101
|
Marečková M, Massalha H, Lorenzi V, Vento-Tormo R. Mapping Human Reproduction with Single-Cell Genomics. Annu Rev Genomics Hum Genet 2022; 23:523-547. [PMID: 35567278 DOI: 10.1146/annurev-genom-120121-114415] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The trillions of cells in the human body develop as a result of the fusion of two extremely specialized cells: an oocyte and a sperm. This process is essential for the continuation of our species, as it ensures that parental genetic information is mixed and passed on from generation to generation. In addition to producing oocytes, the female reproductive system must provide the environment for the appropriate development of the fetus until birth. New genomic and computational tools offer unique opportunities to study the tight spatiotemporal regulatory mechanisms that are required for the cycle of human reproduction. This review explores how single-cell technologies have been used to build cellular atlases of the human reproductive system across the life span and how these maps have proven useful to better understand reproductive pathologies and dissect the heterogeneity of in vitro model systems. Expected final online publication date for the Annual Review of Genomics and Human Genetics, Volume 23 is October 2022. Please see http://www.annualreviews.org/page/journal/pubdates for revised estimates.
Collapse
Affiliation(s)
- Magda Marečková
- Wellcome Sanger Institute, Cambridge, United Kingdom; .,Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, United Kingdom;
| | - Hassan Massalha
- Wellcome Sanger Institute, Cambridge, United Kingdom; .,Theory of Condensed Matter Group, Cavendish Laboratory, University of Cambridge, Cambridge, United Kingdom
| | | | | |
Collapse
|
102
|
Ling L, Li F, Yang P, Oates RD, Silber S, Kurischko C, Luca FC, Leu NA, Zhang J, Yue Q, Skaletsky H, Brown LG, Rozen S, Page DC, Wang PJ, Zheng K. Genetic characterization of a missense mutation in the X-linked TAF7L gene identified in an oligozoospermic man. Biol Reprod 2022; 107:157-167. [PMID: 35554494 PMCID: PMC9310510 DOI: 10.1093/biolre/ioac093] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2021] [Revised: 04/18/2022] [Accepted: 05/02/2022] [Indexed: 11/14/2022] Open
Abstract
While hundreds of knockout mice show infertility as a major phenotype, causative genic mutations of male infertility in humans remain rather limited. Here we report the identification of a missense mutation (D136G) in the X-linked TAF7L gene as a potential cause of oligozoospermia in men. The human aspartate (D136) is evolutionally conserved across species, and its change to glycine (G) is predicted to be detrimental. Genetic complementation experiments in budding yeast demonstrate that the conserved aspartate or its analogous asparagine (N) residue in yeast TAF7 is essential for cell viability and thus its mutation to glycine is lethal. Although the corresponding D144G substitution in the mouse Taf7l gene does not affect male fertility, RNA-seq analyses reveal alterations in transcriptome profiles in the Taf7l (D144G) mutant testes. These results support this TAF7L mutation as a risk factor for oligozoospermia in humans.
