101
|
Vial A, Costa L, Dosset P, Rosso P, Boutières G, Faklaris O, Haschke H, Milhiet PE, Doucet CM. Structure and mechanics of the human nuclear pore complex basket using correlative AFM-fluorescence superresolution microscopy. NANOSCALE 2023; 15:5756-5770. [PMID: 36786384 DOI: 10.1039/d2nr06034e] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Nuclear pore complexes (NPCs) are the only gateways between the nucleus and cytoplasm in eukaryotic cells. They restrict free diffusion to molecules below 5 nm while facilitating the active transport of selected cargoes, sometimes as large as the pore itself. This versatility implies an important pore plasticity. Recently, cryo-EM and AI-based protein modeling of human NPC revealed with acute precision how most constituents are arranged. But the basket, a fish trap-like structure capping the nucleoplasmic side of the pore, remains poorly resolved. Here by atomic force microscopy (AFM) coupled to single molecule localization microscopy (SMLM) we revealed that the basket is very soft and explores a large conformational landscape: apart from its canonical basket shape, it dives into the central pore channel or opens, with filaments reaching to the pore sides. Our observations highlight how this structure can adapt and let morphologically diverse cargoes shuttle through NPCs.
Collapse
Affiliation(s)
- Anthony Vial
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France.
| | - Luca Costa
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France.
| | - Patrice Dosset
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France.
| | - Pietro Rosso
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France.
| | - Gaëlle Boutières
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France.
| | - Orestis Faklaris
- MRI, Biocampus, University of Montpellier, CNRS, INSERM, Montpellier, France
| | | | | | - Christine M Doucet
- CBS (Centre de Biologie Structurale), Univ Montpellier, CNRS, INSERM, Montpellier, France.
| |
Collapse
|
102
|
Tai L, Yin G, Sun F, Zhu Y. Cryo-electron microscopy reveals the structure of the nuclear pore complex. J Mol Biol 2023; 435:168051. [PMID: 36933820 DOI: 10.1016/j.jmb.2023.168051] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 03/07/2023] [Accepted: 03/09/2023] [Indexed: 03/18/2023]
Abstract
The nuclear pore complex (NPC) is a giant protein assembly that penetrates the double layers of the nuclear membrane. The overall structure of the NPC has approximately eightfold symmetry and is formed by approximately 30 nucleoporins. The great size and complexity of the NPC have hindered the study of its structure for many years until recent breakthroughs were achieved by integrating the latest high-resolution cryo-electron microscopy (cryo-EM), the emerging artificial intelligence-based modeling and all other available structural information from crystallography and mass spectrometry. Here, we review our latest knowledge of the NPC architecture and the history of its structural study from in vitro to in situ with progressively improved resolutions by cryo-EM, with a particular focus on the latest subnanometer-resolution structural studies. The future directions for structural studies of NPCs are also discussed.
Collapse
Affiliation(s)
- Linhua Tai
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Guoliang Yin
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Fei Sun
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Sciences, Beijing 100049, China; Center for Biological Imaging, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China; Bioland Laboratory (Guangzhou Regenerative Medicine and Health Guangdong Laboratory), Guangzhou, Guangdong 510005, China.
| | - Yun Zhu
- National Key Laboratory of Biomacromolecules, CAS Center for Excellence in Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China.
| |
Collapse
|
103
|
Wang F, Wang Y, Qiu W, Zhang Q, Yang H, Song G. Crystal Structure of the Extracellular Domains of GPR110. J Mol Biol 2023; 435:167979. [PMID: 36716818 DOI: 10.1016/j.jmb.2023.167979] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 01/13/2023] [Accepted: 01/19/2023] [Indexed: 01/30/2023]
Abstract
Adhesion G protein-coupled receptors (aGPCRs) play a pivotal role in human immune responses, cellular communication, organ development, and other processes. GPR110 belongs to the aGPCR subfamily VI and was initially identified as an oncogene involved in lung and prostate cancers. GPR110 contains tandem adhesion domains at the extracellular region that mediate inter-cellular signaling. However, the structural organization and signaling mechanism for these tandem domains remain unclear. Here, we report the crystal structure of a GPR110 fragment composing the SEA, HormR, and GAIN domains at 2.9 Å resolution. The structure together with MD simulations reveal rigid connections between these domains that are stabilized by complementary interfaces. Strikingly, we found N-linked carbohydrates attached to N389 of the GAIN domain form extensive contacts with the preceding HormR domain. These interactions appear to be critical for folding, as removal of the glycosylation site greatly decreases expression of the GPR110 extracellular fragment. We further demonstrate that the ligand synaptamide fits well within the hydrophobic pocket occupied by the Stachel peptide in the rest state. This suggests that the agonist may function by removing the Stachel peptide which in turn redocks to the orthosteric pocket for receptor activation. Taken together, our structural findings and analyses provide novel insights into the activation mechanism for aGPCRs.
