101
|
Fromm SA, Lawrence RE, Hurley JH. Structural mechanism for amino acid-dependent Rag GTPase nucleotide state switching by SLC38A9. Nat Struct Mol Biol 2020; 27:1017-1023. [PMID: 32868926 PMCID: PMC7644641 DOI: 10.1038/s41594-020-0490-9] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2020] [Accepted: 07/30/2020] [Indexed: 12/17/2022]
Abstract
The Rag GTPases (Rags) recruit mTORC1 to the lysosomal membrane in response to nutrients, where it is then activated in response to energy and growth factor availability. The lysosomal folliculin (FLCN) complex (LFC) consists of the inactive Rag dimer, the pentameric scaffold Ragulator, and the FLCN:FNIP2 (FLCN-interacting protein 2) GTPase activating protein (GAP) complex, and prevents Rag dimer activation during amino acid starvation. How the LFC is disassembled upon amino acid refeeding is an outstanding question. Here we show that the cytoplasmic tail of the human lysosomal solute carrier family 38 member 9 (SLC38A9) destabilizes the LFC and thereby triggers GAP activity of FLCN:FNIP2 toward RagC. We present the cryo-EM structures of Rags in complex with their lysosomal anchor complex Ragulator and the cytoplasmic tail of SLC38A9 in the pre- and post-GTP hydrolysis state of RagC, which explain how SLC38A9 destabilizes the LFC and so promotes Rag dimer activation.
Collapse
Affiliation(s)
- Simon A Fromm
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
| | - Rosalie E Lawrence
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA
- Howard Hughes Medical Institute and Department of Biochemistry and Biophysics, University of California, San Francisco, San Francisco, CA, USA
| | - James H Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, CA, USA.
- California Institute for Quantitative Biosciences, University of California, Berkeley, CA, USA.
- Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
102
|
Clausen L, Stein A, Grønbæk-Thygesen M, Nygaard L, Søltoft CL, Nielsen SV, Lisby M, Ravid T, Lindorff-Larsen K, Hartmann-Petersen R. Folliculin variants linked to Birt-Hogg-Dubé syndrome are targeted for proteasomal degradation. PLoS Genet 2020; 16:e1009187. [PMID: 33137092 PMCID: PMC7660926 DOI: 10.1371/journal.pgen.1009187] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 11/12/2020] [Accepted: 10/10/2020] [Indexed: 01/24/2023] Open
Abstract
Germline mutations in the folliculin (FLCN) tumor suppressor gene are linked to Birt-Hogg-Dubé (BHD) syndrome, a dominantly inherited genetic disease characterized by predisposition to fibrofolliculomas, lung cysts, and renal cancer. Most BHD-linked FLCN variants include large deletions and splice site aberrations predicted to cause loss of function. The mechanisms by which missense variants and short in-frame deletions in FLCN trigger disease are unknown. Here, we present an integrated computational and experimental study that reveals that the majority of such disease-causing FLCN variants cause loss of function due to proteasomal degradation of the encoded FLCN protein, rather than directly ablating FLCN function. Accordingly, several different single-site FLCN variants are present at strongly reduced levels in cells. In line with our finding that FLCN variants are protein quality control targets, several are also highly insoluble and fail to associate with the FLCN-binding partners FNIP1 and FNIP2. The lack of FLCN binding leads to rapid proteasomal degradation of FNIP1 and FNIP2. Half of the tested FLCN variants are mislocalized in cells, and one variant (ΔE510) forms perinuclear protein aggregates. A yeast-based stability screen revealed that the deubiquitylating enzyme Ubp15/USP7 and molecular chaperones regulate the turnover of the FLCN variants. Lowering the temperature led to a stabilization of two FLCN missense proteins, and for one (R362C), function was re-established at low temperature. In conclusion, we propose that most BHD-linked FLCN missense variants and small in-frame deletions operate by causing misfolding and degradation of the FLCN protein, and that stabilization and resulting restoration of function may hold therapeutic potential of certain disease-linked variants. Our computational saturation scan encompassing both missense variants and single site deletions in FLCN may allow classification of rare FLCN variants of uncertain clinical significance.
