101
|
Lin Y, Xu Z. Fibroblast Senescence in Idiopathic Pulmonary Fibrosis. Front Cell Dev Biol 2020; 8:593283. [PMID: 33324646 PMCID: PMC7723977 DOI: 10.3389/fcell.2020.593283] [Citation(s) in RCA: 66] [Impact Index Per Article: 13.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/31/2020] [Indexed: 12/13/2022] Open
Abstract
Aging is an inevitable and complex natural phenomenon due to the increase in age. Cellular senescence means a non-proliferative but viable cellular physiological state. It is the basis of aging, and it exists in the body at any time point. Idiopathic pulmonary fibrosis (IPF) is an interstitial fibrous lung disease with unknown etiology, characterized by irreversible destruction of lung structure and function. Aging is one of the most critical risk factors for IPF, and extensive epidemiological data confirms IPF as an aging-related disease. Senescent fibroblasts in IPF show abnormal activation, telomere shortening, metabolic reprogramming, mitochondrial dysfunction, apoptosis resistance, autophagy deficiency, and senescence-associated secretory phenotypes (SASP). These characteristics of senescent fibroblasts establish a close link between cellular senescence and IPF. The treatment of senescence-related molecules and pathways is continually emerging, and using senolytics eliminating senescent fibroblasts is also actively tried as a new therapy for IPF. In this review, we discuss the roles of aging and cellular senescence in IPF. In particular, we summarize the signaling pathways through which senescent fibroblasts influence the occurrence and development of IPF. On this basis, we further talk about the current treatment ideas, hoping this paper can be used as a helpful reference for future researches.
Collapse
Affiliation(s)
- Yifan Lin
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| | - Zhihao Xu
- Department of Respiratory and Critical Care Medicine, The Fourth Affiliated Hospital, School of Medicine, Zhejiang University, Yiwu, China
| |
Collapse
|
102
|
Zhou S, Yin X, Mayr M, Noor M, Hylands PJ, Xu Q. Proteomic landscape of TGF-β1-induced fibrogenesis in renal fibroblasts. Sci Rep 2020; 10:19054. [PMID: 33149203 PMCID: PMC7642370 DOI: 10.1038/s41598-020-75989-4] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2020] [Accepted: 10/22/2020] [Indexed: 01/09/2023] Open
Abstract
Transforming growth factor-β1 (TGF-β1) plays a premier role in fibrosis. To understand the molecular events underpinning TGF-β1-induced fibrogenesis, we examined the proteomic profiling of a TGF-β1-induced in vitro model of fibrosis in NRK-49F normal rat kidney fibroblasts. Mass spectrometric analysis indicated that 628 cell-lysate proteins enriched in 44 cellular component clusters, 24 biological processes and 27 molecular functions were regulated by TGF-β1. Cell-lysate proteins regulated by TGF-β1 were characterised by increased ribosomal proteins and dysregulated proteins involved in multiple metabolic pathways, including reduced Aldh3a1 and induced Enpp1 and Impdh2, which were validated by enzyme-linked immunosorbent assays (ELISA). In conditioned media, 62 proteins enriched in 20 cellular component clusters, 40 biological processes and 7 molecular functions were regulated by TGF-β1. Secretomic analysis and ELISA uncovered dysregulated collagen degradation regulators (induced PAI-1 and reduced Mmp3), collagen crosslinker (induced Plod2), signalling molecules (induced Ccn1, Ccn2 and Tsku, and reduced Ccn3) and chemokines (induced Ccl2 and Ccl7) in the TGF-β1 group. We conclude that TGF-β1-induced fibrogenesis in renal fibroblasts is an intracellular metabolic disorder and is inherently coupled with inflammation mediated by chemokines. Proteomic profiling established in this project may guide development of novel anti-fibrotic therapies in a network pharmacology approach.
Collapse
Affiliation(s)
- Shujun Zhou
- Renal Science and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Xiaoke Yin
- School of Cardiovascular Medicine and Sciences, King's BHF Centre of Research Excellence, King's College London, London, UK
| | - Manuel Mayr
- School of Cardiovascular Medicine and Sciences, King's BHF Centre of Research Excellence, King's College London, London, UK
| | - Mazhar Noor
- Renal Science and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK
| | - Peter J Hylands
- Institute of Pharmaceutical Science, King's College London, London, UK
| | - Qihe Xu
- Renal Science and Integrative Chinese Medicine Laboratory, Department of Inflammation Biology, School of Immunology and Microbial Sciences, King's College London, London, UK.
| |
Collapse
|
103
|
Abstract
INTRODUCTION Myofibroblasts are the primary executor and influencer in lung fibrosis. Latest studies on lung myofibroblast pathobiology have significantly advanced the understanding of the pathogenesis of lung fibrosis and shed new light on strategies targeting these cells to treat this disease. AREAS COVERED This article reviewed the most recent progresses, mainly within the last 5 years, on the definition, origin, activity regulation, and targeting of lung myofibroblasts in lung fibrosis. We did a literature search on PubMed using the keywords below from the dates 2010 to 2020. EXPERT OPINION With the improved cell lineage characterization and the advent of scRNA-seq, the field is having much better picture of the lung myofibroblast origin and mesenchymal heterogeneity. Additionally, cellular metabolism has emerged as a key regulation of lung myofibroblast pathogenic phenotype and is a promising therapeutic target for treating a variety of lung fibrotic disorders.