Collapse
Affiliation(s)
- Fangfang Wang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Yang Wang
- Center of Biomedical Physics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou 325000, China; Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health), Wenzhou, Zhejiang 325001, China
| | - Weicheng Qiu
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Qiansen Zhang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Huaiyu Yang
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Gaojie Song
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China.
| |
Collapse
|
104
|
Zhao J, Wang W, Yan K, Zhao H, Zhang Z, Wang Y, Zhu W, Chen S. RNA-seq reveals Nup62 as a potential regulator for cell division after traumatic brain injury in mice hippocampus. PeerJ 2023; 11:e14913. [PMID: 36908815 PMCID: PMC10000302 DOI: 10.7717/peerj.14913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 01/25/2023] [Indexed: 03/09/2023] Open
Abstract
Background Hippocampus impairment is a common condition encountered in the clinical diagnosis and treatment of traumatic brain injury (TBI). Several studies have investigated this phenomenon. However, its molecular mechanism remains unclear. Methods In this study, Illumina RNA-seq technology was used to determine the gene expression profile in mice hippocampus after TBI. We then conducted bioinformatics analysis to identify the altered gene expression signatures and mechanisms related to TBI-induced pathology in the hippocampus. Real-time quantitative polymerase chain reaction and western blot were adopted to verify the sequencing results. Results The controlled cortical impact was adopted as the TBI model. Hippocampal specimens were removed for sequencing. Bioinformatics analysis identified 27 upregulated and 17 downregulated differentially expressed genes (DEGs) in post-TBI mouse models. Potential biological functions of the genes were determined via Gene Set Enrichment Analysis (GSEA)-based Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses, which suggested a series of functional changes in the nervous system. Specifically, the nucleoporin 62 (Nup62) DEG was discussed and verified. Gene ontology biological process enriched analysis suggests that the cell division was upregulated significantly. The present study may be helpful for the treatment of impaired hippocampus after TBI in the future.
Collapse
Affiliation(s)
- Jianwei Zhao
- Department of Neurosurgery, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu Province, China
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
| | - Weihua Wang
- Department of Neurosurgery, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Ke Yan
- Department of Neurosurgery, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Haifeng Zhao
- Department of Pathology, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Zhen Zhang
- Department of Neurosurgery, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Yu Wang
- Department of Neurosurgery, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Wenyu Zhu
- Department of Neurosurgery, Suzhou Science & Technology Town Hospital, Suzhou, Jiangsu Province, China
| | - Shiwen Chen
- Department of Neurosurgery, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, Shanghai, China
| |
Collapse
|
105
|
Zhu KF, Yuan C, Du YM, Sun KL, Zhang XK, Vogel H, Jia XD, Gao YZ, Zhang QF, Wang DP, Zhang HW. Applications and prospects of cryo-EM in drug discovery. Mil Med Res 2023; 10:10. [PMID: 36872349 PMCID: PMC9986049 DOI: 10.1186/s40779-023-00446-y] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/09/2022] [Accepted: 02/14/2023] [Indexed: 03/07/2023] Open
Abstract
Drug discovery is a crucial part of human healthcare and has dramatically benefited human lifespan and life quality in recent centuries, however, it is usually time- and effort-consuming. Structural biology has been demonstrated as a powerful tool to accelerate drug development. Among different techniques, cryo-electron microscopy (cryo-EM) is emerging as the mainstream of structure determination of biomacromolecules in the past decade and has received increasing attention from the pharmaceutical industry. Although cryo-EM still has limitations in resolution, speed and throughput, a growing number of innovative drugs are being developed with the help of cryo-EM. Here, we aim to provide an overview of how cryo-EM techniques are applied to facilitate drug discovery. The development and typical workflow of cryo-EM technique will be briefly introduced, followed by its specific applications in structure-based drug design, fragment-based drug discovery, proteolysis targeting chimeras, antibody drug development and drug repurposing. Besides cryo-EM, drug discovery innovation usually involves other state-of-the-art techniques such as artificial intelligence (AI), which is increasingly active in diverse areas. The combination of cryo-EM and AI provides an opportunity to minimize limitations of cryo-EM such as automation, throughput and interpretation of medium-resolution maps, and tends to be the new direction of future development of cryo-EM. The rapid development of cryo-EM will make it as an indispensable part of modern drug discovery.
Collapse
Affiliation(s)
- Kong-Fu Zhu
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Chuang Yuan
- Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Peking University, Beijing, 100191 China
| | - Yong-Ming Du
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN 38105 USA
| | - Kai-Lei Sun
- Center for Protein Science and Crystallography, School of Life Sciences, Faculty of Science, Chinese University of Hong Kong, Hong Kong, 999077 China
| | - Xiao-Kang Zhang
- Interdisciplinary Center for Brain Information, the Brain Cognition and Brain Disease Institute, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong China
- Faculty of Life and Health Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong China
- Shenzhen-Hong Kong Institute of Brain Science-Shenzhen Fundamental Research Institutions, Shenzhen, 518055 Guangdong China
| | - Horst Vogel
- Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen, 518055 Guangdong China
| | - Xu-Dong Jia
- State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Yuan-Zhu Gao
- Cryo-EM Facility Center, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| | - Qin-Fen Zhang
- State Key Lab for Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou, 510275 China
| | - Da-Ping Wang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
- Department of Orthopedics, Shenzhen Intelligent Orthopaedics and Biomedical Innovation Platform, Guangdong Provincial Research Center for Artificial Intelligence and Digital Orthopedic Technology, Shenzhen Second People’s Hospital, The First Affiliated Hospital of Shenzhen University, Shenzhen, 518000 Guangdong China
| | - Hua-Wei Zhang
- Department of Biomedical Engineering, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
- Guangdong Provincial Key Laboratory of Advanced Biomaterials, Southern University of Science and Technology, Shenzhen, 518055 Guangdong China
| |
Collapse
|
106
|
Woolfson DN. Understanding a protein fold: the physics, chemistry, and biology of α-helical coiled coils. J Biol Chem 2023; 299:104579. [PMID: 36871758 PMCID: PMC10124910 DOI: 10.1016/j.jbc.2023.104579] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/25/2023] [Accepted: 02/27/2023] [Indexed: 03/07/2023] Open
Abstract
Protein science is being transformed by powerful computational methods for structure prediction and design: AlphaFold2 can predict many natural protein structures from sequence, and other AI methods are enabling the de novo design of new structures. This raises a question: how much do we understand the underlying sequence-to-structure/function relationships being captured by these methods? This perspective presents our current understanding of one class of protein assembly, the α-helical coiled coils. At first sight, these are straightforward: sequence repeats of hydrophobic (h) and polar (p) residues, (hpphppp)n, direct the folding and assembly of amphipathic α helices into bundles. However, many different bundles are possible: they can have two or more helices (different oligomers); the helices can have parallel, antiparallel or mixed arrangements (different topologies); and the helical sequences can be the same (homomers) or different (heteromers). Thus, sequence-to-structure relationships must be present within the hpphppp repeats to distinguish these states. I discuss the current understanding of this problem at three levels: First, physics gives a parametric framework to generate the many possible coiled-coil backbone structures. Second, chemistry provides a means to explore and deliver sequence-to-structure relationships. Third, biology shows how coiled coils are adapted and functionalized in nature, inspiring applications of coiled coils in synthetic biology. I argue that the chemistry is largely understood; the physics is partly solved, though the considerable challenge of predicting even relative stabilities of different coiled-coil states remains; but there is much more to explore in the biology and synthetic biology of coiled coils.
