101
|
Nie M, Boddy MN. Cooperativity of the SUMO and Ubiquitin Pathways in Genome Stability. Biomolecules 2016; 6:14. [PMID: 26927199 PMCID: PMC4808808 DOI: 10.3390/biom6010014] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2016] [Revised: 02/17/2016] [Accepted: 02/23/2016] [Indexed: 01/27/2023] Open
Abstract
Covalent attachment of ubiquitin (Ub) or SUMO to DNA repair proteins plays critical roles in maintaining genome stability. These structurally related polypeptides can be viewed as distinct road signs, with each being read by specific protein interaction motifs. Therefore, via their interactions with selective readers in the proteome, ubiquitin and SUMO can elicit distinct cellular responses, such as directing DNA lesions into different repair pathways. On the other hand, through the action of the SUMO-targeted ubiquitin ligase (STUbL) family proteins, ubiquitin and SUMO can cooperate in the form of a hybrid signal. These mixed SUMO-ubiquitin chains recruit “effector” proteins such as the AAA+ ATPase Cdc48/p97-Ufd1-Npl4 complex that contain both ubiquitin and SUMO interaction motifs. This review will summarize recent key findings on collaborative and distinct roles that ubiquitin and SUMO play in orchestrating DNA damage responses.
Collapse
Affiliation(s)
- Minghua Nie
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| | - Michael N Boddy
- Department of Cell and Molecular Biology, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
102
|
Shire K, Wong AI, Tatham MH, Anderson OF, Ripsman D, Gulstene S, Moffat J, Hay RT, Frappier L. Identification of RNF168 as a PML nuclear body regulator. J Cell Sci 2016; 129:580-91. [PMID: 26675234 PMCID: PMC4760303 DOI: 10.1242/jcs.176446] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2015] [Accepted: 12/12/2015] [Indexed: 12/15/2022] Open
Abstract
Promyelocytic leukemia (PML) protein forms the basis of PML nuclear bodies (PML NBs), which control many important processes. We have screened an shRNA library targeting ubiquitin pathway proteins for effects on PML NBs, and identified RNF8 and RNF168 DNA-damage response proteins as negative regulators of PML NBs. Additional studies confirmed that depletion of either RNF8 or RNF168 increased the levels of PML NBs and proteins, whereas overexpression induced loss of PML NBs. RNF168 partially localized to PML NBs through its UMI/MIU1 ubiquitin-interacting region and associated with NBs formed by any PML isoform. The association of RNF168 with PML NBs resulted in increased ubiquitylation and SUMO2 modification of PML. In addition, RNF168 was found to associate with proteins modified by SUMO2 and/or SUMO3 in a manner dependent on its ubiquitin-binding sequences, suggesting that hybrid SUMO-ubiquitin chains can be bound. In vitro assays confirmed that RNF168, preferentially, binds hybrid SUMO2-K63 ubiquitin chains compared with K63-ubiquitin chains or individual SUMO2. Our study identified previously unrecognized roles for RNF8 and RNF168 in the regulation of PML, and a so far unknown preference of RNF168 for hybrid SUMO-ubiquitin chains.
Collapse
Affiliation(s)
- Kathy Shire
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Andrew I Wong
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Michael H Tatham
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee
| | - Oliver F Anderson
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee
| | - David Ripsman
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Stephanie Gulstene
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Jason Moffat
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee
| | - Lori Frappier
- Department of Molecular Genetics, University of Toronto, 1 Kings College Circle, Toronto, Ontario, Canada M5S 1A8
| |
Collapse
|
103
|
Ma C, Song H, Guan K, Zhou J, Xia X, Li F. Characterization of swine testicular cell line as immature porcine Sertoli cell line. In Vitro Cell Dev Biol Anim 2016; 52:427-33. [PMID: 26744029 DOI: 10.1007/s11626-015-9994-8] [Citation(s) in RCA: 41] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 12/20/2015] [Indexed: 10/22/2022]
Abstract
Swine testicular (ST) cell line is isolated from swine fetal testes and has been widely used in biomedical research fields related to pig virus infection. However, the potential benefit and utilization of ST cells in boar reproductive studies has not been fully explored. As swine fetal testes mainly contain multiple types of cells such as Leydig cells, Sertoli cells, gonocytes, and peritubular myoid cells, it is necessary to clarify the cell type of ST cell line. In this study, we identified ST cell line was a collection of Sertoli cells by analyzing the unique morphological characteristic with satellite karyosomes and determining the protein expression of two markers (androgen-binding protein, ABP; Fas ligand, FASL) of Sertoli cells. Then ST cells were further confirmed to be immature Sertoli cells by examining the expression of three markers (anti-Mullerian hormone, AMH; keratin 18, KRT18; follicle-stimulating hormone receptor, FSHR). In conclusion, ST cells are a collection of immature Sertoli cells which can be good experimental materials for the researches involved in Sertoli cell functions and maturation, or even in boar reproductions.
Collapse
Affiliation(s)
- Changping Ma
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Huibin Song
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Kaifeng Guan
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jiawei Zhou
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China
| | - Xuanyan Xia
- College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Fenge Li
- Key Laboratory of Pig Genetics and Breeding of Ministry of Agriculture & Key Laboratory of Agricultural Animal Genetics, Breeding and Reproduction of Ministry of Education, Huazhong Agricultural University, Wuhan, 430070, China.
| |
Collapse
|
104
|
Anamika, Spyracopoulos L. Molecular Basis for Phosphorylation-dependent SUMO Recognition by the DNA Repair Protein RAP80. J Biol Chem 2015; 291:4417-28. [PMID: 26719330 DOI: 10.1074/jbc.m115.705061] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2015] [Indexed: 01/04/2023] Open
Abstract
Recognition and repair of double-stranded DNA breaks (DSB) involves the targeted recruitment of BRCA tumor suppressors to damage foci through binding of both ubiquitin (Ub) and the Ub-like modifier SUMO. RAP80 is a component of the BRCA1 A complex, and plays a key role in the recruitment process through the binding of Lys(63)-linked poly-Ub chains by tandem Ub interacting motifs (UIM). RAP80 also contains a SUMO interacting motif (SIM) just upstream of the tandem UIMs that has been shown to specifically bind the SUMO-2 isoform. The RAP80 tandem UIMs and SIM function collectively for optimal recruitment of BRCA1 to DSBs, although the molecular basis of this process is not well understood. Using NMR spectroscopy, we demonstrate that the RAP80 SIM binds SUMO-2, and that both specificity and affinity are enhanced through phosphorylation of the canonical CK2 site within the SIM. The affinity increase results from an enhancement of electrostatic interactions between the phosphoserines of RAP80 and the SIM recognition module within SUMO-2. The NMR structure of the SUMO-2·phospho-RAP80 complex reveals that the molecular basis for SUMO-2 specificity is due to isoform-specific sequence differences in electrostatic SIM recognition modules.
Collapse
Affiliation(s)
- Anamika
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| | - Leo Spyracopoulos
- From the Department of Biochemistry, University of Alberta, Edmonton, Alberta T6G 2H7, Canada
| |
Collapse
|
105
|
Abstract
Both proteolytic and nonproteolytic functions of ubiquitination are essential regulatory mechanisms for promoting DNA repair and the DNA damage response in mammalian cells. Deubiquitinating enzymes (DUBs) have emerged as key players in the maintenance of genome stability. In this minireview, we discuss the recent findings on human DUBs that participate in genome maintenance, with a focus on the role of DUBs in the modulation of DNA repair and DNA damage signaling.
Collapse
|
106
|
Raghunayakula S, Subramonian D, Dasso M, Kumar R, Zhang XD. Molecular Characterization and Functional Analysis of Annulate Lamellae Pore Complexes in Nuclear Transport in Mammalian Cells. PLoS One 2015; 10:e0144508. [PMID: 26642330 PMCID: PMC4671610 DOI: 10.1371/journal.pone.0144508] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 11/19/2015] [Indexed: 01/26/2023] Open
Abstract
Annulate lamellae are cytoplasmic organelles containing stacked sheets of membranes embedded with pore complexes. These cytoplasmic pore complexes at annulate lamellae are morphologically similar to nuclear pore complexes at the nuclear envelope. Although annulate lamellae has been observed in nearly all types of cells, their biological functions are still largely unknown. Here we show that SUMO1-modification of the Ran GTPase-activating protein RanGAP1 not only target RanGAP1 to its known sites at nuclear pore complexes but also to annulate lamellae pore complexes through interactions with the Ran-binding protein RanBP2 and the SUMO-conjugating enzyme Ubc9 in mammalian cells. Furthermore, upregulation of annulate lamellae, which decreases the number of nuclear pore complexes and concurrently increases that of annulate lamellae pore complexes, causes a redistribution of nuclear transport receptors including importin α/β and the exportin CRM1 from nuclear pore complexes to annulate lamellae pore complexes and also reduces the rates of nuclear import and export. Moreover, our results reveal that importin α/β-mediated import complexes initially accumulate at annulate lamellae pore complexes upon the activation of nuclear import and subsequently disassociate for nuclear import through nuclear pore complexes in cells with upregulation of annulate lamellae. Lastly, CRM1-mediated export complexes are concentrated at both nuclear pore complexes and annulate lamellae pore complexes when the disassembly of these export complexes is inhibited by transient expression of a Ran GTPase mutant arrested in its GTP-bound form, suggesting that RanGAP1/RanBP2-activated RanGTP hydrolysis at these pore complexes is required for the dissociation of the export complexes. Hence, our findings provide a foundation for further investigation of how upregulation of annulate lamellae decreases the rates of nuclear transport and also for elucidation of the biological significance of the interaction between annulate lamellae pore complexes and nuclear transport complexes in mammalian cells.
