101
|
Copper chaperone Atox1 plays role in breast cancer cell migration. Biochem Biophys Res Commun 2017; 483:301-304. [DOI: 10.1016/j.bbrc.2016.12.148] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 12/22/2016] [Indexed: 01/28/2023]
|
102
|
Fouani L, Menezes SV, Paulson M, Richardson DR, Kovacevic Z. Metals and metastasis: Exploiting the role of metals in cancer metastasis to develop novel anti-metastatic agents. Pharmacol Res 2017; 115:275-287. [DOI: 10.1016/j.phrs.2016.12.001] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/14/2016] [Revised: 12/01/2016] [Accepted: 12/01/2016] [Indexed: 01/06/2023]
|
103
|
HRG/HER2/HER3 signaling promotes AhR-mediated Memo-1 expression and migration in colorectal cancer. Oncogene 2016; 36:2394-2404. [DOI: 10.1038/onc.2016.390] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2016] [Revised: 09/08/2016] [Accepted: 09/12/2016] [Indexed: 12/23/2022]
|
104
|
Wang J, Chen J, Tang Z, Li Y, Hu L, Pan J. The Effects of Copper on Brain Microvascular Endothelial Cells and Claudin Via Apoptosis and Oxidative Stress. Biol Trace Elem Res 2016; 174:132-141. [PMID: 27038183 DOI: 10.1007/s12011-016-0685-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/22/2016] [Accepted: 03/22/2016] [Indexed: 12/13/2022]
Abstract
Many neurodegenerative diseases are related to copper although the effects on brain microvascular endothelial cells (BMECs) are poorly understood. In the present study, a primary BMEC culture model was established to evaluate the effects of copper on brain microvascular endothelial cells and whether claudin-1, claudin-3, claudin-5, and claudin-12 isoforms contribute to apoptosis and intrinsic antioxidant activity. Our results showed that copper ions had dual effects on BMECs by regulating intracellular reactive oxygen species (ROS) levels. Copper levels between 30 and 120 μM could enhance viability and promote proliferation. On the other hand, copper cytotoxicity was a result of apoptosis indicating a redox-independent manner of cell death. Expression levels of claudins were also regulated by copper in a concentration-dependent manner. We identified four claudin isoforms (1, 3, 5, and 12) and showed that their expression levels were regulated as a group by copper. Antioxidant activity of BMECs was also copper regulated, and superoxide dismutase and catalase were the main contributors to BMEC antioxidant functions. Together, our results indicated that copper had dual effects on BMEC growth and intrinsic antioxidant activities played a crucial role in BMEC survival and tight junction.
Collapse
Affiliation(s)
- Jian Wang
- College of Veterinary Medicine, South China Agriculture University, WuShan Road 483, Guangzhou, 510642, China
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, 510642, China
| | - Junquan Chen
- College of Veterinary Medicine, South China Agriculture University, WuShan Road 483, Guangzhou, 510642, China
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, 510642, China
| | - Zhaoxin Tang
- College of Veterinary Medicine, South China Agriculture University, WuShan Road 483, Guangzhou, 510642, China.
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, 510642, China.
- Key Laboratory of Biotechnology and Bioproducts Development for Animal Epidemic Prevention, Ministry of Agriculture, Zhaoqing, 526238, China.