Collapse
Affiliation(s)
- Derek N Woolfson
- School of Chemistry, University of Bristol, Bristol, United Kingdom; School of Biochemistry, University of Bristol, Medical Sciences Building, University Walk, Bristol, United Kingdom; BrisEngBio, School of Chemistry, University of Bristol, Bristol, United Kingdom; Max Planck-Bristol Centre for Minimal Biology, University of Bristol, Bristol, United Kingdom.
| |
Collapse
|
107
|
Richards NGJ, Bearne SL, Goto Y, Parker EJ. Reactivity and mechanism in chemical and synthetic biology. Philos Trans R Soc Lond B Biol Sci 2023; 378:20220023. [PMID: 36633278 PMCID: PMC9835593 DOI: 10.1098/rstb.2022.0023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2022] [Accepted: 11/28/2022] [Indexed: 01/13/2023] Open
Abstract
Physical organic chemistry and mechanistic thinking provide a strong intellectual framework for understanding the chemical logic of evolvable informational macromolecules and metabolic transformations in living organisms. These concepts have also led to numerous successes in designing and applying tools to delineate biological function in health and disease, chemical ecology and possible alternative chemistries employed by extraterrestrial life. A symposium at the 2020 Pacifichem meeting was scheduled in December 2020 to discuss designing and exploiting expanded genetic alphabets, methods to understand the biosynthesis of natural products and re-engineering primary metabolism in bacteria. The COVID-19 pandemic led to postponement of in-person discussions, with the symposium eventually being held on 20-21 December 2021 as an online event. This issue is a written record of work presented on biosynthetic pathways and enzyme catalysis, engineering microorganisms with new metabolic capabilities, and the synthesis of non-canonical, nucleobases for medical applications and for studies of alternate chemistries for living organisms. The variety of opinion pieces, reviews and original research articles provide a starting point for innovations that clarify how complex biological systems emerge from the rules of chemical reactivity and mechanism. This article is part of the themed issue 'Reactivity and mechanism in chemical and synthetic biology'.
Collapse
Affiliation(s)
- Nigel G. J. Richards
- School of Chemistry, Cardiff University, Park Place, Cardiff CF10 3AT, UK
- Foundation for Advanced Molecular Evolution, 13709 Progress Boulevard, Alachua, FL 32615, USA
| | - Stephen L. Bearne
- Department of Biochemistry and Molecular Biology, Dalhousie University, 5850 College Street, Halifax, Nova Scotia, Canada B3H 4R2
- Department of Chemistry, Dalhousie University, 6274 Coburg Road, Halifax, Nova Scotia, Canada B3H 4R2
| | - Yuki Goto
- Department of Chemistry, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Emily J. Parker
- Department of Chemistry, Victoria University of Wellington, Kelburn Parade, Wellington 6012, New Zealand
| |
Collapse
|
108
|
Chang L, Perez A. Ranking Peptide Binders by Affinity with AlphaFold. Angew Chem Int Ed Engl 2023; 62:e202213362. [PMID: 36542066 DOI: 10.1002/anie.202213362] [Citation(s) in RCA: 35] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2022] [Revised: 12/20/2022] [Accepted: 12/21/2022] [Indexed: 12/24/2022]
Abstract
AlphaFold has revolutionized structural biology by predicting highly accurate structures of proteins and their complexes with peptides and other proteins. However, for protein-peptide systems, we are also interested in identifying the highest affinity binder among a set of candidate peptides. We present a novel competitive binding assay using AlphaFold to predict structures of the receptor in the presence of two peptides. For systems in which the individual structures of the peptides are well predicted, the assay captures the higher affinity binder in the bound state, and the other peptide in the unbound form with statistical significance. We test the application on six protein receptors for which we have experimental binding affinities to several peptides. We find that the assay is best suited for identifying medium to strong peptide binders that adopt stable secondary structures upon binding.
