
- the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, and
| | - F Peter Guengerich
- the Department of Biochemistry, Vanderbilt University School of Medicine, Nashville, Tennessee 37232-0146, and
| |
Collapse
|
147
|
Vashishtha AK, Wang J, Konigsberg WH. Different Divalent Cations Alter the Kinetics and Fidelity of DNA Polymerases. J Biol Chem 2016; 291:20869-20875. [PMID: 27462081 DOI: 10.1074/jbc.r116.742494] [Citation(s) in RCA: 76] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Divalent metal ions are essential components of DNA polymerases both for catalysis of the nucleotidyl transfer reaction and for base excision. They occupy two sites, A and B, for DNA synthesis. Recently, a third metal ion was shown to be essential for phosphoryl transfer reaction. The metal ion in the A site is coordinated by the carboxylate of two highly conserved acidic residues, water molecules, and the 3'-hydroxyl group of the primer so that the A metal is in an octahedral complex. Its catalytic function is to lower the pKa of the hydroxyl group, making it a highly effective nucleophile that can attack the α phosphorous atom of the incoming dNTP. The metal ion in the B site is coordinated by the same two carboxylates that are affixed to the A metal ion as well as the non-bridging oxygen atoms of the incoming dNTP. The carboxyl oxygen of an adjacent peptide bond serves as the sixth ligand that completes the octahedral coordination geometry of the B metal ion. Similarly, two metal ions are required for proofreading; one helps to lower the pKa of the attacking water molecule, and the other helps to stabilize the transition state for nucleotide excision. The role of different divalent cations are discussed in relation to these two activities as well as their influence on base selectivity and misincorporation by DNA polymerases. Some, but not all, of the effects of these different metal ions can be rationalized based on their intrinsic properties, which are tabulated in this review.
Collapse
Affiliation(s)
- Ashwani Kumar Vashishtha
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8024 and
| | - Jimin Wang
- the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8114
| | - William H Konigsberg
- From the Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520-8024 and
| |
Collapse
|