101
|
Nakamichi Y, Oiki S, Mikami B, Murata K, Hashimoto W. Conformational Change in the Active Site of Streptococcal Unsaturated Glucuronyl Hydrolase Through Site-Directed Mutagenesis at Asp-115. Protein J 2016; 35:300-9. [PMID: 27402448 DOI: 10.1007/s10930-016-9673-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Bacterial unsaturated glucuronyl hydrolase (UGL) degrades unsaturated disaccharides generated from mammalian extracellular matrices, glycosaminoglycans, by polysaccharide lyases. Two Asp residues, Asp-115 and Asp-175 of Streptococcus agalactiae UGL (SagUGL), are completely conserved in other bacterial UGLs, one of which (Asp-175 of SagUGL) acts as a general acid and base catalyst. The other Asp (Asp-115 of SagUGL) also affects the enzyme activity, although its role in the enzyme reaction has not been well understood. Here, we show substitution of Asp-115 in SagUGL with Asn caused a conformational change in the active site. Tertiary structures of SagUGL mutants D115N and D115N/K370S with negligible enzyme activity were determined at 2.00 and 1.79 Å resolution, respectively, by X-ray crystallography. The side chain of Asn-115 is drastically shifted in both mutants owing to the interaction with several residues, including Asp-175, by formation of hydrogen bonds. This interaction between Asn-115 and Asp-175 probably prevents the mutants from triggering the enzyme reaction using Asp-175 as an acid catalyst.
Collapse
Affiliation(s)
- Yusuke Nakamichi
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.,Laboratory of Supramolecular Crystallography, Institute for Protein Research, Osaka University, Suita, Osaka, 565-0871, Japan
| | - Sayoko Oiki
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Bunzo Mikami
- Division of Applied Life Sciences, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan
| | - Kousaku Murata
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.,Department of Life Science, Faculty of Science and Engineering, Setsunan University, Neyagawa, Osaka, 572-8508, Japan
| | - Wataru Hashimoto
- Division of Food Science and Biotechnology, Graduate School of Agriculture, Kyoto University, Uji, Kyoto, 611-0011, Japan.
| |
Collapse
|
102
|
Kumar B, Pathak R, Mary PB, Jha D, Sardana K, Gautam HK. New insights into acne pathogenesis: Exploring the role of acne-associated microbial populations. DERMATOL SIN 2016. [DOI: 10.1016/j.dsi.2015.12.004] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022] Open
|
103
|
Zhang X, Yang T, Cao J, Sun J, Dai W, Zhang L. Mucosal immunization with purified OmpA elicited protective immunity against infections caused by multidrug-resistant Acinetobacter baumannii. Microb Pathog 2016; 96:20-5. [PMID: 27133268 DOI: 10.1016/j.micpath.2016.04.019] [Citation(s) in RCA: 55] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2014] [Revised: 04/10/2016] [Accepted: 04/28/2016] [Indexed: 12/12/2022]
Abstract
Multidrug-resistant Acinetobacter baumannii (A. baumannii) is a rapidly emerging pathogen causing infections with high mortality rates due to inadequate medical treatment. New ways to prevent and treat such infections are of a critical medical need. In this study, intranasal vaccination with A. baumannii outer membrane protein A (OmpA) induced both systemic and mucosal antibodies. After challenge intraperitoneally by clinical strains of multidrug-resistant A. baumannii, mice immunized with OmpA had a significantly higher survival rate than control mice. The OmpA protein level tested positive by western blot in clinical strains of A. baumannii. Furthermore, characterization of human sera for anti-OmpA immunoglobulin G (IgG) antibody levels demonstrated that OmpA protein was immunogenic in healthy individuals and patients with A. baumannii invasive infections. In conclusion, to the best of our knowledge, this is the first study protective efficacy of mucosal immunization with OmpA as a protein antigen against multidrug-resistant A. Baumannii.
Collapse
Affiliation(s)
- Xiaojiao Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Tianxiang Yang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Ju Cao
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Jide Sun
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Wei Dai
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Liping Zhang
- Department of Laboratory Medicine, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China.
| |
Collapse
|
104
|
Lienard J, Movert E, Valfridsson C, Sturegård E, Carlsson F. ESX-1 exploits type I IFN-signalling to promote a regulatory macrophage phenotype refractory to IFNγ-mediated autophagy and growth restriction of intracellular mycobacteria. Cell Microbiol 2016; 18:1471-85. [PMID: 27062290 DOI: 10.1111/cmi.12594] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2015] [Revised: 03/14/2016] [Accepted: 03/16/2016] [Indexed: 12/20/2022]
Abstract
The ability of macrophages to eradicate intracellular pathogens is normally greatly enhanced by IFNγ, a cytokine produced mainly after onset of adaptive immunity. However, adaptive immunity is unable to provide sterilizing immunity against mycobacteria, suggesting that mycobacteria have evolved virulence strategies to inhibit the bactericidal effect of IFNγ-signalling in macrophages. Still, the host-pathogen interactions and cellular mechanisms responsible for this feature have remained elusive. We demonstrate that the ESX-1 type VII secretion systems of Mycobacterium tuberculosis and Mycobacterium marinum exploit type I IFN-signalling to promote an IL-12(low) /IL-10(high) regulatory macrophage phenotype characterized by secretion of IL-10, IL-27 and IL-6. This mechanism had no impact on intracellular growth in the absence of IFNγ but suppressed IFNγ-mediated autophagy and growth restriction, indicating that the regulatory phenotype extends to function. The IFNγ-refractory phenotype was partly mediated by IL-27-signalling, establishing functional relevance for this downstream cytokine. These findings identify a novel macrophage-modulating function for the ESX-1 secretion system that may contribute to suppress the efficacy of adaptive immunity and provide mechanistic insight into the antagonistic cross talk between type I IFNs and IFNγ in mycobacterial infection.
Collapse
Affiliation(s)
- Julia Lienard
- Section for Immunology, Department of Experimental Medical Science, Lund University, BMC D14, 221 84, Lund, Sweden
| | - Elin Movert
- Section for Immunology, Department of Experimental Medical Science, Lund University, BMC D14, 221 84, Lund, Sweden
| | - Christine Valfridsson
- Section for Immunology, Department of Experimental Medical Science, Lund University, BMC D14, 221 84, Lund, Sweden
| | - Erik Sturegård
- Section for Medical Microbiology, Department of Laboratory Medicine, Lund University, Jan Waldenströms gata 59, 205 02, Malmö, Sweden
| | - Fredric Carlsson
- Section for Immunology, Department of Experimental Medical Science, Lund University, BMC D14, 221 84, Lund, Sweden.
| |
Collapse
|
105
|
Sadeh M, Firouzi R, Derakhshandeh A, Bagher Khalili M, Kong F, Kudinha T. Molecular Characterization of Streptococcus agalactiae Isolates From Pregnant and Non-Pregnant Women at Yazd University Hospital, Iran. Jundishapur J Microbiol 2016; 9:e30412. [PMID: 27127592 PMCID: PMC4842249 DOI: 10.5812/jjm.30412] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2015] [Revised: 11/28/2015] [Accepted: 11/28/2015] [Indexed: 11/30/2022] Open
Abstract
Background: Streptococcus agalactiae (Group B streptococcus, GBS) that colonize the vaginas of pregnant women may occasionally cause neonatal infections. It is one of the most common causes of sepsis and meningitis in neonates and of invasive diseases in pregnant women. It can also cause infectious disease among immunocompromised individuals. The distribution of capsular serotypes and genotypes varies over time and by geographic era. The serotyping and genotyping data of GBS in Iranian pregnant and non-pregnant women seems very limited. Objectives: The aim of this study was to investigate the GBS molecular capsular serotype and genotype distribution of pregnant and non-pregnant carrier women at Yazd university hospital, in Iran. Patients and Methods: In this cross-sectional study, a total of 100 GBS strains isolated from 237 pregnant and 413 non-pregnant women were investigated for molecular capsular serotypes and surface protein genes using the multiplex PCR assay. The Chi-square method was used for statistical analysis. Results: Out of 650 samples, 100 (15.4%) were identified as GBS, with a predominance of capsular serotypes III (50%) [III-1 (49), III-3 (1)], followed by II (25%), Ia (12%), V (11%), and Ib (2%), which was similar with another study conducted in Tehran, Iran, but they had no serotype Ia in their report. The surface protein antigen genes distribution was rib (53%), epsilon (38%), alp2/3 (6%), and alpha-c (3%). Conclusions: The determination of serotype and surface proteins of GBS strains distribution would be relevant for the future possible formulation of a GBS vaccine.
Collapse
Affiliation(s)
- Maryam Sadeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, IR Iran
| | - Roya Firouzi
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, IR Iran
| | - Abdollah Derakhshandeh
- Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, IR Iran
- Corresponding author: Abdollah Derakhshandeh, Department of Pathobiology, School of Veterinary Medicine, Shiraz University, Shiraz, IR Iran. Tel: +98-7136138666, Fax: +98-7132286940, E-mail:
| | | | - Fanrong Kong
- Centre for Infectious Diseases and Microbiology Laboratory Services, ICPMR-Pathology West, Westmead Hospital, University of Sydney, New South Wales 2145, Australia
| | | |
Collapse
|
106
|
Spatial Organization of Cell Wall-Anchored Proteins at the Surface of Gram-Positive Bacteria. Curr Top Microbiol Immunol 2016; 404:177-201. [DOI: 10.1007/82_2016_4] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
107
|
Zhang L, Zeng Z, Hu C, Bellis SL, Yang W, Su Y, Zhang X, Wu Y. Controlled and targeted release of antigens by intelligent shell for improving applicability of oral vaccines. Biomaterials 2016; 77:307-19. [DOI: 10.1016/j.biomaterials.2015.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2015] [Accepted: 11/06/2015] [Indexed: 12/31/2022]
|
108
|
Emaneini M, Khoramian B, Jabalameli F, Abani S, Dabiri H, Beigverdi R. Comparison of virulence factors and capsular types of Streptococcus agalactiae isolated from human and bovine infections. Microb Pathog 2015; 91:1-4. [PMID: 26593104 DOI: 10.1016/j.micpath.2015.11.016] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2015] [Revised: 11/14/2015] [Accepted: 11/19/2015] [Indexed: 11/27/2022]
Abstract
Streptococcus agalactiae is a leading cause of human and bovine infections. A total of 194 S. agalactiae isolates, 55 isolates from bovines and 139 from humans, were analyzed for capsular types, virulence genes (scpB, hly, rib, bca and bac) and mobile genetic elements (IS1548 and GBSi1) using polymerase chain reaction (PCR) and multiplex PCR. Capsular type III was predominant (61%), followed by types V, II, Ib, and IV. The scpB, hly, bca and bac virulence genes were only found among human isolates. Twelve and 2 distinct virulence gene profiles were identified among human and bovine isolates respectively. The virulence gene profiles scpB- hly- IS1548- rib-bca (51%) and scpB- hly- IS1548- bca (19%) were only predominant among human isolates. The rib gene was the most common virulence gene in both human and bovine isolates. The study showed a high prevalence of virulence genes in S. agalactiae strains isolated from human infections, these result can support the idea that S. agalactiae isolated from humans and bovines are generally unrelated and probably belonged to separate populations.
Collapse
Affiliation(s)
- Mohammad Emaneini
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Babak Khoramian
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Fereshteh Jabalameli
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran
| | - Samira Abani
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Ferdowsi University of Mashhad, Mashhad, Iran
| | - Hossein Dabiri
- Department of Medical Microbiology, School of Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Reza Beigverdi
- Department of Microbiology, School of Medicine, Tehran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
109
|
Kayansamruaj P, Pirarat N, Kondo H, Hirono I, Rodkhum C. Genomic comparison between pathogenic Streptococcus agalactiae isolated from Nile tilapia in Thailand and fish-derived ST7 strains. INFECTION GENETICS AND EVOLUTION 2015; 36:307-314. [PMID: 26455417 DOI: 10.1016/j.meegid.2015.10.009] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/13/2015] [Revised: 09/29/2015] [Accepted: 10/07/2015] [Indexed: 11/25/2022]
Abstract
Streptococcus agalactiae, or Group B streptococcus (GBS), is a highly virulent pathogen in aquatic animals, causing huge mortalities worldwide. In Thailand, the serotype Ia, β-hemolytic GBS, belonging to sequence type (ST) 7 of clonal complex (CC) 7, was found to be the major cause of streptococcosis outbreaks in fish farms. In this study, we performed an in silico genomic comparison, aiming to investigate the phylogenetic relationship between the pathogenic fish strains of Thai ST7 and other ST7 from different hosts and geographical origins. In general, the genomes of Thai ST7 strains are closely related to other fish ST7s, as the core genome is shared by 92-95% of any individual fish ST7 genome. Among the fish ST7 genomes, we observed only small dissimilarities, based on the analysis of clustered regularly interspaced short palindromic repeats (CRISPRs), surface protein markers, insertions sequence (IS) elements and putative virulence genes. The phylogenetic tree based on single nucleotide polymorphisms (SNPs) of the core genome sequences clearly categorized the ST7 strains according to their geographical and host origins, with the human ST7 being genetically distant from other fish ST7 strains. A pan-genome analysis of ST7 strains detected a 48-kb gene island specifically in the Thai ST7 isolates. The orientations and predicted amino acid sequences of the genes in the island closely matched those of Tn5252, a streptococcal conjugative transposon, in GBS 2603V/R serotype V, Streptococcus pneumoniae and Streptococcus suis. Thus, it was presumed that Thai ST7 acquired this Tn5252 homologue from related streptococci. The close phylogenetic relationship between the fish ST7 strains suggests that these strains were derived from a common ancestor and have diverged in different geographical regions and in different hosts.