Collapse
Affiliation(s)
- Sarita Raghunayakula
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Divya Subramonian
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| | - Mary Dasso
- Laboratory of Gene Regulation and Development, National Institute for Child Health and Human Development, NIH, Bethesda, Maryland, United States of America
| | - Rita Kumar
- Departments of Emergency Medicine and Physiology, Wayne State University, Detroit, Michigan, United States of America
| | - Xiang-Dong Zhang
- Department of Biological Sciences, Wayne State University, Detroit, Michigan, United States of America
| |
Collapse
|
107
|
Dantuma NP, van Attikum H. Spatiotemporal regulation of posttranslational modifications in the DNA damage response. EMBO J 2015; 35:6-23. [PMID: 26628622 DOI: 10.15252/embj.201592595] [Citation(s) in RCA: 156] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2015] [Accepted: 11/06/2015] [Indexed: 11/09/2022] Open
Abstract
A timely and accurate cellular response to DNA damage requires tight regulation of the action of DNA damage response (DDR) proteins at lesions. A multitude of posttranslational modifications (PTMs) of chromatin and chromatin-associated proteins coordinates the recruitment of critical proteins that dictate the appropriate DNA repair pathway and enable the actual repair of lesions. Phosphorylation, ubiquitylation, SUMOylation, neddylation, poly(ADP-ribosyl)ation, acetylation, and methylation are among the DNA damage-induced PTMs that have taken center stage as important DDR regulators. Redundant and multivalent interactions of DDR proteins with PTMs may not only be a means to facilitate efficient relocalization, but also a feature that allows high temporal and spatial resolution of protein recruitment to, and extraction from, DNA damage sites. In this review, we will focus on the complex interplay between such PTMs, and discuss the importance of their interconnectivity in coding DNA lesions and maintaining the integrity of the genome.
Collapse
Affiliation(s)
- Nico P Dantuma
- Department of Cell and Molecular Biology, Karolinska Institutet, Stockholm, Sweden
| | - Haico van Attikum
- Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
| |
Collapse
|
108
|
Wang Y, Wang Y, Zhang H, Gao Y, Huang C, Zhou A, Zhou Y, Li Y. Sequential posttranslational modifications regulate PKC degradation. Mol Biol Cell 2015; 27:410-20. [PMID: 26564794 PMCID: PMC4713141 DOI: 10.1091/mbc.e15-09-0624] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2015] [Accepted: 11/05/2015] [Indexed: 12/21/2022] Open
Abstract
PKC phosphorylation promotes its sumoylation, which in turn inhibits its ubiquitination and ultimately reduces its degradation via the ubiquitin-proteasome pathway. These findings provide a molecular explanation for the activation-induced down-regulation of PKC proteins. Cross-talk among different types of posttranslational modifications (PTMs) has emerged as an important regulatory mechanism for protein function. Here we elucidate a mechanism that controls PKCα stability via a sequential cascade of PTMs. We demonstrate that PKCα dephosphorylation decreases its sumoylation, which in turn promotes its ubiquitination and ultimately enhances its degradation via the ubiquitin-proteasome pathway. These findings provide a molecular explanation for the activation-induced down-regulation of PKC proteins.
Collapse
Affiliation(s)
- Yan Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yangbo Wang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Huijun Zhang
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yingwei Gao
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Chao Huang
- Center for Translational Medicine, Shanghai Chest Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Aiwu Zhou
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| | - Yi Zhou
- Department of Biomedical Sciences, Florida State University College of Medicine, Tallahassee, FL 32306
| | - Yong Li
- Department of Biochemistry and Molecular Cell Biology, Shanghai Key Laboratory for Tumor Microenvironment and Inflammation, Institute of Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai 200025, China
| |
Collapse
|
109
|
Eisenhardt N, Chaugule VK, Koidl S, Droescher M, Dogan E, Rettich J, Sutinen P, Imanishi SY, Hofmann K, Palvimo JJ, Pichler A. A new vertebrate SUMO enzyme family reveals insights into SUMO-chain assembly. Nat Struct Mol Biol 2015; 22:959-67. [PMID: 26524493 DOI: 10.1038/nsmb.3114] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Accepted: 09/22/2015] [Indexed: 12/25/2022]
Abstract
SUMO chains act as stress-induced degradation tags or repair factor-recruiting signals at DNA lesions. Although E1 activating, E2 conjugating and E3 ligating enzymes efficiently assemble SUMO chains, specific chain-elongation mechanisms are unknown. E4 elongases are specialized E3 ligases that extend a chain but are inefficient in the initial conjugation of the modifier. We identified ZNF451, a representative member of a new class of SUMO2 and SUMO3 (SUMO2/3)-specific enzymes that execute catalysis via a tandem SUMO-interaction motif (SIM) region. One SIM positions the donor SUMO while a second SIM binds SUMO on the back side of the E2 enzyme. This tandem-SIM region is sufficient to extend a back side-anchored SUMO chain (E4 elongase activity), whereas efficient chain initiation also requires a zinc-finger region to recruit the initial acceptor SUMO (E3 ligase activity). Finally, we describe four human proteins sharing E4 elongase activities and their function in stress-induced SUMO2/3 conjugation.
Collapse
Affiliation(s)
- Nathalie Eisenhardt
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Viduth K Chaugule
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Stefanie Koidl
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Mathias Droescher
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Esen Dogan
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Jan Rettich
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| | - Päivi Sutinen
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Susumu Y Imanishi
- Turku Centre for Biotechnology, University of Turku and Åbo Akademi University, Turku, Finland
| | - Kay Hofmann
- Institute for Genetics, University of Cologne, Cologne, Germany
| | - Jorma J Palvimo
- Institute of Biomedicine, University of Eastern Finland, Kuopio, Finland
| | - Andrea Pichler
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Freiburg, Germany
| |
Collapse
|
110
|
Heterochromatic breaks move to the nuclear periphery to continue recombinational repair. Nat Cell Biol 2015; 17:1401-11. [PMID: 26502056 PMCID: PMC4628585 DOI: 10.1038/ncb3258] [Citation(s) in RCA: 198] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2014] [Accepted: 09/21/2015] [Indexed: 12/16/2022]
Abstract
Heterochromatin mostly comprises repeated sequences prone to harmful ectopic recombination during double-strand break (DSB) repair. In Drosophila cells, ‘safe’ homologous recombination (HR) repair of heterochromatic breaks relies on a specialized pathway that relocalizes damaged sequences away from the heterochromatin domain before strand invasion. Here we show that heterochromatic DSBs move to the nuclear periphery to continue HR repair. Relocalization depends on nuclear pore and inner nuclear membrane proteins (INMPs) that anchor repair sites to the nuclear periphery via the Smc5/6-interacting proteins STUbL/RENi. Both the initial block to HR progression inside the heterochromatin domain, and the targeting of repair sites to the nuclear periphery, rely on SUMO and SUMO E3 ligases. This study reveals a critical role for SUMOylation in the spatial and temporal regulation of HR repair in heterochromatin, and identifies the nuclear periphery as a specialized site for heterochromatin repair in a multicellular eukaryote.
Collapse
|
111
|
High Confidence Fission Yeast SUMO Conjugates Identified by Tandem Denaturing Affinity Purification. Sci Rep 2015; 5:14389. [PMID: 26404184 PMCID: PMC4585906 DOI: 10.1038/srep14389] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2015] [Accepted: 08/27/2015] [Indexed: 01/01/2023] Open
Abstract
Covalent attachment of the small ubiquitin-like modifier (SUMO) to key targets in the proteome critically regulates the evolutionarily conserved processes of cell cycle control, transcription, DNA replication and maintenance of genome stability. The proteome-wide identification of SUMO conjugates in budding yeast has been invaluable in helping to define roles of SUMO in these processes. Like budding yeast, fission yeast is an important and popular model organism; however, the fission yeast Schizosaccharomyces pombe community currently lacks proteome-wide knowledge of SUMO pathway targets. To begin to address this deficiency, we adapted and used a highly stringent Tandem Denaturing Affinity Purification (TDAP) method, coupled with mass spectrometry, to identify fission yeast SUMO conjugates. Comparison of our data with that compiled in budding yeast reveals conservation of SUMO target enrichment in nuclear and chromatin-associated processes. Moreover, the SUMO "cloud" phenomenon, whereby multiple components of a single protein complex are SUMOylated, is also conserved. Overall, SUMO TDAP provides both a key resource of high confidence SUMO-modified target proteins in fission yeast, and a robust method for future analyses of SUMO function.