Collapse
Affiliation(s)
- Lene Clausen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Amelie Stein
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Martin Grønbæk-Thygesen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Lasse Nygaard
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Cecilie L. Søltoft
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Sofie V. Nielsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Michael Lisby
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Tommer Ravid
- Department of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of Jerusalem, Jerusalem, Israel
| | - Kresten Lindorff-Larsen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| | - Rasmus Hartmann-Petersen
- The Linderstrøm-Lang Centre for Protein Science, Department of Biology, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
103
|
Hesketh GG, Papazotos F, Pawling J, Rajendran D, Knight JDR, Martinez S, Taipale M, Schramek D, Dennis JW, Gingras AC. The GATOR–Rag GTPase pathway inhibits mTORC1 activation by
lysosome-derived amino acids. Science 2020; 370:351-356. [DOI: 10.1126/science.aaz0863] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 04/18/2020] [Accepted: 08/27/2020] [Indexed: 12/20/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) couples nutrient
sufficiency to cell growth. mTORC1 is activated by exogenously acquired
amino acids sensed through the GATOR–Rag guanosine triphosphatase (GTPase)
pathway, or by amino acids derived through lysosomal degradation of protein
by a poorly defined mechanism. Here, we revealed that amino acids derived
from the degradation of protein (acquired through oncogenic Ras-driven
macropinocytosis) activate mTORC1 by a Rag GTPase–independent mechanism.
mTORC1 stimulation through this pathway required the HOPS complex and was
negatively regulated by activation of the GATOR-Rag GTPase pathway.
Therefore, distinct but functionally coordinated pathways control mTORC1
activity on late endocytic organelles in response to distinct sources of
amino acids.
Collapse
Affiliation(s)
- Geoffrey G. Hesketh
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Fotini Papazotos
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Judy Pawling
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Dushyandi Rajendran
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - James D. R. Knight
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Sebastien Martinez
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
| | - Mikko Taipale
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Donnelly Centre for Cellular and Biomolecular Research, Toronto, ON, Canada
| | - Daniel Schramek
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| | - James W. Dennis
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
- Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada
| | - Anne-Claude Gingras
- Lunenfeld-Tanenbaum Research Institute, Sinai Health System, Toronto, ON, Canada
- Department of Molecular Genetics, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
104
|
Moore R, Vogt K, Acosta-Martin AE, Shire P, Zeidler M, Smythe E. Integration of JAK/STAT receptor-ligand trafficking, signalling and gene expression in Drosophila melanogaster cells. J Cell Sci 2020; 133:jcs246199. [PMID: 32917740 DOI: 10.1242/jcs.246199] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2020] [Accepted: 09/02/2020] [Indexed: 12/18/2022] Open
Abstract
The JAK/STAT pathway is an essential signalling cascade required for multiple processes during development and for adult homeostasis. A key question in understanding this pathway is how it is regulated in different cell contexts. Here, we have examined how endocytic processing contributes to signalling by the single cytokine receptor in Drosophila melanogaster cells, Domeless. We identify an evolutionarily conserved di-leucine (di-Leu) motif that is required for Domeless internalisation and show that endocytosis is required for activation of a subset of Domeless targets. Our data indicate that endocytosis both qualitatively and quantitatively regulates Domeless signalling. STAT92E, the single STAT transcription factor in Drosophila, appears to be the target of endocytic regulation, and our studies show that phosphorylation of STAT92E on Tyr704, although necessary, is not always sufficient for target transcription. Finally, we identify a conserved residue, Thr702, which is essential for Tyr704 phosphorylation. Taken together, our findings identify previously unknown aspects of JAK/STAT pathway regulation likely to play key roles in the spatial and temporal regulation of signalling in vivo.
Collapse
Affiliation(s)
- Rachel Moore
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Katja Vogt
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Adelina E Acosta-Martin
- biOMICS Facility, Faculty of Science Mass Spectrometry Centre, University of Sheffield, Sheffield S10 2TN, UK
| | - Patrick Shire
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Martin Zeidler
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| | - Elizabeth Smythe
- Centre for Membrane Interactions and Dynamics, Department of Biomedical Science, University of Sheffield, Sheffield S10 2TN, UK
| |
Collapse
|
105
|
Saftig P, Puertollano R. How Lysosomes Sense, Integrate, and Cope with Stress. Trends Biochem Sci 2020; 46:97-112. [PMID: 33012625 DOI: 10.1016/j.tibs.2020.09.004] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2020] [Revised: 09/07/2020] [Accepted: 09/08/2020] [Indexed: 12/17/2022]
Abstract
Lysosomes are in the center of the cellular control of catabolic and anabolic processes. These membrane-surrounded acidic organelles contain around 70 hydrolases, 200 membrane proteins, and numerous accessory proteins associated with the cytosolic surface of lysosomes. Accessory and transmembrane proteins assemble in signaling complexes that sense and integrate multiple signals and transmit the information to the nucleus. This communication allows cells to respond to changes in multiple environmental conditions, including nutrient levels, pathogens, energy availability, and lysosomal damage, with the goal of restoring cellular homeostasis. This review summarizes our current understanding of the major molecular players and known pathways that are involved in control of metabolic and stress responses that either originate from lysosomes or regulate lysosomal functions.