Collapse
Affiliation(s)
- Pattanapon Kayansamruaj
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Nopadon Pirarat
- Department of Veterinary Pathology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand
| | - Hidehiro Kondo
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Ikuo Hirono
- Laboratory of Genome Science, Tokyo University of Marine Science and Technology, Tokyo 108-8477, Japan
| | - Channarong Rodkhum
- Department of Veterinary Microbiology, Faculty of Veterinary Science, Chulalongkorn University, Bangkok 10330, Thailand.
| |
Collapse
|
110
|
Wang G, Xia Y, Song X, Ai L. Common Non-classically Secreted Bacterial Proteins with Experimental Evidence. Curr Microbiol 2015; 72:102-11. [DOI: 10.1007/s00284-015-0915-6] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2015] [Accepted: 08/15/2015] [Indexed: 12/13/2022]
|
111
|
Morello E, Mallet A, Konto-Ghiorghi Y, Chaze T, Mistou MY, Oliva G, Oliveira L, Di Guilmi AM, Trieu-Cuot P, Dramsi S. Evidence for the Sialylation of PilA, the PI-2a Pilus-Associated Adhesin of Streptococcus agalactiae Strain NEM316. PLoS One 2015; 10:e0138103. [PMID: 26407005 PMCID: PMC4583379 DOI: 10.1371/journal.pone.0138103] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2015] [Accepted: 08/25/2015] [Indexed: 01/20/2023] Open
Abstract
Streptococcus agalactiae (or Group B Streptococcus, GBS) is a commensal bacterium present in the intestinal and urinary tracts of approximately 30% of humans. We and others previously showed that the PI-2a pilus polymers, made of the backbone pilin PilB, the tip adhesin PilA and the cell wall anchor protein PilC, promote adhesion to host epithelia and biofilm formation. Affinity-purified PI-2a pili from GBS strain NEM316 were recognized by N-acetylneuraminic acid (NeuNAc, also known as sialic acid) specific lectins such as Elderberry Bark Lectin (EBL) suggesting that pili are sialylated. Glycan profiling with twenty different lectins combined with monosaccharide composition by HPLC suggested that affinity-purified PI-2a pili are modified by N-glycosylation and decorated with sialic acid attached to terminal galactose. Analysis of various relevant mutants in the PI-2a pilus operon by flow-cytometry and electron microscopy analyses pointed to PilA as the pilus subunit modified by glycosylation. Double labeling using PilB antibody and EBL lectin, which specifically recognizes N-acetylneuraminic acid attached to galactose in α-2, 6, revealed a characteristic binding of EBL at the tip of the pilus structures, highly reminiscent of PilA localization. Expression of a secreted form of PilA using an inducible promoter showed that this recombinant PilA binds specifically to EBL lectin when produced in the native GBS context. In silico search for potentially glycosylated asparagine residues in PilA sequence pointed to N427 and N597, which appear conserved and exposed in the close homolog RrgA from S. pneumoniae, as likely candidates. Conversion of these two asparagyl residues to glutamyl resulted in a higher instability of PilA. Our results provide the first evidence that the tip PilA adhesin can be glycosylated, and suggest that this modification is critical for PilA stability and may potentially influence interactions with the host.
Collapse
Affiliation(s)
- Eric Morello
- Institut Pasteur, Unité des Bactéries Pathogènes à Gram positif, Paris, France
- Centre National de la Recherche Scientifique (CNRS ERL 3526), Paris, France
| | - Adeline Mallet
- Institut Pasteur, Imagopole, Ultrastructural Microscopy Platform, Paris, France
| | - Yoan Konto-Ghiorghi
- Institut Pasteur, Unité des Bactéries Pathogènes à Gram positif, Paris, France
- Centre National de la Recherche Scientifique (CNRS ERL 3526), Paris, France
| | - Thibault Chaze
- Institut Pasteur, Spectrométrie de Masse Structurale et Protéomique, Paris, France
- INRA UMR 1319, MICALIS, Jouy-en-Josas, France
| | | | - Giulia Oliva
- Institut Pasteur, Unité des Bactéries Pathogènes à Gram positif, Paris, France
- Centre National de la Recherche Scientifique (CNRS ERL 3526), Paris, France
| | - Liliana Oliveira
- Institut Pasteur, Unité des Bactéries Pathogènes à Gram positif, Paris, France
- Centre National de la Recherche Scientifique (CNRS ERL 3526), Paris, France
| | - Anne-Marie Di Guilmi
- Université Grenoble Alpes, Institut de Biologie Structurale (IBS), Grenoble, France
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité des Bactéries Pathogènes à Gram positif, Paris, France
- Centre National de la Recherche Scientifique (CNRS ERL 3526), Paris, France
| | - Shaynoor Dramsi
- Institut Pasteur, Unité des Bactéries Pathogènes à Gram positif, Paris, France
- Centre National de la Recherche Scientifique (CNRS ERL 3526), Paris, France
- * E-mail:
| |
Collapse
|
112
|
Dangor Z, Kwatra G, Izu A, Adrian P, Cutland CL, Velaphi S, Ballot D, Reubenson G, Zell ER, Lala SG, Madhi SA. Association between maternal Group B Streptococcus surface-protein antibody concentrations and invasive disease in their infants. Expert Rev Vaccines 2015; 14:1651-60. [PMID: 26364978 DOI: 10.1586/14760584.2015.1085307] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
OBJECTIVES Group B Streptococcus (GBS) surface-proteins have been shown to be immunogenic and potential vaccine candidates. We aim to determine the association between maternal IgG antibodies to select GBS surface-proteins and invasive GBS disease in their infants. METHODS Using a matched case-control study, maternal antibody levels for GBS-immunogenic bacterial adhesin, fibrinogen-binding protein A and pilus-island (PI) PI-1, PI-2a, PI-2b were compared between infants with invasive GBS disease and well-baby controls. RESULTS The absolute risk of disease did not differ between cases and colonized controls with increasing antibody concentrations for these surface-proteins. There was, however, a relative risk reduction in invasive disease associated with fibrinogen-binding protein A, with an adjusted odds ratio of 0.04 (95% CI: 0.01-0.69) at antibody levels ≥10,000 AU/ml. CONCLUSION We have not demonstrated an association between naturally occurring fibrinogen-binding protein A, GBS-immunogenic bacterial adhesin, and PI surface-protein antibodies and the risk of invasive disease in young infants. These surface-proteins may not be suitable GBS vaccine candidates.
Collapse
Affiliation(s)
- Ziyaad Dangor
- a 1 Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,b 2 Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,c 3 Department of Paediatrics & Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gaurav Kwatra
- a 1 Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,b 2 Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Alane Izu
- a 1 Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,b 2 Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Peter Adrian
- a 1 Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,b 2 Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Clare L Cutland
- a 1 Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,b 2 Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Sithembiso Velaphi
- c 3 Department of Paediatrics & Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Daynia Ballot
- c 3 Department of Paediatrics & Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Gary Reubenson
- c 3 Department of Paediatrics & Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | | | - Sanjay G Lala
- c 3 Department of Paediatrics & Child Health, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa
| | - Shabir A Madhi
- a 1 Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,b 2 Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, Faculty of Health Sciences, University of the Witwatersrand, Johannesburg, South Africa.,e 5 National Institute for Communicable Diseases: a division of National Health Laboratory Service, Centre for Vaccines and Immunology, Sandringham, South Africa
| |
Collapse
|
113
|
Nuccitelli A, Rinaudo CD, Maione D. Group B Streptococcus vaccine: state of the art. THERAPEUTIC ADVANCES IN VACCINES 2015; 3:76-90. [PMID: 26288735 DOI: 10.1177/2051013615579869] [Citation(s) in RCA: 81] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Group B Streptococcus (GBS) is cause of neonatal invasive diseases as well as of severe infections in the elderly and immune-compromised patients. Despite significant advances in the prevention and treatment of neonatal disease, sepsis and meningitis caused by GBS still represent a significant public health care concern globally and additional prevention and therapeutic strategies against infection are highly desirable. The introduction of national recommended guidelines in several countries to screen pregnant women for GBS carriage and the use of antibiotics during delivery significantly reduced disease occurring within the first hours of life (early-onset disease), but it has had no effect on the late-onset diseases occurring after the first week and is not feasible in most countries. Availability of an effective vaccine against GBS would provide an effective means of controlling GBS disease. This review provides an overview of the burden of invasive disease caused by GBS in infants and adults, and highlights the strategies for the development of an effective vaccine against GBS infections.
Collapse
Affiliation(s)
| | | | - Domenico Maione
- Novartis Vaccines and Diagnostics, via Fiorentina 1, 53100 Siena, Italy
| |
Collapse
|
114
|
Whole-Genome Comparison Uncovers Genomic Mutations between Group B Streptococci Sampled from Infected Newborns and Their Mothers. J Bacteriol 2015; 197:3354-66. [PMID: 26283765 DOI: 10.1128/jb.00429-15] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2015] [Accepted: 08/05/2015] [Indexed: 12/30/2022] Open
Abstract
UNLABELLED Streptococcus agalactiae (group B Streptococcus or GBS), a commensal of the human gut and genitourinary tract, is a leading cause of neonatal infections, in which vertical transmission from mother to child remains the most frequent route of contamination. Here, we investigated whether the progression of GBS from carriage to disease is associated with genomic adaptation. Whole-genome comparison of 47 GBS samples from 19 mother-child pairs uncovered 21 single nucleotide polymorphisms (SNPs) and seven insertions/deletions. Of the SNPs detected, 16 appear to have been fixed in the population sampled whereas five mutations were found to be polymorphic. In the infant strains, 14 mutations were detected, including two independently fixed variants affecting the covRS locus, which is known to encode a major regulatory system of virulence. A one-nucleotide insertion was also identified in the promoter region of the highly immunogenic surface protein Rib gene. Gene expression analysis after incubation in human blood showed that these mutations influenced the expression of virulence-associated genes. Additional identification of three mutated strains in the mothers' milk raised the possibility of the newborns also being a source of contamination for their mothers. Overall, our work showed that GBS strains in carriage and disease scenarios might undergo adaptive changes following colonization. The types and locations of the mutations found, together with the experimental results showing their phenotypic impact, suggest that those in a context of infection were positively selected during the transition of GBS from commensal to pathogen, contributing to an increased capacity to cause disease. IMPORTANCE Group B Streptococcus (GBS) is a major pathogen responsible for neonatal infections. Considering that its colonization of healthy adults is mostly asymptomatic, the mechanisms behind its switch from a commensal to an invasive state are largely unknown. In this work, we compared the genomic profile of GBS samples causing infections in newborns with that of the GBS colonizing their mothers. Multiple mutations were detected, namely, within key virulence factors, including the response regulator CovR and surface protein Rib, potentially affecting the pathogenesis of GBS. Their overall impact was supported by differences in the expression of virulence-associated genes in human blood. Our results suggest that during GBS's progression to disease, particular variants are positively selected, contributing to the ability of this bacterium to infect its host.
Collapse
|
115
|
Characterization and antibiotic susceptibility of Streptococcus agalactiae isolates causing urinary tract infections. INFECTION GENETICS AND EVOLUTION 2015; 34:1-6. [DOI: 10.1016/j.meegid.2015.07.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2015] [Revised: 06/24/2015] [Accepted: 07/01/2015] [Indexed: 11/22/2022]
|
116
|
Dwivedi P, Alam SI, Kumar O, Kumar RB. Comparative analysis of extractable proteins from Clostridium perfringens type A and type C strains showing varying degree of virulence. Anaerobe 2015; 35:77-91. [PMID: 26238688 DOI: 10.1016/j.anaerobe.2015.07.006] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 07/19/2015] [Accepted: 07/20/2015] [Indexed: 01/18/2023]
Abstract
The prevailing scenario of bioterrorism warrants development of medical countermeasures with expanded coverage of select agents. Clostridium perfringens is a pathogen of medical, veterinary and military importance, and has been listed as Validated Biological Agent. We employed 2DE-MS approach to identify a total of 134 unique proteins (529 protein spot features) from the extractable proteome of four type A and type C strains. Proteins showing altered expression under host-simulated conditions from virulent type A strain (ATCC13124) were also elucidated. Significant among the differentially expressed proteins were elongation factor, molecular chaperones, ribosomal proteins, carbamoyl phosphate synthase, clpB protein, choloylglycine hydrolase, phosphopyruvate hydratase, and trigger factor. Predictive elucidation, of putative virulence associated proteins and sequence conservation pattern of selected candidates, was carried out using homologous proteins from other bacterial select agents to screen for the commonality of putative antigenic determinants. Pathogens (17 select agents) were observed to form three discrete clusters; composition of I and II being consistent in most of the phylogenetic reconstructions. This work provides a basis for further validation of putative candidate proteins as prophylactic agents and for their ability to provide protection against clusters of pathogenic select bacterial agents; aimed at mitigating the shadows of biothreat.