Collapse
|
112
|
Jiang Q, Paramasivam M, Aressy B, Wu J, Bellani M, Tong W, Seidman MM, Greenberg RA. MERIT40 cooperates with BRCA2 to resolve DNA interstrand cross-links. Genes Dev 2015; 29:1955-68. [PMID: 26338419 PMCID: PMC4579352 DOI: 10.1101/gad.264192.115] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Accepted: 08/13/2015] [Indexed: 01/19/2023]
Abstract
Jiang et al. found that Merit40−/− mice displayed marked hypersensitivity to DNA interstrand cross-links (ICLs) but not whole-body irradiation. This study implicates MERIT40 in the earliest stages of ICL repair and defines specific functional interactions between RAP80 complex-dependent ubiquitin recognition and the FA–BRCA ICL repair network. MERIT40 is an essential component of the RAP80 ubiquitin recognition complex that targets BRCA1 to DNA damage sites. Although this complex is required for BRCA1 foci formation, its physiologic role in DNA repair has remained enigmatic, as has its relationship to canonical DNA repair mechanisms. Surprisingly, we found that Merit40−/− mice displayed marked hypersensitivity to DNA interstrand cross-links (ICLs) but not whole-body irradiation. MERIT40 was rapidly recruited to ICL lesions prior to FANCD2, and Merit40-null cells exhibited delayed ICL unhooking coupled with reduced end resection and homologous recombination at ICL damage. Interestingly, Merit40 mutation exacerbated ICL-induced chromosome instability in the context of concomitant Brca2 deficiency but not in conjunction with Fancd2 mutation. These findings implicate MERIT40 in the earliest stages of ICL repair and define specific functional interactions between RAP80 complex-dependent ubiquitin recognition and the Fanconi anemia (FA)–BRCA ICL repair network.
Collapse
Affiliation(s)
- Qinqin Jiang
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; Department of Pathology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Manikandan Paramasivam
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Bernadette Aressy
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; Department of Pathology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Junmin Wu
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; Department of Pathology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| | - Marina Bellani
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Wei Tong
- Division of Hematology, Children's Hospital of Philadelphia, Philadelphia, Pennsylvania 19104, USA
| | - Michael M Seidman
- Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Baltimore, Maryland 21224, USA
| | - Roger A Greenberg
- Department of Cancer Biology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA; Department of Pathology, Abramson Family Cancer Research Institute, Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104, USA
| |
Collapse
|
113
|
Branigan E, Plechanovová A, Jaffray EG, Naismith JH, Hay RT. Structural basis for the RING-catalyzed synthesis of K63-linked ubiquitin chains. Nat Struct Mol Biol 2015; 22:597-602. [PMID: 26148049 PMCID: PMC4529489 DOI: 10.1038/nsmb.3052] [Citation(s) in RCA: 82] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2015] [Accepted: 06/02/2015] [Indexed: 11/17/2022]
Abstract
RING E3 ligase-catalyzed formation of K63-linked ubiquitin chains by the Ube2V2-Ubc13 E2 complex is required in many important biological processes. Here we report the structure of the RING-domain dimer of rat RNF4 in complex with a human Ubc13∼Ub conjugate and Ube2V2. The structure has captured Ube2V2 bound to the acceptor (priming) ubiquitin with K63 in a position favorable for attack on the linkage between Ubc13 and the donor (second) ubiquitin held in the active 'folded back' conformation by the RING domain of RNF4. We verified the interfaces identified in the structure by in vitro ubiquitination assays of site-directed mutants. To our knowledge, this represents the first view of synthesis of K63-linked ubiquitin chains in which both substrate ubiquitin and ubiquitin-loaded E2 are juxtaposed to allow E3 ligase-mediated catalysis.
Collapse
Affiliation(s)
- Emma Branigan
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
| | - Anna Plechanovová
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
| | - Ellis G Jaffray
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
| | - James H Naismith
- 1] Biomedical Sciences Research Complex, University of St. Andrews, St. Andrews, UK. [2] State Key Laboratory of Biotherapy, Sichuan University, Chengdu, China
| | - Ronald T Hay
- Centre for Gene Regulation and Expression, University of Dundee, Dundee, UK
| |
Collapse
|
114
|
Sahtoe DD, Sixma TK. Layers of DUB regulation. Trends Biochem Sci 2015; 40:456-67. [PMID: 26073511 DOI: 10.1016/j.tibs.2015.05.002] [Citation(s) in RCA: 101] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2015] [Revised: 05/06/2015] [Accepted: 05/11/2015] [Indexed: 11/15/2022]
Abstract
Proteolytic enzymes, such as (iso-)peptidases, are potentially hazardous for cells. To neutralize their potential danger, tight control of their activities has evolved. Deubiquitylating enzymes (DUBs) are isopeptidases involved in eukaryotic ubiquitylation. They reverse ubiquitin signals by hydrolyzing ubiquitin adducts, giving them control over all aspects of ubiquitin biology. The importance of DUB function is underscored by their frequent deregulation in human disease, making these enzymes potential drug targets. Here, we review the different layers of DUB enzyme regulation. We discuss how post-translational modification (PTM), regulatory domains within DUBs, and incorporation of DUBs into macromolecular complexes contribute to their activity. We conclude that most DUBs are likely to use a combination of these basic regulatory mechanisms.
Collapse
Affiliation(s)
- Danny D Sahtoe
- Division of Biochemistry and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands
| | - Titia K Sixma
- Division of Biochemistry and Cancer Genomics Center, The Netherlands Cancer Institute, Plesmanlaan 121, 1066 CX, Amsterdam, The Netherlands.
| |
Collapse
|
115
|
Abstract
The BRCA1 tumor suppressor protein is a central constituent of several distinct macromolecular protein complexes that execute homology-directed DNA damage repair and cell cycle checkpoints. Recent years have borne witness to an exciting phase of discovery at the basic molecular level for how this network of DNA repair proteins acts to maintain genome stability and suppress cancer. The clinical dividends of this investment are now being realized with the approval of first-in-class BRCA-targeted therapies for ovarian cancer and identification of molecular events that determine responsiveness to these agents. Further delineation of the basic science underlying BRCA network function holds promise to maximally exploit genome instability for hereditary and sporadic cancer therapy.
Collapse
Affiliation(s)
- Qinqin Jiang
- Departments of Cancer Biology and Pathology, Abramson Family Cancer Research Institute, and Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104
| | - Roger A Greenberg
- Departments of Cancer Biology and Pathology, Abramson Family Cancer Research Institute, and Basser Research Center for BRCA, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania 19104.
| |
Collapse
|
116
|
Analysis of PTEN ubiquitylation and SUMOylation using molecular traps. Methods 2015; 77-78:112-8. [DOI: 10.1016/j.ymeth.2014.09.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Revised: 08/29/2014] [Accepted: 09/03/2014] [Indexed: 02/02/2023] Open
|
117
|
Brown JS, Jackson SP. Ubiquitylation, neddylation and the DNA damage response. Open Biol 2015; 5:150018. [PMID: 25833379 PMCID: PMC4422126 DOI: 10.1098/rsob.150018] [Citation(s) in RCA: 113] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Accepted: 03/09/2015] [Indexed: 12/19/2022] Open
Abstract
Failure of accurate DNA damage sensing and repair mechanisms manifests as a variety of human diseases, including neurodegenerative disorders, immunodeficiency, infertility and cancer. The accuracy and efficiency of DNA damage detection and repair, collectively termed the DNA damage response (DDR), requires the recruitment and subsequent post-translational modification (PTM) of a complex network of proteins. Ubiquitin and the ubiquitin-like protein (UBL) SUMO have established roles in regulating the cellular response to DNA double-strand breaks (DSBs). A role for other UBLs, such as NEDD8, is also now emerging. This article provides an overview of the DDR, discusses our current understanding of the process and function of PTM by ubiquitin and NEDD8, and reviews the literature surrounding the role of ubiquitylation and neddylation in DNA repair processes, focusing particularly on DNA DSB repair.