Collapse
Affiliation(s)
- Dingyuan Jiang
- Department of Pulmonary and Critical Care Medicine, Center of Respiratory Medicine, China-Japan Friendship Hospital; National Clinical Research Center for Respiratory Diseases , Beijing, China
| | - Tapan Dey
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama, USA
| | - Gang Liu
- Division of Pulmonary, Allergy, and Critical Care Medicine, Department of Medicine, University of Alabama at Birmingham , Birmingham, Alabama, USA
| |
Collapse
|
104
|
Platé M, Guillotin D, Chambers RC. The promise of mTOR as a therapeutic target pathway in idiopathic pulmonary fibrosis. Eur Respir Rev 2020; 29:29/157/200269. [PMID: 33060168 PMCID: PMC9488186 DOI: 10.1183/16000617.0269-2020] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Accepted: 09/18/2020] [Indexed: 12/11/2022] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is characterised by the progressive deposition of excessive extracellular matrix proteins within the lung parenchyma and represents the most rapidly progressive and fatal of all fibrotic conditions. Current anti-fibrotic drugs approved for the treatment of IPF fail to halt disease progression and have significant side-effect profiles. Therefore, there remains a pressing need to develop novel therapeutic strategies for IPF. Mammalian target of rapamycin (mTOR) forms the catalytic subunit of two complexes, mTORC1 and mTORC2. mTORC1 acts as critical cellular sensor which integrates intracellular and extracellular signals to reciprocally regulate a variety of anabolic and catabolic processes. The emerging evidence for a critical role for mTORC1 in influencing extracellular matrix production, metabolism, autophagy and senescence in the setting of IPF highlights this axis as a novel therapeutic target with the potential to impact multiple IPF pathomechanisms. Current evidence supports the scientific rationale for targeting the mTOR pathway in idiopathic pulmonary fibrosishttps://bit.ly/33OQiYf
Collapse
Affiliation(s)
- Manuela Platé
- Centre for Inflammation and Tissue Repair, Dept of Respiratory Medicine, Division of Medicine, University College London, London, UK
| | - Delphine Guillotin
- Centre for Inflammation and Tissue Repair, Dept of Respiratory Medicine, Division of Medicine, University College London, London, UK
| | - Rachel C Chambers
- Centre for Inflammation and Tissue Repair, Dept of Respiratory Medicine, Division of Medicine, University College London, London, UK
| |
Collapse
|
105
|
Cloonan SM, Kim K, Esteves P, Trian T, Barnes PJ. Mitochondrial dysfunction in lung ageing and disease. Eur Respir Rev 2020; 29:29/157/200165. [PMID: 33060165 DOI: 10.1183/16000617.0165-2020] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Accepted: 09/25/2020] [Indexed: 12/12/2022] Open
Abstract
Mitochondrial biology has seen a surge in popularity in the past 5 years, with the emergence of numerous new avenues of exciting mitochondria-related research including immunometabolism, mitochondrial transplantation and mitochondria-microbe biology. Since the early 1960s mitochondrial dysfunction has been observed in cells of the lung in individuals and in experimental models of chronic and acute respiratory diseases. However, it is only in the past decade with the emergence of more sophisticated tools and methodologies that we are beginning to understand how this enigmatic organelle regulates cellular homeostasis and contributes to disease processes in the lung. In this review, we highlight the diverse role of mitochondria in individual lung cell populations and what happens when these essential organelles become dysfunctional with ageing and in acute and chronic lung disease. Although much remains to be uncovered, we also discuss potential targeted therapeutics for mitochondrial dysfunction in the ageing and diseased lung.
Collapse
Affiliation(s)
- Suzanne M Cloonan
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Dept of Medicine, New York, NY, USA.,School of Medicine, Trinity College Dublin and Tallaght University Hospital, Dublin, Ireland
| | - Kihwan Kim
- Division of Pulmonary and Critical Care Medicine, Joan and Sanford I. Weill Dept of Medicine, New York, NY, USA
| | - Pauline Esteves
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Dépt de Pharmacologie, CIC 1401, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France
| | - Thomas Trian
- Univ-Bordeaux, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, Dépt de Pharmacologie, CIC 1401, Bordeaux, France.,INSERM, Centre de Recherche Cardio-thoracique de Bordeaux, U1045, CIC 1401, Bordeaux, France
| | - Peter J Barnes
- National Heart and Lung Institute, Imperial College, London, UK
| |
Collapse
|
106
|
Herrerias MM, Budinger GRS. Revisiting mTOR and Epithelial-Mesenchymal Transition. Am J Respir Cell Mol Biol 2020; 62:669-670. [PMID: 32228391 PMCID: PMC7258817 DOI: 10.1165/rcmb.2020-0109ed] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023] Open
Affiliation(s)
- Mariana M Herrerias
- Division of Pulmonary and Critical Care MedicineNorthwestern UniversityChicago, Illinois
| | - G R Scott Budinger
- Division of Pulmonary and Critical Care MedicineNorthwestern UniversityChicago, Illinois
| |
Collapse
|
107
|
Jiang L, Deng Y, Li W, Lu Y. Arctigenin suppresses fibroblast activity and extracellular matrix deposition in hypertrophic scarring by reducing inflammation and oxidative stress. Mol Med Rep 2020; 22:4783-4791. [PMID: 33174021 PMCID: PMC7646887 DOI: 10.3892/mmr.2020.11539] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2020] [Accepted: 08/18/2020] [Indexed: 12/11/2022] Open
Abstract
Hypertrophic scars (HSs) are a progressive fibroproliferation disorder caused by abnormal tissue repair after deep skin injury, and are characterized by continuous activation of fibroblasts and excessive deposition of extracellular matrix. Arctigenin (ATG), a phytomedicine derived from certain plants, displays antifibrotic effects in certain diseases, such as oral submucous fibrosis and peritoneal fibrosis. In the present study, to determine the antifibrotic potential of ATG in HS, a bleomycin (BLM)-induced skin fibrosis murine model was established. C57BL/6 mice were randomly divided into Control group, BLM group and BLM+ATG group. At 1 day post-bleomycin induction, the BLM+ATG group was intraperitoneally injected with 3 mg/kg/day ATG for 28 consecutive days. Pathological changes in the skin tissues were observed by hematoxylin and eosin staining. Collagen content was determined using a Sircol Collagen assay kit. Immunofluorescence staining was performed to detect the expression of TGF-β1 and α-SMA. The expression changes of various factors were detected by reverse transcription-quantitative PCR, western blotting and ELISA. Compared with the BLM group, ATG treatment significantly alleviated skin fibrosis by reducing dermal thickness, collagen content and expression levels of extracellular matrix-related genes (collagen type I α1 chain, collagen type I α2 chain, connective tissue growth factor and plasminogen activator inhibitor-1) in BLM-induced fibrotic skin. ATG also inhibited the transformation of fibroblasts into myofibroblasts in vivo and decreased the expression of TGF-β1 in BLM-induced fibrotic skin. Furthermore, the contents of proinflammatory cytokines, including IL-1β, IL-4, IL-6, TNF-α and monocyte chemoattractant protein-1, were significantly decreased in the BLM+ATG group compared with the BLM group. Redox imbalance and oxidative stress were also reversed by ATG in BLM-induced fibrotic skin, as demonstrated by the upregulation of antioxidants (glutathione and superoxide dismutase) and downregulation of oxidants (malondialdehyde) in the BLM+ATG group compared with the BLM group. Moreover, the results indicated that the antioxidant effect of ATG may occur via activation of the nuclear factor erythroid-2-related factor 2/heme oxygenase-1 signaling pathway. Collectively, the present study indicated that ATG could ameliorate skin fibrosis in a murine model of HS, which was partly mediated by reducing inflammation and oxidative stress. Therefore, ATG may serve as a therapeutic agent for HSs.
