101
|
Abstract
Lactobacillus helveticus strain H10 was isolated from traditional fermented milk in Tibet, China. We sequenced the whole genome of strain H10 and compared it to the published genome sequence of Lactobacillus helveticus DPC4571.
Collapse
|
102
|
Original features of cell-envelope proteinases of Lactobacillus helveticus. A review. Int J Food Microbiol 2011; 146:1-13. [DOI: 10.1016/j.ijfoodmicro.2011.01.039] [Citation(s) in RCA: 72] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 01/24/2011] [Accepted: 01/26/2011] [Indexed: 11/23/2022]
|
103
|
Zúñiga M, Gómez-Escoín CL, González-Candelas F. Evolutionary history of the OmpR/IIIA family of signal transduction two component systems in Lactobacillaceae and Leuconostocaceae. BMC Evol Biol 2011; 11:34. [PMID: 21284862 PMCID: PMC3040137 DOI: 10.1186/1471-2148-11-34] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2010] [Accepted: 02/01/2011] [Indexed: 12/18/2022] Open
Abstract
Background Two component systems (TCS) are signal transduction pathways which typically consist of a sensor histidine kinase (HK) and a response regulator (RR). In this study, we have analyzed the evolution of TCS of the OmpR/IIIA family in Lactobacillaceae and Leuconostocaceae, two families belonging to the group of lactic acid bacteria (LAB). LAB colonize nutrient-rich environments such as foodstuffs, plant materials and the gastrointestinal tract of animals thus driving the study of this group of both basic and applied interest. Results The genomes of 19 strains belonging to 16 different species have been analyzed. The number of TCS encoded by the strains considered in this study varied between 4 in Lactobacillus helveticus and 17 in Lactobacillus casei. The OmpR/IIIA family was the most prevalent in Lactobacillaceae accounting for 71% of the TCS present in this group. The phylogenetic analysis shows that no new TCS of this family has recently evolved in these Lactobacillaceae by either lineage-specific gene expansion or domain shuffling. Furthermore, no clear evidence of non-orthologous replacements of either RR or HK partners has been obtained, thus indicating that coevolution of cognate RR and HKs has been prevalent in Lactobacillaceae. Conclusions The results obtained suggest that vertical inheritance of TCS present in the last common ancestor and lineage-specific gene losses appear as the main evolutionary forces involved in their evolution in Lactobacillaceae, although some HGT events cannot be ruled out. This would agree with the genomic analyses of Lactobacillales which show that gene losses have been a major trend in the evolution of this group.
Collapse
Affiliation(s)
- Manuel Zúñiga
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, Consejo Superior de Investigaciones Científicas, PO Box 73, 46100 Burjassot, Valencia, Spain.
| | | | | |
Collapse
|
104
|
Zhang ZG, Ye ZQ, Yu L, Shi P. Phylogenomic reconstruction of lactic acid bacteria: an update. BMC Evol Biol 2011; 11:1. [PMID: 21194491 PMCID: PMC3024227 DOI: 10.1186/1471-2148-11-1] [Citation(s) in RCA: 109] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Accepted: 01/01/2011] [Indexed: 01/28/2023] Open
Abstract
Background Lactic acid bacteria (LAB) are important in the food industry for the production of fermented food products and in human health as commensals in the gut. However, the phylogenetic relationships among LAB species remain under intensive debate owing to disagreements among different data sets. Results We performed a phylogenetic analysis of LAB species based on 232 genes from 28 LAB genome sequences. Regardless of the tree-building methods used, combined analyses yielded an identical, well-resolved tree topology with strong supports for all nodes. The LAB species examined were divided into two groups. Group 1 included families Enterococcaceae and Streptococcaceae. Group 2 included families Lactobacillaceae and Leuconostocaceae. Within Group 2, the LAB species were divided into two clades. One clade comprised of the acidophilus complex of genus Lactobacillus and two other species, Lb. sakei and Lb. casei. In the acidophilus complex, Lb. delbrueckii separated first, while Lb. acidophilus/Lb. helveticus and Lb. gasseri/Lb. johnsonii were clustered into a sister group. The other clade within Group 2 consisted of the salivarius subgroup, including five species, Lb. salivarius, Lb. plantarum, Lb. brevis, Lb. reuteri, Lb. fermentum, and the genera Pediococcus, Oenococcus, and Leuconostoc. In this clade, Lb. salivarius was positioned most basally, followed by two clusters, one corresponding to Lb. plantarum/Lb. brevis pair and Pediococcus, and the other including Oenococcus/Leuconostoc pair and Lb. reuteri/Lb. fermentum pair. In addition, phylogenetic utility of the 232 genes was analyzed to identify those that may be more useful than others. The genes identified as useful were related to translation and ribosomal structure and biogenesis (TRSB), and a three-gene set comprising genes encoding ultra-violet resistance protein B (uvrB), DNA polymerase III (polC) and penicillin binding protein 2B (pbpB). Conclusions Our phylogenomic analyses provide important insights into the evolution and diversification of LAB species, and also revealed the phylogenetic utility of several genes. We infer that the occurrence of multiple, independent adaptation events in LAB species, have resulted in their occupation of various habitats. Further analyses of more genes from additional, representative LAB species are needed to reveal the molecular mechanisms underlying adaptation of LAB species to various environmental niches.
Collapse
Affiliation(s)
- Zhi-Gang Zhang
- State Key Laboratory of Genetic Resources and Evolution, Laboratory of Evolutionary and Functional Genomics, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming 650223, PR China
| | | | | | | |
Collapse
|
105
|
Monnet C, Loux V, Gibrat JF, Spinnler E, Barbe V, Vacherie B, Gavory F, Gourbeyre E, Siguier P, Chandler M, Elleuch R, Irlinger F, Vallaeys T. The arthrobacter arilaitensis Re117 genome sequence reveals its genetic adaptation to the surface of cheese. PLoS One 2010; 5:e15489. [PMID: 21124797 PMCID: PMC2991359 DOI: 10.1371/journal.pone.0015489] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2010] [Accepted: 09/24/2010] [Indexed: 11/18/2022] Open
Abstract
Arthrobacter arilaitensis is one of the major bacterial species found at the surface of cheeses, especially in smear-ripened cheeses, where it contributes to the typical colour, flavour and texture properties of the final product. The A. arilaitensis Re117 genome is composed of a 3,859,257 bp chromosome and two plasmids of 50,407 and 8,528 bp. The chromosome shares large regions of synteny with the chromosomes of three environmental Arthrobacter strains for which genome sequences are available: A. aurescens TC1, A. chlorophenolicus A6 and Arthrobacter sp. FB24. In contrast however, 4.92% of the A. arilaitensis chromosome is composed of ISs elements, a portion that is at least 15 fold higher than for the other Arthrobacter strains. Comparative genomic analyses reveal an extensive loss of genes associated with catabolic activities, presumably as a result of adaptation to the properties of the cheese surface habitat. Like the environmental Arthrobacter strains, A. arilaitensis Re117 is well-equipped with enzymes required for the catabolism of major carbon substrates present at cheese surfaces such as fatty acids, amino acids and lactic acid. However, A. arilaitensis has several specificities which seem to be linked to its adaptation to its particular niche. These include the ability to catabolize D-galactonate, a high number of glycine betaine and related osmolyte transporters, two siderophore biosynthesis gene clusters and a high number of Fe(3+)/siderophore transport systems. In model cheese experiments, addition of small amounts of iron strongly stimulated the growth of A. arilaitensis, indicating that cheese is a highly iron-restricted medium. We suggest that there is a strong selective pressure at the surface of cheese for strains with efficient iron acquisition and salt-tolerance systems together with abilities to catabolize substrates such as lactic acid, lipids and amino acids.