| | - Ying Li
- College of Veterinary Medicine, South China Agriculture University, WuShan Road 483, Guangzhou, 510642, China
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, 510642, China
| | - Lianmei Hu
- College of Veterinary Medicine, South China Agriculture University, WuShan Road 483, Guangzhou, 510642, China
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, 510642, China
| | - Jiaqiang Pan
- College of Veterinary Medicine, South China Agriculture University, WuShan Road 483, Guangzhou, 510642, China
- Key Laboratory of Comprehensive Prevention and Control for Severe Clinical Animal Diseases of Guangdong Province, Guangzhou, 510642, China
| |
Collapse
|
105
|
Chamel G, Gourlan AT, Télouk P, Sayag D, Milliard V, Loiseau C, Simon M, Buff S, Ponce F. Retrospective evaluation of blood copper stable isotopes ratio65Cu/63Cu as a biomarker of cancer in dogs. Vet Comp Oncol 2016; 15:1323-1332. [DOI: 10.1111/vco.12273] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 09/05/2016] [Accepted: 09/07/2016] [Indexed: 12/11/2022]
Affiliation(s)
- G. Chamel
- Clinical Unit of Oncology, Department of Internal Medicine; University of Lyon; Lyon France
| | | | - P. Télouk
- Univ Lyon, ENS-Lyon; Université Lyon; Lyon France
| | - D. Sayag
- Clinical Unit of Oncology, Department of Internal Medicine; University of Lyon; Lyon France
| | - V. Milliard
- CRB-ANIM, UPSP ICE 2011-03-101; University of Lyon; Lyon France
| | - C. Loiseau
- CRB-ANIM, UPSP ICE 2011-03-101; University of Lyon; Lyon France
| | - M. Simon
- Univ Lyon, ENS-Lyon; Université Lyon; Lyon France
| | - S. Buff
- CRB-ANIM, UPSP ICE 2011-03-101; University of Lyon; Lyon France
- Department of Theriogenology, CERREC; University of Lyon; Lyon France
| | - F. Ponce
- Clinical Unit of Oncology, Department of Internal Medicine; University of Lyon; Lyon France
- CRB-ANIM, UPSP ICE 2011-03-101; University of Lyon; Lyon France
| |
Collapse
|
106
|
Park KC, Fouani L, Jansson PJ, Wooi D, Sahni S, Lane DJR, Palanimuthu D, Lok HC, Kovačević Z, Huang MLH, Kalinowski DS, Richardson DR. Copper and conquer: copper complexes of di-2-pyridylketone thiosemicarbazones as novel anti-cancer therapeutics. Metallomics 2016; 8:874-86. [PMID: 27334916 DOI: 10.1039/c6mt00105j] [Citation(s) in RCA: 98] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023]
Abstract
Copper is an essential trace metal required by organisms to perform a number of important biological processes. Copper readily cycles between its reduced Cu(i) and oxidised Cu(ii) states, which makes it redox active in biological systems. This redox-cycling propensity is vital for copper to act as a catalytic co-factor in enzymes. While copper is essential for normal physiology, enhanced copper levels in tumours leads to cancer progression. In particular, the stimulatory effect of copper on angiogenesis has been established in the last several decades. Additionally, it has been demonstrated that copper affects tumour growth and promotes metastasis. Based on the effects of copper on cancer progression, chelators that bind copper have been developed as anti-cancer agents. In fact, a novel class of thiosemicarbazone compounds, namely the di-2-pyridylketone thiosemicarbazones that bind copper, have shown great promise in terms of their anti-cancer activity. These agents have a unique mechanism of action, in which they form redox-active complexes with copper in the lysosomes of cancer cells. Furthermore, these agents are able to overcome P-glycoprotein (P-gp) mediated multi-drug resistance (MDR) and act as potent anti-oncogenic agents through their ability to up-regulate the metastasis suppressor protein, N-myc downstream regulated gene-1 (NDRG1). This review provides an overview of the metabolism and regulation of copper in normal physiology, followed by a discussion of the dysregulation of copper homeostasis in cancer and the effects of copper on cancer progression. Finally, recent advances in our understanding of the mechanisms of action of anti-cancer agents targeting copper are discussed.
Collapse
Affiliation(s)
- Kyung Chan Park
- Molecular Pharmacology and Pathology Program, Discipline of Pathology and Bosch Institute, Blackburn Building (D06), The University of Sydney, Sydney, New South Wales 2006, Australia.