Collapse
Affiliation(s)
- Pratistha Dwivedi
- Biotechnology Division, Defence Research and Development Establishment, Gwalior 474002, India
| | - Syed Imteyaz Alam
- Biotechnology Division, Defence Research and Development Establishment, Gwalior 474002, India.
| | - Om Kumar
- Defence Research and Development Organisation, New Delhi, India
| | - Ravi Bhushan Kumar
- Biotechnology Division, Defence Research and Development Establishment, Gwalior 474002, India
| |
Collapse
|
117
|
Zhang L, Zhang H, Fan Z, Zhou X, Yu L, Sun H, Wu Z, Yu Y, Song B, Ma J, Tong C, Wang X, Zhu Z, Cui Y. Identification of a Conserved Linear B-Cell Epitope of Streptococcus dysgalactiae GapC Protein by Screening Phage-Displayed Random Peptide Library. PLoS One 2015; 10:e0131221. [PMID: 26121648 PMCID: PMC4486725 DOI: 10.1371/journal.pone.0131221] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2015] [Accepted: 05/30/2015] [Indexed: 11/19/2022] Open
Abstract
The GapC of Streptococcus dysgalactiae (S. dysgalactiae) is a highly conserved surface protein that can induce protective humoral immune response in animals. However, B-cell epitopes on the S. dysgalactiae GapC have not been well identified. In this study, a monoclonal antibody (mAb5B7) against the GapC1-150 protein was prepared. After passive transfer, mAb5B7 could partially protect mice against S. dysgalactiae infection. Eleven positive phage clones recognized by mAb5B7 were identified by screening phage-displayed random 12-peptide library, most of which matched the consensus motif DTTQGRFD. The motif sequence exactly matches amino acids 48-55 of the S. dysgalactiae GapC protein. In addition, the motif 48DTTQGRFD55 shows high homology among various streptococcus species. Site-directed mutagenic analysis further confirmed that residues D48, T50, Q51, G52 and F54 formed the core motif of 48DTTQGRFD55. This motif was the minimal determinant of the B-cell epitope recognized by the mAb5B7. As expected, epitope-peptide evoked protective immune response against S. dysgalactiae infection in immunized mice. Taken together, this identified conserved B-cell epitope within S. dysgalactiae GapC could provide very valuable insights for vaccine design against S. dysgalactiae infection.
Collapse
Affiliation(s)
- Limeng Zhang
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, P. R. China
| | - Hua Zhang
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, P. R. China
| | - Ziyao Fan
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, P. R. China
| | - Xue Zhou
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, P. R. China
| | - Liquan Yu
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, P. R. China
| | - Hunan Sun
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, P. R. China
| | - Zhijun Wu
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, P. R. China
| | - Yongzhong Yu
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, P. R. China
| | - Baifen Song
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, P. R. China
| | - Jinzhu Ma
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, P. R. China
| | - Chunyu Tong
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, P. R. China
| | - Xintong Wang
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, P. R. China
| | - Zhanbo Zhu
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, P. R. China
| | - Yudong Cui
- College of Life Science and Technology, HeiLongJiang BaYi Agricultural University, Daqing, P. R. China
- College of Animal Science and Veterinary Medicine, HeiLongJiang BaYi Agricultural University, Daqing, P. R. China
- * E-mail:
| |
Collapse
|
118
|
Vasilyeva A, Santos Sanches I, Florindo C, Dmitriev A. Natural Mutations in Streptococcus agalactiae Resulting in Abrogation of β Antigen Production. PLoS One 2015; 10:e0128426. [PMID: 26047354 PMCID: PMC4457541 DOI: 10.1371/journal.pone.0128426] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 04/27/2015] [Indexed: 11/18/2022] Open
Abstract
Streptococcus agalactiae genome encodes 21 two-component systems (TCS) and a variety of regulatory proteins in order to control gene expression. One of the TCS, BgrRS, comprising the BgrR DNA-binding regulatory protein and BgrS sensor histidine kinase, was discovered within a putative virulence island. BgrRS influences cell metabolism and positively control the expression of bac gene, coding for β antigen at transcriptional level. Inactivation of bgrR abrogated bac gene expression and increased virulence properties of S. agalactiae. In this study, a total of 140 strains were screened for the presence of bac gene, and the TCS bgrR and bgrS genes. A total of 53 strains carried the bac, bgrR and bgrS genes. Most of them (48 strains) expressed β antigen, while five strains did not express β antigen. Three strains, in which bac gene sequence was intact, while bgrR and/or bgrS genes had mutations, and expression of β antigen was absent, were complemented with a constructed plasmid pBgrRS(P) encoding functionally active bgrR and bgrS gene alleles. This procedure restored expression of β antigen indicating the crucial regulatory role of TCS BgrRS. The complemented strain A49V/BgrRS demonstrated attenuated virulence in intraperitoneal mice model of S. agalactiae infection compared to parental strain A49V. In conclusion we showed that disruption of β antigen expression is associated with: i) insertion of ISSa4 upstream the bac gene just after the ribosomal binding site; ii) point mutation G342A resulting a stop codon TGA within the bac gene and a truncated form of β antigen; iii) single deletion (G) in position 439 of the bgrR gene resulting in a frameshift and the loss of DNA-binding domain of the BgrR protein, and iv) single base substitutions in bgrR and bgrS genes causing single amino acid substitutions in BgrR (Arg187Lys) and BgrS (Arg252Gln). The fact that BgrRS negatively controls virulent properties of S. agalactiae gives a novel clue for understanding of S. agalactiae adaptation to the human.
Collapse
Affiliation(s)
- Anastasia Vasilyeva
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint-Petersburg, Russia
| | - Ilda Santos Sanches
- Department of Life Sciences, Centro de Recursos Microbiológicos (CREM) and Research Unit on Applied Molecular Biosciences (UCIBIO, REQUIMTE), Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Caparica, Portugal
- * E-mail:
| | - Carlos Florindo
- Department of Infectious Diseases, National Institute of Health, Lisbon, Portugal
| | - Alexander Dmitriev
- Department of Molecular Microbiology, Institute of Experimental Medicine, Saint-Petersburg, Russia
- Department of Fundamental Problems of Medicine and Medical Technologies, Saint-Petersburg State University, Saint-Petersburg, Russia
| |
Collapse
|
119
|
Dover RS, Bitler A, Shimoni E, Trieu-Cuot P, Shai Y. Multiparametric AFM reveals turgor-responsive net-like peptidoglycan architecture in live streptococci. Nat Commun 2015; 6:7193. [PMID: 26018339 PMCID: PMC4458890 DOI: 10.1038/ncomms8193] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2015] [Accepted: 04/16/2015] [Indexed: 12/13/2022] Open
Abstract
Cell-wall peptidoglycan (PG) of Gram-positive bacteria is a strong and elastic multi-layer designed to resist turgor pressure and determine the cell shape and growth. Despite its crucial role, its architecture remains largely unknown. Here using high-resolution multiparametric atomic force microscopy (AFM), we studied how the structure and elasticity of PG change when subjected to increasing turgor pressure in live Group B Streptococcus. We show a new net-like arrangement of PG, which stretches and stiffens following osmotic challenge. The same structure also exists in isogenic mutants lacking surface appendages. Cell aging does not alter the elasticity of the cell wall, yet destroys the net architecture and exposes single segmented strands with the same circumferential orientation as predicted for intact glycans. Together, we show a new functional PG architecture in live Gram-positive bacteria. The peptidoglycan (PG) layer of the Gram-positive bacteria cell wall resists turgor pressure, but the architecture of this layer is largely unknown. Here the authors use high resolution atomic force microscopy to image the PG layer from live Streptococcus to reveal a net-like arrangement that resists osmotic challenge by stretching and stiffening.
Collapse
Affiliation(s)
- Ron Saar Dover
- Department of Biological Chemistry, 8 Ulman Building, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Arkady Bitler
- Department of Chemical Research Support, Surface Analysis Unit, Goldwurm Building, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Eyal Shimoni
- Department of Chemical Research Support, Electron Microscopy Unit, Issac Wolfson Building, The Weizmann Institute of Science, Rehovot 76100, Israel
| | - Patrick Trieu-Cuot
- Department of Microbiology, Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif, CNRS ERL3526, Paris 75015, France
| | - Yechiel Shai
- Department of Biological Chemistry, 8 Ulman Building, The Weizmann Institute of Science, Rehovot 76100, Israel
| |
Collapse
|
120
|
Patenge N, Pappesch R, Khani A, Kreikemeyer B. Genome-wide analyses of small non-coding RNAs in streptococci. Front Genet 2015; 6:189. [PMID: 26042151 PMCID: PMC4438229 DOI: 10.3389/fgene.2015.00189] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2015] [Accepted: 05/08/2015] [Indexed: 01/01/2023] Open
Abstract
Streptococci represent a diverse group of Gram-positive bacteria, which colonize a wide range of hosts among animals and humans. Streptococcal species occur as commensal as well as pathogenic organisms. Many of the pathogenic species can cause severe, invasive infections in their hosts leading to a high morbidity and mortality. The consequence is a tremendous suffering on the part of men and livestock besides the significant financial burden in the agricultural and healthcare sectors. An environmentally stimulated and tightly controlled expression of virulence factor genes is of fundamental importance for streptococcal pathogenicity. Bacterial small non-coding RNAs (sRNAs) modulate the expression of genes involved in stress response, sugar metabolism, surface composition, and other properties that are related to bacterial virulence. Even though the regulatory character is shared by this class of RNAs, variation on the molecular level results in a high diversity of functional mechanisms. The knowledge about the role of sRNAs in streptococci is still limited, but in recent years, genome-wide screens for sRNAs have been conducted in an increasing number of species. Bioinformatics prediction approaches have been employed as well as expression analyses by classical array techniques or next generation sequencing. This review will give an overview of whole genome screens for sRNAs in streptococci with a focus on describing the different methods and comparing their outcome considering sRNA conservation among species, functional similarities, and relevance for streptococcal infection.
Collapse
Affiliation(s)
- Nadja Patenge
- Institute of Medical Microbiology, Virology, Hygiene and Bacteriology, Rostock University Medical Center Rostock, Germany
| | - Roberto Pappesch
- Institute of Medical Microbiology, Virology, Hygiene and Bacteriology, Rostock University Medical Center Rostock, Germany
| | - Afsaneh Khani
- Institute of Medical Microbiology, Virology, Hygiene and Bacteriology, Rostock University Medical Center Rostock, Germany
| | - Bernd Kreikemeyer
- Institute of Medical Microbiology, Virology, Hygiene and Bacteriology, Rostock University Medical Center Rostock, Germany
| |
Collapse
|
121
|
Sequence type 1 group B Streptococcus, an emerging cause of invasive disease in adults, evolves by small genetic changes. Proc Natl Acad Sci U S A 2015; 112:6431-6. [PMID: 25941374 DOI: 10.1073/pnas.1504725112] [Citation(s) in RCA: 74] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023] Open
Abstract
The molecular mechanisms underlying pathogen emergence in humans is a critical but poorly understood area of microbiologic investigation. Serotype V group B Streptococcus (GBS) was first isolated from humans in 1975, and rates of invasive serotype V GBS disease significantly increased starting in the early 1990s. We found that 210 of 229 serotype V GBS strains (92%) isolated from the bloodstream of nonpregnant adults in the United States and Canada between 1992 and 2013 were multilocus sequence type (ST) 1. Elucidation of the complete genome of a 1992 ST-1 strain revealed that this strain had the highest homology with a GBS strain causing cow mastitis and that the 1992 ST-1 strain differed from serotype V strains isolated in the late 1970s by acquisition of cell surface proteins and antimicrobial resistance determinants. Whole-genome comparison of 202 invasive ST-1 strains detected significant recombination in only eight strains. The remaining 194 strains differed by an average of 97 SNPs. Phylogenetic analysis revealed a temporally dependent mode of genetic diversification consistent with the emergence in the 1990s of ST-1 GBS as major agents of human disease. Thirty-one loci were identified as being under positive selective pressure, and mutations at loci encoding polysaccharide capsule production proteins, regulators of pilus expression, and two-component gene regulatory systems were shown to affect the bacterial phenotype. These data reveal that phenotypic diversity among ST-1 GBS is mainly driven by small genetic changes rather than extensive recombination, thereby extending knowledge into how pathogens adapt to humans.