Collapse
Affiliation(s)
- Liwei Chang
- Department of Chemistry, University of Florida, Gainesville, FL, USA.,Quantum Theory Project, University of Florida, Gainesville, FL, USA
| | - Alberto Perez
- Department of Chemistry, University of Florida, Gainesville, FL, USA.,Quantum Theory Project, University of Florida, Gainesville, FL, USA
| |
Collapse
|
109
|
Zhang J, Schaeffer RD, Durham J, Cong Q, Grishin NV. DPAM: A domain parser for AlphaFold models. Protein Sci 2023; 32:e4548. [PMID: 36539305 PMCID: PMC9850437 DOI: 10.1002/pro.4548] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 12/06/2022] [Accepted: 12/13/2022] [Indexed: 01/20/2023]
Abstract
The recent breakthroughs in structure prediction, where methods such as AlphaFold demonstrated near-atomic accuracy, herald a paradigm shift in structural biology. The 200 million high-accuracy models released in the AlphaFold Database are expected to guide protein science in the coming decades. Partitioning these AlphaFold models into domains and assigning them to an evolutionary hierarchy provide an efficient way to gain functional insights into proteins. However, classifying such a large number of predicted structures challenges the infrastructure of current structure classifications, including our Evolutionary Classification of protein Domains (ECOD). Better computational tools are urgently needed to parse and classify domains from AlphaFold models automatically. Here we present a Domain Parser for AlphaFold Models (DPAM) that can automatically recognize globular domains from these models based on inter-residue distances in 3D structures, predicted aligned errors, and ECOD domains found by sequence (HHsuite) and structural (Dali) similarity searches. Based on a benchmark of 18,759 AlphaFold models, we demonstrate that DPAM can recognize 98.8% of domains and assign correct boundaries for 87.5%, significantly outperforming structure-based domain parsers and homology-based domain assignment using ECOD domains found by HHsuite or Dali. Application of DPAM to the massive AlphaFold models will enable efficient classification of domains, providing evolutionary contexts and facilitating functional studies.
Collapse
Affiliation(s)
- Jing Zhang
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - R. Dustin Schaeffer
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Jesse Durham
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Qian Cong
- Eugene McDermott Center for Human Growth and DevelopmentUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Harold C. Simmons Comprehensive Cancer CenterUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| | - Nick V. Grishin
- Department of BiophysicsUniversity of Texas Southwestern Medical CenterDallasTexasUSA
- Department of BiochemistryUniversity of Texas Southwestern Medical CenterDallasTexasUSA
| |
Collapse
|
110
|
Borkakoti N, Thornton JM. AlphaFold2 protein structure prediction: Implications for drug discovery. Curr Opin Struct Biol 2023; 78:102526. [PMID: 36621153 PMCID: PMC7614146 DOI: 10.1016/j.sbi.2022.102526] [Citation(s) in RCA: 47] [Impact Index Per Article: 23.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Revised: 12/01/2022] [Accepted: 12/03/2022] [Indexed: 01/09/2023]
Abstract
The drug discovery process involves designing compounds to selectively interact with their targets. The majority of therapeutic targets for low molecular weight (small molecule) drugs are proteins. The outstanding accuracy with which recent artificial intelligence methods compile the three-dimensional structure of proteins has made protein targets more accessible to the drug design process. Here, we present our perspective of the significance of accurate protein structure prediction on various stages of the small molecule drug discovery life cycle focusing on current capabilities and assessing how further evolution of such predictive procedures can have a more decisive impact in the discovery of new medicines.
Collapse
Affiliation(s)
- Neera Borkakoti
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK
| | - Janet M Thornton
- European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge CB10 1SD, UK.
| |
Collapse
|
111
|
Huang G, Zeng C, Shi Y. Structure of the nuclear pore complex goes atomic. Curr Opin Struct Biol 2023; 78:102523. [PMID: 36641895 DOI: 10.1016/j.sbi.2022.102523] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 11/30/2022] [Accepted: 12/11/2022] [Indexed: 01/14/2023]
Abstract
The nuclear pore complex (NPC) is a supra-molecular assembly that mediates substance and information flow across the nuclear envelope (NE). Due to its extraordinary size and complexity, the NPC remains one of the most challenging tasks in structural elucidation at atomic resolution. Recent breakthroughs in cryo-electron microscopy (cryo-EM) reconstruction, Machine Learning empowered structure prediction and biochemical reconstitution have combined to yield molecular models of the NPC at unprecedented accuracy. Furthermore, in cellulo cryo-electron tomography (cryo-ET) structures reveal substantial structural dynamics of the NPC. These advances shed light on the organizational principles and functions of the NPC.
Collapse
Affiliation(s)
- Gaoxingyu Huang
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou, Zhejiang 310024, China; Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Xihu District, Hangzhou, Zhejiang 310024, China.
| | - Chao Zeng
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou, Zhejiang 310024, China; Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Xihu District, Hangzhou, Zhejiang 310024, China.
| | - Yigong Shi
- Key Laboratory of Structural Biology of Zhejiang Province, School of Life Sciences, Westlake University; Institute of Biology, Westlake Institute for Advanced Study, 18 Shilongshan Road, Xihu District, Hangzhou, Zhejiang 310024, China; Zhejiang Provincial Laboratory of Life Sciences and Biomedicine, 18 Shilongshan Road, Xihu District, Hangzhou, Zhejiang 310024, China; Beijing Advanced Innovation Center for Structural Biology & Advanced Research Center for Biological Structure, Tsinghua-Peking Center for Life Sciences, School of Life Sciences, Tsinghua University, Beijing 100084, China.