Collapse
Affiliation(s)
- Jessica S Brown
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| | - Stephen P Jackson
- The Wellcome Trust and Cancer Research UK Gurdon Institute, University of Cambridge, Cambridge CB2 1QN, UK
| |
Collapse
|
118
|
Sarangi P, Zhao X. SUMO-mediated regulation of DNA damage repair and responses. Trends Biochem Sci 2015; 40:233-42. [PMID: 25778614 DOI: 10.1016/j.tibs.2015.02.006] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2015] [Revised: 02/17/2015] [Accepted: 02/17/2015] [Indexed: 12/21/2022]
Abstract
Sumoylation has important roles during DNA damage repair and responses. Recent broad-scope and substrate-based studies have shed light on the regulation and significance of sumoylation during these processes. An emerging paradigm is that sumoylation of many DNA metabolism proteins is controlled by DNA engagement. Such 'on-site modification' can explain low substrate modification levels and has important implications in sumoylation mechanisms and effects. New studies also suggest that sumoylation can regulate a process through an ensemble effect or via major substrates. Additionally, we describe new trends in the functional effects of sumoylation, such as bi-directional changes in biomolecule binding and multilevel coordination with other modifications. These emerging themes and models will stimulate our thinking and research in sumoylation and genome maintenance.
Collapse
Affiliation(s)
- Prabha Sarangi
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA; Programs in Biochemistry, Cell, and Molecular Biology, Weill Graduate School of Medical Sciences of Cornell University, New York, NY 10021, USA
| | - Xiaolan Zhao
- Molecular Biology Program, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA.
| |
Collapse
|
119
|
Vittal V, Shi L, Wenzel DM, Scaglione KM, Duncan ED, Basrur V, Elenitoba-Johnson KSJ, Baker D, Paulson HL, Brzovic PS, Klevit RE. Intrinsic disorder drives N-terminal ubiquitination by Ube2w. Nat Chem Biol 2015; 11:83-9. [PMID: 25436519 PMCID: PMC4270946 DOI: 10.1038/nchembio.1700] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2014] [Accepted: 10/09/2014] [Indexed: 12/17/2022]
Abstract
Ubiquitination of the αN-terminus of protein substrates has been reported sporadically since the early 1980s. However, the identity of an enzyme responsible for this unique ubiquitin (Ub) modification has only recently been elucidated. We show the Ub-conjugating enzyme (E2) Ube2w uses a unique mechanism to facilitate the specific ubiquitination of the α-amino group of its substrates that involves recognition of backbone atoms of intrinsically disordered N termini. We present the NMR-based solution ensemble of full-length Ube2w that reveals a structural architecture unlike that of any other E2 in which its C terminus is partly disordered and flexible to accommodate variable substrate N termini. Flexibility of the substrate is critical for recognition by Ube2w, and either point mutations in or the removal of the flexible C terminus of Ube2w inhibits substrate binding and modification. Mechanistic insights reported here provide guiding principles for future efforts to define the N-terminal ubiquitome in cells.
Collapse
Affiliation(s)
- Vinayak Vittal
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Lei Shi
- 1] Department of Biochemistry, University of Washington, Seattle, Washington, USA. [2] Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | - Dawn M Wenzel
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - K Matthew Scaglione
- 1] Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, USA. [2] Department of Biochemistry, Medical College of Wisconsin, Milwaukee, Wisconsin, USA. [3] Neuroscience Research Center, Medical College of Wisconsin, Milwaukee, Wisconsin, USA
| | - Emily D Duncan
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Venkatesha Basrur
- Department of Pathology, University of Michigan, Ann Arbor, Michigan, USA
| | | | - David Baker
- 1] Department of Biochemistry, University of Washington, Seattle, Washington, USA. [2] Howard Hughes Medical Institute, University of Washington, Seattle, Washington, USA
| | - Henry L Paulson
- Department of Neurology, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | - Peter S Brzovic
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| | - Rachel E Klevit
- Department of Biochemistry, University of Washington, Seattle, Washington, USA
| |
Collapse
|
120
|
Perez-Oliva AB, Lachaud C, Szyniarowski P, Muñoz I, Macartney T, Hickson I, Rouse J, Alessi DR. USP45 deubiquitylase controls ERCC1-XPF endonuclease-mediated DNA damage responses. EMBO J 2014; 34:326-43. [PMID: 25538220 PMCID: PMC4339120 DOI: 10.15252/embj.201489184] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
Reversible protein ubiquitylation plays important roles in various processes including DNA repair. Here, we identify the deubiquitylase USP45 as a critical DNA repair regulator. USP45 associates with ERCC1, a subunit of the DNA repair endonuclease XPF-ERCC1, via a short acidic motif outside of the USP45 catalytic domain. Wild-type USP45, but not a USP45 mutant defective in ERCC1 binding, efficiently deubiquitylates ERCC1 in vitro, and the levels of ubiquitylated ERCC1 are markedly enhanced in USP45 knockout cells. Cells lacking USP45 are hypersensitive specifically to UV irradiation and DNA interstrand cross-links, similar to cells lacking ERCC1. Furthermore, the repair of UV-induced DNA damage is markedly reduced in USP45-deficient cells. ERCC1 translocation to DNA damage-induced subnuclear foci is markedly impaired in USP45 knockout cells, possibly accounting for defective DNA repair. Finally, USP45 localises to sites of DNA damage in a manner dependent on its deubiquitylase activity, but independent of its ability to bind ERCC1-XPF. Together, these results establish USP45 as a new regulator of XPF-ERCC1 crucial for efficient DNA repair.
Collapse
Affiliation(s)
- Ana B Perez-Oliva
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Christophe Lachaud
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Piotr Szyniarowski
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Ivan Muñoz
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Thomas Macartney
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Ian Hickson
- Janssen Research & Development, LLC, Spring House, PA, USA
| | - John Rouse
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| | - Dario R Alessi
- MRC Protein Phosphorylation and Ubiquitylation Unit, College of Life Sciences, University of Dundee, Dundee, UK
| |
Collapse
|
121
|
Ouyang J, Garner E, Hallet A, Nguyen HD, Rickman KA, Gill G, Smogorzewska A, Zou L. Noncovalent interactions with SUMO and ubiquitin orchestrate distinct functions of the SLX4 complex in genome maintenance. Mol Cell 2014; 57:108-22. [PMID: 25533185 DOI: 10.1016/j.molcel.2014.11.015] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2014] [Revised: 09/17/2014] [Accepted: 11/04/2014] [Indexed: 11/20/2022]
Abstract
SLX4, a coordinator of multiple DNA structure-specific endonucleases, is important for several DNA repair pathways. Noncovalent interactions of SLX4 with ubiquitin are required for localizing SLX4 to DNA interstrand crosslinks (ICLs), yet how SLX4 is targeted to other functional contexts remains unclear. Here, we show that SLX4 binds SUMO-2/3 chains via SUMO-interacting motifs (SIMs). The SIMs of SLX4 are dispensable for ICL repair but important for processing CPT-induced replication intermediates, suppressing fragile site instability, and localizing SLX4 to ALT telomeres. The localization of SLX4 to laser-induced DNA damage also requires the SIMs, as well as DNA end resection, UBC9, and MDC1. Furthermore, the SUMO binding of SLX4 enhances its interaction with specific DNA-damage sensors or telomere-binding proteins, including RPA, MRE11-RAD50-NBS1, and TRF2. Thus, the interactions of SLX4 with SUMO and ubiquitin increase its affinity for factors recognizing different DNA lesions or telomeres, helping to direct the SLX4 complex in distinct functional contexts.
Collapse
Affiliation(s)
- Jian Ouyang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Elizabeth Garner
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY 10065, USA
| | - Alexander Hallet
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Hai Dang Nguyen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Kimberly A Rickman
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY 10065, USA
| | - Grace Gill
- Department of Developmental, Molecular, and Chemical Biology, Tufts University School of Medicine, Boston, MA 02111, USA
| | - Agata Smogorzewska
- Laboratory of Genome Maintenance, Rockefeller University, New York, NY 10065, USA.
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA; Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
122
|
Maréchal A, Zou L. RPA-coated single-stranded DNA as a platform for post-translational modifications in the DNA damage response. Cell Res 2014; 25:9-23. [PMID: 25403473 DOI: 10.1038/cr.2014.147] [Citation(s) in RCA: 340] [Impact Index Per Article: 30.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
The Replication Protein A (RPA) complex is an essential regulator of eukaryotic DNA metabolism. RPA avidly binds to single-stranded DNA (ssDNA) through multiple oligonucleotide/oligosaccharide-binding folds and coordinates the recruitment and exchange of genome maintenance factors to regulate DNA replication, recombination and repair. The RPA-ssDNA platform also constitutes a key physiological signal which activates the master ATR kinase to protect and repair stalled or collapsed replication forks during replication stress. In recent years, the RPA complex has emerged as a key target and an important regulator of post-translational modifications in response to DNA damage, which is critical for its genome guardian functions. Phosphorylation and SUMOylation of the RPA complex, and more recently RPA-regulated ubiquitination, have all been shown to control specific aspects of DNA damage signaling and repair by modulating the interactions between RPA and its partners. Here, we review our current understanding of the critical functions of the RPA-ssDNA platform in the maintenance of genome stability and its regulation through an elaborate network of covalent modifications.