Collapse
Affiliation(s)
- Christophe Monnet
- INRA, UMR782 Génie et microbiologie des procédés alimentaires, Thiverval-Grignon, France.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
106
|
Zhou M, Theunissen D, Wels M, Siezen RJ. LAB-Secretome: a genome-scale comparative analysis of the predicted extracellular and surface-associated proteins of Lactic Acid Bacteria. BMC Genomics 2010; 11:651. [PMID: 21092245 PMCID: PMC3017865 DOI: 10.1186/1471-2164-11-651] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2010] [Accepted: 11/23/2010] [Indexed: 11/10/2022] Open
Abstract
Background In Lactic Acid Bacteria (LAB), the extracellular and surface-associated proteins can be involved in processes such as cell wall metabolism, degradation and uptake of nutrients, communication and binding to substrates or hosts. A genome-scale comparative study of these proteins (secretomes) can provide vast information towards the understanding of the molecular evolution, diversity, function and adaptation of LAB to their specific environmental niches. Results We have performed an extensive prediction and comparison of the secretomes from 26 sequenced LAB genomes. A new approach to detect homolog clusters of secretome proteins (LaCOGs) was designed by integrating protein subcellular location prediction and homology clustering methods. The initial clusters were further adjusted semi-manually based on multiple sequence alignments, domain compositions, pseudogene analysis and biological function of the proteins. Ubiquitous protein families were identified, as well as species-specific, strain-specific, and niche-specific LaCOGs. Comparative analysis of protein subfamilies has shown that the distribution and functional specificity of LaCOGs could be used to explain many niche-specific phenotypes. A comprehensive and user-friendly database LAB-Secretome was constructed to store, visualize and update the extracellular proteins and LaCOGs http://www.cmbi.ru.nl/lab_secretome/. This database will be updated regularly when new bacterial genomes become available. Conclusions The LAB-Secretome database could be used to understand the evolution and adaptation of lactic acid bacteria to their environmental niches, to improve protein functional annotation and to serve as basis for targeted experimental studies.
Collapse
Affiliation(s)
- Miaomiao Zhou
- Centre for Molecular and Biomolecular Informatics, Radboud University Nijmegen Medical Centre, PO Box 9101, 6500 HB Nijmegen, The Netherlands.
| | | | | | | |
Collapse
|
107
|
Metatranscriptome analysis for insight into whole-ecosystem gene expression during spontaneous wheat and spelt sourdough fermentations. Appl Environ Microbiol 2010; 77:618-26. [PMID: 21097589 DOI: 10.1128/aem.02028-10] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
Lactic acid bacteria (LAB) are of industrial importance in the production of fermented foods, including sourdough-derived products. Despite their limited metabolic capacity, LAB contribute considerably to important characteristics of fermented foods, such as extended shelf-life, microbial safety, improved texture, and enhanced organoleptic properties. Triggered by the considerable amount of LAB genomic information that became available during the last decade, transcriptome and, by extension, metatranscriptome studies have become one of the most appropriate research approaches to study whole-ecosystem gene expression in more detail. In this study, microarray analyses were performed using RNA sampled during four 10-day spontaneous sourdough fermentations carried out in the laboratory with an in-house-developed LAB functional gene microarray. For data analysis, a new algorithm was developed to calculate a net expression profile for each of the represented genes, allowing use of the microarray analysis beyond the species level. In addition, metabolite target analyses were performed on the sourdough samples to relate gene expression with metabolite production. The results revealed the activation of different key metabolic pathways, the ability to use carbohydrates other than glucose (e.g., starch and maltose), and the conversion of amino acids as a contribution to redox equilibrium and flavor compound generation in LAB during sourdough fermentation.
Collapse
|
108
|
Abstract
The genus Lactobacillus includes a diverse group of bacteria consisting of many species that are associated with fermentations of plants, meat or milk. In addition, various lactobacilli are natural inhabitants of the intestinal tract of humans and other animals. Finally, several Lactobacillus strains are marketed as probiotics as their consumption can confer a health benefit to host. Presently, 154 Lactobacillus species are known and a growing fraction of these are subject to draft genome sequencing. However, complete genome sequences are needed to provide a platform for detailed genomic comparisons. Therefore, we selected a total of 20 genomes of various Lactobacillus strains for which complete genomic sequences have been reported. These genomes had sizes varying from 1.8 to 3.3 Mb and other characteristic features, such as G+C content that ranged from 33% to 51%. The Lactobacillus pan genome was found to consist of approximately 14 000 protein-encoding genes while all 20 genomes shared a total of 383 sets of orthologous genes that defined the Lactobacillus core genome (LCG). Based on advanced phylogeny of the proteins encoded by this LCG, we grouped the 20 strains into three main groups and defined core group genes present in all genomes of a single group, signature group genes shared in all genomes of one group but absent in all other Lactobacillus genomes, and Group-specific ORFans present in core group genes of one group and absent in all other complete genomes. The latter are of specific value in defining the different groups of genomes. The study provides a platform for present individual comparisons as well as future analysis of new Lactobacillus genomes.
Collapse
Affiliation(s)
- Ravi Kant
- Veterinary Microbiology and Epidemiology, Department of Veterinary Biosciences, Faculty of Veterinary Medicine, University of Helsinki, Helsinki, Finland.
| | | | | | | | | |
Collapse
|
109
|
Slattery L, O’Callaghan J, Fitzgerald G, Beresford T, Ross R. Invited review: Lactobacillus helveticus—A thermophilic dairy starter related to gut bacteria. J Dairy Sci 2010; 93:4435-54. [DOI: 10.3168/jds.2010-3327] [Citation(s) in RCA: 82] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2010] [Accepted: 05/22/2010] [Indexed: 11/19/2022]
|
110
|
Aquilanti L, Carbini A, Strappati R, Santarelli S, Silvestri G, Garofalo C, Clementi F. Characterisation of Lactobacillus helveticus strains producing antihypertensive peptides by RAPD and inverse-PCR of IS elements. Benef Microbes 2010; 1:229-42. [DOI: 10.3920/bm2010.0015] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Lactobacillus helveticus is used for the manufacture of cheeses and milk-based products. Although it is not considered a probiotic microorganism, some strains demonstrated beneficial effects through the production of antihypertensive peptides from the hydrolysis of casein during milk fermentation. Strain-specificity of bioactive peptide production by L. helveticus makes the availability of reliable typing methods essential for both legal and good manufacturing processes. Accordingly, RAPD and inverse-PCR of five insertion sequence elements were comparatively evaluated for the molecular characterisation of four L. helveticus dairy cultures producing antihypertensive peptides and fourteen reference strains. Calculation of discriminatory indices and cluster analysis of the DNA fingerprints confirmed the suitability of both approaches for acceptable strain differentiation. Although RAPD was more discriminating, for a few test strains a neat discrimination was only achieved through multiplex inverse-PCR, thus suggesting the suitability of a combined analytical approach for a finer strain discrimination.