Collapse
|
122
|
Lu B, Wang D, Zhou H, Zhu F, Li D, Zhang S, Shi Y, Cui Y, Huang L, Wu H. Distribution of pilus islands and alpha-like protein genes of group B Streptococcus colonized in pregnant women in Beijing, China. Eur J Clin Microbiol Infect Dis 2015; 34:1173-9. [PMID: 25669160 DOI: 10.1007/s10096-015-2342-9] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2014] [Accepted: 01/27/2015] [Indexed: 11/30/2022]
Abstract
Group B Streptococcus (GBS) is one of the major pathogens of severe newborn sepsis and meningitis. Understanding its regional molecular epidemiology is helpful for regulating efficient prevention practice. A total of 160 GBS strains were collected from colonized pregnant women in six hospital settings in Beijing, China. Polymerase chain reaction (PCR) assays were used to identify the pilus island (PI), alp genes profiling of the alpha-like protein family, and capsular polysaccharide (cps) serotyping. The clonal relationships between strains were investigated using multilocus sequence typing (MLST). All isolates carried at least one pilus island. The most frequently detected pilus island was PI-2a alone (70 isolates, 43.8 %). The most prevalent alp gene was rib (60 isolates, 37.5 %). Moreover, a strong association was noted between alp genes, serotyping, and pilus island profiles. The GBS isolates under study hinted similar molecular epidemical characteristics in Beijing to those reported worldwide, but having their regional distributional features.
Collapse
Affiliation(s)
- B Lu
- Department of Laboratory Medicine, Civil Aviation General Hospital, No. 1 Gaojing Street, Chaoyang District, Beijing, 100123, People's Republic of China,
| | | | | | | | | | | | | | | | | | | |
Collapse
|
123
|
Dangor Z, Kwatra G, Izu A, Adrian P, van Niekerk N, Cutland CL, Adam Y, Velaphi S, Lala SG, Madhi SA. HIV-1 Is Associated With Lower Group B Streptococcus Capsular and Surface-Protein IgG Antibody Levels and Reduced Transplacental Antibody Transfer in Pregnant Women. J Infect Dis 2015; 212:453-62. [PMID: 25651843 DOI: 10.1093/infdis/jiv064] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2014] [Accepted: 01/26/2015] [Indexed: 11/13/2022] Open
Abstract
BACKGROUND Human immunodeficiency virus (HIV)-exposed infants are at increased risk of invasive Group B Streptococcus (GBS) disease; however, the reason for this increased susceptibility has not been characterized. METHODS We compared GBS capsular and surface-protein maternal immunoglobin G antibody concentrations and cord-maternal ratios between HIV-infected and HIV-uninfected mother-newborn dyads. RESULTS Median capsular antibody concentrations (µg/mL) were lower in HIV-infected than HIV-uninfected women for serotypes Ib (P = .033) and V (P = .040); and for pilus island (PI)-1 (P = .016), PI-2a (P = .015), PI-2b (P = .015), and fibrinogen-binding protein A (P < .001). For serotypes Ia and III, cord-maternal ratios were 37.4% (P < .001) and 32.5% (P = .027) lower in HIV-infected compared to HIV-uninfected mother-newborn dyads. The adjusted odds of having capsular antibody concentration ≥2 µg/mL when comparing HIV-infected to -uninfected women were 0.33 (95% confidence interval [CI], .15-.75) and 0.34 (95% CI, .12-1.00) for serotypes Ia and III, respectively. Antibody levels and cord-maternal ratios were independent of CD4(+) lymphocyte counts or HIV-1 viral load. CONCLUSIONS The lower GBS antibody concentrations and reduced transplacental antibody transfer in HIV-infected women, which likely contribute to their infants being at heightened susceptibility for invasive GBS disease, could possibly be mitigated by vaccination with a GBS conjugate vaccine currently under clinical development.
Collapse
Affiliation(s)
- Ziyaad Dangor
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, Faculty of Health Sciences Department of Paediatrics, Faculty of Health Sciences
| | - Gaurav Kwatra
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, Faculty of Health Sciences
| | - Alane Izu
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, Faculty of Health Sciences
| | - Peter Adrian
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, Faculty of Health Sciences
| | - Nadia van Niekerk
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, Faculty of Health Sciences
| | - Clare L Cutland
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, Faculty of Health Sciences
| | - Yasmin Adam
- Department of Obstetrics and Gynaecology, Faculty of Health Sciences, University of the Witwatersrand
| | | | - Sanjay G Lala
- Department of Paediatrics, Faculty of Health Sciences
| | - Shabir A Madhi
- Medical Research Council: Respiratory and Meningeal Pathogens Research Unit, Faculty of Health Sciences Department of Science and Technology/National Research Foundation: Vaccine Preventable Diseases, Faculty of Health Sciences National Institute for Communicable Diseases: A Division of National Health Laboratory Service, Centre for Vaccines and Immunology, Sandringham, South Africa
| |
Collapse
|
124
|
Li L, Shi Y, Wang R, Huang T, Liang W, Luo H, Gan X, Huang W, Li J, Lei A, Chen M. Proteomic analysis of tilapia Oreochromis niloticus Streptococcus agalactiae strains with different genotypes and serotypes. JOURNAL OF FISH BIOLOGY 2015; 86:615-636. [PMID: 25604844 DOI: 10.1111/jfb.12582] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 10/15/2014] [Indexed: 06/04/2023]
Abstract
Nine tilapia Oreochromis niloticus group B streptococcus (GBS) strains differing in serotype and genotype were selected and paired. Two-dimensional difference gel electrophoresis (2D DIGE) and matrix-assisted laser-desorption ionization time-of-flight-mass spectrometry (MALDI-TOF-MS) were used to analyse the protein profiles of the strain pairs. Forty-three proteins corresponding to 66 spots were identified, of which 35 proteins were found in the seven selected strain pairs that represented pairs differing in genotype and serotype. Among the 35 proteins, numbers of differentially expressed proteins in strains of different serotypes were greater than found in strains of different genotypes, suggesting that serotype plays a more essential role than genotype in the differential protein expression among GBS strains. No distinct pattern was found with respect to genotype and the protein expression profile of GBS strains. Several proteins were identified as surface-associated cytoplasmic proteins that possessed the typical immunity-eliciting characteristics of surface proteins. The identified proteins were found to be involved in 16 biological processes and seven Kyoto encyclopaedia of genes and genomes (KEGG) pathways. The data, for the first time, identified differentially expressed proteins in O. niloticus GBS strains of different serotypes, which play a major role in immunogenicity of O. niloticus GBS than does genotype, offering further information for design of a vaccine against O. niloticus GBS.
Collapse
Affiliation(s)
- L Li
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - Y Shi
- Institute of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - R Wang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - T Huang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - W Liang
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - H Luo
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - X Gan
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - W Huang
- Institute of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - J Li
- Institute of Animal Science and Technology, Guangxi University, Nanning, Guangxi 530005, China
| | - A Lei
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| | - M Chen
- Guangxi Key Laboratory for Aquatic Genetic Breeding and Healthy Aquaculture, Guangxi Academy of Fishery Sciences, Nanning, Guangxi 530021, China
| |
Collapse
|
125
|
De Gregorio PR, Juárez Tomás MS, Leccese Terraf MC, Nader-Macías MEF. Preventive effect of Lactobacillus reuteri CRL1324 on Group B Streptococcus vaginal colonization in an experimental mouse model. J Appl Microbiol 2015; 118:1034-47. [PMID: 25786121 DOI: 10.1111/jam.12739] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2014] [Revised: 12/01/2014] [Accepted: 12/18/2014] [Indexed: 11/28/2022]
Abstract
AIMS To assess the preventive effect of different intravaginal (i.va.) doses of Lactobacillus reuteri CRL1324 against vaginal colonization by Group B Streptococcus (GBS) in a murine experimental model. METHODS AND RESULTS The major virulence factors of four vaginal GBS clinical isolates were determined to select the most virulent strain and set up a murine model of streptococcal vaginal colonization. Later, the effect of four and seven doses of 10(8) viable cells of Lact. reuteri CRL1324 i.va. administered, prior to the GBS challenge was studied. Seven doses of lactobacilli were able to significantly reduce the number of viable GBS cells, while four doses showed no preventive effect. Both doses reduced the leucocyte influx induced by GBS. Seven doses caused a slight increase in the Lact. reuteri CRL1324 vaginal colonization compared with four doses and reduced murine vaginal pH compared to control mice. CONCLUSIONS Lactobacillus reuteri CRL1324 evidenced a preventive effect on GBS vaginal colonization in an experimental mouse model. SIGNIFICANCE AND IMPACTS OF THE STUDY Maternal GBS colonization is one of the most important risk factors for developing disease in newborns. Lactobacillus reuteri CRL1324 could be considered as a new biological agent to reduce infections caused by this micro-organism.
Collapse
Affiliation(s)
- P R De Gregorio
- Centro de Referencia para Lactobacilos (CERELA)-CONICET, San Miguel de Tucumán, Tucumán, Argentina
| | | | | | | |
Collapse
|
126
|
Sundaresan R, Samen U, Ponnuraj K. Structure of KRT4 binding domain of Srr-1 from Streptococcus agalactiae reveals a novel β-sheet complementation. Int J Biol Macromol 2015; 75:97-105. [PMID: 25603146 DOI: 10.1016/j.ijbiomac.2014.12.048] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2014] [Revised: 12/23/2014] [Accepted: 12/24/2014] [Indexed: 10/24/2022]
Abstract
The serine rich repeat protein-1 (Srr-1) is an adhesive protein of Streptococcus agalactiae. It is the first bacterial protein identified to interact with human keratin 4 (K4 or KRT4). Within Srr-1, the residues 311-641 constitute the non-repeat ligand binding region (Srr-1-BR(311-641)). The C-terminal part of Srr-1-BR(311-641), comprising of residues 485-642 (termed Srr-1-K4BD), have been identified to bind to K4. Here we report the crystal structure of recombinant Srr-1-K4BD(485-642) and its possible mode of interaction with K4 through docking studies. The dimeric structure of Srr-1-K4BD(485-642) reveals a novel two way "slide lock" parallel β-sheet complementation where the C-terminal strand of one monomer is positioned anti-parallel to the N-terminal strand of the adjacent monomer and this arrangement is not seen so far in any of the homologous structures. The dimerization of Srr-1-K4BD(485-642) observed both in the crystal structure and in solution suggests that similar domain association could also be possible in in vivo and we propose this association would likely generate a new binding site for another host molecule. It is likely that the adhesin can recognize multiple ligands using its ligand binding sub-domains through their intra and inter domain association with one another.
Collapse
Affiliation(s)
- Ramya Sundaresan
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India
| | - Ulrike Samen
- Institute of Microbiology and Biotechnology, University of Ulm, Albert-Einstein-Allee 11 89081, Ulm, Germany
| | - Karthe Ponnuraj
- Centre of Advanced Study in Crystallography and Biophysics, University of Madras, Guindy Campus, Chennai 600 025, India.
| |
Collapse
|
127
|
Survey of immunological features of the alpha-like proteins of Streptococcus agalactiae. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2014; 22:153-9. [PMID: 25540270 DOI: 10.1128/cvi.00643-14] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Nearly all Streptococcus agalactiae (group B streptococcus [GBS]) strains express a protein which belongs to the so-called alpha-like proteins (Alps), of which Cα, Alp1, Alp2, Alp3, Rib, and Alp4 are known to occur in GBS. The Alps are chimeras which form mosaic structures on the GBS surface. Both N- and C-terminal stretches of the Alps possess immunogenic sites of dissimilar immunological specificity. In this review, we have compiled data dealing with the specificity of the N- and C-terminal immunogenic sites of the Alps. The majority of N-terminal sites show protein specificity while the C-terminal sites show broader cross-reactivity. Molecular serotyping has revealed that antibody-based serotyping has often resulted in erroneous Alp identification, due to persistence of cross-reacting antibodies in antisera for serotyping. Retrospectively, this could be expected on the basis of sequence analysis results. Some of the historical R proteins are in fact Alps. The data included in the review may provide a basis for decisions regarding techniques for the preparation of specific antisera for serotyping of GBS, for use in other approaches in GBS research, and for decision making in the context of GBS vaccine developments.
Collapse
|
128
|
Wang YT, Huang HY, Tsai MA, Wang PC, Jiang BH, Chen SC. Phosphoglycerate kinase enhanced immunity of the whole cell of Streptococcus agalactiae in tilapia, Oreochromis niloticus. FISH & SHELLFISH IMMUNOLOGY 2014; 41:250-259. [PMID: 25218275 DOI: 10.1016/j.fsi.2014.09.008] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2014] [Revised: 08/18/2014] [Accepted: 09/02/2014] [Indexed: 06/03/2023]
Abstract
Streptococcus agalactiae is a Gram-positive bacterium and a severe aquaculture pathogen that can infect a wide range of warmwater fish species. The outer-surface proteins in bacterial pathogens play an important role in pathogenesis. We evaluated the immunogenicity of two of the identified surface proteins namely phosphoglycerate kinase (PGK) and ornithine carbamoyl-transferase (OCT). PGK and OCT were over-expressed and purified from Escherichia coli and used as the subunit vaccines in tilapia. Tilapia immunized with the S. agalactiae modified bacteria vaccine (whole cell preparations with recombinant PGK and OCT proteins) individually were tested for the efficacy. OCT and PGK combined with WC had a higher survival rate. A high-level protection and significant specific antibody responses against S. agalactiae challenge was observed upon the vaccinated tilapia with the purified PGK protein and S. agalactiae whole cells. The specific antibody titer against S. agalactiae antigen suggested that increased antibody titers were correlated with post-challenge survival rate. Il-1β expression profile was higher in PGK + WC-treated group. Tnf-α expression in the PGK + WC group was significantly increased. Taken together, our results suggested the combinations of recombinant protein and whole cell may elicit immune responses that reach greater protection than that of individual S. agalactiae components.