Collapse
Affiliation(s)
- Alexandre Maréchal
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA
| | - Lee Zou
- 1] Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, MA 02129, USA [2] Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA 02114, USA
| |
Collapse
|
123
|
Exploring the RING-catalyzed ubiquitin transfer mechanism by MD and QM/MM calculations. PLoS One 2014; 9:e101663. [PMID: 25003393 PMCID: PMC4086935 DOI: 10.1371/journal.pone.0101663] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2014] [Accepted: 06/09/2014] [Indexed: 11/19/2022] Open
Abstract
Ubiquitylation is a universal mechanism for controlling cellular functions. A large family of ubiquitin E3 ligases (E3) mediates Ubiquitin (Ub) modification. To facilitate Ub transfer, RING E3 ligases bind both the substrate and ubiquitin E2 conjugating enzyme (E2) linked to Ub via a thioester bond to form a catalytic complex. The mechanism of Ub transfer catalyzed by RING E3 remains elusive. By employing a combined computational approach including molecular modeling, molecular dynamics (MD) simulations, and quantum mechanics/molecular mechanics (QM/MM) calculations, we characterized this catalytic mechanism in detail. The three-dimensional model of dimeric RING E3 ligase RNF4 RING, E2 ligase UbcH5A, Ub and the substrate SUMO2 shows close contact between the substrate and Ub transfer catalytic center. Deprotonation of the substrate lysine by D117 on UbcH5A occurs with almost no energy barrier as calculated by MD and QM/MM calculations. Then, the side chain of the activated lysine gets close to the thioester bond via a conformation change. The Ub transfer pathway begins with a nucleophilic addition that forms an oxyanion intermediate of a 4.23 kcal/mol energy barrier followed by nucleophilic elimination, resulting in a Ub modified substrate by a 5.65 kcal/mol energy barrier. These results provide insight into the mechanism of RING-catalyzed Ub transfer guiding the discovery of Ub system inhibitors.
Collapse
|
124
|
Wu CS, Ouyang J, Mori E, Nguyen HD, Maréchal A, Hallet A, Chen DJ, Zou L. SUMOylation of ATRIP potentiates DNA damage signaling by boosting multiple protein interactions in the ATR pathway. Genes Dev 2014; 28:1472-84. [PMID: 24990965 PMCID: PMC4083090 DOI: 10.1101/gad.238535.114] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 06/02/2014] [Indexed: 12/21/2022]
Abstract
The ATR (ATM [ataxia telangiectasia-mutated]- and Rad3-related) checkpoint is a crucial DNA damage signaling pathway. While the ATR pathway is known to transmit DNA damage signals through the ATR-Chk1 kinase cascade, whether post-translational modifications other than phosphorylation are important for this pathway remains largely unknown. Here, we show that protein SUMOylation plays a key role in the ATR pathway. ATRIP, the regulatory partner of ATR, is modified by SUMO2/3 at K234 and K289. An ATRIP mutant lacking the SUMOylation sites fails to localize to DNA damage and support ATR activation efficiently. Surprisingly, the ATRIP SUMOylation mutant is compromised in the interaction with a protein group, rather than a single protein, in the ATR pathway. Multiple ATRIP-interacting proteins, including ATR, RPA70, TopBP1, and the MRE11-RAD50-NBS1 complex, exhibit reduced binding to the ATRIP SUMOylation mutant in cells and display affinity for SUMO2 chains in vitro, suggesting that they bind not only ATRIP but also SUMO. Fusion of a SUMO2 chain to the ATRIP SUMOylation mutant enhances its interaction with the protein group and partially suppresses its localization and functional defects, revealing that ATRIP SUMOylation promotes ATR activation by providing a unique type of protein glue that boosts multiple protein interactions along the ATR pathway.
Collapse
Affiliation(s)
- Ching-Shyi Wu
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Jian Ouyang
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Eiichiro Mori
- Division of Molecular Radiation Biology, Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Hai Dang Nguyen
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Alexandre Maréchal
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - Alexander Hallet
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
| | - David J. Chen
- Division of Molecular Radiation Biology, Department of Radiation Oncology, The University of Texas Southwestern Medical Center, Dallas, Texas 75390, USA
| | - Lee Zou
- Massachusetts General Hospital Cancer Center, Harvard Medical School, Charlestown, Massachusetts 02129, USA
- Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts 02114, USA
| |
Collapse
|
125
|
Kuo CY, Li X, Kong XQ, Luo C, Chang CC, Chung Y, Shih HM, Li KK, Ann DK. An arginine-rich motif of ring finger protein 4 (RNF4) oversees the recruitment and degradation of the phosphorylated and SUMOylated Krüppel-associated box domain-associated protein 1 (KAP1)/TRIM28 protein during genotoxic stress. J Biol Chem 2014; 289:20757-72. [PMID: 24907272 DOI: 10.1074/jbc.m114.555672] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Krüppel-associated box domain-associated protein 1 (KAP1) is a universal transcriptional corepressor that undergoes multiple posttranslational modifications (PTMs), including SUMOylation and Ser-824 phosphorylation. However, the functional interplay of KAP1 PTMs in regulating KAP1 turnover during DNA damage response remains unclear. To decipher the role and cross-talk of multiple KAP1 PTMs, we show here that DNA double strand break-induced KAP1 Ser-824 phosphorylation promoted the recruitment of small ubiquitin-like modifier (SUMO)-targeted ubiquitin E3 ligase, ring finger protein 4 (RNF4), and subsequent RNF4-mediated, SUMO-dependent degradation. Besides the SUMO interacting motif (SIM), a previously unrecognized, but evolutionarily conserved, arginine-rich motif (ARM) in RNF4 acts as a novel recognition motif for selective target recruitment. Results from combined mutagenesis and computational modeling studies suggest that RNF4 utilizes concerted bimodular recognition, namely SIM for Lys-676 SUMOylation and ARM for Ser(P)-824 of simultaneously phosphorylated and SUMOylated KAP1 (Ser(P)-824-SUMO-KAP1). Furthermore, we proved that arginines 73 and 74 within the ARM of RNF4 are required for efficient recruitment to KAP1 or accelerated degradation of promyelocytic leukemia protein (PML) under stress. In parallel, results of bimolecular fluorescence complementation assays validated the role of the ARM in recognizing Ser(P)-824 in living cells. Taken together, we establish that the ARM is required for RNF4 to efficiently target Ser(P)-824-SUMO-KAP1, conferring ubiquitin Lys-48-mediated proteasomal degradation in the context of double strand breaks. The conservation of such a motif may possibly explain the requirement for timely substrate selectivity determination among a myriad of SUMOylated proteins under stress conditions. Thus, the ARM dynamically regulates the SIM-dependent recruitment of targets to RNF4, which could be critical to dynamically fine-tune the abundance of Ser(P)-824-SUMO-KAP1 and, potentially, other SUMOylated proteins during DNA damage response.
Collapse
Affiliation(s)
- Ching-Ying Kuo
- From the Department of Molecular Pharmacology and Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010
| | - Xu Li
- From the Department of Molecular Pharmacology and
| | - Xiang-Qian Kong
- the Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Cheng Luo
- the Drug Discovery and Design Center, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Shanghai 201203, China
| | - Che-Chang Chang
- the Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, and
| | - Yiyin Chung
- From the Department of Molecular Pharmacology and
| | - Hsiu-Ming Shih
- the Institute of Biomedical Sciences, Academia Sinica, Taipei 11529, Taiwan, and
| | - Keqin Kathy Li
- the State Key Laboratory of Medical Genomics, Shanghai Institute of Hematology, Rui Jin Hospital Affiliated with Shanghai Jiao Tong University School of Medicine, 197 Ruijin II Road, Shanghai 200025, China
| | - David K Ann
- From the Department of Molecular Pharmacology and Irell and Manella Graduate School of Biological Sciences, Beckman Research Institute, City of Hope, Duarte, California 91010,
| |
Collapse
|
126
|
The role of ubiquitination and sumoylation in diabetic nephropathy. BIOMED RESEARCH INTERNATIONAL 2014; 2014:160692. [PMID: 24991536 PMCID: PMC4065738 DOI: 10.1155/2014/160692] [Citation(s) in RCA: 45] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2014] [Accepted: 05/19/2014] [Indexed: 01/14/2023]
Abstract
Diabetic nephropathy (DN) is a common and characteristic microvascular complication of diabetes; the mechanisms that cause DN have not been clarified, and the epigenetic mechanism was promised in the pathology of DN. Furthermore, ubiquitination and small ubiquitin-like modifier (SUMO) were involved in the progression of DN. MG132, as a ubiquitin proteasome, could improve renal injury by regulating several signaling pathways, such as NF-κB, TGF-β, Nrf2-oxidative stress, and MAPK. In this review, we summarize how ubiquitination and sumoylation may contribute to the pathology of DN, which may be a potential treatment strategy of DN.