Collapse
Affiliation(s)
- L. Aquilanti
- Sezione di Microbiologia Alimentare, Ambientale ed Industriale, Dipartimento di Scienze Alimentari, Agro-Ingegneristiche, Fisiche, Economico-Agrarie e del Territorio (SAIFET), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - A. Carbini
- Sezione di Microbiologia Alimentare, Ambientale ed Industriale, Dipartimento di Scienze Alimentari, Agro-Ingegneristiche, Fisiche, Economico-Agrarie e del Territorio (SAIFET), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - R. Strappati
- Sezione di Microbiologia Alimentare, Ambientale ed Industriale, Dipartimento di Scienze Alimentari, Agro-Ingegneristiche, Fisiche, Economico-Agrarie e del Territorio (SAIFET), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - S. Santarelli
- Sezione di Microbiologia Alimentare, Ambientale ed Industriale, Dipartimento di Scienze Alimentari, Agro-Ingegneristiche, Fisiche, Economico-Agrarie e del Territorio (SAIFET), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - G. Silvestri
- Sezione di Microbiologia Alimentare, Ambientale ed Industriale, Dipartimento di Scienze Alimentari, Agro-Ingegneristiche, Fisiche, Economico-Agrarie e del Territorio (SAIFET), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - C. Garofalo
- Sezione di Microbiologia Alimentare, Ambientale ed Industriale, Dipartimento di Scienze Alimentari, Agro-Ingegneristiche, Fisiche, Economico-Agrarie e del Territorio (SAIFET), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| | - F. Clementi
- Sezione di Microbiologia Alimentare, Ambientale ed Industriale, Dipartimento di Scienze Alimentari, Agro-Ingegneristiche, Fisiche, Economico-Agrarie e del Territorio (SAIFET), Università Politecnica delle Marche, via Brecce Bianche, 60131 Ancona, Italy
| |
Collapse
|
111
|
MILLS SUSAN, O’SULLIVAN ORLA, HILL COLIN, FITZGERALD GERALD, ROSS RPAUL. The changing face of dairy starter culture research: From genomics to economics. INT J DAIRY TECHNOL 2010. [DOI: 10.1111/j.1471-0307.2010.00563.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
112
|
O'Flaherty S, Klaenhammer TR. The role and potential of probiotic bacteria in the gut, and the communication between gut microflora and gut/host. Int Dairy J 2010. [DOI: 10.1016/j.idairyj.2009.11.011] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
113
|
|
114
|
Kleerebezem M, Hols P, Bernard E, Rolain T, Zhou M, Siezen RJ, Bron PA. The extracellular biology of the lactobacilli. FEMS Microbiol Rev 2010. [PMID: 20088967 DOI: 10.1111/j.1574-6976.2009.00208.x] [Citation(s) in RCA: 241] [Impact Index Per Article: 16.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Lactobacilli belong to the lactic acid bacteria, which play a key role in industrial and artisan food raw-material fermentation, including a large variety of fermented dairy products. Next to their role in fermentation processes, specific strains of Lactobacillus are currently marketed as health-promoting cultures or probiotics. The last decade has witnessed the completion of a large number of Lactobacillus genome sequences, including the genome sequences of some of the probiotic species and strains. This development opens avenues to unravel the Lactobacillus-associated health-promoting activity at the molecular level. It is generally considered likely that an important part of the Lactobacillus effector molecules that participate in the proposed health-promoting interactions with the host (intestinal) system resides in the bacterial cell envelope. For this reason, it is important to accurately predict the Lactobacillus exoproteomes. Extensive annotation of these exoproteomes, combined with comparative analysis of species- or strain-specific exoproteomes, may identify candidate effector molecules, which may support specific effects on host physiology associated with particular Lactobacillus strains. Candidate health-promoting effector molecules of lactobacilli can then be validated via mutant approaches, which will allow for improved strain selection procedures, improved product quality control criteria and molecular science-based health claims.
Collapse
|
115
|
Liu M, Bayjanov JR, Renckens B, Nauta A, Siezen RJ. The proteolytic system of lactic acid bacteria revisited: a genomic comparison. BMC Genomics 2010; 11:36. [PMID: 20078865 PMCID: PMC2827410 DOI: 10.1186/1471-2164-11-36] [Citation(s) in RCA: 215] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2009] [Accepted: 01/15/2010] [Indexed: 12/30/2022] Open
Abstract
Background Lactic acid bacteria (LAB) are a group of gram-positive, lactic acid producing Firmicutes. They have been extensively used in food fermentations, including the production of various dairy products. The proteolytic system of LAB converts proteins to peptides and then to amino acids, which is essential for bacterial growth and also contributes significantly to flavor compounds as end-products. Recent developments in high-throughput genome sequencing and comparative genomics hybridization arrays provide us with opportunities to explore the diversity of the proteolytic system in various LAB strains. Results We performed a genome-wide comparative genomics analysis of proteolytic system components, including cell-wall bound proteinase, peptide transporters and peptidases, in 22 sequenced LAB strains. The peptidase families PepP/PepQ/PepM, PepD and PepI/PepR/PepL are described as examples of our in silico approach to refine the distinction of subfamilies with different enzymatic activities. Comparison of protein 3D structures of proline peptidases PepI/PepR/PepL and esterase A allowed identification of a conserved core structure, which was then used to improve phylogenetic analysis and functional annotation within this protein superfamily. The diversity of proteolytic system components in 39 Lactococcus lactis strains was explored using pangenome comparative genome hybridization analysis. Variations were observed in the proteinase PrtP and its maturation protein PrtM, in one of the Opp transport systems and in several peptidases between strains from different Lactococcus subspecies or from different origin. Conclusions The improved functional annotation of the proteolytic system components provides an excellent framework for future experimental validations of predicted enzymatic activities. The genome sequence data can be coupled to other "omics" data e.g. transcriptomics and metabolomics for prediction of proteolytic and flavor-forming potential of LAB strains. Such an integrated approach can be used to tune the strain selection process in food fermentations.
Collapse
Affiliation(s)
- Mengjin Liu
- Centre for Molecular and Biomolecular Informatics, Radboud University Medical Centre, Nijmegen, the Netherlands.
| | | | | | | | | |
Collapse
|
116
|
Pasternak C, Ton-Hoang B, Coste G, Bailone A, Chandler M, Sommer S. Irradiation-induced Deinococcus radiodurans genome fragmentation triggers transposition of a single resident insertion sequence. PLoS Genet 2010; 6:e1000799. [PMID: 20090938 PMCID: PMC2806898 DOI: 10.1371/journal.pgen.1000799] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 12/07/2009] [Indexed: 11/18/2022] Open
Abstract
Stress-induced transposition is an attractive notion since it is potentially important in creating diversity to facilitate adaptation of the host to severe environmental conditions. One common major stress is radiation-induced DNA damage. Deinococcus radiodurans has an exceptional ability to withstand the lethal effects of DNA-damaging agents (ionizing radiation, UV light, and desiccation). High radiation levels result in genome fragmentation and reassembly in a process which generates significant amounts of single-stranded DNA. This capacity of D. radiodurans to withstand irradiation raises important questions concerning its response to radiation-induced mutagenic lesions. A recent study analyzed the mutational profile in the thyA gene following irradiation. The majority of thyA mutants resulted from transposition of one particular Insertion Sequence (IS), ISDra2, of the many different ISs in the D. radiodurans genome. ISDra2 is a member of a newly recognised class of ISs, the IS200/IS605 family of insertion sequences.