Collapse
Affiliation(s)
- Paul Saftig
- Biochemical Institute, Christian-Albrechts-Universität Kiel, Kiel, Germany.
| | - Rosa Puertollano
- Cell Biology and Physiology Center, National Heart, Lung, and Blood Institute (NHLBI), National Institutes of Health, Bethesda, MD 20892, USA.
| |
Collapse
|
106
|
Manford AG, Rodríguez-Pérez F, Shih KY, Shi Z, Berdan CA, Choe M, Titov DV, Nomura DK, Rape M. A Cellular Mechanism to Detect and Alleviate Reductive Stress. Cell 2020; 183:46-61.e21. [PMID: 32941802 DOI: 10.1016/j.cell.2020.08.034] [Citation(s) in RCA: 113] [Impact Index Per Article: 22.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 05/28/2020] [Accepted: 08/18/2020] [Indexed: 12/14/2022]
Abstract
Metazoan organisms rely on conserved stress response pathways to alleviate adverse conditions and preserve cellular integrity. Stress responses are particularly important in stem cells that provide lifetime support for tissue formation and repair, but how these protective systems are integrated into developmental programs is poorly understood. Here we used myoblast differentiation to identify the E3 ligase CUL2FEM1B and its substrate FNIP1 as core components of the reductive stress response. Reductive stress, as caused by prolonged antioxidant signaling or mitochondrial inactivity, reverts the oxidation of invariant Cys residues in FNIP1 and allows CUL2FEM1B to recognize its target. The ensuing proteasomal degradation of FNIP1 restores mitochondrial activity to preserve redox homeostasis and stem cell integrity. The reductive stress response is therefore built around a ubiquitin-dependent rheostat that tunes mitochondrial activity to redox needs and implicates metabolic control in coordination of stress and developmental signaling.
Collapse
Affiliation(s)
- Andrew G Manford
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA
| | - Fernando Rodríguez-Pérez
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley CA 94720, USA
| | - Karen Y Shih
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley CA 94720, USA
| | - Zhuo Shi
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA
| | - Charles A Berdan
- Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley CA 94720, USA
| | - Mangyu Choe
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA; Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley CA 94720, USA; Center for Computational Biology, University of California at Berkeley, Berkeley CA 94720, USA
| | - Denis V Titov
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA; Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley CA 94720, USA; Center for Computational Biology, University of California at Berkeley, Berkeley CA 94720, USA
| | - Daniel K Nomura
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA; Department of Nutritional Science and Toxicology, University of California at Berkeley, Berkeley CA 94720, USA; Department of Chemistry, University of California at Berkeley, CA 94720, USA
| | - Michael Rape
- Department of Molecular and Cell Biology, University of California at Berkeley, Berkeley CA 94720, USA; Howard Hughes Medical Institute, University of California at Berkeley, Berkeley CA 94720, USA; California Institute for Quantitative Biosciences (QB3), University of California at Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
107
|
Su MY, Fromm SA, Zoncu R, Hurley JH. Structure of the C9orf72 ARF GAP complex that is haploinsufficient in ALS and FTD. Nature 2020; 585:251-255. [PMID: 32848248 PMCID: PMC8054479 DOI: 10.1038/s41586-020-2633-x] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Accepted: 05/20/2020] [Indexed: 12/17/2022]
Abstract
Mutation of C9orf72 is the most prevalent defect associated with amyotrophic lateral sclerosis and frontotemporal degeneration1. Together with hexanucleotide-repeat expansion2,3, haploinsufficiency of C9orf72 contributes to neuronal dysfunction4-6. Here we determine the structure of the C9orf72-SMCR8-WDR41 complex by cryo-electron microscopy. C9orf72 and SMCR8 both contain longin and DENN (differentially expressed in normal and neoplastic cells) domains7, and WDR41 is a β-propeller protein that binds to SMCR8 such that the whole structure resembles an eye slip hook. Contacts between WDR41 and the DENN domain of SMCR8 drive the lysosomal localization of the complex in conditions of amino acid starvation. The structure suggested that C9orf72-SMCR8 is a GTPase-activating protein (GAP), and we found that C9orf72-SMCR8-WDR41 acts as a GAP for the ARF family of small GTPases. These data shed light on the function of C9orf72 in normal physiology, and in amyotrophic lateral sclerosis and frontotemporal degeneration.