| |
Collapse
|
112
|
Implementing computational methods in tandem with synonymous gene recoding for therapeutic development. Trends Pharmacol Sci 2023; 44:73-84. [PMID: 36307252 DOI: 10.1016/j.tips.2022.09.008] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022]
Abstract
Synonymous gene recoding, the substitution of synonymous variants into the genetic sequence, has been used to overcome many production limitations in therapeutic development. However, the safety and efficacy of recoded therapeutics can be difficult to evaluate because synonymous codon substitutions can result in subtle, yet impactful changes in protein features and require sensitive methods for detection. Given that computational approaches have made significant leaps in recent years, we propose that machine-learning (ML) tools may be leveraged to assess gene-recoded therapeutics and foresee an opportunity to adapt codon contexts to enhance some powerful existing tools. Here, we examine how synonymous gene recoding has been used to address challenges in therapeutic development, explain the biological mechanisms underlying its effects, and explore the application of computational platforms to improve the surveillance of functional variants in therapeutic design.
Collapse
|
113
|
Funke-Kaiser H, Unger T. The (Pro)renin Receptor - A Regulatory Nodal Point in Disease Networks. Curr Drug Targets 2023; 24:1093-1098. [PMID: 37885110 DOI: 10.2174/0113894501250617231016052930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2023] [Revised: 06/27/2023] [Accepted: 09/15/2023] [Indexed: 10/28/2023]
Abstract
Experimental inhibition of the (pro)renin receptor [(P)RR] is a promising therapeutic strategy in different disease models ranging from cardiorenal to oncological entities. Here, we briefly review the direct protein-protein interaction partners of the (P)RR and the plethora of distinct diseases in which the (P)RR is involved. The first structural work on the (P)RR using AlphaFold, which was recently published by Ebihara et al., is the center of this mini-review since it can mechanistically link the protein-protein interaction level with the pathophysiological level. More detailed insights into the 3D structure of the (P)RR and its interaction domains might guide drug discovery on this novel target. Finally, antibody- and small molecule-based approaches to inhibit the (P)RR are shortly discussed.
Collapse
Affiliation(s)
| | - Thomas Unger
- CARIM - School for Cardiovascular Diseases, Maastricht University, Maastricht, The Netherlands
| |
Collapse
|
114
|
Song M, Linghu B, Huang S, Hu S, An R, Wei S, Mu J, Zhang Y. Identification of nuclear pore complexes (NPCs) and revealed outer-ring component BnHOS1 related to cold tolerance in B. napus. Int J Biol Macromol 2022; 223:1450-1461. [PMID: 36402381 DOI: 10.1016/j.ijbiomac.2022.11.148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 11/11/2022] [Accepted: 11/14/2022] [Indexed: 11/18/2022]
Abstract
Nuclear pore complexes (NPCs) consist of ~30 different nucleoporins (Nups), are the unique channels that govern development, hormonal response, and roles in both biotic and abiotic responses, as well as the transport and information exchange of biomacromolecules between nucleoplasms. Here, we report the comprehensive identification of 77 BnNups throughout the zhongshuang11 (ZS11) genome, which were classified into 29 distinct categories based on their evolutionary connections. We compared and contrasted different BnNups by analyzing at their gene structures, protein domains, putative three-dimensional (3D) models and expression patterns. Additional examples of genome-wide duplication events and cross-species synteny are provided to demonstrate the proliferation and evolutionary conservation of BnNups. When BnHOS1 was modified using CRISPR/Cas9 technology, the resulting L10 and L28 lines exhibited substantial freezing resistance. This not only demonstrated the negative regulatory impact of BnHOS1 on cold stress, but also offered a promising candidate gene for cold tolerance breeding and augmented the available B. napus material. These findings not only help us learn more about the composition and function of BnNPCs in B. napus, but they also provide light on how NPCs in other eukaryotic organism functions.
Collapse
Affiliation(s)
- Min Song
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China; State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Bin Linghu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Shuhua Huang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Shengwu Hu
- State Key Laboratory of Crop Stress Biology in Arid Areas and College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China
| | - Ran An
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Shihao Wei
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China
| | - Jianxin Mu
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China.
| | - Yanfeng Zhang
- Hybrid Rapeseed Research Center of Shaanxi Province, Yangling 712100, Shaanxi, China.
| |
Collapse
|
115
|
Madhu P, Davey NE, Ivarsson Y. How viral proteins bind short linear motifs and intrinsically disordered domains. Essays Biochem 2022; 66:EBC20220047. [PMID: 36504386 DOI: 10.1042/ebc20220047] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2022] [Revised: 10/27/2022] [Accepted: 10/28/2022] [Indexed: 02/11/2024]
Abstract
Viruses are the obligate intracellular parasites that exploit the host cellular machinery to replicate their genome. During the viral life cycle viruses manipulate the host cell through interactions with host proteins. Many of these protein-protein interactions are mediated through the recognition of host globular domains by short linear motifs (SLiMs), or longer intrinsically disordered domains (IDD), in the disordered regions of viral proteins. However, viruses also employ their own globular domains for binding to SLiMs and IDDs present in host proteins or virus proteins. In this review, we focus on the different strategies adopted by viruses to utilize proteins or protein domains for binding to the disordered regions of human or/and viral ligands. With a set of examples, we describe viral domains that bind human SLiMs. We also provide examples of viral proteins that bind to SLiMs, or IDDs, of viral proteins as a part of complex assembly and regulation of protein functions. The protein-protein interactions are often crucial for viral replication, and may thus offer possibilities for innovative inhibitor design.