Collapse
Affiliation(s)
- Li Ling
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Fangfang Li
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Pinglan Yang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Robert D Oates
- Department of Urology, Boston University Medical Center, Boston, MA 02118, USA
| | - Sherman Silber
- Infertility Center of St. Louis, St. Luke's Hospital, St. Louis, MO 63017, USA
| | - Cornelia Kurischko
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Francis C Luca
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - N Adrian Leu
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Jinwen Zhang
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Qiuling Yue
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| | - Helen Skaletsky
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
| | - Laura G Brown
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
| | - Steve Rozen
- Duke-NUS Graduate Medical School Singapore, 8 College Road, 169857, Singapore
| | - David C Page
- Howard Hughes Medical Institute, Whitehead Institute, and Department of Biology, Massachusetts Institute of Technology, 455 Main Street, Cambridge, MA 02142, USA
| | - P Jeremy Wang
- Department of Biomedical Sciences, University of Pennsylvania School of Veterinary Medicine, Philadelphia, PA 19104, USA
| | - Ke Zheng
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing 211166, China
| |
Collapse
|
103
|
Fang F, Iaquinta PJ, Xia N, Liu L, Diao L, Reijo Pera RA. Transcriptional control of human gametogenesis. Hum Reprod Update 2022; 28:313-345. [PMID: 35297982 PMCID: PMC9071081 DOI: 10.1093/humupd/dmac002] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 11/22/2021] [Indexed: 11/14/2022] Open
Abstract
The pathways of gametogenesis encompass elaborate cellular specialization accompanied by precise partitioning of the genome content in order to produce fully matured spermatozoa and oocytes. Transcription factors are an important class of molecules that function in gametogenesis to regulate intrinsic gene expression programs, play essential roles in specifying (or determining) germ cell fate and assist in guiding full maturation of germ cells and maintenance of their populations. Moreover, in order to reinforce or redirect cell fate in vitro, it is transcription factors that are most frequently induced, over-expressed or activated. Many reviews have focused on the molecular development and genetics of gametogenesis, in vivo and in vitro, in model organisms and in humans, including several recent comprehensive reviews: here, we focus specifically on the role of transcription factors. Recent advances in stem cell biology and multi-omic studies have enabled deeper investigation into the unique transcriptional mechanisms of human reproductive development. Moreover, as methods continually improve, in vitro differentiation of germ cells can provide the platform for robust gain- and loss-of-function genetic analyses. These analyses are delineating unique and shared human germ cell transcriptional network components that, together with somatic lineage specifiers and pluripotency transcription factors, function in transitions from pluripotent stem cells to gametes. This grand theme review offers additional insight into human infertility and reproductive disorders that are linked predominantly to defects in the transcription factor networks and thus may potentially contribute to the development of novel treatments for infertility.
Collapse
Affiliation(s)
- Fang Fang
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Phillip J Iaquinta
- Division of Research, Economic Development, and Graduate Education, California Polytechnic State University, San Luis Obispo, CA, USA
| | - Ninuo Xia
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Liu
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Lei Diao
- The First Affiliated Hospital of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui, China
| | - Renee A Reijo Pera
- Division of Research, Economic Development, and Graduate Education, California Polytechnic State University, San Luis Obispo, CA, USA
- McLaughlin Research Institute, Great Falls, MT, USA
| |
Collapse
|
105
|
Xu J, Zelinski MB. Oocyte quality following in vitro follicle development†. Biol Reprod 2021; 106:291-315. [PMID: 34962509 PMCID: PMC9004734 DOI: 10.1093/biolre/ioab242] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/15/2021] [Accepted: 12/24/2021] [Indexed: 12/30/2022] Open
Abstract
In vitro follicle development (IVFD) is an adequate model to obtain basic knowledge of folliculogenesis and provides a tool for ovarian toxicity screening. IVFD yielding competent oocytes may also offer an option for fertility and species preservation. To promote follicle growth and oocyte maturation in vitro, various culture systems are utilized for IVFD in rodents, domestic animals, wild animals, nonhuman primates, and humans. Follicle culture conditions have been improved by optimizing gonadotropin levels, regulatory factors, nutrient supplements, oxygen concentration, and culture matrices. This review summarizes quality assessment of oocytes generated from in vitro-developed antral follicles from the preantral stage, including oocyte epigenetic and genetic profile, cytoplasmic and nuclear maturation, preimplantation embryonic development following in vitro fertilization, as well as pregnancy and live offspring after embryo transfer. The limitations of oocyte quality evaluation following IVFD and the gaps in our knowledge of IVFD to support proper oocyte development are also discussed. The information may advance our understanding of the requirements for IVFD, with a goal of producing competent oocytes with genetic integrity to sustain embryonic development resulting in healthy offspring.
Collapse
Affiliation(s)
- Jing Xu
- Correspondence: Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, 505 NW 185th Avenue, Beaverton, OR 97006, USA. Tel: +1 5033465411; Fax: +1 5033465585; E-mail:
| | - Mary B Zelinski
- Division of Reproductive & Developmental Sciences, Oregon National Primate Research Center, Oregon Health & Science University, Beaverton, OR, USA,Department of Obstetrics and Gynecology, School of Medicine, Oregon Health & Science University, Portland, OR, USA
| |
Collapse
|