Collapse
Affiliation(s)
- Ming-Yuan Su
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Simon A Fromm
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA.,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA
| | - James H Hurley
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA, USA. .,California Institute for Quantitative Biosciences, University of California, Berkeley, Berkeley, CA, USA. .,Molecular Biophysics and Integrated Bioimaging Division, Lawrence Berkeley National Laboratory, Berkeley, CA, USA.
| |
Collapse
|
108
|
Takahara T, Amemiya Y, Sugiyama R, Maki M, Shibata H. Amino acid-dependent control of mTORC1 signaling: a variety of regulatory modes. J Biomed Sci 2020; 27:87. [PMID: 32799865 PMCID: PMC7429791 DOI: 10.1186/s12929-020-00679-2] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Accepted: 07/30/2020] [Indexed: 01/10/2023] Open
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is an essential regulator of cell growth and metabolism through the modulation of protein and lipid synthesis, lysosome biogenesis, and autophagy. The activity of mTORC1 is dynamically regulated by several environmental cues, including amino acid availability, growth factors, energy levels, and stresses, to coordinate cellular status with environmental conditions. Dysregulation of mTORC1 activity is closely associated with various diseases, including diabetes, cancer, and neurodegenerative disorders. The discovery of Rag GTPases has greatly expanded our understanding of the regulation of mTORC1 activity by amino acids, especially leucine and arginine. In addition to Rag GTPases, other factors that also contribute to the modulation of mTORC1 activity have been identified. In this review, we discuss the mechanisms of regulation of mTORC1 activity by particular amino acids.
Collapse
Affiliation(s)
- Terunao Takahara
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan.
| | - Yuna Amemiya
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Risa Sugiyama
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Masatoshi Maki
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| | - Hideki Shibata
- Department of Applied Biosciences, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, Aichi, 464-8601, Japan
| |
Collapse
|
109
|
Tafur L, Kefauver J, Loewith R. Structural Insights into TOR Signaling. Genes (Basel) 2020; 11:E885. [PMID: 32759652 PMCID: PMC7464330 DOI: 10.3390/genes11080885] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 12/31/2022] Open
Abstract
The Target of Rapamycin (TOR) is a highly conserved serine/threonine protein kinase that performs essential roles in the control of cellular growth and metabolism. TOR acts in two distinct multiprotein complexes, TORC1 and TORC2 (mTORC1 and mTORC2 in humans), which maintain different aspects of cellular homeostasis and orchestrate the cellular responses to diverse environmental challenges. Interest in understanding TOR signaling is further motivated by observations that link aberrant TOR signaling to a variety of diseases, ranging from epilepsy to cancer. In the last few years, driven in large part by recent advances in cryo-electron microscopy, there has been an explosion of available structures of (m)TORC1 and its regulators, as well as several (m)TORC2 structures, derived from both yeast and mammals. In this review, we highlight and summarize the main findings from these reports and discuss both the fascinating and unexpected molecular biology revealed and how this knowledge will potentially contribute to new therapeutic strategies to manipulate signaling through these clinically relevant pathways.
Collapse
Affiliation(s)
- Lucas Tafur
- Department of Molecular Biology, University of Geneva, 30 quai Ernest-Ansermet, CH1211 Geneva, Switzerland; (L.T.); (J.K.)
| | - Jennifer Kefauver
- Department of Molecular Biology, University of Geneva, 30 quai Ernest-Ansermet, CH1211 Geneva, Switzerland; (L.T.); (J.K.)
| | - Robbie Loewith
- Department of Molecular Biology, University of Geneva, 30 quai Ernest-Ansermet, CH1211 Geneva, Switzerland; (L.T.); (J.K.)