Collapse
Affiliation(s)
- Ling Jiang
- Department of Plastic Surgery, Chongqing University Central Hospital, Chongqing 400000, P.R. China
| | - Ying Deng
- Department of Plastic Surgery, Chongqing University Central Hospital, Chongqing 400000, P.R. China
| | - Wei Li
- Department of Plastic Surgery, Chongqing University Central Hospital, Chongqing 400000, P.R. China
| | - Yang Lu
- Department of Plastic Surgery, Chongqing University Central Hospital, Chongqing 400000, P.R. China
| |
Collapse
|
108
|
Rathore R, Schutt CR, Van Tine BA. PHGDH as a mechanism for resistance in metabolically-driven cancers. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2020; 3:762-774. [PMID: 33511334 PMCID: PMC7840151 DOI: 10.20517/cdr.2020.46] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
At the forefront of cancer research is the rapidly evolving understanding of metabolic reprogramming within cancer cells. The expeditious adaptation to metabolic inhibition allows cells to evolve and acquire resistance to targeted treatments, which makes therapeutic exploitation complex but achievable. 3-phosphoglycerate dehydrogenase (PHGDH) is the rate-limiting enzyme of de novo serine biosynthesis and is highly expressed in a variety of cancers, including breast cancer, melanoma, and Ewing’s sarcoma. This review will investigate the role of PHGDH in normal biological processes, leading to the role of PHGDH in the progression of cancer. With an understanding of the molecular mechanisms by which PHGDH expression advances cancer growth, we will highlight the known mechanisms of resistance to cancer therapeutics facilitated by PHGDH biology and identify avenues for combatting PHGDH-driven resistance with inhibitors of PHGDH to allow for the development of effective metabolic therapies.
Collapse
Affiliation(s)
- Richa Rathore
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Charles R Schutt
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA
| | - Brian A Van Tine
- Division of Medical Oncology, Washington University in St. Louis, St. Louis, MO 63110, USA.,Siteman Cancer Center, St. Louis, MO 63110, USA
| |
Collapse
|
109
|
Vazquez A. Identification of putative calorie restriction mimetics using mammalian gene expression profiles. Open Biol 2020; 10:200158. [PMID: 32931724 PMCID: PMC7536090 DOI: 10.1098/rsob.200158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Accepted: 07/28/2020] [Indexed: 11/12/2022] Open
Abstract
Obesity is a risk factor for cardiovascular diseases, diabetes and cancer. In theory, the obesity problem could be solved by the adherence to a calorie-restricted diet, but that is not generally achieved in practice. An alternative is a pharmacological approach, using compounds that trigger the same metabolic changes associated with calorie restriction. Here, I expand in the pharmacological direction by identifying compounds that induce liver gene signature profiles that mimic those induced by calorie restriction. Using gene expression profiles from mice and rat, I identify corticosteroids, PPAR agonists and some antibacterial/antifungal as candidate compounds mimicking the response to calorie restriction in the liver gene signatures.
Collapse
Affiliation(s)
- Alexei Vazquez
- Cancer Research UK Beatson Institute, Switchback Road, Bearsden, Glasgow, G61 1BD, UK
- Institute of Cancer Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
110
|
Ha DP, Lee AS. Insulin-like growth factor 1-receptor signaling stimulates GRP78 expression through the PI3K/AKT/mTOR/ATF4 axis. Cell Signal 2020; 75:109736. [PMID: 32805346 DOI: 10.1016/j.cellsig.2020.109736] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Revised: 08/06/2020] [Accepted: 08/09/2020] [Indexed: 01/09/2023]
Abstract
GRP78, a major molecular chaperone, is critical for the folding and maturation of membrane and secretory proteins and serves as the master regulator of the unfolded protein response. Thus, GRP78 is frequently upregulated in highly proliferative cells to cope with elevated protein synthesis and metabolic stress. IGF-1 is a potent regulator of cell growth, metabolism and survival. Previously we discovered that GRP78 is a novel downstream target of IGF-1 signaling by utilizing mouse embryonic fibroblast model systems where the IGF-1 receptor (IGF-1R) was either overexpressed (R+) or knockout (R-). Here we investigated the mechanisms whereby GRP78 is upregulated in the R+ cells. Our studies revealed that suppression of PI3K/AKT/mTOR downstream of IGF-1R signaling resulted in concurrent decrease in GRP78 and the transcription factor ATF4. Through knock-down and overexpression studies, we established ATF4 as the essential downstream nodal of the PI3K/AKT/mTOR signaling pathway critical for GRP78 transcriptional upregulation mediated by IGF-1R.