Collapse
Affiliation(s)
- Priyanka Madhu
- Department of Chemistry, BMC, Uppsala University, Uppsala, Sweden
| | - Norman E Davey
- Division of Cancer Biology, The Institute of Cancer Research, London, U.K
| | - Ylva Ivarsson
- Department of Chemistry, BMC, Uppsala University, Uppsala, Sweden
| |
Collapse
|
116
|
New opportunities in integrative structural modeling. Curr Opin Struct Biol 2022; 77:102488. [PMID: 36279817 DOI: 10.1016/j.sbi.2022.102488] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 12/14/2022]
Abstract
Integrative structural modeling enables structure determination of macromolecules and their complexes by integrating data from multiple sources. It has been successfully used to characterize macromolecular structures when a single structural biology technique was insufficient. Recent developments in cellular structural biology, including in-cell cryo-electron tomography and artificial intelligence-based structure prediction, have created new opportunities for integrative structural modeling. Here, we will review these opportunities along with the latest developments in integrative modeling methods and their applications. We also highlight open challenges and directions for further development.
Collapse
|
117
|
Protein structure prediction in the deep learning era. Curr Opin Struct Biol 2022; 77:102495. [PMID: 36371845 DOI: 10.1016/j.sbi.2022.102495] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 10/03/2022] [Accepted: 10/04/2022] [Indexed: 11/11/2022]
Abstract
Significant advances have been achieved in protein structure prediction, especially with the recent development of the AlphaFold2 and the RoseTTAFold systems. This article reviews the progress in deep learning-based protein structure prediction methods in the past two years. First, we divide the representative methods into two categories: the two-step approach and the end-to-end approach. Then, we show that the two-step approach is possible to achieve similar accuracy to the state-of-the-art end-to-end approach AlphaFold2. Compared to the end-to-end approach, the two-step approach requires fewer computing resources. We conclude that it is valuable to keep developing both approaches. Finally, a few outstanding challenges in function-orientated protein structure prediction are pointed out for future development.
Collapse
|
118
|
Beton JG, Cragnolini T, Kaleel M, Mulvaney T, Sweeney A, Topf M. Integrating model simulation tools and
cryo‐electron
microscopy. WIRES COMPUTATIONAL MOLECULAR SCIENCE 2022. [DOI: 10.1002/wcms.1642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Joseph George Beton
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Tristan Cragnolini
- Institute of Structural and Molecular Biology, Birkbeck and University College London London UK
| | - Manaz Kaleel
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Thomas Mulvaney
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Aaron Sweeney
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| | - Maya Topf
- Centre for Structural Systems Biology (CSSB) Leibniz‐Institut für Virologie (LIV) Hamburg Germany
| |
Collapse
|
119
|
Madheshiya PK, Shukla E, Singh J, Bawaria S, Ansari MY, Chauhan R. Insights into the role of Nup62 and Nup93 in assembling cytoplasmic ring and central transport channel of the nuclear pore complex. Mol Biol Cell 2022; 33:ar139. [PMID: 36222862 PMCID: PMC9727814 DOI: 10.1091/mbc.e22-01-0027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The nuclear pore complex (NPC) is a highly modular assembly of 34 distinct nucleoporins (Nups) to form a versatile transport channel between the nucleus and the cytoplasm. Among them, Nup62 is known as an essential component for nuclear transport, Nup93 for proper nuclear envelope assembly. These Nups constitute various NPC subcomplexes such as the central transport channel (CTC), the cytoplasmic ring (CR), and the inner ring (IR). However, how they play their roles in NPC assembly and transport activity is not clear. Here we delineated the interacting regions and conducted biochemical reconstitution and structural characterization of the mammalian CR complex to reveal its intrinsic dynamic behavior and a distinct "4"-shaped architecture resembling the CTC complex. Our in vitro reconstitution data demonstrate that the Nup62 coiled-coil domain is critical to form both Nup62322-525 •Nup88517-742 and Nup62322-525•Nup88517-742•Nup214693-926 heterotrimers and both can bind to Nup931-150. We therefore propose that Nup93 acts as a "sensor" to bind to Nup62 shared heterotrimers including the Nup62•Nup54 heterotrimer of the CTC, which was not shown previously to be an interacting partner. Altogether, our biochemical study suggests that Nup62 via its coiled-coil domain is central to form compositionally distinct yet structurally similar heterotrimers and Nup93 binds these diverse heterotrimers nonselectively.
Collapse
Affiliation(s)
| | - Ekta Shukla
- National Centre for Cell Science, Pune 411007, Maharashtra, India
| | - Jyotsana Singh
- National Centre for Cell Science, Pune 411007, Maharashtra, India
| | | | | | - Radha Chauhan
- National Centre for Cell Science, Pune 411007, Maharashtra, India,*Address correspondence to: Radha Chauhan ()
| |
Collapse
|
120
|
Abstract
Eukaryotic cells possess considerable internal complexity, differentiating them from prokaryotes. Eukaryogenesis, an evolutionary transitional period culminating in the last eukaryotic common ancestor (LECA), marked the origin of the eukaryotic endomembrane system. LECA is reconstructed as possessing intracellular complexity akin to modern eukaryotes. Construction of endomembrane compartments involved three key gene families: coatomer, BAR-domain proteins, and ESCRT. Each has a distinct evolutionary origin, but of these coatomer and BAR proteins are eukaryote specific, while ESCRT has more ancient origins. We discuss the structural motifs defining these three membrane-coating complexes and suggest that compared with BAR and ESCRT, the coatomer architecture had a unique ability to be readily and considerably modified, unlocking functional diversity and enabling the development of the eukaryotic cell.