- Swiss National Centre for Competence in Research (NCCR) in Chemical Biology, University of Geneva, Sciences II, Room 3-308, 30 Quai Ernest-Ansermet, CH1211 Geneva, Switzerland
| |
Collapse
|
110
|
Testa U, Pelosi E, Castelli G. Genetic Alterations in Renal Cancers: Identification of The Mechanisms Underlying Cancer Initiation and Progression and of Therapeutic Targets. MEDICINES (BASEL, SWITZERLAND) 2020; 7:E44. [PMID: 32751108 PMCID: PMC7459851 DOI: 10.3390/medicines7080044] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 07/19/2020] [Accepted: 07/24/2020] [Indexed: 12/26/2022]
Abstract
Renal cell cancer (RCC) involves three most recurrent sporadic types: clear-cell RCC (70-75%, CCRCC), papillary RCCC (10-15%, PRCC), and chromophobe RCC (5%, CHRCC). Hereditary cases account for about 5% of all cases of RCC and are caused by germline pathogenic variants. Herein, we review how a better understanding of the molecular biology of RCCs has driven the inception of new diagnostic and therapeutic approaches. Genomic research has identified relevant genetic alterations associated with each RCC subtype. Molecular studies have clearly shown that CCRCC is universally initiated by Von Hippel Lindau (VHL) gene dysregulation, followed by different types of additional genetic events involving epigenetic regulatory genes, dictating disease progression, aggressiveness, and differential response to treatments. The understanding of the molecular mechanisms that underlie the development and progression of RCC has considerably expanded treatment options; genomic data might guide treatment options by enabling patients to be matched with therapeutics that specifically target the genetic alterations present in their tumors. These new targeted treatments have led to a moderate improvement of the survival of metastatic RCC patients. Ongoing studies based on the combination of immunotherapeutic agents (immune check inhibitors) with VEGF inhibitors are expected to further improve the survival of these patients.
Collapse
Affiliation(s)
- Ugo Testa
- Department of Oncology, Istituto Superiore di Sanità, Vaile Regina Elena 299, 00161 Rome, Italy; (E.P.); (G.C.)
| | | | | |
Collapse
|
111
|
Wang Y, Zhang L, Wei Y, Huang W, Li L, Wu AA, Dastur A, Greninger P, Bray WM, Zhang CS, Li M, Lian W, Hu Z, Wang X, Liu G, Yao L, Guh JH, Chen L, Wang HR, Zhou D, Lin SC, Xu Q, Shen Y, Zhang J, Jurica MS, Benes CH, Deng X. Pharmacological Targeting of Vacuolar H +-ATPase via Subunit V1G Combats Multidrug-Resistant Cancer. Cell Chem Biol 2020; 27:1359-1370.e8. [PMID: 32649904 DOI: 10.1016/j.chembiol.2020.06.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/03/2020] [Accepted: 06/15/2020] [Indexed: 12/13/2022]
Abstract
Multidrug resistance (MDR) in cancer remains a major challenge for the success of chemotherapy. Natural products have been a rich source for the discovery of drugs against MDR cancers. Here, we applied high-throughput cytotoxicity screening of an in-house natural product library against MDR SGC7901/VCR cells and identified that the cyclodepsipeptide verucopeptin demonstrated notable antitumor potency. Cytological profiling combined with click chemistry-based proteomics revealed that ATP6V1G directly interacted with verucopeptin. ATP6V1G, a subunit of the vacuolar H+-ATPase (v-ATPase) that has not been previously targeted, was essential for SGC7901/VCR cell growth. Verucopeptin exhibited strong inhibition of both v-ATPase activity and mTORC1 signaling, leading to substantial pharmacological efficacy against SGC7901/VCR cell proliferation and tumor growth in vivo. Our results demonstrate that targeting v-ATPase via its V1G subunit constitutes a unique approach for modulating v-ATPase and mTORC1 signaling with great potential for the development of therapeutics against MDR cancers.