Collapse
Affiliation(s)
- Cécile Pasternak
- Université Paris-Sud, Centre National de Recherche Scientifique, Unité Mixte de Recherche 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Bât. 409, Orsay, France
| | - Bao Ton-Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de Recherche Scientifique, Unité Mixte de Recherche 5100, Toulouse, France
| | - Geneviève Coste
- Université Paris-Sud, Centre National de Recherche Scientifique, Unité Mixte de Recherche 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Bât. 409, Orsay, France
| | - Adriana Bailone
- Université Paris-Sud, Centre National de Recherche Scientifique, Unité Mixte de Recherche 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Bât. 409, Orsay, France
| | - Michael Chandler
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de Recherche Scientifique, Unité Mixte de Recherche 5100, Toulouse, France
| | - Suzanne Sommer
- Université Paris-Sud, Centre National de Recherche Scientifique, Unité Mixte de Recherche 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Bât. 409, Orsay, France
| |
Collapse
|
117
|
Vitali B, Ndagijimana M, Cruciani F, Carnevali P, Candela M, Guerzoni ME, Brigidi P. Impact of a synbiotic food on the gut microbial ecology and metabolic profiles. BMC Microbiol 2010; 10:4. [PMID: 20055983 PMCID: PMC2806344 DOI: 10.1186/1471-2180-10-4] [Citation(s) in RCA: 118] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2009] [Accepted: 01/07/2010] [Indexed: 02/07/2023] Open
Abstract
Background The human gut harbors a diverse community of microorganisms which serve numerous important functions for the host wellbeing. Functional foods are commonly used to modulate the composition of the gut microbiota contributing to the maintenance of the host health or prevention of disease. In the present study, we characterized the impact of one month intake of a synbiotic food, containing fructooligosaccharides and the probiotic strains Lactobacillus helveticus Bar13 and Bifidobacterium longum Bar33, on the gut microbiota composition and metabolic profiles of 20 healthy subjects. Results The synbiotic food did not modify the overall structure of the gut microbiome, as indicated by Polymerase Chain Reaction-Denaturing Gradient Gel Electrophoresis (PCR-DGGE). The ability of the probiotic L. helveticus and B. longum strains to pass through the gastrointestinal tract was hypothesized on the basis of real-time PCR data. In spite of a stable microbiota, the intake of the synbiotic food resulted in a shift of the fecal metabolic profiles, highlighted by the Gas Chromatography Mass Spectrometry Solid Phase Micro-Extraction (GC-MS/SPME) analysis. The extent of short chain fatty acids (SCFA), ketones, carbon disulfide and methyl acetate was significantly affected by the synbiotic food consumption. Furthermore, the Canonical discriminant Analysis of Principal coordinates (CAP) of GC-MS/SPME profiles allowed a separation of the stool samples recovered before and after the consumption of the functional food. Conclusion In this study we investigated the global impact of a dietary intervention on the gut ecology and metabolism in healthy humans. We demonstrated that the intake of a synbiotic food leads to a modulation of the gut metabolic activities with a maintenance of the gut biostructure. In particular, the significant increase of SCFA, ketones, carbon disulfide and methyl acetate following the feeding period suggests potential health promoting effects of the synbiotic food.
Collapse
Affiliation(s)
- Beatrice Vitali
- Department of Pharmaceutical Sciences, University of Bologna, Bologna, Italy.
| | | | | | | | | | | | | |
Collapse
|
118
|
Jensen MP, Vogensen FK, Ardö Y. Variation in caseinolytic properties of six cheese related Lactobacillus helveticus strains. Int Dairy J 2009. [DOI: 10.1016/j.idairyj.2009.04.001] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
119
|
Kleerebezem M, Vaughan EE. Probiotic and gut lactobacilli and bifidobacteria: molecular approaches to study diversity and activity. Annu Rev Microbiol 2009; 63:269-90. [PMID: 19575569 DOI: 10.1146/annurev.micro.091208.073341] [Citation(s) in RCA: 216] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Lactobacilli and bifidobacteria have traditionally been recognized as potential health-promoting microbes in the human gastrointestinal tract, which is clearly reflected by the pre- and probiotic supplements on the market. Bacterial genomics of lactobacilli and bifidobacteria is initiating the identification and validation of specific effector molecules that mediate host health effects. Combined with advanced postgenomic mammalian host response analyses, elucidations of the molecular interactions and mechanisms that underlie the host-health effects observed are beginning to be gathered. These developments should be seen in the complexity of the microbiota-host relationships in the intestine, which through the new metagenomic era has regained momentum and will undoubtedly progress to functional microbiomics and host response analyses within the next decade. Taken together, these developments are anticipated to dramatically alter the scope and impact of the probiotic field, offering tremendous new opportunities with accompanying challenges for research and industrial application.
Collapse
|
120
|
Crucial role for insertion sequence elements in Lactobacillus helveticus evolution as revealed by interstrain genomic comparison. Appl Environ Microbiol 2009; 76:212-20. [PMID: 19880644 DOI: 10.1128/aem.01845-09] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lactobacillus helveticus is a versatile dairy bacterium found to possess heterogeneous genotypes depending on the ecosystem from which it was isolated. The recently published genome sequence showed the remarkable flexibility of its structure, demonstrated by a substantial level of insertion sequence (IS) element expansion in association with massive gene decay. To assess this diversity and examine the level of genome plasticity within the L. helveticus species, an array-based comparative genome hybridization (aCGH) experiment was designed in which 10 strains were analyzed. The aCGH experiment revealed 16 clusters of open reading frames (ORFs) flanked by IS elements. Four of these ORFs are associated with restriction/modification which may have played a role in accelerated evolution of strains in a commercially intensive ecosystem undoubtedly challenged through successive phage attack. Furthermore, analysis of the IS-flanked clusters demonstrated that the most frequently encountered ISs were also those most abundant in the genome (IS1201, ISL2, ISLhe1, ISLhe2, ISLhe65, and ISLhe63). These findings contribute to the overall viewpoint of the versatile character of IS elements and the role they may play in bacterial genome plasticity.
Collapse
|
121
|
Pan Q, Zhu J, Liu L, Cong Y, Hu F, Li J, Yu X. Functional identification of a putative beta-galactosidase gene in the special lac gene cluster of Lactobacillus acidophilus. Curr Microbiol 2009; 60:172-8. [PMID: 19841976 DOI: 10.1007/s00284-009-9521-9] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2009] [Accepted: 09/28/2009] [Indexed: 11/26/2022]
Abstract
The putative beta-galactosidase gene (lacZ) of Lactobacillus acidophilus has a very low degree of homology to the Escherichia coli beta-galactosidase gene (lacZ) and locates in a special lac gene cluster which contains two beta-galactosidase genes. No functional characteristic of the putative beta-galactosidase has been described so far. In this study, the lacZ gene of L. acidophilus was hetero-expressed in E. coli and the recombinant protein was purified by a three-step procedure. The product of the lacZ gene was also extracted from L. acidophilus ATCC 4356 and active staining was carried out. The enzymatic properties of the purified recombinant LacZ were assayed. The results of hetero-expression showed the recombinant LacZ without tag had beta-galactosidase activity. The purified recombinant LacZ had a specific activity of 43.2 U/mg protein. The result of active staining showed that the functional product of the lacZ gene did exist in L. acidophilus. The L. acidophilus beta-galactosidase (LacZ) had an optimal pH of 6, an optimal temperature of 37 degrees C and could hydrolyze 73% of lactose in milk in 30 h at 10 degrees C. The L. acidophilus beta-galactosidase (LacZ) was identified as cold-adapted beta-galactosidase in this study for the first time, and may be useful for lactose removal from dairy products at low temperatures.