Collapse
|
127
|
Rojas-Fernandez A, Plechanovová A, Hattersley N, Jaffray E, Tatham MH, Hay RT. SUMO chain-induced dimerization activates RNF4. Mol Cell 2014; 53:880-92. [PMID: 24656128 PMCID: PMC3991395 DOI: 10.1016/j.molcel.2014.02.031] [Citation(s) in RCA: 61] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2013] [Revised: 12/23/2013] [Accepted: 02/11/2014] [Indexed: 12/14/2022]
Abstract
Dimeric RING E3 ligases interact with protein substrates and conformationally restrain the ubiquitin-E2-conjugating enzyme thioester complex such that it is primed for catalysis. RNF4 is an E3 ligase containing an N-terminal domain that binds its polySUMO substrates and a C-terminal RING domain responsible for dimerization. To investigate how RNF4 activity is controlled, we increased polySUMO substrate concentration by ablating expression of SUMO protease SENP6. Accumulation of SUMO chains in vivo leads to ubiquitin-mediated proteolysis of RNF4. In vitro we demonstrate that at concentrations equivalent to those found in vivo RNF4 is predominantly monomeric and inactive as an ubiquitin E3 ligase. However, in the presence of SUMO chains, RNF4 is activated by dimerization, leading to both substrate ubiquitylation and autoubiquitylation, responsible for degradation of RNF4. Thus the ubiquitin E3 ligase activity of RNF4 is directly linked to the availability of its polySUMO substrates.
Collapse
Affiliation(s)
- Alejandro Rojas-Fernandez
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland DD1 5EH, UK; Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| | - Anna Plechanovová
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| | - Neil Hattersley
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| | - Ellis Jaffray
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| | - Michael H Tatham
- Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK
| | - Ronald T Hay
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit, University of Dundee, Dundee, Scotland DD1 5EH, UK; Centre for Gene Regulation and Expression, College of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK.
| |
Collapse
|
128
|
The SUMO-targeted ubiquitin ligase RNF4 localizes to etoposide-exposed mitotic chromosomes: implication for a novel DNA damage response during mitosis. Biochem Biophys Res Commun 2014; 447:83-8. [PMID: 24695317 DOI: 10.1016/j.bbrc.2014.03.106] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2014] [Accepted: 03/21/2014] [Indexed: 11/24/2022]
Abstract
RNF4, a SUMO-targeted ubiquitin ligase (STUbL), localizes to the nucleus and functions in the DNA damage response during interphase of the cell cycle. RNF4 also exists in cells undergoing mitosis, where its regulation and function remain poorly understood. Here we showed that administration of etoposide, an anticancer DNA topoisomerase II poison, to mitotic human cervical cancer HeLa cells induced SUMO-2/3-dependent localization of RNF4 to chromosomes. The FK2 antibody signals, indicative of poly/multi-ubiquitin assembly, were detected on etoposide-exposed mitotic chromosomes, whereas the signals were negligible in cells depleted for RNF4 by RNA interference. This suggests that RNF4 functions as a STUbL in the etoposide-induced damage response during mitosis. Indeed, RNF4-depletion sensitized mitotic HeLa cells to etoposide and increased cells with micronuclei. These results indicate the importance of the RNF4-mediated STUbL pathway during mitosis for the maintenance of chromosome integrity and further implicate RNF4 as a target for topo II poison-based therapy for cancer patients.
Collapse
|
129
|
Li T, Guan J, Huang Z, Hu X, Zheng X. RNF168-mediated H2A neddylation antagonizes ubiquitylation of H2A and regulates DNA damage repair. J Cell Sci 2014; 127:2238-48. [PMID: 24634510 DOI: 10.1242/jcs.138891] [Citation(s) in RCA: 46] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023] Open
Abstract
NEDD8 is an important regulatory factor in many biological processes. However, the substrates for neddylation, and the relationship between the ubiquitin and NEDD8 pathways remain largely unknown. Here, we show that NEDD8 is covalently conjugated to histone 2A (H2A), and that neddylation of H2A antagonizes its ubiquitylation. NEDD8 suppresses ubiquitylation of H2A, and a decreased level of free NEDD8 promotes H2A ubiquitylation. Furthermore, we found that the E3 ligase RNF168 promotes both H2A ubiquitylation and neddylation. Interestingly, RNF168 is itself a substrate for NEDD8, and neddylation of RNF168 is necessary for its E3 ubiquitin activity. Inhibition of RNF168 neddylation impairs the interaction between RNF168 and its E2 enzyme Ubc13 (also known as UBE2N). Moreover, in response to DNA damage, the level of H2A neddylation decreased with an increase in the ubiquitylation of H2A, which facilitates DNA damage repair. During the later stages of damage repair, H2A neddylation increased gradually, whereas ubiquitylation decreased to basal levels. Mechanistically, NEDD8 negatively regulates the DNA damage repair process through suppression of the ubiquitylation of H2A and γH2AX, which further blocks the recruitment of the damage response protein BRCA1. Our findings elucidate the relationship of H2A ubiquitylation and neddylation, and suggest a novel modulatory approach to DNA damage repair through the neddylation pathway.
Collapse
Affiliation(s)
- Tingting Li
- State Key Lab of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Junhong Guan
- State Key Lab of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Ziji Huang
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiang Hu
- Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| | - Xiaofeng Zheng
- State Key Lab of Protein and Plant Gene Research, School of Life Sciences, Peking University, Beijing 100871, China Department of Biochemistry and Molecular Biology, School of Life Sciences, Peking University, Beijing 100871, China
| |
Collapse
|
130
|
Multivalent interactions of the SUMO-interaction motifs in RING finger protein 4 determine the specificity for chains of the SUMO. Biochem J 2014; 457:207-14. [PMID: 24151981 PMCID: PMC3901395 DOI: 10.1042/bj20130753] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
RNF4 (RING finger protein 4) is a STUbL [SUMO (small ubiquitin-related modifier)-targeted ubiquitin ligase] controlling PML (promyelocytic leukaemia) nuclear bodies, DNA double strand break repair and other nuclear functions. In the present paper, we describe that the sequence and spacing of the SIMs (SUMO-interaction motifs) in RNF4 regulate the avidity-driven recognition of substrate proteins carrying SUMO chains of variable length. The ubiquitin ligase RNF4 targets proteins for proteasomal degradation if they are modified with SUMO chains. RNF4 recognizes its substrates by using short peptide motifs that interact non-covalently with SUMO chains if they contain at least two SUMO moieties.
Collapse
|
131
|
A mediator methylation mystery: JMJD1C demethylates MDC1 to regulate DNA repair. Nat Struct Mol Biol 2014; 20:1346-8. [PMID: 24304913 DOI: 10.1038/nsmb.2729] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Mediator of DNA-damage checkpoint 1 (MDMDC1) has a central role in repair of DNA double-strand breaks (DSBs) by both homologous recombination and nonhomologous end joining, and its function is regulated by post-translational phosphorylation, ubiquitylation and sumoylation. In this issue, a new study by Watanabe et al. reveals that methylation of MDMDC1 is also critical for its function in DSB repair and specifically affects repair through BRCA1-dependent homologous recombination.
Collapse
|
132
|
Crosstalk between ubiquitin and other post-translational modifications on chromatin during double-strand break repair. Trends Cell Biol 2014; 24:426-34. [PMID: 24569222 DOI: 10.1016/j.tcb.2014.01.005] [Citation(s) in RCA: 68] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2013] [Revised: 01/24/2014] [Accepted: 01/27/2014] [Indexed: 01/04/2023]
Abstract
The cellular response to DNA double-stranded breaks (DSBs) involves a conserved mechanism of recruitment and activation of numerous proteins involved in this pathway. The events that trigger this response in mammalian cells involve several post-translational modifications, but the role of non-proteasomal ubiquitin signaling is particularly central to this pathway. Recent work has demonstrated that ubiquitination does not act alone, but in concert with other post-translational modifications, including phosphorylation, methylation, acetylation, ADP-ribosylation, and other ubiquitin-like modifiers, particularly SUMOylation. We review novel and exciting crosstalk mechanisms between ubiquitination and other post-translational modifications, many of which work synergistically with each other to activate signaling events and help recruit important DNA damage effector proteins, particularly BRCA1 (breast cancer 1, early onset) and 53BP1 (tumor protein p53 binding protein 1), to sites of DNA damage.