Collapse
Affiliation(s)
- Dat P Ha
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA
| | - Amy S Lee
- Department of Biochemistry and Molecular Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90089, USA.
| |
Collapse
|
111
|
Gibb AA, Lazaropoulos MP, Elrod JW. Myofibroblasts and Fibrosis: Mitochondrial and Metabolic Control of Cellular Differentiation. Circ Res 2020; 127:427-447. [PMID: 32673537 DOI: 10.1161/circresaha.120.316958] [Citation(s) in RCA: 253] [Impact Index Per Article: 50.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Cardiac fibrosis is mediated by the activation of resident cardiac fibroblasts, which differentiate into myofibroblasts in response to injury or stress. Although myofibroblast formation is a physiological response to acute injury, such as myocardial infarction, myofibroblast persistence, as occurs in heart failure, contributes to maladaptive remodeling and progressive functional decline. Although traditional pathways of activation, such as TGFβ (transforming growth factor β) and AngII (angiotensin II), have been well characterized, less understood are the alterations in mitochondrial function and cellular metabolism that are necessary to initiate and sustain myofibroblast formation and function. In this review, we highlight recent reports detailing the mitochondrial and metabolic mechanisms that contribute to myofibroblast differentiation, persistence, and function with the hope of identifying novel therapeutic targets to treat, and potentially reverse, tissue organ fibrosis.
Collapse
Affiliation(s)
- Andrew A Gibb
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - Michael P Lazaropoulos
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| | - John W Elrod
- From the Center for Translational Medicine, Lewis Katz School of Medicine at Temple University, Philadelphia, PA
| |
Collapse
|
112
|
ATF4-mediated autophagy-dependent glycolysis plays an important role in attenuating apoptosis induced by Cr (VI) in A549 cells. Toxicol Lett 2020; 331:178-187. [PMID: 32569804 DOI: 10.1016/j.toxlet.2020.06.015] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2020] [Revised: 05/26/2020] [Accepted: 06/18/2020] [Indexed: 12/12/2022]
Abstract
Chromium (Cr) (VI) compounds are known to be serious toxic and carcinogenic, but the mechanism is not clear. In our previous study, we found that Cr (VI)-induced ER stress plays an important role in the crosstalk between apoptosis and autophagy, while autophagy was apoptosis-dependent and subsequently prevents apoptosis cell death to keep A549 cells resistant to Cr (VI)-induced toxicity. In this study, we found that Cr (VI) could induce aerobic glycolysis in A549 cells. Both ER stress inhibitor, phenylbutyric acid (4-PBA) and the inhibitor of autophagy, 3-MA, repressed Cr (VI)-induced glycolysis, indicating that both ER stress and autophagy were involved in Cr (VI)-induced glycolysis in A549 cells. Co-treatment of the inhibitor of aerobic glycolysis, 2-DG and Cr (VI) for 24 h increased Cr (VI)-induced cleaved caspase-3, caspase-9 and the number of apoptotic cells, demonstrating that aerobic glycolysis played an important role in attenuating Cr (VI)-induced apoptosis. Furthermore, knockdown of ATF4 by siATF4 significantly decreased Cr (VI)-induced aerobic glycolysis and apoptosis, suggesting that ATF4 was involved in Cr (VI)-induced aerobic glycolysis and its effect of attenuating apoptosis in A549 cells. Taken together, our results demonstrated that autophagy-dependent glycolysis played a role in attenuating Cr (VI)-induced apoptosis. ER stress was involved in facilitating glycolysis, whose induction was mediated by ATF4. These findings open a window for the development of therapeutic interventions to prevent Cr (VI)-induced toxicity.
Collapse
|
113
|
Zhang Y, Li J, Dong X, Meng D, Zhi X, Yuan L, Yao L. PSAT1 Regulated Oxidation-Reduction Balance Affects the Growth and Prognosis of Epithelial Ovarian Cancer. Onco Targets Ther 2020; 13:5443-5453. [PMID: 32606761 PMCID: PMC7295540 DOI: 10.2147/ott.s250066] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Accepted: 04/19/2020] [Indexed: 12/17/2022] Open
Abstract
Introduction A growing number of studies have found that the serine-glycine biosynthesis pathway is highly activated for biosynthesis in cancer progression and metastasis. Phosphoserine aminotransferase 1 (PSAT1) catalyzes the second step of the serine-glycine biosynthesis pathway; the effects and mechanism of PSAT1 in epithelial ovarian cancer (EOC) remains unclear. Materials and Methods The expression of PSAT1 in clinical EOC samples and normal ovarian tissues was conducted by RT-PCR, Western blot, and immunohistochemical staining. Survival analysis of PSAT1 in ovarian cancer was performed by using the public database. Following the downregulation of PSAT1, the cell growth, cell apoptosis, and cell cycle in ovarian cancer cells were respectively examined by the soft agar colony formation assay and flow cytometry analysis. Then the glutathione (GSH) levels, the GSH/GSSG ratio, the NADPH/NADP ratio, and the cellular reactive oxygen species (ROS) levels were tested to analyze the oxidation-reduction balance in PSAT1-depleted ovarian cancer cells. Results PSAT1 is markedly over-expressed in clinical EOC samples (n = 90) compared to that in normal ovarian tissues (n = 10), and the expression of PSAT1 is correlated with histological subtype, FIGO stage, histological grade, lymph node metastasis, distant metastasis and the presence of ascites. Public database analysis shows that higher PSAT1 indicates poor survival in EOC patients. Downregulation of PSAT1 in EOC cells inhibits growth, induces apoptosis and cell cycle arrest in vitro. EOC cells with high PSAT1 levels have increased a higher GSH (reduced glutathione)/GSSG (oxidized glutathione) ratio and lower reactive oxygen species (ROS) content. The cancer-killing effects of PSAT1 knockdown are reversed by exogenous glutathione. PSAT1 participates in cancer growth by regulating oxidation-reduction balance. Conclusion Therefore, these results highlight the potential of PSAT1 inhibitors or metabolic substrate deprivation as therapeutic strategies for treating patients with EOC, especially those with advanced stages of cancer.