Collapse
Affiliation(s)
- Qu Pan
- Department of Microbiology, Third Military Medical University, Chongqing, 400038, China
| | | | | | | | | | | | | |
Collapse
|
122
|
Kaleta P, Callanan MJ, O'Callaghan J, Fitzgerald GF, Beresford TP, Ross RP. Exploitation of the diverse insertion sequence element content of dairy Lactobacillus helveticus starters as a rapid method to identify different strains. J Microbiol Methods 2009; 79:32-6. [DOI: 10.1016/j.mimet.2009.07.019] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2009] [Revised: 07/15/2009] [Accepted: 07/18/2009] [Indexed: 11/17/2022]
|
123
|
Comparison and utilization of repetitive-element PCR techniques for typing Lactobacillus isolates from the chicken gastrointestinal tract. Appl Environ Microbiol 2009; 75:6764-76. [PMID: 19749057 DOI: 10.1128/aem.01150-09] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Three repetitive-element PCR techniques were evaluated for the ability to type strains of Lactobacillus species commonly identified in the chicken gastrointestinal tract. Enterobacterial repetitive intergenic consensus PCR (ERIC-PCR) produced species- and strain-specific profiles for Lactobacillus crispatus, Lactobacillus gallinarum, Lactobacillus johnsonii, and Lactobacillus reuteri isolates. The technique typed strains within these species equally as well as pulsed-field gel electrophoresis. DNA concentration and quality did not affect the ERIC-PCR profiles, indicating that this method, unlike other high-resolution methods, can be adapted to high-throughput analysis of isolates. Subsequently, ERIC-PCR was used to type Lactobacillus species diversity of a large collection of isolates derived from chickens grown under commercial and necrotic enteritis disease induction conditions. This study has illustrated, for the first time, that there is great strain diversity within each Lactobacillus species present and has revealed that chickens raised under commercial conditions harbor greater species and strain diversity than chickens raised under necrotic enteritis disease induction conditions.
Collapse
|
124
|
Jensen M, Ardö Y, Vogensen F. Isolation of cultivable thermophilic lactic acid bacteria from cheeses made with mesophilic starter and molecular comparison with dairy-relatedLactobacillus helveticusstrains. Lett Appl Microbiol 2009; 49:396-402. [DOI: 10.1111/j.1472-765x.2009.02673.x] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
125
|
Development and validation of a species-independent functional gene microarray that targets lactic acid bacteria. Appl Environ Microbiol 2009; 75:6488-95. [PMID: 19684161 DOI: 10.1128/aem.01055-09] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
During the last few years, genome-related information has become available for many microorganisms, including important food-related bacteria. Lactic acid bacteria (LAB) are important industrially in the production of fermented foods such as dairy products, sausages, sourdoughs, and vegetables. Despite their limited metabolic capacity, LAB contribute considerably to important characteristics of fermented foods, such as flavor and texture. In the present study, a species-independent functional gene microarray was developed that targets 406 genes that play key roles in the production of sugar catabolites, bacteriocins, exopolysaccharides, and aromas, in probiotic and biosafety characteristics, and in the stress response. Also, genes linked to negative traits, such as antibiotic resistance and virulence, are represented. As LAB ecosystems contain a variety of species, there was a more global focus on these specific functional properties. Thus, an algorithm was used to design gene-specific oligonucleotides that preferably hybridize with multiple LAB species, thereby allowing controlled cross-hybridization. For proof of concept, the microarray composed of 2,269 30-mer oligonucleotides focused on LAB species that are prevalent in sourdough ecosystems. Validation hybridizations using DNA and RNA from 18 LAB strains, covering 86% of all the oligonucleotides, showed that there were wide ranges in intensity and high reproducibility between microarrays.
Collapse
|
126
|
Cai H, Thompson R, Budinich MF, Broadbent JR, Steele JL. Genome sequence and comparative genome analysis of Lactobacillus casei: insights into their niche-associated evolution. Genome Biol Evol 2009; 1:239-57. [PMID: 20333194 PMCID: PMC2817414 DOI: 10.1093/gbe/evp019] [Citation(s) in RCA: 129] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2009] [Indexed: 12/13/2022] Open
Abstract
Lactobacillus casei is remarkably adaptable to diverse habitats and widely used in the food industry. To reveal the genomic features that contribute to its broad ecological adaptability and examine the evolution of the species, the genome sequence of L. casei ATCC 334 is analyzed and compared with other sequenced lactobacilli. This analysis reveals that ATCC 334 contains a high number of coding sequences involved in carbohydrate utilization and transcriptional regulation, reflecting its requirement for dealing with diverse environmental conditions. A comparison of the genome sequences of ATCC 334 to L. casei BL23 reveals 12 and 19 genomic islands, respectively. For a broader assessment of the genetic variability within L. casei, gene content of 21 L. casei strains isolated from various habitats (cheeses, n = 7; plant materials, n = 8; and human sources, n = 6) was examined by comparative genome hybridization with an ATCC 334-based microarray. This analysis resulted in identification of 25 hypervariable regions. One of these regions contains an overrepresentation of genes involved in carbohydrate utilization and transcriptional regulation and was thus proposed as a lifestyle adaptation island. Differences in L. casei genome inventory reveal both gene gain and gene decay. Gene gain, via acquisition of genomic islands, likely confers a fitness benefit in specific habitats. Gene decay, that is, loss of unnecessary ancestral traits, is observed in the cheese isolates and likely results in enhanced fitness in the dairy niche. This study gives the first picture of the stable versus variable regions in L. casei and provides valuable insights into evolution, lifestyle adaptation, and metabolic diversity of L. casei.
Collapse
Affiliation(s)
- Hui Cai
- Department of Food Science, University of Wisconsin, USA
| | | | | | | | | |
Collapse
|
127
|
Irmler S, Schäfer H, Beisert B, Rauhut D, Berthoud H. Identification and characterization of a strain-dependent cystathionine beta/gamma-lyase in Lactobacillus casei potentially involved in cysteine biosynthesis. FEMS Microbiol Lett 2009; 295:67-76. [PMID: 19473252 DOI: 10.1111/j.1574-6968.2009.01580.x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
The trans-sulfuration pathways allow the interconversion of cysteine and methionine with the intermediary formation of cystathionine and homocysteine. The genome database of Lactobacillus casei ATCC 334 provides evidence that this species cannot synthesize cysteine from methionine via the trans-sulfuration pathway. However, several L. casei strains use methionine as the sole sulfur source, which implies that these strains can convert methionine to cysteine. Cystathionine synthases and lyases play a crucial role in the trans-sulfuration pathway. By applying proteomic techniques, we have identified a protein in cell-free extracts of L. casei, which showed high homology to a gene product encoded in the genome of Lactobacillus delbrueckii ssp. bulgaricus, Streptococcus thermophilus and Lactobacillus helveticus but not in the genome of L. casei ATCC 334. The presence of the gene was only found in strains able to grow on methionine as the sole sulfur source. Moreover, two gene variants were identified. Both gene variants were cloned and expressed heterologously in Escherichia coli. The recombinant enzymes exhibited cystathionine lyase activity in vitro and also cleaved cysteine, homocysteine and methionine releasing volatile sulfur compounds.
Collapse
Affiliation(s)
- Stefan Irmler
- Agroscope Liebefeld-Posieux Research Station ALP, Bern, Switzerland.
| | | | | | | | | |
Collapse
|
128
|
Zhu Y, Zhang Y, Li Y. Understanding the industrial application potential of lactic acid bacteria through genomics. Appl Microbiol Biotechnol 2009; 83:597-610. [DOI: 10.1007/s00253-009-2034-4] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2009] [Revised: 05/04/2009] [Accepted: 05/04/2009] [Indexed: 10/20/2022]
|
129
|
In silico prediction of horizontal gene transfer events in Lactobacillus bulgaricus and Streptococcus thermophilus reveals protocooperation in yogurt manufacturing. Appl Environ Microbiol 2009; 75:4120-9. [PMID: 19395564 DOI: 10.1128/aem.02898-08] [Citation(s) in RCA: 60] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
Lactobacillus bulgaricus and Streptococcus thermophilus, used in yogurt starter cultures, are well known for their stability and protocooperation during their coexistence in milk. In this study, we show that a close interaction between the two species also takes place at the genetic level. We performed an in silico analysis, combining gene composition and gene transfer mechanism-associated features, and predicted horizontally transferred genes in both L. bulgaricus and S. thermophilus. Putative horizontal gene transfer (HGT) events that have occurred between the two bacterial species include the transfer of exopolysaccharide (EPS) biosynthesis genes, transferred from S. thermophilus to L. bulgaricus, and the gene cluster cbs-cblB(cglB)-cysE for the metabolism of sulfur-containing amino acids, transferred from L. bulgaricus or Lactobacillus helveticus to S. thermophilus. The HGT event for the cbs-cblB(cglB)-cysE gene cluster was analyzed in detail, with respect to both evolutionary and functional aspects. It can be concluded that during the coexistence of both yogurt starter species in a milk environment, agonistic coevolution at the genetic level has probably been involved in the optimization of their combined growth and interactions.