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
107
|
Redox cycling metals: Pedaling their roles in metabolism and their use in the development of novel therapeutics. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:727-48. [PMID: 26844773 DOI: 10.1016/j.bbamcr.2016.01.026] [Citation(s) in RCA: 107] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2015] [Accepted: 01/29/2016] [Indexed: 12/12/2022]
Abstract
Essential metals, such as iron and copper, play a critical role in a plethora of cellular processes including cell growth and proliferation. However, concomitantly, excess of these metal ions in the body can have deleterious effects due to their ability to generate cytotoxic reactive oxygen species (ROS). Thus, the human body has evolved a very well-orchestrated metabolic system that keeps tight control on the levels of these metal ions. Considering their very high proliferation rate, cancer cells require a high abundance of these metals compared to their normal counterparts. Interestingly, new anti-cancer agents that take advantage of the sensitivity of cancer cells to metal sequestration and their susceptibility to ROS have been developed. These ligands can avidly bind metal ions to form redox active metal complexes, which lead to generation of cytotoxic ROS. Furthermore, these agents also act as potent metastasis suppressors due to their ability to up-regulate the metastasis suppressor gene, N-myc downstream regulated gene 1. This review discusses the importance of iron and copper in the metabolism and progression of cancer, how they can be exploited to target tumors and the clinical translation of novel anti-cancer chemotherapeutics.
Collapse
|
108
|
Urinary metallomics as a novel biomarker discovery platform: Breast cancer as a case study. Clin Chim Acta 2016; 452:142-8. [DOI: 10.1016/j.cca.2015.11.014] [Citation(s) in RCA: 30] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2015] [Revised: 11/11/2015] [Accepted: 11/12/2015] [Indexed: 11/18/2022]
|
109
|
Van Otterloo E, Feng W, Jones KL, Hynes NE, Clouthier DE, Niswander L, Williams T. MEMO1 drives cranial endochondral ossification and palatogenesis. Dev Biol 2015; 415:278-295. [PMID: 26746790 DOI: 10.1016/j.ydbio.2015.12.024] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2015] [Revised: 11/02/2015] [Accepted: 12/21/2015] [Indexed: 02/01/2023]
Abstract
The cranial base is a component of the neurocranium and has a central role in the structural integration of the face, brain and vertebral column. Consequently, alteration in the shape of the human cranial base has been intimately linked with primate evolution and defective development is associated with numerous human facial abnormalities. Here we describe a novel recessive mutant mouse strain that presented with a domed head and fully penetrant cleft secondary palate coupled with defects in the formation of the underlying cranial base. Mapping and non-complementation studies revealed a specific mutation in Memo1 - a gene originally associated with cell migration. Expression analysis of Memo1 identified robust expression in the perichondrium and periosteum of the developing cranial base, but only modest expression in the palatal shelves. Fittingly, although the palatal shelves failed to elevate in Memo1 mutants, expression changes were modest within the shelves themselves. In contrast, the cranial base, which forms via endochondral ossification had major reductions in the expression of genes responsible for bone formation, notably matrix metalloproteinases and markers of the osteoblast lineage, mirrored by an increase in markers of cartilage and extracellular matrix development. Concomitant with these changes, mutant cranial bases showed an increased zone of hypertrophic chondrocytes accompanied by a reduction in both vascular invasion and mineralization. Finally, neural crest cell-specific deletion of Memo1 caused a failure of anterior cranial base ossification indicating a cell autonomous role for MEMO1 in the development of these neural crest cell derived structures. However, palate formation was largely normal in these conditional mutants, suggesting a non-autonomous role for MEMO1 in palatal closure. Overall, these findings assign a new function to MEMO1 in driving endochondral ossification in the cranium, and also link abnormal development of the cranial base with more widespread effects on craniofacial shape relevant to human craniofacial dysmorphology.