Collapse
Affiliation(s)
- Yiqun Zhang
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China.,Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, People's Republic of China
| | - Jiajia Li
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China.,Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, People's Republic of China
| | - Xuhui Dong
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China.,Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, People's Republic of China
| | - Dan Meng
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai, People's Republic of China
| | - Xiuling Zhi
- Department of Physiology and Pathophysiology, School of Basic Medical Sciences, Shanghai, People's Republic of China
| | - Lei Yuan
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China.,Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, People's Republic of China
| | - Liangqing Yao
- Department of Gynecology, Obstetrics and Gynecology Hospital of Fudan University, Shanghai, People's Republic of China.,Shanghai Medical College, Fudan University, Shanghai, People's Republic of China.,Shanghai Key Laboratory of Female Reproductive Endocrine-Related Diseases, Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
114
|
Bueno M, Calyeca J, Rojas M, Mora AL. Mitochondria dysfunction and metabolic reprogramming as drivers of idiopathic pulmonary fibrosis. Redox Biol 2020; 33:101509. [PMID: 32234292 PMCID: PMC7251240 DOI: 10.1016/j.redox.2020.101509] [Citation(s) in RCA: 146] [Impact Index Per Article: 29.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/13/2020] [Accepted: 03/16/2020] [Indexed: 02/07/2023] Open
Abstract
Idiopathic pulmonary fibrosis (IPF) is a devastating lung disease of unknown etiology. It is characterized by deposition of extracellular matrix proteins, like collagen and fibronectin in the lung interstitium leading to respiratory failure. Our understanding of the pathobiology underlying IPF is still incomplete; however, it is accepted that aging is a major risk factor in the disease while growing evidence suggests that the mitochondria plays an important role in the initiation and progression of pulmonary fibrosis. Mitochondria dysfunction and metabolic reprogramming had been identified in different IPF lung cells (alveolar epithelial cells, fibroblasts, and macrophages) promoting low resilience and increasing susceptibility to activation of profibrotic responses. Here we summarize changes in mitochondrial numbers, biogenesis, turnover and associated metabolic adaptations that promote disrepair and fibrosis in the lung. Finally, we highlight new possible therapeutic approaches focused on ameliorate mitochondrial dysfunction.
Collapse
Affiliation(s)
- Marta Bueno
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Jazmin Calyeca
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Mauricio Rojas
- Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Dorothy and Richard Simmons Center for Interstitial Lung Diseases, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Ana L Mora
- Aging Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Division of Pulmonary Allergy and Critical Care Medicine, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA; Vascular Medicine Institute, Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA.
| |
Collapse
|
115
|
Nguyen MQ, Teh JLF, Purwin TJ, Chervoneva I, Davies MA, Nathanson KL, Cheng PF, Levesque MP, Dummer R, Aplin AE. Targeting PHGDH Upregulation Reduces Glutathione Levels and Resensitizes Resistant NRAS-Mutant Melanoma to MAPK Kinase Inhibition. J Invest Dermatol 2020; 140:2242-2252.e7. [PMID: 32389536 DOI: 10.1016/j.jid.2020.02.047] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 12/17/2022]
Abstract
Melanomas frequently harbor activating NRAS mutations leading to activation of MAPK kinase (MEK) and extracellular signal-regulated kinase 1/2 signaling; however, the clinical efficacy of inhibitors to this pathway is limited by resistance. Tumors rewire metabolic pathways in response to stress signals such as targeted inhibitors and drug resistance, but most therapy-resistant preclinical models are generated in conditions that lack physiological metabolism. We generated human NRAS-mutant melanoma xenografts that were resistant to the MEK inhibitor (MEKi) PD0325901 in vivo. MEKi-resistant cells showed cross-resistance to the structurally distinct MEKi trametinib and elevated extracellular signal-regulated kinase 1/2 phosphorylation and downstream signaling. Additionally, we observed upregulation of the serine synthesis pathway and PHGDH, a key enzyme in this pathway. Suppressing PHGDH in MEKi-resistant cells together with MEKi treatment decreased oxidative stress tolerance and cell proliferation. Together, our data suggest targeting PHGDH as a potential strategy in overcoming MEKi resistance.
Collapse
Affiliation(s)
- Mai Q Nguyen
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Jessica L F Teh
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Timothy J Purwin
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Inna Chervoneva
- Division of Biostatistics, Department of Pharmacology and Experimental Therapeutics, Sidney Kimmel Medical College, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA
| | - Michael A Davies
- Department of Melanoma Medical Oncology, The University of Texas, MD Anderson Cancer Center, Houston, Texas
| | - Katherine L Nathanson
- Department of Medicine, Division of Translational Medicine and Human Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Phil F Cheng
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Switzerland
| | - Mitchell P Levesque
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Switzerland
| | - Reinhard Dummer
- Department of Dermatology, University of Zurich Hospital, University of Zurich, Switzerland
| | - Andrew E Aplin
- Department of Cancer Biology, Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA; Sidney Kimmel Cancer Center, Thomas Jefferson University, Philadelphia, Pennsylvania, USA.