Collapse
|
130
|
Arioli S, Roncada P, Salzano AM, Deriu F, Corona S, Guglielmetti S, Bonizzi L, Scaloni A, Mora D. The relevance of carbon dioxide metabolism in Streptococcus thermophilus. MICROBIOLOGY-SGM 2009; 155:1953-1965. [PMID: 19372152 DOI: 10.1099/mic.0.024737-0] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
Streptococcus thermophilus is a major component of dairy starter cultures used for the manufacture of yoghurt and cheese. In this study, the CO(2) metabolism of S. thermophilus DSM 20617(T), grown in either a N(2) atmosphere or an enriched CO(2) atmosphere, was analysed using both genetic and proteomic approaches. Growth experiments performed in a chemically defined medium revealed that CO(2) depletion resulted in bacterial arginine, aspartate and uracil auxotrophy. Moreover, CO(2) depletion governed a significant change in cell morphology, and a high reduction in biomass production. A comparative proteomic analysis revealed that cells of S. thermophilus showed a different degree of energy status depending on the CO(2) availability. In agreement with proteomic data, cells grown under N(2) showed a significantly higher milk acidification rate compared with those grown in an enriched CO(2) atmosphere. Experiments carried out on S. thermophilus wild-type and its derivative mutant, which was inactivated in the phosphoenolpyruvate carboxylase and carbamoyl-phosphate synthase activities responsible for fixing CO(2) to organic molecules, suggested that the anaplerotic reactions governed by these enzymes have a central role in bacterial metabolism. Our results reveal the capnophilic nature of this micro-organism, underlining the essential role of CO(2) in S. thermophilus physiology, and suggesting potential applications in dairy fermentation processes.
Collapse
Affiliation(s)
| | - Paola Roncada
- Istituto Sperimentale Italiano Lazzaro Spallanzani, sezione di Proteomica, Facoltà di Medicina Veterinaria, Milan, Italy
| | - Anna Maria Salzano
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Francesca Deriu
- Department of Veterinary Pathology, Hygiene and Public Health, University of Milan, Milan, Italy
| | | | | | - Luigi Bonizzi
- Department of Veterinary Pathology, Hygiene and Public Health, University of Milan, Milan, Italy
| | - Andrea Scaloni
- Proteomics and Mass Spectrometry Laboratory, ISPAAM, National Research Council, Naples, Italy
| | - Diego Mora
- Department of Food Science and Microbiology, Milan, Italy
| |
Collapse
|
131
|
Development and application of a upp-based counterselective gene replacement system for the study of the S-layer protein SlpX of Lactobacillus acidophilus NCFM. Appl Environ Microbiol 2009; 75:3093-105. [PMID: 19304841 DOI: 10.1128/aem.02502-08] [Citation(s) in RCA: 123] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
In silico genome analysis of Lactobacillus acidophilus NCFM coupled with gene expression studies have identified putative genes and regulatory networks that are potentially important to this organism's survival, persistence, and activities in the gastrointestinal tract. Correlation of key genotypes to phenotypes requires an efficient gene replacement system. In this study, use of the upp-encoded uracil phosphoribosyltransferase (UPRTase) of L. acidophilus NCFM was explored as a counterselection marker to positively select for recombinants that have resolved from chromosomal integration of pORI-based plasmids. An isogenic mutant carrying a upp gene deletion was constructed and was resistant to 5-fluorouracil (5-FU), a toxic uracil analog that is also a substrate for UPRTase. A 3.0-kb pORI-based counterselectable integration vector bearing a upp expression cassette, pTRK935, was constructed and introduced into the Deltaupp host harboring the pTRK669 helper plasmid. Extrachromosomal replication of pTRK935 complemented the mutated chromosomal upp allele and restored sensitivity to 5-FU. This host background provides a platform for a two-step plasmid integration and excision strategy that can select for plasmid-free recombinants with either the wild-type or mutated allele of the targeted gene in the presence of 5-FU. The efficacy of the system was demonstrated by in-frame deletion of the slpX gene (LBA0512) encoding a novel 51-kDa secreted protein associated with the S-layer complex of L. acidophilus. The resulting DeltaslpX mutant exhibited lower growth rates, increased sensitivity to sodium dodecyl sulfate, and greater resistance to bile. Overall, this improved gene replacement system represents a valuable tool for investigating the mechanisms underlying the probiotic functionality of L. acidophilus.
Collapse
|
132
|
prtH2, not prtH, is the ubiquitous cell wall proteinase gene in Lactobacillus helveticus. Appl Environ Microbiol 2009; 75:3238-49. [PMID: 19286786 DOI: 10.1128/aem.02395-08] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Lactobacillus helveticus strains possess an efficient proteolytic system that releases peptides which are essential for lactobacillus growth in various fermented dairy products and also affect textural properties or biological activities. Cell envelope proteinases (CEPs) are bacterial enzymes that hydrolyze milk proteins. In the case of L. helveticus, two CEPs with low percentages of amino acid identity have been described, i.e., PrtH and PrtH2. However, the distribution of the genes that encode CEPs still remains unclear, rendering it difficult to further control the formation of particular peptides. This study evaluated the diversity of genes that encode CEPs in a collection of strains of L. helveticus isolated from various biotopes, both in terms of the presence or absence of these genes and in terms of nucleotide sequence, and studied their transcription in dairy matrices. After defining three sets of primers for both the prtH and prtH2 genes, we studied the distribution of the genes by using PCR and Southern blotting experiments. The prtH2 gene was ubiquitous in the 29 strains of L. helveticus studied, whereas only 18 of them also exhibited the prtH gene. Sequencing of a 350-bp internal fragment of these genes revealed the existence of intraspecific diversity. Finally, expression of these two CEP-encoding genes was followed during the growth in dairy matrices of two strains, ITG LH77 and CNRZ32, which possess one and two CEP-encoding genes, respectively. Both genes were shown to be expressed by L. helveticus at each stage of growth in milk and at different stages of mini-Swiss-type cheese making and ripening.
Collapse
|
133
|
O'Sullivan O, O'Callaghan J, Sangrador-Vegas A, McAuliffe O, Slattery L, Kaleta P, Callanan M, Fitzgerald GF, Ross RP, Beresford T. Comparative genomics of lactic acid bacteria reveals a niche-specific gene set. BMC Microbiol 2009; 9:50. [PMID: 19265535 PMCID: PMC2660350 DOI: 10.1186/1471-2180-9-50] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2008] [Accepted: 03/05/2009] [Indexed: 01/03/2023] Open
Abstract
Background The recently sequenced genome of Lactobacillus helveticus DPC4571 [1] revealed a dairy organism with significant homology (75% of genes are homologous) to a probiotic bacteria Lb. acidophilus NCFM [2]. This led us to hypothesise that a group of genes could be determined which could define an organism's niche. Results Taking 11 fully sequenced lactic acid bacteria (LAB) as our target, (3 dairy LAB, 5 gut LAB and 3 multi-niche LAB), we demonstrated that the presence or absence of certain genes involved in sugar metabolism, the proteolytic system, and restriction modification enzymes were pivotal in suggesting the niche of a strain. We identified 9 niche specific genes, of which 6 are dairy specific and 3 are gut specific. The dairy specific genes identified in Lactobacillus helveticus DPC4571 were lhv_1161 and lhv_1171, encoding components of the proteolytic system, lhv_1031 lhv_1152, lhv_1978 and lhv_0028 encoding restriction endonuclease genes, while bile salt hydrolase genes lba_0892 and lba_1078, and the sugar metabolism gene lba_1689 from Lb. acidophilus NCFM were identified as gut specific genes. Conclusion Comparative analysis revealed that if an organism had homologs to the dairy specific geneset, it probably came from a dairy environment, whilst if it had homologs to gut specific genes, it was highly likely to be of intestinal origin. We propose that this "barcode" of 9 genes will be a useful initial guide to researchers in the LAB field to indicate an organism's ability to occupy a specific niche.