Collapse
MESH Headings
- Animals
- Antineoplastic Agents/chemical synthesis
- Antineoplastic Agents/chemistry
- Antineoplastic Agents/pharmacology
- Biological Products/chemical synthesis
- Biological Products/chemistry
- Biological Products/pharmacology
- Cell Line, Tumor
- Cell Proliferation/drug effects
- Cell Survival/drug effects
- Cells, Cultured
- Depsipeptides/chemical synthesis
- Depsipeptides/chemistry
- Depsipeptides/pharmacology
- Drug Resistance, Multiple/drug effects
- Drug Resistance, Neoplasm/drug effects
- Drug Screening Assays, Antitumor
- Female
- Humans
- Male
- Mechanistic Target of Rapamycin Complex 1/antagonists & inhibitors
- Mechanistic Target of Rapamycin Complex 1/metabolism
- Mice
- Mice, Inbred BALB C
- Mice, Nude
- Neoplasms, Experimental/drug therapy
- Neoplasms, Experimental/metabolism
- Neoplasms, Experimental/pathology
- Protein Subunits/drug effects
- Proteomics
- Vacuolar Proton-Translocating ATPases/antagonists & inhibitors
- Vacuolar Proton-Translocating ATPases/metabolism
Collapse
Affiliation(s)
- Yuezhou Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Lei Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Yanling Wei
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Wei Huang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Li Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - An-An Wu
- State Key Laboratory for Physical Chemistry of Solid Surface, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China; Fujian Provincial Key Laboratory of Theoretical and Computational Chemistry, Xiamen, Fujian, China
| | - Anahita Dastur
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Patricia Greninger
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Walter M Bray
- Department of Chemistry and Biochemistry, University of California, Santa Cruz, CA 95064, USA
| | - Chen-Song Zhang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Mengqi Li
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Wenhua Lian
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Zhiyu Hu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Xiaoyong Wang
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Gang Liu
- State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics Center for Molecular Imaging and Translational Medicine, School of Public Health, Xiamen University, Xiamen 361102, China
| | - Luming Yao
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Jih-Hwa Guh
- School of Pharmacy, National Taiwan University, Taipei, Taiwan
| | - Lanfen Chen
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Hong-Rui Wang
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Dawang Zhou
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Sheng-Cai Lin
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Qingyan Xu
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China
| | - Yuemao Shen
- School of Pharmaceutical Sciences, Shandong University, Jinan, Shandong 250012, China
| | - Jianming Zhang
- National Translational Research Center Ruijin Hospital, Shanghai Jiaotong University School of Medicine, Shanghai 200025 China
| | - Melissa S Jurica
- Department of Molecular Cell and Developmental Biology and Center for Molecular Biology of RNA, University of California, Santa Cruz, CA 95064, USA
| | - Cyril H Benes
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Xianming Deng
- State Key Laboratory of Cellular Stress Biology, Innovation Center for Cell Signaling Network, School of Life Sciences, Xiamen University, Xiamen, Fujian 361102, China; State-province Joint Engineering Laboratory of Targeted Drugs from Natural Products, Xiamen University, Xiamen, Fujian 361102, China.
| |
Collapse
|
112
|
Napolitano G, Di Malta C, Esposito A, de Araujo MEG, Pece S, Bertalot G, Matarese M, Benedetti V, Zampelli A, Stasyk T, Siciliano D, Venuta A, Cesana M, Vilardo C, Nusco E, Monfregola J, Calcagnì A, Di Fiore PP, Huber LA, Ballabio A. A substrate-specific mTORC1 pathway underlies Birt-Hogg-Dubé syndrome. Nature 2020; 585:597-602. [PMID: 32612235 PMCID: PMC7610377 DOI: 10.1038/s41586-020-2444-0] [Citation(s) in RCA: 220] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2019] [Accepted: 04/27/2020] [Indexed: 12/17/2022]
Abstract
The mechanistic target of rapamycin complex 1 (mTORC1) is a key metabolic hub that controls the cellular response to environmental cues by exerting its kinase activity on multiple substrates1–3. However, whether mTORC1 responds to diverse stimuli by differentially phosphorylating specific substrates is poorly understood. Here we show that Transcription Factor EB (TFEB), a master regulator of lysosomal biogenesis and autophagy4,5, is phosphorylated by mTORC1 via a substrate-specific mechanism mediated by RagGTPases. Thus, TFEB phosphorylation is strictly dependent on amino acid-mediated activation of RagC/D GTPase but, unlike other mTORC1 substrates such as S6K and 4E-BP1, insensitive to growth factor-induced Rheb activity. This mechanism plays a crucial role in Birt-Hogg-Dubé (BHD) syndrome, a disorder caused by mutations of the RagC/D activator folliculin (FLCN) and characterized by benign skin tumors, lung and kidney cysts and renal cell carcinoma6,7. We found that constitutive activation of TFEB is the main driver of the kidney abnormalities and paradoxical mTORC1 hyperactivity observed in BHD syndrome. Remarkably, depletion of TFEB in a kidney-specific mouse model of BHD syndrome fully rescued the disease phenotype and associated lethality and normalized mTORC1 activity. Together, these findings identify a substrate-specific control mechanism of mTORC1, whose dysregulation leads to kidney cysts and cancer.