Collapse
Affiliation(s)
- Eric Van Otterloo
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA.
| | - Weiguo Feng
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Kenneth L Jones
- Department of Biochemistry and Molecular Genetics, University of Colorado School of Medicine, Aurora, CO 80045, USA
| | - Nancy E Hynes
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, CH-4058 Basel, Switzerland; University of Basel, CH-4002 Basel, Switzerland
| | - David E Clouthier
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA
| | - Lee Niswander
- Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
| | - Trevor Williams
- Department of Craniofacial Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Cell and Developmental Biology, University of Colorado Anschutz Medical Campus, Aurora, CO 80045, USA; Department of Pediatrics, University of Colorado Anschutz Medical Campus, Children's Hospital Colorado, Aurora, CO 80045, USA
| |
Collapse
|
110
|
Nagler R, Cohen S, Gavish M. The Effect of Cigarette Smoke on the Translocator Protein (TSPO) in Cultured Lung Cancer Cells. J Cell Biochem 2015; 116:2786-92. [PMID: 25968977 DOI: 10.1002/jcb.25221] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2015] [Accepted: 05/06/2015] [Indexed: 12/16/2023]
Abstract
Lung cancer is prevalent in cigarette smokers. The mitochondrial membrane translocator protein (TSPO), is thought to protect cells from free radical damage. We examined the effect of cigarette smoke (CS) (containing free radicals) alone and in the presence of saliva (containing redox active free iron), on survival of H1299 lung cancer cells and on their mitochondrial characteristics, and whether TSPO binding was influenced by CS and by saliva. We exposed H1299 cells to CS in the presence/absence of saliva and also characterized TSPO binding in the cells using [3H]PK 11195 as a radioligand. CS induced a significant drop in mitochondrial potential (ΔΨm), while addition of saliva did not lead to further loss of ΔΨm (42.5% vs. 39.85%). Scatchard analysis of the saturation curve of [3H]PK 11195 binding (0.2-6 nM final concentration) yielded a straight-line plot (R = 0.9). Average Bmax value was 3274 ± 787 fmol/mg of protein, and average Kd value was 9.2 ± 1.3 nM. Benzodiazepine diazepam partially prevented decrease in cell survival following exposure to CS and redox active iron containing media (saliva) while benzodiazepine clonazepam did not, indicating that this effect is TSPO-specific. Exposure of cells to CS resulted in alternation of biomolecules expressed by CLs peroxidation, reduction of TSPO binding, and depletion of the mitochondrial potential. This irreversible damage was enhanced in the presence of saliva. All these modulations may result in cellular death increase following CS exposure, enhanced in the presence of saliva.
Collapse
Affiliation(s)
- Rafael Nagler
- Department of Neuroscience, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 31096, Haifa, Israel
| | - Shiri Cohen
- Department of Neuroscience, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 31096, Haifa, Israel
| | - Moshe Gavish
- Department of Neuroscience, Rappaport Family Institute for Research in the Medical Sciences, Technion-Israel Institute of Technology, 31096, Haifa, Israel
| |
Collapse
|
111
|
Denoyer D, Masaldan S, La Fontaine S, Cater MA. Targeting copper in cancer therapy: 'Copper That Cancer'. Metallomics 2015; 7:1459-76. [PMID: 26313539 DOI: 10.1039/c5mt00149h] [Citation(s) in RCA: 574] [Impact Index Per Article: 57.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Copper is an essential micronutrient involved in fundamental life processes that are conserved throughout all forms of life. The ability of copper to catalyze oxidation-reduction (redox) reactions, which can inadvertently lead to the production of reactive oxygen species (ROS), necessitates the tight homeostatic regulation of copper within the body. Many cancer types exhibit increased intratumoral copper and/or altered systemic copper distribution. The realization that copper serves as a limiting factor for multiple aspects of tumor progression, including growth, angiogenesis and metastasis, has prompted the development of copper-specific chelators as therapies to inhibit these processes. Another therapeutic approach utilizes specific ionophores that deliver copper to cells to increase intracellular copper levels. The therapeutic window between normal and cancerous cells when intracellular copper is forcibly increased, is the premise for the development of copper-ionophores endowed with anticancer properties. Also under investigation is the use of copper to replace platinum in coordination complexes currently used as mainstream chemotherapies. In comparison to platinum-based drugs, these promising copper coordination complexes may be more potent anticancer agents, with reduced toxicity toward normal cells and they may potentially circumvent the chemoresistance associated with recurrent platinum treatment. In addition, cancerous cells can adapt their copper homeostatic mechanisms to acquire resistance to conventional platinum-based drugs and certain copper coordination complexes can re-sensitize cancer cells to these drugs. This review will outline the biological importance of copper and copper homeostasis in mammalian cells, followed by a discussion of our current understanding of copper dysregulation in cancer, and the recent therapeutic advances using copper coordination complexes as anticancer agents.