Collapse
Affiliation(s)
- Orla O'Sullivan
- Teagasc, Moorepark Food Research Centre, Moorepark, Fermoy, Co, Cork, Ireland.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
134
|
Genes and molecules of lactobacilli supporting probiotic action. Microbiol Mol Biol Rev 2009; 72:728-64, Table of Contents. [PMID: 19052326 DOI: 10.1128/mmbr.00017-08] [Citation(s) in RCA: 652] [Impact Index Per Article: 40.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
Lactobacilli have been crucial for the production of fermented products for centuries. They are also members of the mutualistic microbiota present in the human gastrointestinal and urogenital tract. Recently, increasing attention has been given to their probiotic, health-promoting capacities. Many human intervention studies demonstrating health effects have been published. However, as not all studies resulted in positive outcomes, scientific interest arose regarding the precise mechanisms of action of probiotics. Many reported mechanistic studies have addressed mainly the host responses, with less attention being focused on the specificities of the bacterial partners, notwithstanding the completion of Lactobacillus genome sequencing projects, and increasing possibilities of genomics-based and dedicated mutant analyses. In this emerging and highly interdisciplinary field, microbiologists are facing the challenge of molecular characterization of probiotic traits. This review addresses the advances in the understanding of the probiotic-host interaction with a focus on the molecular microbiology of lactobacilli. Insight into the molecules and genes involved should contribute to a more judicious application of probiotic lactobacilli and to improved screening of novel potential probiotics.
Collapse
|
135
|
Claesson MJ, van Sinderen D, O'Toole PW. Lactobacillus phylogenomics--towards a reclassification of the genus. Int J Syst Evol Microbiol 2009; 58:2945-54. [PMID: 19060088 DOI: 10.1099/ijs.0.65848-0] [Citation(s) in RCA: 89] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023] Open
Abstract
The extremely diverse genus Lactobacillus is the largest among the lactic acid bacteria, with over 145 recognized species. In this work, which to our knowledge is the largest comparative phylogenomics study of a single genus to date, 12 genomes of Lactobacillus strains were subjected to an array of whole-genome and single-marker phylogenetic approaches, to investigate the case for extracting subgeneric groups and to determine whether a single congruent phylogeny could be identified. We conclude that GroEL is a more robust single-gene phylogenetic marker for the genus Lactobacillus than the 16S rRNA gene, when no whole-genome information is available. Significant incongruence was found, both within a set of trees based on 141 core proteins and within those phylogenies based on numbers of orthologues, concatenated RNA polymerase subunits and single gene/protein markers. This is possibly due to different evolutionary rates, hidden paralogies or horizontal gene transfer. Such phylogenetic ambiguities are efficiently visualized with cluster-networks. Although the genus contains some highly unstable taxa, four subgeneric groups were distinguished. Qualitative and quantitative gene analysis of these groups resulted in three findings: there is a relatively small number of group-specific proteins, the majority of which are poorly characterized; major groupings are functionally better distinguishable by absent genes rather than gained/retained genes; and, finally, a gene cluster possibly involved in purine metabolism is uniquely present in four lactobacilli associated with meat. In conclusion, because of either significantly different branching patterns or the availability of too few members, three of the four identified groups could not serve as the basis for identifying candidate novel genera within the current genus. We therefore suggest targeted sequencing of key taxonomic species identified here, which are likely to add sufficient depth for a future reclassification, followed by phylogenomic analysis involving the core proteins identified here. This will ideally be combined with phenotypic data using a polyphasic approach.
Collapse
Affiliation(s)
- Marcus J Claesson
- Department of Microbiology and Alimentary Pharmabiotic Centre, University College Cork, Ireland.
| | | | | |
Collapse
|
136
|
Vogelmann SA, Seitter M, Singer U, Brandt MJ, Hertel C. Adaptability of lactic acid bacteria and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava and use of competitive strains as starters. Int J Food Microbiol 2009; 130:205-12. [PMID: 19239979 DOI: 10.1016/j.ijfoodmicro.2009.01.020] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2008] [Revised: 01/20/2009] [Accepted: 01/21/2009] [Indexed: 10/21/2022]
Abstract
The adaptability of lactic acid bacteria (LAB) and yeasts to sourdoughs prepared from cereals, pseudocereals and cassava was investigated using PCR-DGGE and bacteriological culture combined with rRNA gene sequence analysis. Sourdoughs were prepared either from flours of the cereals wheat, rye, oat, barley, rice, maize, and millet, or from the pseudocereals amaranth, quinoa, and buckwheat, or from cassava, using a starter consisting of various species of LAB and yeasts. Doughs were propagated until a stable microbiota was established. The dominant LAB and yeast species were Lactobacillus fermentum, Lactobacillus helveticus, Lactobacillus paralimentarius, Lactobacillus plantarum, Lactobacillus pontis, Lactobacillus spicheri, Issatchenkia orientalis and Saccharomyces cerevisiae. The proportion of the species within the microbiota varied. L. paralimentarius dominated in the pseudocereal sourdoughs, L. fermentum, L. plantarum and L. spicheri in the cassava sourdough, and L. fermentum, L. helveticus and L. pontis in the cereal sourdoughs. S. cerevisiae constituted the dominating yeast, except for quinoa sourdough, where I. orientalis also reached similar counts, and buckwheat and oat sourdoughs, where no yeasts could be detected. To assess the usefulness of competitive LAB and yeasts as starters, the fermentations were repeated using flours from rice, maize, millet and the pseudocereals, and by starting the dough fermentation with selected dominant strains. At the end of fermentation, most of starter strains belonged to the dominating microbiota. For the rice, millet and quinoa sourdoughs the species composition was similar to that of the prior fermentation, whereas in the other sourdoughs, the composition differed.
Collapse
Affiliation(s)
- Stephanie A Vogelmann
- University of Hohenheim, Institute of Food Science and Biotechnology, Section Food Microbiology, Garbenstrasse 28, D-70599 Stuttgart, Germany
| | | | | | | | | |
Collapse
|
137
|
Abstract
Lactic acid bacteria (LAB) are found to occupy a variety of ecological niches including fermented foods as well as mucosal surfaces of humans and other vertebrates. This review is based on the genomic content of LAB that is responsible for the functional and ecological diversity of these bacteria. These genomes reveal an ongoing process of reductive evolution as the LAB have specialized to different nutritionally rich environments. Species-to-species variation in the number of pseudogenes as well as genes directing nutrient uptake and metabolism reflects the adaptation of LAB to food matrices and the gastrointestinal tract. Although a general trend of genome reduction was observed, certain niche-specific genes appear to be recently acquired and appear on plasmids or adjacent to prophages. Recent work has improved our understanding of the genomic content responsible for various phenotypes that continue to be discovered, as well as those that have been exploited by man for thousands of years.