Collapse
Affiliation(s)
- Mark C. Field
- School of Life Sciences, University of Dundee, Dundee DD1 5EH, UK,Institute of Parasitology, Biology Center, Czech Academy of Sciences, 37005 Ceske Budejovice, Czechia,*Address corresponding to: Mark C. Field (); Michael P. Rout ()
| | - Michael P. Rout
- Laboratory of Cellular and Structural Biology, The Rockefeller University, New York, NY10021,*Address corresponding to: Mark C. Field (); Michael P. Rout ()
| |
Collapse
|
121
|
Liu S, Zhang Q, He H, Yi M, Tan W, Guo J, Xu B. Intranuclear Nanoribbons for Selective Killing of Osteosarcoma Cells. Angew Chem Int Ed Engl 2022; 61:e202210568. [PMID: 36102872 PMCID: PMC9869109 DOI: 10.1002/anie.202210568] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Indexed: 01/26/2023]
Abstract
Herein, we show intranuclear nanoribbons formed upon dephosphorylation of leucine-rich L- or D-phosphopeptide catalyzed by alkaline phosphatase (ALP) to selectively kill osteosarcoma cells. Being dephosphorylated by ALP, the peptides are first transformed into micelles and then converted into nanoribbons. The peptides/assemblies first aggregate on cell membranes, then enter cells via endocytosis, and finally accumulate in nuclei (mainly in nucleoli). Proteomics analysis suggests that the assemblies interact with histone proteins. The peptides kill osteosarcoma cells rapidly and are nontoxic to normal cells. Moreover, the repeated stimulation of the osteosarcoma cells by the peptides sensitizes the cancer cells rather than inducing resistance. This work not only illustrates a novel mechanism for nucleus targeting, but may also pave a new way for selectively killing osteosarcoma cells and minimizing drug resistance.
Collapse
Affiliation(s)
- Shuang Liu
- School of Materials Science and Engineering, Wuhan University of Technology, 122 Luoshi Road, Wuhan, Hubei, 430070, China
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Qiuxin Zhang
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Hongjian He
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Meihui Yi
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Weiyi Tan
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Jiaqi Guo
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| | - Bing Xu
- Department of Chemistry, Brandeis University, 415 South Street, Waltham, MA, 02454, USA
| |
Collapse
|
122
|
Akbar H, Cao J, Wang D, Yuan X, Zhang M, Muthusamy S, Song X, Liu X, Aikhionbare F, Yao X, Gao X, Liu X. Acetylation of Nup62 by TIP60 ensures accurate chromosome segregation in mitosis. J Mol Cell Biol 2022; 14:6747133. [PMID: 36190325 PMCID: PMC9926331 DOI: 10.1093/jmcb/mjac056] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Revised: 06/14/2022] [Accepted: 09/29/2022] [Indexed: 11/14/2022] Open
Abstract
Stable transmission of genetic information during cell division requires faithful mitotic spindle assembly and chromosome segregation. In eukaryotic cells, nuclear envelope breakdown (NEBD) is required for proper chromosome segregation. Although a list of mitotic kinases has been implicated in NEBD, how they coordinate their activity to dissolve the nuclear envelope and protein machinery such as nuclear pore complexes was unclear. Here, we identified a regulatory mechanism in which Nup62 is acetylated by TIP60 in human cell division. Nup62 is a novel substrate of TIP60, and the acetylation of Lys432 by TIP60 dissolves nucleoporin Nup62-Nup58-Nup54 complex during entry into mitosis. Importantly, this acetylation-elicited remodeling of nucleoporin complex promotes the distribution of Nup62 to the mitotic spindle, which is indispensable for orchestrating correct spindle orientation. Moreover, suppression of Nup62 perturbs accurate chromosome segregation during mitosis. These results establish a previously uncharacterized regulatory mechanism in which TIP60-elicited nucleoporin dynamics promotes chromosome segregation in mitosis.