Collapse
Affiliation(s)
- Delphine Denoyer
- Centre for Cellular and Molecular Biology, School of Life and Environmental Sciences, Deakin University, Burwood, Victoria, Australia.
| | | | | | | |
Collapse
|
112
|
Burghardt I, Lüthen F, Prinz C, Kreikemeyer B, Zietz C, Neumann HG, Rychly J. A dual function of copper in designing regenerative implants. Biomaterials 2015; 44:36-44. [PMID: 25617124 DOI: 10.1016/j.biomaterials.2014.12.022] [Citation(s) in RCA: 144] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2014] [Revised: 12/11/2014] [Accepted: 12/20/2014] [Indexed: 01/09/2023]
Abstract
The supply of titanium implants which are widely used in orthopaedics with both regenerative and anti-microbial properties will achieve a great progress in bone regeneration. We asked, whether by appropriate concentrations of copper ions it will be possible both to inhibit growth of bacteria and stimulate biological responses in mesenchymal stem cells (MSC). Using titanium material which released galvanically deposited copper at concentrations from 0.3 to 1.75 mM, growth of planktonic Staphylococcus aureus was blocked and more importantly adherent bacteria were cleared from the material surface within 24 h. To test biological responses of human bone marrow derived MSC due to copper ions, we found that copper stimulated the proliferation of MSC in a narrow concentration range around 0.1 mM. Similar copper concentrations enhanced osteogenic differentiation of MSC when cells were cultured in osteogenic differentiation medium. We observed increased activity of alkaline phosphatase (ALP), higher expression of collagen I, osteoprotegerin, osteopontin and finally mineralization of the cells. We conclude that titanium implants that release copper ions can be effective against bacterial infections at higher concentrations of copper near the implant surface and can promote bone regeneration when its concentration becomes lower due to diffusion.
Collapse
Affiliation(s)
- Ines Burghardt
- Laboratory of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | - Frank Lüthen
- Laboratory of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany
| | | | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology and Hygiene, Rostock University Medical Center, 18057 Rostock, Germany
| | - Carmen Zietz
- Department of Orthopaedics, Biomechanics and Implant Technology Research Laboratory, Rostock University Medical Center, 18057 Rostock, Germany
| | | | - Joachim Rychly
- Laboratory of Cell Biology, Rostock University Medical Center, Schillingallee 69, 18057 Rostock, Germany.
| |
Collapse
|
113
|
Hynes NE, VanHook AM. Science Signaling
Podcast: 10 June 2014. Sci Signal 2014. [DOI: 10.1126/scisignal.2005526] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
The copper-binding enzyme Memo promotes breast cancer metastasis.
Collapse
Affiliation(s)
- Nancy E. Hynes
- Friedrich Miescher Institute for Biomedical Research, Basel CH-4058, Switzerland
- University of Basel, Basel CH-4002, Switzerland
| | - Annalisa M. VanHook
- Web Editor, Science Signaling, American Association for the Advancement of Science, 1200 New York Avenue NW, Washington, DC, 20005, USA
| |
Collapse
|