Collapse
|
133
|
Jentsch S, Psakhye I. Control of Nuclear Activities by Substrate-Selective and Protein-Group SUMOylation. Annu Rev Genet 2013; 47:167-86. [DOI: 10.1146/annurev-genet-111212-133453] [Citation(s) in RCA: 180] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Stefan Jentsch
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| | - Ivan Psakhye
- Department of Molecular Cell Biology, Max Planck Institute of Biochemistry, 82152 Martinsried, Germany;
| |
Collapse
|
134
|
Westerbeck JW, Pasupala N, Guillotte M, Szymanski E, Matson BC, Esteban C, Kerscher O. A SUMO-targeted ubiquitin ligase is involved in the degradation of the nuclear pool of the SUMO E3 ligase Siz1. Mol Biol Cell 2013; 25:1-16. [PMID: 24196836 PMCID: PMC3873881 DOI: 10.1091/mbc.e13-05-0291] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
Here we show that the Slx5/Slx8 STUbL complex is involved in the efficient degradation of the nuclear pool of Siz1, a SUMO E3 ligase with many nuclear and cytosolic substrates. This novel finding suggests that STUbLs can regulate cellular SUMO homeostasis by targeting SUMO E3 ligases. The Slx5/Slx8 heterodimer constitutes a SUMO-targeted ubiquitin ligase (STUbL) with an important role in SUMO-targeted degradation and SUMO-dependent signaling. This STUbL relies on SUMO-interacting motifs in Slx5 to aid in substrate targeting and carboxy-terminal RING domains in both Slx5 and Slx8 for substrate ubiquitylation. In budding yeast cells, Slx5 resides in the nucleus, forms distinct foci, and can associate with double-stranded DNA breaks. However, it remains unclear how STUbLs interact with other proteins and their substrates. To examine the targeting and functions of the Slx5/Slx8 STUbL, we constructed and analyzed truncations of the Slx5 protein. Our structure–function analysis reveals a domain of Slx5 involved in nuclear localization and in the interaction with Slx5, SUMO, Slx8, and a novel interactor, the SUMO E3 ligase Siz1. We further analyzed the functional interaction of Slx5 and Siz1 in vitro and in vivo. We found that a recombinant Siz1 fragment is an in vitro ubiquitylation target of the Slx5/Slx8 STUbL. Furthermore, slx5∆ cells accumulate phosphorylated and sumoylated adducts of Siz1 in vivo. Specifically, we show that Siz1 can be ubiquitylated in vivo and is degraded in an Slx5-dependent manner when its nuclear egress is prevented in mitosis. In conclusion, our data provide a first look into the STUbL-mediated regulation of a SUMO E3 ligase.
Collapse
Affiliation(s)
- Jason W Westerbeck
- Biology Department, The College of William & Mary, Williamsburg, VA 23187
| | | | | | | | | | | | | |
Collapse
|
135
|
Hendzel MJ, Greenberg RA. Conversations between chromatin modifications and DNA double strand break repair: a commentary. Mutat Res 2013; 750:1-4. [PMID: 23994712 PMCID: PMC3827952 DOI: 10.1016/j.mrfmmm.2013.08.003] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Affiliation(s)
- Michael J Hendzel
- Department of Oncology, University of Alberta Cross Cancer Institute, 11560 University Avenue, Edmonton, Alberta T6G 1Z2, Canada.
| | | |
Collapse
|
136
|
RNA splicing: a new player in the DNA damage response. Int J Cell Biol 2013; 2013:153634. [PMID: 24159334 PMCID: PMC3789447 DOI: 10.1155/2013/153634] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2013] [Revised: 08/13/2013] [Accepted: 08/14/2013] [Indexed: 12/16/2022] Open
Abstract
It is widely accepted that tumorigenesis is a multistep process characterized by the sequential accumulation of genetic alterations. However, the molecular basis of genomic instability in cancer is still partially understood. The observation that hereditary cancers are often characterized by mutations in DNA repair and checkpoint genes suggests that accumulation of DNA damage is a major contributor to the oncogenic transformation. It is therefore of great interest to identify all the cellular pathways that contribute to the response to DNA damage. Recently, RNA processing has emerged as a novel pathway that may contribute to the maintenance of genome stability. In this review, we illustrate several different mechanisms through which pre-mRNA splicing and genomic stability can influence each other. We specifically focus on the role of splicing factors in the DNA damage response and describe how, in turn, activation of the DDR can influence the activity of splicing factors.
Collapse
|
137
|
SUMO-targeted ubiquitin ligases. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:75-85. [PMID: 24018209 DOI: 10.1016/j.bbamcr.2013.08.022] [Citation(s) in RCA: 188] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2013] [Revised: 08/25/2013] [Accepted: 08/28/2013] [Indexed: 12/16/2022]
Abstract
Covalent posttranslational modification with SUMO (small ubiquitin-related modifier) modulates functions of a wide range of proteins in eukaryotic cells. Sumoylation affects the activity, interaction properties, subcellular localization and the stability of its substrate proteins. The recent discovery of a novel class of ubiquitin ligases (E3), termed ULS (E3-S) or STUbL, that recognize sumoylated proteins, links SUMO modification to the ubiquitin/proteasome system. Here we review recent insights into the properties and function of these ligases and their roles in regulating sumoylated proteins. This article is part of a Special Issue entitled: Ubiquitin-Proteasome System. Guest Editors: Thomas Sommer and Dieter H. Wolf.
Collapse
|
138
|
Ouyang KJ, Yagle MK, Matunis MJ, Ellis NA. BLM SUMOylation regulates ssDNA accumulation at stalled replication forks. Front Genet 2013; 4:167. [PMID: 24027577 PMCID: PMC3761158 DOI: 10.3389/fgene.2013.00167] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2013] [Accepted: 08/12/2013] [Indexed: 12/22/2022] Open
Abstract
Polymerase stalling results in uncoupling of DNA polymerase and the replicative helicase, which generates single-stranded DNA (ssDNA). After stalling, RAD51 accumulates at stalled replication forks to stabilize the fork and to repair by homologous recombination (HR) double-strand breaks (DSBs) that accumulate there. We showed recently that SUMO modification of the BLM helicase is required in order for RAD51 to accumulate at stalled forks. In order to investigate how BLM SUMOylation controls RAD51 accumulation, we characterized the function of HR proteins and ssDNA-binding protein RPA in cells that stably expressed either normal BLM (BLM+) or SUMO-mutant BLM (SM-BLM). In HU-treated SM-BLM cells, mediators BRCA2 and RAD52, which normally substitute RAD51 for RPA on ssDNA, failed to accumulate normally at stalled forks; instead, excess RPA accumulated. SM-BLM cells also exhibited higher levels of HU-induced chromatin-bound RPA than BLM+ cells did. The excess RPA did not result from excessive intrinsic BLM helicase activity, because in vitro SUMOylated BLM unwound similar amounts of replication-fork substrate as unSUMOylated BLM. Nor did BLM SUMOylation inhibit binding of RPA to BLM in vitro; however, in immunoprecipitation experiments, more BLM-RPA complex formed in HU-treated SM-BLM cells, indicating that BLM SUMOylation controls the amount of BLM-RPA complex normally formed at stalled forks. Together, these results showed that BLM SUMOylation regulates the amount of ssDNA that accumulates during polymerase stalling. We conclude that BLM SUMOylation functions as a licensing mechanism that permits and regulates HR at damaged replication forks.
Collapse
Affiliation(s)
- Karen J Ouyang
- Department of Medicine, University of Chicago Chicago, IL, USA
| | | | | | | |
Collapse
|
139
|
Abstract
SUMO (small ubiquitin-like modifier) emerged from the shadow of the well-established ubiquitin some 15 years ago when it was shown that a distinct conjugation pathway was responsible for SUMO modification. Since then it has been established that SUMO modifies over a thousand substrates and plays diverse roles in many important biological processes. Recognition of SUMO is mediated by short peptide sequences known as SIMs (SUMO-interaction motifs) that allow effector proteins to engage SUMO-modified substrates. Like ubiquitin, SUMO can form polymeric chains, and these chains can be recognized by proteins containing multiple SIMs. One protein that contains such a sequence of SIMs also contains a RING (really interesting new gene) domain that is the hallmark of a ubiquitin E3 ligase. This ubiquitin ligase known as RNF4 (RING finger protein 4) has the unique property that it can recognize SUMO-modified proteins and target them for ubiquitin-mediated proteolysis. Structural and biochemical analyses of RNF4 has shed light on the long sought after mechanism of ubiquitin transfer and illustrates how its RING domain primes the ubiquitin-loaded E2 for catalysis.
Collapse
|
140
|
Droescher M, Chaugule VK, Pichler A. SUMO rules: regulatory concepts and their implication in neurologic functions. Neuromolecular Med 2013; 15:639-60. [PMID: 23990202 DOI: 10.1007/s12017-013-8258-6] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2013] [Accepted: 08/08/2013] [Indexed: 01/17/2023]
Abstract
Posttranslational modification of proteins by the small ubiquitin-like modifier (SUMO) is a potent regulator of various cellular events. Hundreds of substrates have been identified, many of them involved in vital processes like transcriptional regulation, signal transduction, protein degradation, cell cycle regulation, DNA repair, chromatin organization, and nuclear transport. In recent years, protein sumoylation increasingly attracted attention, as it could be linked to heart failure, cancer, and neurodegeneration. However, underlying mechanisms involving how modification by SUMO contributes to disease development are still scarce thus necessitating further research. This review aims to critically discuss currently available concepts of the SUMO pathway, thereby highlighting regulation in the healthy versus diseased organism, focusing on neurologic aspects. Better understanding of differential regulation in health and disease may finally allow to uncover pathogenic mechanisms and contribute to the development of disease-specific therapies.