Collapse
Affiliation(s)
- Yi-Ting Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Hsing-Yen Huang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Ming-An Tsai
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Pei-Chi Wang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Bo-Huang Jiang
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC
| | - Shih-Chu Chen
- Department of Veterinary Medicine, College of Veterinary Medicine, National Pingtung University of Science and Technology, Pingtung 91201, Taiwan, ROC.
| |
Collapse
|
129
|
Beigverdi R, Jabalameli F, Mirsalehian A, Hantoushzadeh S, Boroumandi S, Taherikalani M, Emaneini M. Virulence factors, antimicrobial susceptibility and molecular characterization of Streptococcus agalactiae isolated from pregnant women. Acta Microbiol Immunol Hung 2014; 61:425-34. [PMID: 25496971 DOI: 10.1556/amicr.61.2014.4.4] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Forty-one Streptococcus agalactiae isolates collected from pregnant women at 35-37 weeks of gestation were analysed for their capsular types, antimicrobial resistance determinants, distribution of virulence factors and genetic relatedness using PCR and multiplex PCR. Capsular type III was predominant (65.8%), followed by capsular type II (14.6%), Ib (7.3%), and V(4.9%). All isolates were susceptible to penicillin, vancomycin, linezolid and quinupristin-dalfopristin. Resistance to tetracycline, erythromycin and clindamycin were found in 97.6%, 24.4%, and 14.6% of isolates, respectively. The most common antimicrobial resistance gene was tetM found in 97.6% of the isolates followed by ermTR and ermB found in 12% and 7.3% of isolates, respectively. The most common virulence gene was hly (100%), followed by scpB (97.6%), bca (97.6%), rib (53.65%) and bac (4.9%). The insertion sequence IS1548 was found in 63.4% of isolates. By multi locus variable number of tandem repeat analysis (MLVA) typing, 30 different allelic profiles or MLVA types (MTs) were identified. The most frequent was the MT1 (5/41, 12.2%) and followed by MT2 (4/41, 9.75%). Our data revealed that population structure of these isolates is highly diverse and indicates different MLVA types.
Collapse
Affiliation(s)
- Reza Beigverdi
- 1 Tehran University of Medical Sciences Department of Microbiology, School of Medicine Tehran Iran
| | - Fereshteh Jabalameli
- 1 Tehran University of Medical Sciences Department of Microbiology, School of Medicine Tehran Iran
| | - Akbar Mirsalehian
- 1 Tehran University of Medical Sciences Department of Microbiology, School of Medicine Tehran Iran
| | - Sedigheh Hantoushzadeh
- 2 Tehran University of Medical Sciences Maternal, Fetal and Neonatal Research Center, Vali-asr Hospital Tehran Iran
| | | | - Morovat Taherikalani
- 4 Ilam University of Medical Sciences Clinical Microbiology Research Center Ilam Iran
| | - Mohammad Emaneini
- 1 Tehran University of Medical Sciences Department of Microbiology, School of Medicine Tehran Iran
| |
Collapse
|
130
|
Koskas M, Levy C, Romain O, Schlemmer C, Béchet S, Bonacorsi S, Bidet P, Cohen R. [Group A streptococcal perineal infection in children]. Arch Pediatr 2014; 21 Suppl 2:S97-S100. [PMID: 25456689 DOI: 10.1016/s0929-693x(14)72269-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Perineal diseases in children are usually caused by group A streptococcus (GAS). If the natural course of untreated cases is not known, it is well known that symptoms do not resolve spontaneously and can persist often for many months, until appropriate diagnosis and effective treatment are instituted. Furthermore, failures and recurrences after penicillin treatment are frequent. From 2009 to 2014, 165 perineal infections (median age: 48 months, extremes: 0.4-139) were enrolled by 15 pediatricians: 4 balanitis, 29 vulvo-vaginal diseases and 132 perianal infections. Painful defecation, anal fissures and macroscopic blood in stools were significantly more frequent in GAS perianal infections than negative GAS infections (p<0.01). The performance of GAS-rapid antigen test compared to the GAS culture was : sensitivity 97 % [CI 95 %: 89-100 %], specificity 76 % [CI 95 %: 66-84 %], negative predictive value 97 % [CI 95 %: 91-100 %], positive predictive value 71 % [CI 95 %: 60-80 %].
Collapse
Affiliation(s)
- M Koskas
- ACTIV (Association clinique et thérapeutique infantile du Val-de-Marne), 27, rue Inkermann, 94100 Saint-Maur-des-Fossés, France
| | - C Levy
- ACTIV (Association clinique et thérapeutique infantile du Val-de-Marne), 27, rue Inkermann, 94100 Saint-Maur-des-Fossés, France; Centre de recherche clinique (CRC) et Centre hospitalier intercommunal (CHI), 40, avenue de Verdun, 94010 Créteil, France; AFPA (Association française de pédiatrie ambulatoire), 4, rue Parmentier, 54270 Essey-les-Nancy, France.
| | - O Romain
- ACTIV (Association clinique et thérapeutique infantile du Val-de-Marne), 27, rue Inkermann, 94100 Saint-Maur-des-Fossés, France
| | - C Schlemmer
- ACTIV (Association clinique et thérapeutique infantile du Val-de-Marne), 27, rue Inkermann, 94100 Saint-Maur-des-Fossés, France
| | - S Béchet
- ACTIV (Association clinique et thérapeutique infantile du Val-de-Marne), 27, rue Inkermann, 94100 Saint-Maur-des-Fossés, France
| | - S Bonacorsi
- Université Paris-Diderot, PRES Sorbonne-Paris-Cité, 46, rue Henri-Huchard, 75018 Paris, France; Service de microbiologie, hôpital Robert-Debré (AP-HP), 48, boulevard Sérurier, 75019 Paris, France
| | - Ph Bidet
- Université Paris-Diderot, PRES Sorbonne-Paris-Cité, 46, rue Henri-Huchard, 75018 Paris, France; Service de microbiologie, hôpital Robert-Debré (AP-HP), 48, boulevard Sérurier, 75019 Paris, France
| | - R Cohen
- ACTIV (Association clinique et thérapeutique infantile du Val-de-Marne), 27, rue Inkermann, 94100 Saint-Maur-des-Fossés, France; Centre de recherche clinique (CRC) et Centre hospitalier intercommunal (CHI), 40, avenue de Verdun, 94010 Créteil, France; AFPA (Association française de pédiatrie ambulatoire), 4, rue Parmentier, 54270 Essey-les-Nancy, France; Unité court séjour, petits nourrissons, service de néonatologie, CHI de Créteil, 40, avenue de Verdun, 94010 Créteil, France
| |
Collapse
|
131
|
Romero-Saavedra F, Laverde D, Wobser D, Michaux C, Budin-Verneuil A, Bernay B, Benachour A, Hartke A, Huebner J. Identification of peptidoglycan-associated proteins as vaccine candidates for enterococcal infections. PLoS One 2014; 9:e111880. [PMID: 25369230 PMCID: PMC4219796 DOI: 10.1371/journal.pone.0111880] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2014] [Accepted: 10/02/2014] [Indexed: 01/17/2023] Open
Abstract
Infections by opportunistic bacteria have significant contributions to morbidity and mortality of hospitalized patients and also lead to high expenses in healthcare. In this setting, one of the major clinical problems is caused by Gram-positive bacteria such as enterococci and staphylococci. In this study we extract, purify, identify and characterize immunogenic surface-exposed proteins present in the vancomycin resistant enterococci (VRE) strain Enterococcus faecium E155 using three different extraction methods: trypsin shaving, biotinylation and elution at high pH. Proteomic profiling was carried out by gel-free and gel-nanoLC-MS/MS analyses. The total proteins found with each method were 390 by the trypsin shaving, 329 by the elution at high pH, and 45 using biotinylation. An exclusively extracytoplasmic localization was predicted in 39 (10%) by trypsin shaving, in 47 (15%) by elution at high pH, and 27 (63%) by biotinylation. Comparison between the three extraction methods by Venn diagram and subcellular localization predictors (CELLO v.2.5 and Gpos-mPLoc) allowed us to identify six proteins that are most likely surface-exposed: the SCP-like extracellular protein, a low affinity penicillin-binding protein 5 (PBP5), a basic membrane lipoprotein, a peptidoglycan-binding protein LysM (LysM), a D-alanyl-D-alanine carboxypeptidase (DdcP) and the peptidyl-prolyl cis-trans isomerase (PpiC). Due to their close relationship with the peptidoglycan, we chose PBP5, LysM, DdcP and PpiC to test their potential as vaccine candidates. These putative surface-exposed proteins were overexpressed in Escherichia coli and purified. Rabbit polyclonal antibodies raised against the purified proteins were able to induce specific opsonic antibodies that mediated killing of the homologous strain E. faecium E155 as well as clinical strains E. faecium E1162, Enterococcus faecalis 12030, type 2 and type 5. Passive immunization with rabbit antibodies raised against these proteins reduced significantly the colony counts of E. faecium E155 in mice, indicating the effectiveness of these surface-related proteins as promising vaccine candidates to target different enterococcal pathogens.
Collapse
Affiliation(s)
- Felipe Romero-Saavedra
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Freiburg, Germany
- EA4655 U2RM Stress/Virulence, University of Caen Lower-Normandy, Caen, France
| | - Diana Laverde
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Freiburg, Germany
- EA4655 U2RM Stress/Virulence, University of Caen Lower-Normandy, Caen, France
| | - Dominique Wobser
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Freiburg, Germany
| | - Charlotte Michaux
- EA4655 U2RM Stress/Virulence, University of Caen Lower-Normandy, Caen, France
| | | | - Benoit Bernay
- Proteogen platform SFR ICORE 4206, University of Caen Lower-Normandy, Caen, France
| | - Abdellah Benachour
- EA4655 U2RM Stress/Virulence, University of Caen Lower-Normandy, Caen, France
| | - Axel Hartke
- EA4655 U2RM Stress/Virulence, University of Caen Lower-Normandy, Caen, France
| | - Johannes Huebner
- Division of Infectious Diseases, Department of Medicine, University Medical Center Freiburg, Freiburg, Germany
- Division of Pediatric Infectious Diseases, Dr. von Hauner Children's Hospital, Ludwig-Maximilians-University, Munich, Germany
- German Center for Infection Research (DZIF), Partnersite Munich, Munich, Germany
- * E-mail:
| |
Collapse
|
132
|
Cohen R, Levy C, Bonacorsi S, Wollner A, Koskas M, Jung C, Béchet S, Chalumeau M, Cohen J, Bidet P. Diagnostic accuracy of clinical symptoms and rapid diagnostic test in group A streptococcal perianal infections in children. Clin Infect Dis 2014; 60:267-70. [PMID: 25313248 DOI: 10.1093/cid/ciu794] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
Abstract
From 2009 to 2014, we prospectively enrolled 132 children with perianal infections. The presentation of painful defecation, anal fissures, and macroscopic blood in stools was highly suggestive of group A streptococcal perianal infection (probability 83.3%). We found a high sensitivity of a group A streptococcal rapid diagnostic testing (98%) but relatively low specificity (72.8%).