| |
Collapse
|
116
|
Renaud L, da Silveira WA, Takamura N, Hardiman G, Feghali-Bostwick C. Prominence of IL6, IGF, TLR, and Bioenergetics Pathway Perturbation in Lung Tissues of Scleroderma Patients With Pulmonary Fibrosis. Front Immunol 2020; 11:383. [PMID: 32210969 PMCID: PMC7075854 DOI: 10.3389/fimmu.2020.00383] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Accepted: 02/18/2020] [Indexed: 12/21/2022] Open
Abstract
Scleroderma-associated pulmonary fibrosis (SSc-PF) and idiopathic pulmonary fibrosis (IPF) are two of many chronic fibroproliferative diseases that are responsible for nearly 45% of all deaths in developed countries. While sharing several pathobiological characteristics, they also have very distinct features. Currently no effective anti-fibrotic treatments exist that can halt the progression of PF or reverse it. Our goal is to uncover potential gene targets for the development of anti-fibrotic therapies efficacious in both diseases, and those specific to SSc-PF, by identifying universal pathways and molecules driving fibrosis in SSc-PF and IPF tissues as well as those unique to SSc-PF. Using DNA microarray data, a meta-analysis of the differentially expressed (DE) genes in SSc-PF and IPF lung tissues (diseased vs. normal) was performed followed by a full systems level analysis of the common and unique transcriptomic signatures obtained. Protein-protein interaction networks were generated to identify hub proteins and explore the data using the centrality principle. Our results suggest that therapeutic strategies targeting IL6 trans-signaling, IGFBP2, IGFL2, and the coagulation cascade may be efficacious in both SSc-PF and IPF. Further, our data suggest that the expression of matrikine-producing collagens is also perturbed in PF. Lastly, an overall perturbation of bioenergetics, specifically between glycolysis and fatty acid metabolism, was uncovered in SSc-PF. Our findings provide insights into potential targets for the development of anti-fibrotic therapies that could be effective in both IPF and SSc-PF.
Collapse
Affiliation(s)
- Ludivine Renaud
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Willian A. da Silveira
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast, Belfast, United Kingdom
| | - Naoko Takamura
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| | - Gary Hardiman
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
- School of Biological Sciences, Institute for Global Food Security, Queens University Belfast, Belfast, United Kingdom
| | - Carol Feghali-Bostwick
- Department of Medicine, Medical University of South Carolina, Charleston, SC, United States
| |
Collapse
|
117
|
Schwörer S, Berisa M, Violante S, Qin W, Zhu J, Hendrickson RC, Cross JR, Thompson CB. Proline biosynthesis is a vent for TGFβ-induced mitochondrial redox stress. EMBO J 2020; 39:e103334. [PMID: 32134147 DOI: 10.15252/embj.2019103334] [Citation(s) in RCA: 129] [Impact Index Per Article: 25.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 02/01/2020] [Accepted: 02/04/2020] [Indexed: 12/28/2022] Open
Abstract
The production and secretion of matrix proteins upon stimulation of fibroblasts by transforming growth factor-beta (TGFβ) play a critical role in wound healing. How TGFβ supports the bioenergetic cost of matrix protein synthesis is not fully understood. Here, we show that TGFβ promotes protein translation at least in part by increasing the mitochondrial oxidation of glucose and glutamine carbons to support the bioenergetic demand of translation. Surprisingly, we found that in addition to stimulating the entry of glucose and glutamine carbon into the TCA cycle, TGFβ induced the biosynthesis of proline from glutamine in a Smad4-dependent fashion. Metabolic manipulations that increased mitochondrial redox generation promoted proline biosynthesis, while reducing mitochondrial redox potential and/or ATP synthesis impaired proline biosynthesis. Thus, proline biosynthesis acts as a redox vent, preventing the TGFβ-induced increase in mitochondrial glucose and glutamine catabolism from generating damaging reactive oxygen species (ROS) when TCA cycle activity exceeds the ability of oxidative phosphorylation to convert mitochondrial redox potential into ATP. In turn, the enhanced synthesis of proline supports TGFβ-induced production of matrix proteins.
Collapse
Affiliation(s)
- Simon Schwörer
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Mirela Berisa
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Sara Violante
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Weige Qin
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Jiajun Zhu
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Ronald C Hendrickson
- Microchemistry and Proteomics Core, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Justin R Cross
- Donald B. and Catherine C. Marron Cancer Metabolism Center, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Craig B Thompson
- Cancer Biology and Genetics Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| |
Collapse
|
118
|
Feng X, Ma D, Zhao J, Song Y, Zhu Y, Zhou Q, Ma F, Liu X, Zhong M, Liu Y, Xiong Y, Qiu X, Zhang Z, Zhang H, Zhao Y, Zhang K, Hong X, Zhang Z. UHMK1 promotes gastric cancer progression through reprogramming nucleotide metabolism. EMBO J 2020; 39:e102541. [PMID: 31975428 PMCID: PMC7049804 DOI: 10.15252/embj.2019102541] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Revised: 12/02/2019] [Accepted: 12/06/2019] [Indexed: 12/19/2022] Open
Abstract
UHMK1 is a nuclear serine/threonine kinase recently implicated in carcinogenesis. However, the functions and action mechanisms of UHMK1 in the pathogenesis of human gastric cancer (GC) are unclear. Here, we observed that UHMK1 was markedly upregulated in GC. UHMK1 silencing strongly inhibited GC aggressiveness. Interestingly, UHMK1-induced GC progression was mediated primarily via enhancing de novo purine synthesis because inhibiting purine synthesis reversed the effects of UHMK1 overexpression. Mechanistically, UHMK1 activated ATF4, an important transcription factor in nucleotide synthesis, by phosphorylating NCOA3 at Ser (S) 1062 and Thr (T) 1067. This event significantly enhanced the binding of NCOA3 to ATF4 and the expression of purine metabolism-associated target genes. Conversely, deficient phosphorylation of NCOA3 at S1062/T1067 significantly abrogated the function of UHMK1 in GC development. Clinically, Helicobacter pylori and GC-associated UHMK1 mutation induced NCOA3-S1062/T1067 phosphorylation and enhanced the activity of ATF4 and UHMK1. Importantly, the level of UHMK1 was significantly correlated with the level of phospho-NCOA3 (S1062/T1067) in human GC specimens. Collectively, these results show that the UHMK1-activated de novo purine synthesis pathway significantly promotes GC development.