Collapse
Affiliation(s)
- Mathias Droescher
- Department of Epigenetics, Max Planck Institute of Immunobiology and Epigenetics, Stübeweg 51, 79108, Freiburg, Germany
| | | | | |
Collapse
|
141
|
The SUMO system: a master organizer of nuclear protein assemblies. Chromosoma 2013; 122:475-85. [DOI: 10.1007/s00412-013-0429-6] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2013] [Revised: 07/10/2013] [Accepted: 07/10/2013] [Indexed: 12/21/2022]
|
142
|
Mermershtain I, Glover JNM. Structural mechanisms underlying signaling in the cellular response to DNA double strand breaks. Mutat Res 2013; 750:15-22. [PMID: 23896398 DOI: 10.1016/j.mrfmmm.2013.07.004] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2013] [Revised: 07/12/2013] [Accepted: 07/16/2013] [Indexed: 01/04/2023]
Abstract
DNA double strand breaks (DSBs) constitute one of the most dangerous forms of DNA damage. In actively replicating cells, these breaks are first recognized by specialized proteins that initiate a signal transduction cascade that modulates the cell cycle and results in the repair of the breaks by homologous recombination (HR). Protein signaling in response to double strand breaks involves phosphorylation and ubiquitination of chromatin and a variety of associated proteins. Here we review the emerging structural principles that underlie how post-translational protein modifications control protein signaling that emanates from these DNA lesions.
Collapse
Affiliation(s)
- Inbal Mermershtain
- Department of Biochemistry, University of Alberta, Edmonton, AB T6G 2H7, Canada
| | | |
Collapse
|
143
|
Bartocci C, Denchi EL. Put a RING on it: regulation and inhibition of RNF8 and RNF168 RING finger E3 ligases at DNA damage sites. Front Genet 2013; 4:128. [PMID: 23847653 PMCID: PMC3705210 DOI: 10.3389/fgene.2013.00128] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2013] [Accepted: 07/14/2013] [Indexed: 11/29/2022] Open
Abstract
RING (Really Interesting New Gene) domain-containing E3 ubiquitin ligases comprise a large family of enzymes that in combination with an E2 ubiquitin-conjugating enzyme, modify target proteins by attaching ubiquitin moieties. A number of RING E3s play an essential role in the cellular response to DNA damage highlighting a crucial contribution for ubiquitin-mediated signaling to the genome surveillance pathway. Among the RING E3s, RNF8 and RNF168 play a critical role in the response to double stranded breaks, one of the most deleterious types of DNA damage. These proteins act as positive regulators of the signaling cascade that initiates at DNA lesions. Inactivation of these enzymes is sufficient to severely impair the ability of cells to respond to DNA damage. Given their central role in the pathway, several layers of regulation act at this nodal signaling point. Here we will summarize current knowledge on the roles of RNF8 and RNF168 in maintaining genome integrity with particular emphasis on recent insights into the multiple layers of regulation that act on these enzymes to fine-tune the cellular response to DNA lesions.
Collapse
Affiliation(s)
- Cristina Bartocci
- Laboratory of Chromosome Biology and Genomic Stability, Department of Molecular and Experimental Medicine, The Scripps Research Institute La Jolla, CA, USA
| | | |
Collapse
|
144
|
Wang CM, Yang WH. Loss of SUMOylation on ATF3 inhibits proliferation of prostate cancer cells by modulating CCND1/2 activity. Int J Mol Sci 2013; 14:8367-80. [PMID: 23591848 PMCID: PMC3645748 DOI: 10.3390/ijms14048367] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 03/28/2013] [Accepted: 04/09/2013] [Indexed: 11/30/2022] Open
Abstract
SUMOylation plays an important role in regulating a wide range of cellular processes. Previously, we showed that ATF3, a stress response mediator, can be SUMOylated and lysine 42 is the major SUMO site. However, the significance of ATF3 SUMOylation in biological processes is still poorly understood. In the present study, we investigated the role of ATF3 SUMOylation on CCND activity and cellular proliferation in human prostate cancer cells. First, we showed that ATF3 can be SUMOylated endogenously in the overexpression system, and lysine 42 is the major SUMO site. Unlike normal prostate tissue and androgen-responsive LNCaP cancer cells, androgen-independent PC3 and DU145 cancer cells did not express ATF3 endogenously. Overexpression of ATF3 increased CCND1/2 expression in PC3 and DU145 cancer cells. Interestingly, we observed that SUMOylation is essential for ATF3-mediated CCND1/2 activation. Finally, we observed that SUMOylation plays a functional role in ATF3-mediated cellular proliferation in PC3 and DU145 cells. Taken together, our results demonstrate that SUMO modification of ATF3 influences CCND1/2 activity and cellular proliferation of prostate cancer PC3 and DU145 cells and explains at least in part how ATF3 functions to regulate cancer development.
Collapse
Affiliation(s)
- Chiung-Min Wang
- Department of Biomedical Sciences, Mercer University School of Medicine, Savannah, GA 31404, USA.
| | | |
Collapse
|
145
|
Pinder JB, Attwood KM, Dellaire G. Reading, writing, and repair: the role of ubiquitin and the ubiquitin-like proteins in DNA damage signaling and repair. Front Genet 2013; 4:45. [PMID: 23554604 PMCID: PMC3612592 DOI: 10.3389/fgene.2013.00045] [Citation(s) in RCA: 49] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2013] [Accepted: 03/13/2013] [Indexed: 12/14/2022] Open
Abstract
Genomic instability is both a hallmark of cancer and a major contributing factor to tumor development. Central to the maintenance of genome stability is the repair of DNA damage, and the most toxic form of DNA damage is the DNA double-strand break. As a consequence the eukaryotic cell harbors an impressive array of protein machinery to detect and repair DNA breaks through the initiation of a multi-branched, highly coordinated signaling cascade. This signaling cascade, known as the DNA damage response (DDR), functions to integrate DNA repair with a host of cellular processes including cell cycle checkpoint activation, transcriptional regulation, and programmed cell death. In eukaryotes, DNA is packaged in chromatin, which provides a mechanism to regulate DNA transactions including DNA repair through an equally impressive array of post-translational modifications to proteins within chromatin, and the DDR machinery itself. Histones, as the major protein component of chromatin, are subject to a host of post-translational modifications including phosphorylation, methylation, and acetylation. More recently, modification of both the histones and DDR machinery by ubiquitin and other ubiquitin-like proteins, such as the small ubiquitin-like modifiers, has been shown to play a central role in coordinating the DDR. In this review, we explore how ubiquitination and sumoylation contribute to the “writing” of key post-translational modifications within chromatin that are in turn “read” by the DDR machinery and chromatin-remodeling factors, which act together to facilitate the efficient detection and repair of DNA damage.
Collapse
Affiliation(s)
- Jordan B Pinder
- Department of Pathology, Dalhousie University Halifax, NS, Canada
| | | | | |
Collapse
|
146
|
Guzzo CM, Matunis MJ. Expanding SUMO and ubiquitin-mediated signaling through hybrid SUMO-ubiquitin chains and their receptors. Cell Cycle 2013; 12:1015-7. [PMID: 23511166 PMCID: PMC3646854 DOI: 10.4161/cc.24332] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022] Open
|
147
|
Stone HR, Morris JR. DNA damage emergency: cellular garbage disposal to the rescue? Oncogene 2013; 33:805-13. [PMID: 23503465 DOI: 10.1038/onc.2013.60] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Revised: 12/18/2012] [Accepted: 12/22/2012] [Indexed: 12/19/2022]
Abstract
The proteasome is a cellular machine found in the cytosol, nucleus and on chromatin that performs much of the proteolysis in eukaryotic cells. Recent reports show it is enriched at sites of double-stranded DNA breaks (DSBs) in mammalian cells. What is it doing there? This review will address three possibilities suggested by recent reports: in degrading proteins after their ubiquitination at and eviction from chromatin; as a deubiquitinase, specific to the antagonism of ubiquitin conjugates generated as part of the signalling of a DSB; and as a functional component of DNA repair mechanism itself. These findings add complexity to the proteasome as a potential therapeutic target in cancer treatment.
Collapse
Affiliation(s)
- H R Stone
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| | - J R Morris
- School of Cancer Sciences, College of Medical and Dental Sciences, University of Birmingham, Edgbaston, Birmingham, UK
| |
Collapse
|
148
|
Moorefield B. Hybrid signals for BRCA1. Nat Struct Mol Biol 2013. [DOI: 10.1038/nsmb.2492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
149
|
Abstract
Synthetic biology, cancer signaling, and metabolism all made the list of breakthroughs in basic signal transduction research or the translational application of signaling knowledge.
Collapse
Affiliation(s)
- Michael B. Yaffe
- Chief Scientific Editor of Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005, USA
- Professor, David H. Koch Institute for Integrative Cancer Research, The Broad Institute, and the Departments of Biology and Biological Engineering, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Nancy R. Gough
- Editor of Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC 20005, USA
| |
Collapse
|