Collapse
Affiliation(s)
- Robert Cohen
- Association Clinique et Thérapeutique Infantile du Val de Marne, Saint-Maur des Fossés Clinical Research Center, Centre Hospitalier Intercommunal de Créteil Association Française de Pédiatrie Ambulatoire Unité Court Séjour, Petits Nourrissons, Service de Néonatologie, Centre Hospitalier Intercommunal de Créteil
| | - Corinne Levy
- Association Clinique et Thérapeutique Infantile du Val de Marne, Saint-Maur des Fossés Clinical Research Center, Centre Hospitalier Intercommunal de Créteil Association Française de Pédiatrie Ambulatoire
| | - Stéphane Bonacorsi
- Université Paris Diderot, Sorbonne Paris Cité Service de Microbiologie, Hôpital Robert-Debré
| | - Alain Wollner
- Association Clinique et Thérapeutique Infantile du Val de Marne, Saint-Maur des Fossés
| | - Marc Koskas
- Association Clinique et Thérapeutique Infantile du Val de Marne, Saint-Maur des Fossés
| | - Camille Jung
- Clinical Research Center, Centre Hospitalier Intercommunal de Créteil
| | - Stéphane Béchet
- Association Clinique et Thérapeutique Infantile du Val de Marne, Saint-Maur des Fossés
| | - Martin Chalumeau
- Department of Pediatrics, Necker-Enfants-Malades Hospital, Assistance Publique-Hôpitaux de Paris, Université Paris Descartes INSERM U1153, Obstetrical, Perinatal and Pediatric Epidemiology Research Team, Center for Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Paris Descartes University, France
| | - Jérémie Cohen
- INSERM U1153, Obstetrical, Perinatal and Pediatric Epidemiology Research Team, Center for Epidemiology and Biostatistics Sorbonne Paris Cité (CRESS), Paris Descartes University, France
| | - Philippe Bidet
- Université Paris Diderot, Sorbonne Paris Cité Service de Microbiologie, Hôpital Robert-Debré
| |
Collapse
|
133
|
Wang J, Zou LL, Li AX. Construction of a Streptococcus iniae sortase A mutant and evaluation of its potential as an attenuated modified live vaccine in Nile tilapia (Oreochromis niloticus). FISH & SHELLFISH IMMUNOLOGY 2014; 40:392-398. [PMID: 25090938 DOI: 10.1016/j.fsi.2014.07.028] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2014] [Revised: 07/20/2014] [Accepted: 07/22/2014] [Indexed: 06/03/2023]
Abstract
Streptococcus iniae is a major Gram-positive aquatic pathogen, which causes invasive diseases in cultured fish worldwide. The identification of potential virulence determinants of streptococcal infections will help to understand and control this disease, but only a few have been confirmed in S. iniae. Sortase A (srtA) is the key enzyme that anchors pre-mature cell wall-attached proteins to peptidoglycan and it can affect the correct positioning of surface proteins, as well as the course of Gram-positive bacterial infection, thereby making it a potential target in the study of virulence factors and disease control. In this study, the 759 bp srtA gene was cloned from pathogenic S. iniae TBY-1 strain and the mutant strain TBY-1ΔsrtA was constructed via allelic exchange mutagenesis. We found that srtA shares high similarities with sortase A from other Streptococcus spp. Direct survival rate assay and challenge experiments were performed, which showed that the mutant strain TBY-1ΔsrtA had a lower survival capacity in healthy tilapia blood and it was less virulent than the wild type strain in tilapia, thereby indicating that the deletion of sortase A affects the virulence and infectious capacity of S. iniae. The mutant strain TBY-1ΔsrtA was used as a live vaccine, which was administered via intraperitoneal injection, and it provided the relative percent survival value of 95.5% in Nile tilapia, thereby demonstrating its high potential as an effective attenuated live vaccine candidate.
Collapse
Affiliation(s)
- J Wang
- State Key Laboratory of Bio-control, Key Laboratory for Aquatic Products Safety of Ministry of Education, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang West Road, Haizhu District, Guangzhou 510275, Guangdong Province, PR China.
| | - L L Zou
- Hubei Province Key Laboratory of Pathogenic Microorganism, Medical College, China Three Gorges University, 8 Daxue Road, Xiling District, Yichang 443002, Hubei Province, PR China.
| | - A X Li
- State Key Laboratory of Bio-control, Key Laboratory for Aquatic Products Safety of Ministry of Education, Guangdong Provincial Key Laboratory for Aquatic Economic Animals, School of Life Sciences, Sun Yat-sen University, 135 Xingang West Road, Haizhu District, Guangzhou 510275, Guangdong Province, PR China.
| |
Collapse
|
134
|
Da Cunha V, Davies MR, Douarre PE, Rosinski-Chupin I, Margarit I, Spinali S, Perkins T, Lechat P, Dmytruk N, Sauvage E, Ma L, Romi B, Tichit M, Lopez-Sanchez MJ, Descorps-Declere S, Souche E, Buchrieser C, Trieu-Cuot P, Moszer I, Clermont D, Maione D, Bouchier C, McMillan DJ, Parkhill J, Telford JL, Dougan G, Walker MJ, Holden MTG, Poyart C, Glaser P. Streptococcus agalactiae clones infecting humans were selected and fixed through the extensive use of tetracycline. Nat Commun 2014; 5:4544. [PMID: 25088811 PMCID: PMC4538795 DOI: 10.1038/ncomms5544] [Citation(s) in RCA: 176] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2014] [Accepted: 06/27/2014] [Indexed: 11/17/2022] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus, GBS) is a commensal of the digestive and genitourinary tracts of humans that emerged as the leading cause of bacterial neonatal infections in Europe and North America during the 1960s. Due to the lack of epidemiological and genomic data, the reasons for this emergence are unknown. Here we show by comparative genome analysis and phylogenetic reconstruction of 229 isolates that the rise of human GBS infections corresponds to the selection and worldwide dissemination of only a few clones. The parallel expansion of the clones is preceded by the insertion of integrative and conjugative elements conferring tetracycline resistance (TcR). Thus, we propose that the use of tetracycline from 1948 onwards led in humans to the complete replacement of a diverse GBS population by only few TcR clones particularly well adapted to their host, causing the observed emergence of GBS diseases in neonates.
Collapse
Affiliation(s)
- Violette Da Cunha
- Institut Pasteur, Unité de Biologie des Bacteries Pathogènes à Gram-positif, Paris 75015, France
- CNRS UMR3525, Paris 75015, France
- Institut Pasteur, Bioinformatics platform, Paris 75015, France
| | - Mark R Davies
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 15A, UK
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072 Queensland, Australia
| | - Pierre-Emmanuel Douarre
- Institut Pasteur, Unité de Biologie des Bacteries Pathogènes à Gram-positif, Paris 75015, France
- CNRS UMR3525, Paris 75015, France
| | - Isabelle Rosinski-Chupin
- Institut Pasteur, Unité de Biologie des Bacteries Pathogènes à Gram-positif, Paris 75015, France
- CNRS UMR3525, Paris 75015, France
| | | | - Sebastien Spinali
- Centre National de Référence des Streptocoques, Hôpitaux Universitaires, Paris Centre Cochin-Hôtel Dieu-Broca, Paris 75014, France
| | - Tim Perkins
- Novartis Vaccines and Diagnostics, Siena 53100, Italy
| | - Pierre Lechat
- Institut Pasteur, Bioinformatics platform, Paris 75015, France
| | - Nicolas Dmytruk
- Centre National de Référence des Streptocoques, Hôpitaux Universitaires, Paris Centre Cochin-Hôtel Dieu-Broca, Paris 75014, France
| | - Elisabeth Sauvage
- Institut Pasteur, Unité de Biologie des Bacteries Pathogènes à Gram-positif, Paris 75015, France
- CNRS UMR3525, Paris 75015, France
| | - Laurence Ma
- Institut Pasteur Genomic platform, Paris 75015, France
| | | | - Magali Tichit
- Institut Pasteur Genomic platform, Paris 75015, France
| | - Maria-José Lopez-Sanchez
- Institut Pasteur, Unité de Biologie des Bacteries Pathogènes à Gram-positif, Paris 75015, France
- CNRS UMR3525, Paris 75015, France
| | | | - Erika Souche
- Institut Pasteur, Bioinformatics platform, Paris 75015, France
| | - Carmen Buchrieser
- CNRS UMR3525, Paris 75015, France
- Institut Pasteur, Biologie des Bactéries Intracellulaires, Paris 75015, France
| | - Patrick Trieu-Cuot
- Institut Pasteur, Unité de Biologie des Bacteries Pathogènes à Gram-positif, Paris 75015, France
- CNRS ERL3526, Paris 75015, France
| | - Ivan Moszer
- Institut Pasteur, Bioinformatics platform, Paris 75015, France
| | - Dominique Clermont
- Institut Pasteur, Collection de l'Institut Pasteur (CIP), Paris 75015, France
| | | | | | - David J McMillan
- QIMR Berghofer Medical Research Institute, Brisbane, 7006 Queensland, Australia
- Inflammation and Healing Research Cluster, University of the Sunshine Coast, Sippy Downs, 4556 Queensland, Australia
| | - Julian Parkhill
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 15A, UK
| | | | - Gordan Dougan
- The Wellcome Trust Sanger Institute, Hinxton, Cambridge CB10 15A, UK
| | - Mark J Walker
- Australian Infectious Diseases Research Centre, School of Chemistry and Molecular Biosciences, University of Queensland, Brisbane, 4072 Queensland, Australia
| | | | - Claire Poyart
- Institut Pasteur, Unité de Biologie des Bacteries Pathogènes à Gram-positif, Paris 75015, France
- Centre National de Référence des Streptocoques, Hôpitaux Universitaires, Paris Centre Cochin-Hôtel Dieu-Broca, Paris 75014, France
- Institut Cochin, Université Sorbonne Paris Descartes, Paris 75014, France
- INSERM, U1016, Paris 75014, France
| | - Philippe Glaser
- Institut Pasteur, Unité de Biologie des Bacteries Pathogènes à Gram-positif, Paris 75015, France
- CNRS UMR3525, Paris 75015, France
- Institut Pasteur, Bioinformatics platform, Paris 75015, France
| |
Collapse
|
135
|
Krupna-Gaylord MA, Liveris D, Love AC, Wormser GP, Schwartz I, Petzke MM. Induction of type I and type III interferons by Borrelia burgdorferi correlates with pathogenesis and requires linear plasmid 36. PLoS One 2014; 9:e100174. [PMID: 24945497 PMCID: PMC4063763 DOI: 10.1371/journal.pone.0100174] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2012] [Accepted: 05/23/2014] [Indexed: 12/28/2022] Open
Abstract
The capacity for Borrelia burgdorferi to cause disseminated infection in humans or mice is associated with the genotype of the infecting strain. The cytokine profiles elicited by B. burgdorferi clinical isolates of different genotype (ribosomal spacer type) groups were assessed in a human PBMC co-incubation model. RST1 isolates, which are more frequently associated with disseminated Lyme disease in humans and mice, induced significantly higher levels of IFN-α and IFN-λ1/IL29 relative to RST3 isolates, which are less frequently associated with disseminated infection. No differences in the protein concentrations of IFN-γ, IL-1β, IL-6, IL-8, IL-10 or TNF-α were observed between isolates of differing genotype. The ability of B. burgdorferi to induce type I and type III IFNs was completely dependent on the presence of linear plasmid (lp) 36. An lp36-deficient B. burgdorferi mutant adhered to, and was internalized by, PBMCs and specific dendritic cell (DC) subsets less efficiently than its isogenic B31 parent strain. The association defect with mDC1s and pDCs could be restored by complementation of the mutant with the complete lp36. The RST1 clinical isolates studied were found to contain a 2.5-kB region, located in the distal one-third of lp36, which was not present in any of the RST3 isolates tested. This divergent region of lp36 may encode one or more factors required for optimal spirochetal recognition and the production of type I and type III IFNs by human DCs, thus suggesting a potential role for DCs in the pathogenesis of B. burgdorferi infection.
Collapse
Affiliation(s)
- Michelle A. Krupna-Gaylord
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Dionysios Liveris
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Andrea C. Love
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
| | - Gary P. Wormser
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, New York, United States of America
| | - Ira Schwartz
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
- Division of Infectious Diseases, Department of Medicine, New York Medical College, Valhalla, New York, United States of America
| | - Mary M. Petzke
- Department of Microbiology and Immunology, New York Medical College, Valhalla, New York, United States of America
- * E-mail:
| |
Collapse
|
136
|
D'Urzo N, Martinelli M, Pezzicoli A, De Cesare V, Pinto V, Margarit I, Telford JL, Maione D. Acidic pH strongly enhances in vitro biofilm formation by a subset of hypervirulent ST-17 Streptococcus agalactiae strains. Appl Environ Microbiol 2014; 80:2176-2185. [PMID: 24487536 PMCID: PMC3993151 DOI: 10.1128/aem.03627-13] [Citation(s) in RCA: 69] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2013] [Accepted: 01/17/2014] [Indexed: 11/20/2022] Open
Abstract
Streptococcus agalactiae, also known as group B Streptococcus (GBS), is a primary colonizer of the anogenital mucosa of up to 40% of healthy women and an important cause of invasive neonatal infections worldwide. Among the 10 known capsular serotypes, GBS type III accounts for 30 to 76% of the cases of neonatal meningitis. In recent years, the ability of GBS to form biofilm attracted attention for its possible role in fitness and virulence. Here, a new in vitro biofilm formation protocol was developed to guarantee more stringent conditions, to better discriminate between strong-, low-, and non-biofilm-forming strains, and to facilitate interpretation of data. This protocol was used to screen the biofilm-forming abilities of 366 GBS clinical isolates from pregnant women and from neonatal infections of different serotypes in relation to medium composition and pH. The results identified a subset of isolates of serotypes III and V that formed strong biofilms under acidic conditions. Importantly, the best biofilm formers belonged to serotype III hypervirulent clone ST-17. Moreover, the abilities of proteinase K to strongly inhibit biofilm formation and to disaggregate mature biofilms suggested that proteins play an essential role in promoting GBS biofilm initiation and contribute to biofilm structural stability.