Collapse
Affiliation(s)
- Joel Schroeter
- Department of Food Science, Bioprocessing and Nutrition Sciences, North Carolina State University, Raleigh, NC 27695-7624, USA
| | | |
Collapse
|
138
|
Abstract
The human body is colonized by an enormous population of bacteria (microbiota) that provides the host with coding capacity and metabolic activities. Among the human gut microbiota are health-promoting indigenous species (probiotic bacteria) that are commonly consumed as live dietary supplements. Recent genomics-based studies (probiogenomics) are starting to provide insights into how probiotic bacteria sense and adapt to the gastrointestinal tract environment. In this Review, we discuss the application of probiogenomics in the elucidation of the molecular basis of probiosis using the well-recognized model probiotic bacteria genera Bifidobacterium and Lactobacillus as examples.
Collapse
|
139
|
Affiliation(s)
- Roland J Siezen
- Kluyver Centre for Genomics of Industrial Fermentation, TI Food and Nutrition, Wageningen, The Netherlands.
| | | |
Collapse
|
140
|
Genomes and knowledge - a questionable relationship? Trends Microbiol 2008; 16:512-9. [PMID: 18819801 DOI: 10.1016/j.tim.2008.08.001] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2008] [Revised: 08/15/2008] [Accepted: 08/21/2008] [Indexed: 11/22/2022]
Abstract
The availability of bacterial genome sequences has ushered in an era of post-genomic research - accelerating and often enabling molecular genetic analyses. For bacteriologists focussing on an individual bacterium, comparing genomes has also led to a greater understanding of their favoured organism through contextualization. But how does the value of such contextualization vary with the number of available genomes? It seems that for most genome metrics, comparison against approximately 100 genomes is sufficient, with comparison against further genomes not considerably affecting the contextual knowledge gained. It appears that quality, rather than quantity, might be the most important factor when comparing genomes.
Collapse
|
141
|
Horvath P, Coûté-Monvoisin AC, Romero DA, Boyaval P, Fremaux C, Barrangou R. Comparative analysis of CRISPR loci in lactic acid bacteria genomes. Int J Food Microbiol 2008; 131:62-70. [PMID: 18635282 DOI: 10.1016/j.ijfoodmicro.2008.05.030] [Citation(s) in RCA: 195] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2008] [Revised: 04/08/2008] [Accepted: 05/15/2008] [Indexed: 01/08/2023]
Abstract
Clustered regularly interspaced short palindromic repeats (CRISPR) are hypervariable loci widely distributed in bacteria and archaea, that provide acquired immunity against foreign genetic elements. Here, we investigate the occurrence of CRISPR loci in the genomes of lactic acid bacteria (LAB), including members of the Firmicutes and Actinobacteria phyla. A total of 102 complete and draft genomes across 11 genera were studied and 66 CRISPR loci were identified in 26 species. We provide a comparative analysis of the CRISPR/cas content and diversity across LAB genera and species for 37 sets of CRISPR loci. We analyzed CRISPR repeats, CRISPR spacers, leader sequences, and cas gene content, sequences and architecture. Interestingly, multiple CRISPR families were identified within Bifidobacterium, Lactobacillus and Streptococcus, and similar CRISPR loci were found in distant organisms. Overall, eight distinct CRISPR families were identified consistently across CRISPR repeats, cas gene content and architecture, and sequences of the universal cas1 gene. Since the clustering of the CRISPR families does not correlate with the classical phylogenetic tree, we hypothesize that CRISPR loci have been subjected to horizontal gene transfer and further evolved independently in select lineages, in part due to selective pressure resulting from phage predation. Globally, we provide additional insights into the origin and evolution of CRISPR loci and discuss their contribution to microbial adaptation.
Collapse
|
142
|
Analysis of the genome sequence of Lactobacillus gasseri ATCC 33323 reveals the molecular basis of an autochthonous intestinal organism. Appl Environ Microbiol 2008; 74:4610-25. [PMID: 18539810 DOI: 10.1128/aem.00054-08] [Citation(s) in RCA: 124] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
Abstract
This study presents the complete genome sequence of Lactobacillus gasseri ATCC 33323, a neotype strain of human origin and a native species found commonly in the gastrointestinal tracts of neonates and adults. The plasmid-free genome was 1,894,360 bp in size and predicted to encode 1,810 genes. The GC content was 35.3%, similar to the GC content of its closest relatives, L. johnsonii NCC 533 (34%) and L. acidophilus NCFM (34%). Two identical copies of the prophage LgaI (40,086 bp), of the Sfi11-like Siphoviridae phage family, were integrated tandomly in the chromosome. A number of unique features were identified in the genome of L. gasseri that were likely acquired by horizontal gene transfer and may contribute to the survival of this bacterium in its ecological niche. L. gasseri encodes two restriction and modification systems, which may limit bacteriophage infection. L. gasseri also encodes an operon for production of heteropolysaccharides of high complexity. A unique alternative sigma factor was present similar to that of B. caccae ATCC 43185, a bacterial species isolated from human feces. In addition, L. gasseri encoded the highest number of putative mucus-binding proteins (14) among lactobacilli sequenced to date. Selected phenotypic characteristics that were compared between ATCC 33323 and other human L. gasseri strains included carbohydrate fermentation patterns, growth and survival in bile, oxalate degradation, and adhesion to intestinal epithelial cells, in vitro. The results from this study indicated high intraspecies variability from a genome encoding traits important for survival and retention in the gastrointestinal tract.
Collapse
|
143
|
Morita H, Toh H, Fukuda S, Horikawa H, Oshima K, Suzuki T, Murakami M, Hisamatsu S, Kato Y, Takizawa T, Fukuoka H, Yoshimura T, Itoh K, O'Sullivan DJ, McKay LL, Ohno H, Kikuchi J, Masaoka T, Hattori M. Comparative genome analysis of Lactobacillus reuteri and Lactobacillus fermentum reveal a genomic island for reuterin and cobalamin production. DNA Res 2008; 15:151-61. [PMID: 18487258 PMCID: PMC2650639 DOI: 10.1093/dnares/dsn009] [Citation(s) in RCA: 202] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
Lactobacillus reuteri is a heterofermentative lactic acid bacterium that naturally inhabits the gut of humans and other animals. The probiotic effects of L. reuteri have been proposed to be largely associated with the production of the broad-spectrum antimicrobial compound reuterin during anaerobic metabolism of glycerol. We determined the complete genome sequences of the reuterin-producing L. reuteri JCM 1112(T) and its closely related species Lactobacillus fermentum IFO 3956. Both are in the same phylogenetic group within the genus Lactobacillus. Comparative genome analysis revealed that L. reuteri JCM 1112(T) has a unique cluster of 58 genes for the biosynthesis of reuterin and cobalamin (vitamin B(12)). The 58-gene cluster has a lower GC content and is apparently inserted into the conserved region, suggesting that the cluster represents a genomic island acquired from an anomalous source. Two-dimensional nuclear magnetic resonance (2D-NMR) with (13)C(3)-glycerol demonstrated that L. reuteri JCM 1112(T) could convert glycerol to reuterin in vivo, substantiating the potential of L. reuteri JCM 1112(T) to produce reuterin in the intestine. Given that glycerol is shown to be naturally present in feces, the acquired ability to produce reuterin and cobalamin is an adaptive evolutionary response that likely contributes to the probiotic properties of L. reuteri.
Collapse
Affiliation(s)
- Hidetoshi Morita
- School of Veterinary Medicine, Azabu University, 1-17-71 Fuchinobe, Sagamihara, Kanagawa 229-8501, Japan.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Affiliation(s)
- Michael Y Galperin
- National Center for Biotechnology Information, National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, USA.
| |
Collapse
|