Collapse
Affiliation(s)
- Xing Feng
- The Affiliated Hospital of Guilin Medical UniversityGuangxi Key Laboratory of Brain and Cognitive NeuroscienceGuangxi Neurological Diseases Clinical Research CenterGuilinGuangxiChina
- Department of ImmuobiologyYale University School of MedicineNew HavenCTUSA
| | - Dong Ma
- Guangdong Provincial People's HospitalGuangdong Academy of Medical SciencesGuangzhouChina
| | - Jiabao Zhao
- Department of Gastrointestinal SurgeryZhongshan HospitalSchool of MedicineXiamen UniversityXiamenChina
| | - Yongxi Song
- Department of Surgical Oncology and General SurgeryThe First Hospital of China Medical UniversityShenyangChina
| | - Yuekun Zhu
- Medical CenterDuke UniversityDurhamNCUSA
- Department of General SurgeryThe First Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Qingxin Zhou
- Department of OncologyThe Third Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Fei Ma
- Department of General SurgeryThe Second Affiliated Hospital of Harbin Medical UniversityHarbinChina
| | - Xing Liu
- Department of NeurosurgeryBeijing Tiantan HospitalCapital Medical UniversityBeijingChina
| | - Mengya Zhong
- Department of Gastrointestinal SurgeryZhongshan HospitalSchool of MedicineXiamen UniversityXiamenChina
| | - Yu Liu
- Department of Gastrointestinal SurgeryZhongshan HospitalSchool of MedicineXiamen UniversityXiamenChina
| | - Yubo Xiong
- Department of Gastrointestinal SurgeryZhongshan HospitalSchool of MedicineXiamen UniversityXiamenChina
| | - Xingfeng Qiu
- Department of Gastrointestinal SurgeryZhongshan HospitalSchool of MedicineXiamen UniversityXiamenChina
| | - Zhen Zhang
- Department of General SurgeryThe First Affiliated Hospital of Anhui Medical UniversityAnhuiChina
| | - Heng Zhang
- Department of Histology and EmbryologyXiang Ya School of MedicineCentral South UniversityChangshaChina
| | - Yongxiang Zhao
- National Center for International Research of Biological Targeting Diagnosis and Therapy (Guangxi Key Laboratory of Biological Targeting Diagnosis and Therapy Research)Guangxi Medical UniversityNanningChina
| | - Kaiguang Zhang
- Department of Digestive DiseaseThe First Affiliated Hospital of USTCAnhui Provincial HospitalUniversity of Science and Technology of ChinaAnhuiChina
| | - Xuehui Hong
- Department of Gastrointestinal SurgeryZhongshan HospitalSchool of MedicineXiamen UniversityXiamenChina
| | - Zhiyong Zhang
- The Affiliated Hospital of Guilin Medical UniversityGuangxi Key Laboratory of Brain and Cognitive NeuroscienceGuangxi Neurological Diseases Clinical Research CenterGuilinGuangxiChina
- Department of SurgeryRobert‐Wood‐Johnson Medical School University HospitalRutgers UniversityThe State University of New JerseyNew BrunswickNJUSA
| |
Collapse
|
119
|
Serpa J. Metabolic Remodeling as a Way of Adapting to Tumor Microenvironment (TME), a Job of Several Holders. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1219:1-34. [PMID: 32130691 DOI: 10.1007/978-3-030-34025-4_1] [Citation(s) in RCA: 17] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The microenvironment depends and generates dependence on all the cells and structures that share the same niche, the biotope. The contemporaneous view of the tumor microenvironment (TME) agrees with this idea. The cells that make up the tumor, whether malignant or not, behave similarly to classes of elements within a living community. These elements inhabit, modify and benefit from all the facilities the microenvironment has to offer and that will contribute to the survival and growth of the tumor and the progression of the disease.The metabolic adaptation to microenvironment is a crucial process conducting to an established tumor able to grow locally, invade and metastasized. The metastatic cancer cells are reasonable more plastic than non-metastatic cancer cells, because the previous ones must survive in the microenvironment where the primary tumor develops and in addition, they must prosper in the microenvironment in the metastasized organ.The metabolic remodeling requires not only the adjustment of metabolic pathways per se but also the readjustment of signaling pathways that will receive and obey to the extracellular instructions, commanding the metabolic adaptation. Many diverse players are pivotal in cancer metabolic fitness from the initial signaling stimuli, going through the activation or repression of genes, until the phenotype display. The new phenotype will permit the import and consumption of organic compounds, useful for energy and biomass production, and the export of metabolic products that are useless or must be secreted for a further recycling or controlled uptake. In the metabolic network, three subsets of players are pivotal: (1) the organic compounds; (2) the transmembrane transporters, and (3) the enzymes.This chapter will present the "Pharaonic" intent of diagraming the interplay between these three elements in an attempt of simplifying and, at the same time, of showing the complex sight of cancer metabolism, addressing the orchestrating role of microenvironment and highlighting the influence of non-cancerous cells.
Collapse
Affiliation(s)
- Jacinta Serpa
- CEDOC, Chronic Diseases Research Centre, NOVA Medical School | Faculdade de Ciências Médicas, Universidade NOVA de Lisboa, Lisbon, Portugal.