Collapse
|
137
|
Comparative proteome analysis of two Streptococcus agalactiae strains from cultured tilapia with different virulence. Vet Microbiol 2014; 170:135-43. [PMID: 24594355 DOI: 10.1016/j.vetmic.2014.01.033] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2013] [Revised: 01/26/2014] [Accepted: 01/27/2014] [Indexed: 11/22/2022]
Abstract
Streptococcus agalactiae is a major piscine pathogen, which causes significant morbidity and mortality among numerous fish species, and results in huge economic losses to aquaculture. Many S. agalactiae strains showing different virulence characteristics have been isolated from infected tilapia in different geographical regions throughout South China in the recent years, including natural attenuated S. agalactiae strain TFJ0901 and virulent S. agalactiae strain THN0901. In the present study, survival of tilapia challenged with S. agalactiae strain TFJ0901 and THN0901 (10(7)CFU/fish) were 93.3% and 13.3%, respectively. Moreover, there are severe lesions of the examined tissues in tilapia infected with strain THN0901, but no significant histopathological changes were observed in tilapia infected with the strain TFJ0901. In order to elucidate the factors responsible for the invasive potential of S. agalactiae between two strains TFJ0901 and THN0901, a comparative proteome analysis was applied to identify the different protein expression profiles between the two strains. 506 and 508 cellular protein spots of S. agalactiae TFJ0901 and THN0901 were separated by two dimensional electrophoresis, respectively. And 34 strain-specific spots, corresponding to 27 proteins, were identified successfully by MALDI-TOF mass spectrometry. Among them, 23 proteins presented exclusively in S. agalactiae TFJ0901 or THN0901, and the other 4 proteins presented in different isomeric forms between TFJ0901 and THN0901. Most of the strain-specific proteins were just involved in metabolic pathways, while 7 of them were presumed to be responsible for the virulence differences of S. agalactiae strain TFJ0901 and THN0901, including molecular chaperone DnaJ, dihydrolipoamide dehydrogenase, thioredoxin, manganese-dependent inorganic pyrophosphatase, elongation factor Tu, bleomycin resistance protein and cell division protein DivIVA. These virulence-associated proteins may contribute to identify new diagnostic markers and help to understand the pathogenesis of S. agalactiae.
Collapse
|
138
|
Sabia C, Anacarso I, Bergonzini A, Gargiulo R, Sarti M, Condò C, Messi P, de Niederhausern S, Iseppi R, Bondi M. Detection and partial characterization of a bacteriocin-like substance produced by Lactobacillus fermentum CS57 isolated from human vaginal secretions. Anaerobe 2014; 26:41-5. [PMID: 24462825 DOI: 10.1016/j.anaerobe.2014.01.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2012] [Revised: 05/06/2013] [Accepted: 01/10/2014] [Indexed: 11/27/2022]
Abstract
Lactobacilli (150) from human vaginal secretions were tested for the production of antimicrobial substances which can provide a physiological defense against the pathogenic microorganisms in the vaginal area. Sixteen of the isolates (10.6%) showed antibacterial activity against one or several closely related microorganisms used as indicators. Lactobacillus fermentum CS57 was the best producer and secretes a bacteriocin-like substance (BLS) with antagonistic activity against Streptococcus agalactiae and Candida albicans. The compound was susceptible to the proteolytic enzymes and was heat labile. The mode of action was identified as bactericidal. The crude activity of the L. fermentum CS57 BLS was linked to a substance with a molecular weight larger than 30 kDa. Plasmid analysis of L. fermentum CS57 revealed the presence of a plasmid band with molecular weight of 54.7 kb. All L. fermentum CS57 non-producer variants (BLS-) obtained by curing experiments, showed loss of plasmid band and were susceptible to the BLS of the original strain. Therefore antimicrobial activity and immunity production seem to be linked to genes located on that same plasmid. Taking into account our results, L. fermentum CS57 could be considered a candidate for potential use as probiotic for the prophylaxis of vaginal human infections.
Collapse
Affiliation(s)
- Carla Sabia
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy.
| | - Immacolata Anacarso
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Alberto Bergonzini
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Raffaele Gargiulo
- Provincial Laboratory of Clinical Microbiology, S. Agostino-Estense Hospital, Modena, Italy
| | - Mario Sarti
- Provincial Laboratory of Clinical Microbiology, S. Agostino-Estense Hospital, Modena, Italy
| | - Carla Condò
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Patrizia Messi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Simona de Niederhausern
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Ramona Iseppi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| | - Moreno Bondi
- Department of Life Sciences, University of Modena and Reggio Emilia, Via Campi 287, 41125 Modena, Italy
| |
Collapse
|
139
|
Firon A, Dinis M, Raynal B, Poyart C, Trieu-Cuot P, Kaminski PA. Extracellular nucleotide catabolism by the Group B Streptococcus ectonucleotidase NudP increases bacterial survival in blood. J Biol Chem 2014; 289:5479-89. [PMID: 24429288 DOI: 10.1074/jbc.m113.545632] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
Streptococcus agalactiae (Group B Streptococcus) is a commensal of the human intestine and vagina of adult women but is the leading cause of invasive infection in neonates. This Gram-positive bacterium displays a set of virulence-associated surface proteins involved in the interaction with the host, such as adhesion to host cells, invasion of tissues, or subversion of the immune system. In this study, we characterized a cell wall-localized protein as an ecto-5'-nucleoside diphosphate phosphohydrolase (NudP) involved in the degradation of extracellular nucleotides which are central mediators of the immune response. Biochemical characterization of recombinant NudP revealed a Mn(2+)-dependent ecto-5'-nucleotidase activity on ribo- and deoxyribonucleoside 5'-mono- and 5'-diphosphates with a substrate specificity different from that of known orthologous enzymes. Deletion of the gene coding the housekeeping enzyme sortase A led to the release of NudP into the culture supernatant, confirming that this enzyme is anchored to the cell wall by its non-canonical LPXTN motif. The NudP ecto-5'-nucleotidase activity is reminiscent of the reactions performed by the mammalian ectonucleotidases CD39 and CD73 involved in regulating the extracellular level of ATP and adenosine. We further demonstrated that the absence of NudP activity decreases bacterial survival in mouse blood, a process dependent on extracellular adenosine. In vivo assays in animal models of infection showed that NudP activity is critical for virulence. These results demonstrate that Group B Streptococcus expresses a specific ecto-5'-nucleotidase necessary for its pathogenicity and highlight the diversity of reactions performed by this enzyme family. These results suggest that bacterial pathogens have developed specialized strategies to subvert the mammalian immune response controlled by the extracellular nucleotide signaling pathways.
Collapse
Affiliation(s)
- Arnaud Firon
- From the Institut Pasteur, Unité de Biologie des Bactéries Pathogènes à Gram-Positif and
| | | | | | | | | | | |
Collapse
|
140
|
Brzychczy-Wloch M, Gosiewski T, Bulanda M. Multilocus sequence types of invasive and colonizing neonatal group B streptococci in Poland. Med Princ Pract 2014; 23:323-30. [PMID: 24820221 PMCID: PMC5586894 DOI: 10.1159/000362368] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/11/2013] [Accepted: 03/20/2014] [Indexed: 11/24/2022] Open
Abstract
OBJECTIVES The present study aimed to investigate the molecular characterization of Streptococcus agalactiae (group B streptococcus; GBS) strains isolated from newborns with invasive neonatal infections and healthy newborns in Poland. MATERIALS AND METHODS Forty-two GBS isolates were characterized by combining different typing methods, i.e. multilocus sequence typing (MLST), molecular serotyping and protein gene profiling. RESULTS Using MLST, a total of 16 sequence types (STs) were identified, and among these, 11 were clustered into the following 5 clonal complexes (CCs): CC23 (20; 49%), CC19 (7; 17%), CC17 (4; 10%), CC10 (4; 10%) and CC1 (1; 2%). A statistically significant relationship between ST-17 and invasive isolates (p = 0.0398) and ST-23 and colonizing strains (p = 0.0034) was detected. Moreover, 2 novel STs were detected (ST-637 and ST-638). Molecular serotyping showed that in the invasive isolates serotype III was predominant (11; 50%), followed by serotypes II (6; 27%), V (3; 14%) and Ia (2; 9%). In healthy newborns, serotype III was also dominant (12; 60%), followed by serotypes Ia (4; 20%), II (2; 10%), V (1; 5%) and Ib (1; 5%). Protein gene profiling indicated that the rib gene was predominant in the invasive strains (11; 59%), followed by bca (5; 22%), alp2 (2; 9%), alp3 (1; 5%) and epsilon (1; 5%), while in colonizing strains the alp2 gene was most common (10; 50%), followed by epsilon (5; 25%), rib (2; 10%), bca (2; 10%) and alp3 (1; 5%). A statistically significant relationship was noted between the rib gene and invasive GBS (p = 0.0329), whereas alp2 was related to the colonizing strains (p = 0.0495). CONCLUSIONS The investigated GBS isolates originating from infections in newborns and healthy neonates represented serotype III in more than half of the cases and differed from one another in terms of resistance to macrolides, ST type affiliation and the presence of genes encoding surface proteins from the Alp family. Further comparative genetic research on a larger number of strains is necessary for epidemiological investigation and vaccine development.
Collapse
Affiliation(s)
- Monika Brzychczy-Wloch
- Department of Bacteriology, Microbial Ecology and Parasitology, Krakow, Poland
- *Monika Brzychczy-Wloch, PhD, Chair of Microbiology, Department of Bacteriology, Microbial Ecology and Parasitology, Jagiellonian University Medical College, 18 Czysta Street, PL-31121 Krakow (Poland) E-Mail
| | - Tomasz Gosiewski
- Department of Bacteriology, Microbial Ecology and Parasitology, Krakow, Poland
| | - Malgorzata Bulanda
- Department of Infection Epidemiology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
141
|
Rana A, Rub A, Akhter Y. Proteome-scale identification of outer membrane proteins in Mycobacterium avium subspecies paratuberculosis using a structure based combined hierarchical approach. ACTA ACUST UNITED AC 2014; 10:2329-37. [DOI: 10.1039/c4mb00234b] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The overall strategy used for the proteome-wide comprehensive computational investigation to identify outer membrane proteins fromMycobacterium aviumsubsp.paratuberculosis.
Collapse
Affiliation(s)
- Aarti Rana
- School of Life Sciences
- Central University of Himachal Pradesh
- District-Kangra, India
| | - Abdur Rub
- Infection and Immunity Lab
- Department of Biotechnology
- Jamia Millia Islamia (A Central University)
- New Delhi, India-110025
| | - Yusuf Akhter
- School of Life Sciences
- Central University of Himachal Pradesh
- District-Kangra, India
| |
Collapse
|
142
|
In vitro activity of solithromycin against erythromycin-resistant Streptococcus agalactiae. Antimicrob Agents Chemother 2013; 58:1693-8. [PMID: 24379197 DOI: 10.1128/aac.02210-13] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
The in vitro antibacterial activity of solithromycin (CEM-101) against macrolide-resistant isolates (n=62) of Streptococcus agalactiae (group B streptococcus [GBS]) was determined. Phenotypic characterization of macrolide-resistant strains was performed by double-disc diffusion testing. A multiplex PCR was used to identify the erm(B), erm(TR), and mef(A/E) genes, capsular genotypes, and alpha-like (Alp) protein genes from the GBS strains. Determination of MIC was carried out using the microdilution broth method. The Etest method was used for penicillin, azithromycin, clarithromycin, and erythromycin. Solithromycin had a MIC50 of ≤0.008 μg/ml and a MIC90 of 0.015 μg/ml against macrolide-susceptible S. agalactiae. These MICs were lower than those displayed by penicillin (MIC50 of 0.032 μg/ml and MIC90 of 0.047 μg/ml), the antibiotic agent of choice for prophylaxis and treatment of GBS infections. Against macrolide-resistant S. agalactiae, solithromycin had a MIC50 of 0.03 μg/ml and a MIC90 of 0.125 μg/ml. Against erm(B) strains, solithromycin had a MIC50 of 0.03 μg/ml and a MIC90 of 0.06 μg/ml, while against mef(A) strains, it had a MIC50 of 0.03 μg/ml and a MIC90 of 0.125 μg/ml. Most erythromycin-resistant GBS strains were of serotype V (64.5%) and associated significantly with alp2-3. Moreover, a statistically significant association was observed between the constitutive macrolide-lincosamide-streptogramin B resistance (cMLSB) phenotype and the erm(B) gene-carrying strains, the alp2-3 gene and the M phenotype, and the mef(A/E) gene and epsilon. Overall, our results show that solithromycin had lower or similar MICs than penicillin and potent activity against macrolide-resistant strains independent of their genotype or phenotype, representing a valid therapeutic alternative where β-lactams cannot be used.