Collapse
Affiliation(s)
- Gennaro Napolitano
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy.,Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy
| | - Chiara Di Malta
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | | | - Mariana E G de Araujo
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | - Salvatore Pece
- IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | | | - Maria Matarese
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | | | - Angela Zampelli
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Taras Stasyk
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria
| | | | | | - Marcella Cesana
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Claudia Vilardo
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | - Edoardo Nusco
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy
| | | | - Alessia Calcagnì
- Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA.,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA
| | - Pier Paolo Di Fiore
- IEO, European Institute of Oncology IRCCS, Milan, Italy.,Department of Oncology and Hemato-Oncology, University of Milan, Milan, Italy
| | - Lukas A Huber
- Institute of Cell Biology, Biocenter, Medical University of Innsbruck, Innsbruck, Austria.,Austrian Drug Screening Institute (ADSI), Innsbruck, Austria
| | - Andrea Ballabio
- Telethon Institute of Genetics and Medicine (TIGEM), Naples, Italy. .,Medical Genetics Unit, Department of Medical and Translational Science, Federico II University, Naples, Italy. .,Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX, USA. .,Jan and Dan Duncan Neurological Research Institute, Texas Children's Hospital, Houston, TX, USA. .,SSM School for Advanced Studies, Federico II University, Naples, Italy.
| |
Collapse
|
113
|
Shin HR, Zoncu R. The Lysosome at the Intersection of Cellular Growth and Destruction. Dev Cell 2020; 54:226-238. [PMID: 32610045 DOI: 10.1016/j.devcel.2020.06.010] [Citation(s) in RCA: 77] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2020] [Revised: 06/01/2020] [Indexed: 12/27/2022]
Abstract
The lysosome is an essential catabolic organelle that consumes cellular biomass to regenerate basic building blocks that can fuel anabolic reactions. This simple view has evolved more recently to integrate novel functions of the lysosome as a key signaling center, which can steer the metabolic trajectory of cells in response to changes in nutrients, growth factors, and stress. Master protein kinases and transcription factors mediate the growth-promoting and catabolic activities of the lysosome and undergo a complex interplay that enables cellular adaptation to ever-changing metabolic conditions. Understanding how this coordination occurs will shed light on the fundamental logic of how the lysosome functions to control growth in the context of development, tissue homeostasis, and cancer.
Collapse
Affiliation(s)
- Hijai R Shin
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; The Paul F. Glenn Center for Aging Research at the University of California Berkeley, Berkeley, CA 94720, USA
| | - Roberto Zoncu
- Department of Molecular and Cell Biology, University of California Berkeley, Berkeley, CA 94720, USA; The Paul F. Glenn Center for Aging Research at the University of California Berkeley, Berkeley, CA 94720, USA.
| |
Collapse
|
114
|
Woodford MR, Backe SJ, Sager RA, Bourboulia D, Bratslavsky G, Mollapour M. The Role of Heat Shock Protein-90 in the Pathogenesis of Birt-Hogg-Dubé and Tuberous Sclerosis Complex Syndromes. Urol Oncol 2020; 39:322-326. [PMID: 32327294 DOI: 10.1016/j.urolonc.2020.03.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2020] [Accepted: 03/20/2020] [Indexed: 10/24/2022]
Abstract
Birt-Hogg-Dubé (BHD) and tuberous sclerosis (TS) syndromes share many clinical features. These two diseases display distinct histologic subtypes of renal tumors: chromophobe renal cell carcinoma and renal angiomyolipoma, respectively. Early work suggested a role for mTOR dysregulation in the pathogenesis of these two diseases, however their detailed molecular link remains elusive. Interestingly, a growing number of case reports describe renal angiomyolipoma in BHD patients, suggesting a common molecular origin. The BHD-associated proteins FNIP1/2 and the TS protein Tsc1 were recently identified as regulators of the molecular chaperone Hsp90. Dysregulation of Hsp90 activity has previously been reported to support tumorigenesis, providing a potential explanation for the overlapping phenotypic manifestations in these two hereditary syndromes.