Collapse
Affiliation(s)
- Hameed Akbar
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Jun Cao
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Dongmei Wang
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Xiao Yuan
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | - Manjuan Zhang
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | | | - Xiaoyu Song
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,Morehouse School of Medicine, Atlanta, GA 30310, USA
| | - Xu Liu
- MOE Key Laboratory for Cellular Dynamics and School of Life Sciences, University of Science and Technology of China, Hefei 230027, China,CAS Center for Excellence in Molecular and Cell Sciences, Anhui Key Laboratory for Cellular Dynamics and Chemical Biology, Hefei 230027, China
| | | | | | | | - Xing Liu
- Correspondence to: Xing Liu, E-mail:
| |
Collapse
|
123
|
Varadi M, Anyango S, Appasamy SD, Armstrong D, Bage M, Berrisford J, Choudhary P, Bertoni D, Deshpande M, Leines GD, Ellaway J, Evans G, Gaborova R, Gupta D, Gutmanas A, Harrus D, Kleywegt GJ, Bueno WM, Nadzirin N, Nair S, Pravda L, Afonso MQL, Sehnal D, Tanweer A, Tolchard J, Abrams C, Dunlop R, Velankar S. PDBe and PDBe-KB: Providing high-quality, up-to-date and integrated resources of macromolecular structures to support basic and applied research and education. Protein Sci 2022; 31:e4439. [PMID: 36173162 PMCID: PMC9517934 DOI: 10.1002/pro.4439] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 09/02/2022] [Accepted: 09/05/2022] [Indexed: 11/26/2022]
Abstract
The archiving and dissemination of protein and nucleic acid structures as well as their structural, functional and biophysical annotations is an essential task that enables the broader scientific community to conduct impactful research in multiple fields of the life sciences. The Protein Data Bank in Europe (PDBe; pdbe.org) team develops and maintains several databases and web services to address this fundamental need. From data archiving as a member of the Worldwide PDB consortium (wwPDB; wwpdb.org), to the PDBe Knowledge Base (PDBe-KB; pdbekb.org), we provide data, data-access mechanisms, and visualizations that facilitate basic and applied research and education across the life sciences. Here, we provide an overview of the structural data and annotations that we integrate and make freely available. We describe the web services and data visualization tools we offer, and provide information on how to effectively use or even further develop them. Finally, we discuss the direction of our data services, and how we aim to tackle new challenges that arise from the recent, unprecedented advances in the field of structure determination and protein structure modeling.
Collapse
Affiliation(s)
- Mihaly Varadi
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | - Stephen Anyango
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | - Sri Devan Appasamy
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | - David Armstrong
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | - Marcus Bage
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | - John Berrisford
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | - Preeti Choudhary
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | - Damian Bertoni
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | - Mandar Deshpande
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | - Grisell Diaz Leines
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | - Joseph Ellaway
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | - Genevieve Evans
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | - Romana Gaborova
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | - Deepti Gupta
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | - Aleksandras Gutmanas
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | - Deborah Harrus
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | - Gerard J Kleywegt
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | | | - Nurul Nadzirin
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | - Sreenath Nair
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | - Lukas Pravda
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | | | - David Sehnal
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
- CEITEC - Central European Institute of Technology, Masaryk University, Brno, Czech Republic
- National Centre for Biomolecular Research, Faculty of Science, Masaryk University, Brno, Czech Republic
| | - Ahsan Tanweer
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | - James Tolchard
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | - Charlotte Abrams
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | - Roisin Dunlop
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| | - Sameer Velankar
- European Molecular Biology Laboratory, European Bioinformatics Institute, Hinxton
| |
Collapse
|
124
|
The augmin complex architecture reveals structural insights into microtubule branching. Nat Commun 2022; 13:5635. [PMID: 36163468 PMCID: PMC9512787 DOI: 10.1038/s41467-022-33228-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Accepted: 09/05/2022] [Indexed: 11/24/2022] Open
Abstract
In mitosis, the augmin complex binds to spindle microtubules to recruit the γ-tubulin ring complex (γ-TuRC), the principal microtubule nucleator, for the formation of branched microtubules. Our understanding of augmin-mediated microtubule branching is hampered by the lack of structural information on the augmin complex. Here, we elucidate the molecular architecture and conformational plasticity of the augmin complex using an integrative structural biology approach. The elongated structure of the augmin complex is characterised by extensive coiled-coil segments and comprises two structural elements with distinct but complementary functions in γ-TuRC and microtubule binding, linked by a flexible hinge. The augmin complex is recruited to microtubules via a composite microtubule binding site comprising a positively charged unordered extension and two calponin homology domains. Our study provides the structural basis for augmin function in branched microtubule formation, decisively fostering our understanding of spindle formation in mitosis. The formation of branched microtubule networks in mitotic spindles depends on the augmin complex. Zupa, Würtz et al. elucidate the molecular architecture and conformational plasticity of the augmin complex using integrative structural biology, providing structural insights into microtubule branching.
Collapse
|
125
|
Badonyi M, Marsh JA. Large protein complex interfaces have evolved to promote cotranslational assembly. eLife 2022; 11:79602. [PMID: 35899946 PMCID: PMC9365393 DOI: 10.7554/elife.79602] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Accepted: 07/27/2022] [Indexed: 11/13/2022] Open
Abstract
Assembly pathways of protein complexes should be precise and efficient to minimise misfolding and unwanted interactions with other proteins in the cell. One way to achieve this efficiency is by seeding assembly pathways during translation via the cotranslational assembly of subunits. While recent evidence suggests that such cotranslational assembly is widespread, little is known about the properties of protein complexes associated with the phenomenon. Here, using a combination of proteome-specific protein complex structures and publicly available ribosome profiling data, we show that cotranslational assembly is particularly common between subunits that form large intermolecular interfaces. To test whether large interfaces have evolved to promote cotranslational assembly, as opposed to cotranslational assembly being a non-adaptive consequence of large interfaces, we compared the sizes of first and last translated interfaces of heteromeric subunits in bacterial, yeast, and human complexes. When considering all together, we observe the N-terminal interface to be larger than the C-terminal interface 54% of the time, increasing to 64% when we exclude subunits with only small interfaces, which are unlikely to cotranslationally assemble. This strongly suggests that large interfaces have evolved as a means to maximise the chance of successful cotranslational subunit binding.
Collapse
Affiliation(s)
- Mihaly Badonyi
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| | - Joseph A Marsh
- MRC Human Genetics Unit, Institute of Genetics and Cancer, University of Edinburgh, Edinburgh, United Kingdom
| |
Collapse
|