Collapse
|
143
|
Olson AB, Kent H, Sibley CD, Grinwis ME, Mabon P, Ouellette C, Tyson S, Graham M, Tyler SD, Van Domselaar G, Surette MG, Corbett CR. Phylogenetic relationship and virulence inference of Streptococcus Anginosus Group: curated annotation and whole-genome comparative analysis support distinct species designation. BMC Genomics 2013; 14:895. [PMID: 24341328 PMCID: PMC3897883 DOI: 10.1186/1471-2164-14-895] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2013] [Accepted: 12/09/2013] [Indexed: 12/30/2022] Open
Abstract
Background The Streptococcus Anginosus Group (SAG) represents three closely related species of the viridans group streptococci recognized as commensal bacteria of the oral, gastrointestinal and urogenital tracts. The SAG also cause severe invasive infections, and are pathogens during cystic fibrosis (CF) pulmonary exacerbation. Little genomic information or description of virulence mechanisms is currently available for SAG. We conducted intra and inter species whole-genome comparative analyses with 59 publically available Streptococcus genomes and seven in-house closed high quality finished SAG genomes; S. constellatus (3), S. intermedius (2), and S. anginosus (2). For each SAG species, we sequenced at least one numerically dominant strain from CF airways recovered during acute exacerbation and an invasive, non-lung isolate. We also evaluated microevolution that occurred within two isolates that were cultured from one individual one year apart. Results The SAG genomes were most closely related to S. gordonii and S. sanguinis, based on shared orthologs and harbor a similar number of proteins within each COG category as other Streptococcus species. Numerous characterized streptococcus virulence factor homologs were identified within the SAG genomes including; adherence, invasion, spreading factors, LPxTG cell wall proteins, and two component histidine kinases known to be involved in virulence gene regulation. Mobile elements, primarily integrative conjugative elements and bacteriophage, account for greater than 10% of the SAG genomes. S. anginosus was the most variable species sequenced in this study, yielding both the smallest and the largest SAG genomes containing multiple genomic rearrangements, insertions and deletions. In contrast, within the S. constellatus and S. intermedius species, there was extensive continuous synteny, with only slight differences in genome size between strains. Within S. constellatus we were able to determine important SNPs and changes in VNTR numbers that occurred over the course of one year. Conclusions The comparative genomic analysis of the SAG clarifies the phylogenetics of these bacteria and supports the distinct species classification. Numerous potential virulence determinants were identified and provide a foundation for further studies into SAG pathogenesis. Furthermore, the data may be used to enable the development of rapid diagnostic assays and therapeutics for these pathogens.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | - Michael G Surette
- National Microbiology Laboratory, Public Health Agency of Canada, Winnipeg, MB, Canada.
| | | |
Collapse
|
144
|
Abstract
Streptococcus agalactiae (group B Streptococcus [GBS]) is a leading cause of neonatal sepsis and meningitis, peripartum infections in women, and invasive infections in chronically ill or elderly individuals. GBS can be isolated from the gastrointestinal or genital tracts of up to 30% of healthy adults, and infection is thought to arise from invasion from a colonized mucosal site. Accordingly, bacterial surface components that mediate attachment of GBS to host cells or the extracellular matrix represent key factors in the colonization and infection of the human host. We identified a conserved GBS gene of unknown function that was predicted to encode a cell wall-anchored surface protein. Deletion of the gene and a cotranscribed upstream open reading frame (ORF) in GBS strain 515 reduced bacterial adherence to VK2 vaginal epithelial cells in vitro and reduced GBS binding to fibronectin-coated microtiter wells. Expression of the gene product in Lactococcus lactis conferred the ability to adhere to VK2 cells, to fibronectin and laminin, and to fibronectin-coated ME-180 cervical epithelial cells. Expression of the recombinant protein in L. lactis also markedly increased biofilm formation. The adherence function of the protein, named bacterial surface adhesin of GBS (BsaB), depended both on a central BID1 domain found in bacterial intimin-like proteins and on the C-terminal portion of the BsaB protein. Expression of BsaB in GBS, like that of several other adhesins, was regulated by the CsrRS two-component system. We conclude that BsaB represents a newly identified adhesin that participates in GBS attachment to epithelial cells and the extracellular matrix.
Collapse
|
145
|
McNamara M, Tzeng SC, Maier C, Wu M, Bermudez LE. Surface-exposed proteins of pathogenic mycobacteria and the role of cu-zn superoxide dismutase in macrophages and neutrophil survival. Proteome Sci 2013; 11:45. [PMID: 24283571 PMCID: PMC4176128 DOI: 10.1186/1477-5956-11-45] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/08/2013] [Accepted: 11/17/2013] [Indexed: 12/18/2022] Open
Abstract
Pathogenic mycobacteria are important agents causing human disease. Mycobacterium avium subsp. hominissuis (M. avium) is a species of recalcitrant environmental pathogen. The bacterium forms robust biofilms that allow it to colonize and persist in austere environments, such as residential and commercial water systems. M. avium is also an opportunistic pathogen that is a significant source of mortality for immune-compromised individuals. Proteins exposed at the bacterial surface play a central role in mediating the relationship between the bacterium and its environment. The processes underlying both biofilm formation and pathogenesis are directly dependent on this essential subset of the bacterial proteome. Therefore, the characterization of the surface-exposed proteome is an important step towards an improved understanding of the mycobacterial biology and pathogenesis. Here we examined the complement of surface exposed proteins from Mycobacterium avium 104, a clinical isolate and reference strain of Mycobacterium avium subsp. hominissuis. To profile the surface-exposed proteins of viable M. avium 104, bacteria were covalently labeled with a membrane impermeable biotinylation reagent and labeled proteins were affinity purified via the biotin-streptavidin interaction. The results provide a helpful snapshot of the surface-exposed proteome of this frequently utilized reference strain of M. avium. A Cu-Zn SOD knockout mutant, MAV_2043, a surface identified protein, was evaluated regarding its role in the survival in both macrophages and neutrophils.
Collapse
Affiliation(s)
- Michael McNamara
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, Corvallis, USA.,Oregon State University, Corvallis, Oregon 97331-4801, USA
| | - Shin-Cheng Tzeng
- Department of Chemistry, Corvallis, USA.,Oregon State University, Corvallis, Oregon 97331-4801, USA
| | - Claudia Maier
- Department of Chemistry, Corvallis, USA.,Oregon State University, Corvallis, Oregon 97331-4801, USA
| | - Martin Wu
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, Corvallis, USA.,Oregon State University, Corvallis, Oregon 97331-4801, USA
| | - Luiz E Bermudez
- Department of Biomedical Sciences, Molecular and Cellular Biology Program, Corvallis, USA.,Department of Microbiology, Corvallis, USA.,Oregon State University, Corvallis, Oregon 97331-4801, USA
| |
Collapse
|
146
|
Papasergi S, Lanza Cariccio V, Pietrocola G, Domina M, D'Aliberti D, Trunfio MG, Signorino G, Peppoloni S, Biondo C, Mancuso G, Midiri A, Rindi S, Teti G, Speziale P, Felici F, Beninati C. Immunogenic properties of Streptococcus agalactiae FbsA fragments. PLoS One 2013; 8:e75266. [PMID: 24086487 PMCID: PMC3782484 DOI: 10.1371/journal.pone.0075266] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2013] [Accepted: 08/14/2013] [Indexed: 11/18/2022] Open
Abstract
Several species of Gram-positive bacteria can avidly bind soluble and surface-associated fibrinogen (Fng), a property that is considered important in the pathogenesis of human infections. To gain insights into the mechanism by which group B Streptococcus (GBS), a frequent neonatal pathogen, interacts with Fng, we have screened two phage displayed genomic GBS libraries. All of the Fng-binding phage clones contained inserts encoding fragments of FbsA, a protein displaying multiple repeats. Since the functional role of this protein is only partially understood, representative fragments were recombinantly expressed and analyzed for Fng binding affinity and ability to induce immune protection against GBS infection. Maternal immunization with 6pGST, a fragment containing five repeats, significantly protected mouse pups against lethal GBS challenge and these protective effects could be recapitulated by administration of anti-6pGST serum from adult animals. Notably, a monoclonal antibody that was capable of neutralizing Fng binding by 6pGST, but not a non-neutralizing antibody, could significantly protect pups against lethal GBS challenge. These data suggest that FbsA-Fng interaction promotes GBS pathogenesis and that blocking such interaction is a viable strategy to prevent or treat GBS infections.
Collapse
|
147
|
Comparison of Z and R3 antigen expression and of genes encoding other antigenic markers in invasive human and bovine Streptococcus agalactiae strains from Norway. Vet Microbiol 2013; 167:729-33. [PMID: 24120184 DOI: 10.1016/j.vetmic.2013.09.014] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2013] [Revised: 09/06/2013] [Accepted: 09/09/2013] [Indexed: 11/20/2022]
Abstract
Streptococcus agalactiae (GBS) may cause a variety of infectious diseases in humans caused by human GBS and mastitis in cattle caused by bovine GBS. Over the last few years molecular testing has provided evidence that human and bovine GBS have evolved along diverse phylogenetic lines. In the present study 173 invasive human GBS strains and 52 invasive bovine strains were tested for altogether 18 strain-variable and surface-localized antigenic markers including all 10 capsular polysaccharides (CPS) and proteins including Cβ, the alpha-like proteins, R3 and the recently described Z1 and Z2 antigens. PCR was used to detect encoding genes and antibody-based methods to detect expression of antigens. Thirteen of the 18 markers were detected in isolates of both strain categories. Seven of the ten CPS antigens were detected in both groups with types III and V predominating in the human GBS strains, types IV and V in the bovine isolates. Z1, Z2 and/or R3 expression and the genes encoding Cβ, Cα, Alp1, Alp2/3 or R4 (Rib) were detected in both groups. Protein antigen-CPS associations well known for human strains were essentially the same in the bovine isolates. The results show that in spite of evolution along different lines, human and bovine GBS share a variety of surface-exposed antigenic markers, substantiating close relationship between the two GBS subpopulations.
Collapse
|
148
|
Godoy D, Carvalho-Castro G, Leal C, Pereira U, Leite R, Figueiredo H. Genetic diversity and new genotyping scheme for fish pathogenic Streptococcus agalactiae. Lett Appl Microbiol 2013; 57:476-83. [DOI: 10.1111/lam.12138] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2013] [Revised: 07/05/2013] [Accepted: 07/17/2013] [Indexed: 12/01/2022]
Affiliation(s)
- D.T. Godoy
- AQUAVET - Laboratory of Aquatic Animal Diseases, Veterinary School; Federal University of Minas Gerais; Belo Horizonte Brazil
| | - G.A. Carvalho-Castro
- AQUAVET - Laboratory of Aquatic Animal Diseases, Veterinary School; Federal University of Minas Gerais; Belo Horizonte Brazil
| | - C.A.G. Leal
- AQUAVET - Laboratory of Aquatic Animal Diseases, Veterinary School; Federal University of Minas Gerais; Belo Horizonte Brazil
| | - U.P. Pereira
- AQUAVET - Laboratory of Aquatic Animal Diseases, Veterinary School; Federal University of Minas Gerais; Belo Horizonte Brazil
| | - R.C. Leite
- AQUAVET - Laboratory of Aquatic Animal Diseases, Veterinary School; Federal University of Minas Gerais; Belo Horizonte Brazil
| | - H.C.P. Figueiredo
- AQUAVET - Laboratory of Aquatic Animal Diseases, Veterinary School; Federal University of Minas Gerais; Belo Horizonte Brazil
| |
Collapse
|
149
|
Movert E, Wu Y, Lambeau G, Kahn F, Touqui L, Areschoug T. Secreted Group IIA Phospholipase A2 Protects Humans Against the Group B Streptococcus: Experimental and Clinical Evidence. J Infect Dis 2013; 208:2025-35. [DOI: 10.1093/infdis/jit359] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
150
|
Yang Y, Liu Y, Ding Y, Yi L, Ma Z, Fan H, Lu C. Molecular characterization of Streptococcus agalactiae isolated from bovine mastitis in Eastern China. PLoS One 2013; 8:e67755. [PMID: 23874442 PMCID: PMC3707890 DOI: 10.1371/journal.pone.0067755] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2013] [Accepted: 05/21/2013] [Indexed: 02/04/2023] Open
Abstract
One hundred and two Streptococcus agalactiae (group B streptococcus [GBS]) isolates were collected from dairy cattle with subclinical mastitis in Eastern China during 2011. Clonal groups were established by multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE), respectively. Capsular polysaccharides (CPS), pilus and alpha-like-protein (Alp) family genes were also characterized by molecular techniques. MLST analysis revealed that these isolates were limited to three clonal groups and were clustered in six different lineages, i.e. ST (sequence type) 103, ST568, ST67, ST301, ST313 and ST570, of which ST568 and ST570 were new genotypes. PFGE analysis revealed this isolates were clustered in 27 PFGE types, of which, types 7, 8, 14, 15, 16, 18, 23 and 25 were the eight major types, comprising close to 70% (71/102) of all the isolates. The most prevalent sequence types were ST103 (58% isolates) and ST568 (31% isolates), comprising capsular genotype Ia isolates without any of the detected Alp genes, suggesting the appearance of novel genomic backgrounds of prevalent strains of bovine S. agalactiae. All the strains possessed the pilus island 2b (PI-2b) gene and the prevalent capsular genotypes were types Ia (89% isolates) and II (11% isolates), the conserved pilus type providing suitable data for the development of vaccines against mastitis caused by S. agalactiae.
Collapse
Affiliation(s)
- Yongchun Yang
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Yinglong Liu
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Yunlei Ding
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Li Yi
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Zhe Ma
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| | - Hongjie Fan
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
- * E-mail:
| | - Chengping Lu
- College of Veterinary Medicine, Nanjing Agriculture University, Nanjing, China
| |
Collapse
|