Collapse
Affiliation(s)
- Mark R Woodford
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Sarah J Backe
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Rebecca A Sager
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA; College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Dimitra Bourboulia
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Gennady Bratslavsky
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Mehdi Mollapour
- Department of Urology, SUNY Upstate Medical University, Syracuse, NY, USA; Department of Biochemistry and Molecular Biology, SUNY Upstate Medical University, Syracuse, NY, USA; Upstate Cancer Center, SUNY Upstate Medical University, Syracuse, NY, USA.
| |
Collapse
|
115
|
Cryo-EM structure of C9ORF72-SMCR8-WDR41 reveals the role as a GAP for Rab8a and Rab11a. Proc Natl Acad Sci U S A 2020; 117:9876-9883. [PMID: 32303654 DOI: 10.1073/pnas.2002110117] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
A massive intronic hexanucleotide repeat (GGGGCC) expansion in C9ORF72 is a genetic origin of amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD). Recently, C9ORF72, together with SMCR8 and WDR41, has been shown to regulate autophagy and function as Rab GEF. However, the precise function of C9ORF72 remains unclear. Here, we report the cryogenic electron microscopy (cryo-EM) structure of the human C9ORF72-SMCR8-WDR41 complex at a resolution of 3.2 Å. The structure reveals the dimeric assembly of a heterotrimer of C9ORF72-SMCR8-WDR41. Notably, the C-terminal tail of C9ORF72 and the DENN domain of SMCR8 play critical roles in the dimerization of the two protomers of the C9ORF72-SMCR8-WDR41 complex. In the protomer, C9ORF72 and WDR41 are joined by SMCR8 without direct interaction. WDR41 binds to the DENN domain of SMCR8 by the C-terminal helix. Interestingly, the prominent structural feature of C9ORF72-SMCR8 resembles that of the FLNC-FNIP2 complex, the GTPase activating protein (GAP) of RagC/D. Structural comparison and sequence alignment revealed that Arg147 of SMCR8 is conserved and corresponds to the arginine finger of FLCN, and biochemical analysis indicated that the Arg147 of SMCR8 is critical to the stimulatory effect of the C9ORF72-SMCR8 complex on Rab8a and Rab11a. Our study not only illustrates the basis of C9ORF72-SMCR8-WDR41 complex assembly but also reveals the GAP activity of the C9ORF72-SMCR8 complex.
Collapse
|
116
|
de Martín Garrido N, Aylett CHS. Nutrient Signaling and Lysosome Positioning Crosstalk Through a Multifunctional Protein, Folliculin. Front Cell Dev Biol 2020; 8:108. [PMID: 32195250 PMCID: PMC7063858 DOI: 10.3389/fcell.2020.00108] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/10/2020] [Indexed: 12/16/2022] Open
Abstract
FLCN was identified as the gene responsible for Birt-Hogg-Dubé (BHD) syndrome, a hereditary syndrome associated with the appearance of familiar renal oncocytomas. Most mutations affecting FLCN result in the truncation of the protein, and therefore loss of its associated functions, as typical for a tumor suppressor. FLCN encodes the protein folliculin (FLCN), which is involved in numerous biological processes; mutations affecting this protein thus lead to different phenotypes depending on the cellular context. FLCN forms complexes with two large interacting proteins, FNIP1 and FNIP2. Structural studies have shown that both FLCN and FNIPs contain longin and differentially expressed in normal versus neoplastic cells (DENN) domains, typically involved in the regulation of small GTPases. Accordingly, functional studies show that FLCN regulates both the Rag and the Rab GTPases depending on nutrient availability, which are respectively involved in the mTORC1 pathway and lysosomal positioning. Although recent structural studies shed light on the precise mechanism by which FLCN regulates the Rag GTPases, which in turn regulate mTORC1, how FLCN regulates membrane trafficking through the Rab GTPases or the significance of the intriguing FLCN-FNIP-AMPK complex formation are questions that still remain unanswered. We discuss the recent progress in our understanding of FLCN regulation of both growth signaling and lysosomal positioning, as well as future approaches to establish detailed mechanisms to explain the disparate phenotypes caused by the loss of FLCN function and the development of BHD-associated and other tumors.
Collapse
Affiliation(s)
| | - Christopher H. S. Aylett
- Section for Structural and Synthetic Biology, Department of Infectious Disease, Imperial College London, London, United Kingdom
| |
Collapse
|
117
|
Abstract
Amino acid signaling through the Rag GTPases promotes mTORC1 lysosomal localization and subsequent activation. Two new cryo-EM structures examine the architecture of the Rag GTPase heterodimers complexed with mTORC1.
Collapse
Affiliation(s)
- Wei Peng
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Howard Hughes Medical Institute, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Jenna L Jewell
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Harold C. Simmons Comprehensive Cancer Center, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|