- Instituto Português de Oncologia de Lisboa Francisco Gentil (IPOLFG), Lisbon, Portugal.
| |
Collapse
|
120
|
Yin X, Choudhury M, Kang JH, Schaefbauer KJ, Jung MY, Andrianifahanana M, Hernandez DM, Leof EB. Hexokinase 2 couples glycolysis with the profibrotic actions of TGF-β. Sci Signal 2019; 12:12/612/eaax4067. [PMID: 31848318 DOI: 10.1126/scisignal.aax4067] [Citation(s) in RCA: 85] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Metabolic dysregulation in fibroblasts is implicated in the profibrotic actions of transforming growth factor-β (TGF-β). Here, we present evidence that hexokinase 2 (HK2) is important for mediating the fibroproliferative activity of TGF-β both in vitro and in vivo. Both Smad-dependent and Smad-independent TGF-β signaling induced HK2 accumulation in murine and human lung fibroblasts through induction of the transcription factor c-Myc. Knockdown of HK2 or pharmacological inhibition of HK2 activity with Lonidamine decreased TGF-β-stimulated fibrogenic processes, including profibrotic gene expression, cell migration, colony formation, and activation of the transcription factors YAP and TAZ, with no apparent effect on cellular viability. Fibroblasts from patients with idiopathic pulmonary fibrosis (IPF) exhibited an increased abundance of HK2. In a mouse model of bleomycin-induced lung fibrosis, Lonidamine reduced the expression of genes encoding profibrotic markers (collagenΙα1, EDA-fibronectin, α smooth muscle actin, and connective tissue growth factor) and stabilized or improved lung function as assessed by measurement of peripheral blood oxygenation. These findings provide evidence of how metabolic dysregulation through HK2 can be integrated within the context of profibrotic TGF-β signaling.
Collapse
Affiliation(s)
- Xueqian Yin
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Malay Choudhury
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Jeong-Han Kang
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Kyle J Schaefbauer
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Mi-Yeon Jung
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Mahefatiana Andrianifahanana
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Danielle M Hernandez
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA
| | - Edward B Leof
- Thoracic Disease Research Unit, Division of Pulmonary and Critical Care Medicine, Department of Biochemistry and Molecular Biology, Mayo Clinic College of Medicine, Rochester, MN 55905, USA.
| |
Collapse
|
121
|
Slattery K, Gardiner CM. NK Cell Metabolism and TGFβ - Implications for Immunotherapy. Front Immunol 2019; 10:2915. [PMID: 31921174 PMCID: PMC6927492 DOI: 10.3389/fimmu.2019.02915] [Citation(s) in RCA: 41] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 11/27/2019] [Indexed: 12/18/2022] Open
Abstract
NK cells are innate lymphocytes which play an essential role in protection against cancer and viral infection. Their functions are dictated by many factors including the receptors they express, cytokines they respond to and changes in the external environment. These cell processes are regulated within NK cells at many levels including genetic, epigenetic and expression (RNA and protein) levels. The last decade has revealed cellular metabolism as another level of immune regulation. Specific immune cells adopt metabolic configurations that support their functions, and this is a dynamic process with cells undergoing metabolic reprogramming during the course of an immune response. Upon activation with pro-inflammatory cytokines, NK cells upregulate both glycolysis and oxphos metabolic pathways and this supports their anti-cancer functions. Perturbation of these pathways inhibits NK cell effector functions. Anti-inflammatory cytokines such as TGFβ can inhibit metabolic changes and reduce functional outputs. Although a lot remains to be learned, our knowledge of potential molecular mechanisms involved is growing quickly. This review will discuss our current knowledge on the role of TGFβ in regulating NK cell metabolism and will draw on a wider knowledge base regarding TGFβ regulation of cellular metabolic pathways, in order to highlight potential ways in which TGFβ might be targeted to contribute to the exciting progress that is being made in terms of adoptive NK cell therapies for cancer.
Collapse
Affiliation(s)
- Karen Slattery
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| | - Clair M Gardiner
- School of Biochemistry and Immunology, Trinity Biomedical Sciences Institute, Trinity College, Dublin, Ireland
| |
Collapse
|
122
|
Cytosolic 10-formyltetrahydrofolate dehydrogenase regulates glycine metabolism in mouse liver. Sci Rep 2019; 9:14937. [PMID: 31624291 PMCID: PMC6797707 DOI: 10.1038/s41598-019-51397-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2019] [Accepted: 09/05/2019] [Indexed: 12/18/2022] Open
Abstract
ALDH1L1 (10-formyltetrahydrofolate dehydrogenase), an enzyme of folate metabolism highly expressed in liver, metabolizes 10-formyltetrahydrofolate to produce tetrahydrofolate (THF). This reaction might have a regulatory function towards reduced folate pools, de novo purine biosynthesis, and the flux of folate-bound methyl groups. To understand the role of the enzyme in cellular metabolism, Aldh1l1−/− mice were generated using an ES cell clone (C57BL/6N background) from KOMP repository. Though Aldh1l1−/− mice were viable and did not have an apparent phenotype, metabolomic analysis indicated that they had metabolic signs of folate deficiency. Specifically, the intermediate of the histidine degradation pathway and a marker of folate deficiency, formiminoglutamate, was increased more than 15-fold in livers of Aldh1l1−/− mice. At the same time, blood folate levels were not changed and the total folate pool in the liver was decreased by only 20%. A two-fold decrease in glycine and a strong drop in glycine conjugates, a likely result of glycine shortage, were also observed in Aldh1l1−/− mice. Our study indicates that in the absence of ALDH1L1 enzyme, 10-formyl-THF cannot be efficiently metabolized in the liver. This leads to the decrease in THF causing reduced generation of glycine from serine and impaired histidine degradation, two pathways strictly dependent on THF.
Collapse
|