101
|
Dong H, Zhang D. Current development in genetic engineering strategies of Bacillus species. Microb Cell Fact 2014; 13:63. [PMID: 24885003 PMCID: PMC4030025 DOI: 10.1186/1475-2859-13-63] [Citation(s) in RCA: 87] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2014] [Accepted: 04/28/2014] [Indexed: 11/28/2022] Open
Abstract
The complete sequencing and annotation of the genomes of industrially-important Bacillus species has enhanced our understanding of their properties, and allowed advances in genetic manipulations in other Bacillus species. Post-genomic studies require simple and highly efficient tools to enable genetic manipulation. Here, we summarize the recent progress in genetic engineering strategies for Bacillus species. We review the available genetic tools that have been developed in Bacillus species, as well as methods developed in other species that may also be applicable in Bacillus. Furthermore, we address the limitations and challenges of the existing methods, and discuss the future research prospects in developing novel and useful tools for genetic modification of Bacillus species.
Collapse
Affiliation(s)
| | - Dawei Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, China.
| |
Collapse
|
102
|
Thomason LC, Sawitzke JA, Li X, Costantino N, Court DL. Recombineering: genetic engineering in bacteria using homologous recombination. CURRENT PROTOCOLS IN MOLECULAR BIOLOGY 2014; 106:1.16.1-1.16.39. [PMID: 24733238 DOI: 10.1002/0471142727.mb0116s106] [Citation(s) in RCA: 161] [Impact Index Per Article: 14.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The bacterial chromosome and bacterial plasmids can be engineered in vivo by homologous recombination using PCR products and synthetic oligonucleotides as substrates. This is possible because bacteriophage-encoded recombination proteins efficiently recombine sequences with homologies as short as 35 to 50 bases. Recombineering allows DNA sequences to be inserted or deleted without regard to location of restriction sites. This unit first describes preparation of electrocompetent cells expressing the recombineering functions and their transformation with dsDNA or ssDNA. It then presents support protocols that describe several two-step selection/counter-selection methods of making genetic alterations without leaving any unwanted changes in the targeted DNA, and a method for retrieving onto a plasmid a genetic marker (cloning by retrieval) from the Escherichia coli chromosome or a co-electroporated DNA fragment. Additional protocols describe methods to screen for unselected mutations, removal of the defective prophage from recombineering strains, and other useful techniques.
Collapse
Affiliation(s)
- Lynn C Thomason
- Basic Science Program, GRCBL-Molecular Control & Genetics Section, Frederick National Laboratory for Cancer Research, Leidos Biomedical Research, Inc, Frederick, Maryland
| | - James A Sawitzke
- Molecular Control and Genetics Section, Gene Regulation and Chromosome Biology, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland
| | - Xintian Li
- Molecular Control and Genetics Section, Gene Regulation and Chromosome Biology, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland
| | - Nina Costantino
- Molecular Control and Genetics Section, Gene Regulation and Chromosome Biology, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland
| | - Donald L Court
- Molecular Control and Genetics Section, Gene Regulation and Chromosome Biology, National Cancer Institute at Frederick, National Institutes of Health, Frederick, Maryland
| |
Collapse
|
103
|
Coleman NV, Richardson-Harris J, Wilson NL, Holmes AJ. Insertion sequence ISPst4 activates pUC plasmid replication inPseudomonas stutzeri. FEMS Microbiol Lett 2014; 356:242-9. [DOI: 10.1111/1574-6968.12417] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2014] [Revised: 03/03/2014] [Accepted: 03/04/2014] [Indexed: 11/30/2022] Open
Affiliation(s)
- Nicholas V. Coleman
- School of Molecular Bioscience; University of Sydney; Darlington NSW Australia
| | | | - Neil L. Wilson
- School of Molecular Bioscience; University of Sydney; Darlington NSW Australia
| | - Andrew J. Holmes
- School of Molecular Bioscience; University of Sydney; Darlington NSW Australia
| |
Collapse
|
104
|
Harada J, Mizoguchi T, Tsukatani Y, Yokono M, Tanaka A, Tamiaki H. Chlorophyllide a oxidoreductase works as one of the divinyl reductases specifically involved in bacteriochlorophyll a biosynthesis. J Biol Chem 2014; 289:12716-26. [PMID: 24637023 DOI: 10.1074/jbc.m113.546739] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Bacteriochlorophyll a is widely distributed among anoxygenic photosynthetic bacteria. In bacteriochlorophyll a biosynthesis, the reduction of the C8 vinyl group in 8-vinyl-chlorophyllide a is catalyzed to produce chlorophyllide a by an 8-vinyl reductase called divinyl reductase (DVR), which has been classified into two types, BciA and BciB. However, previous studies demonstrated that mutants lacking the DVR still synthesize normal bacteriochlorophyll a with the C8 ethyl group and suggested the existence of an unknown "third" DVR. Meanwhile, we recently observed that chlorophyllide a oxidoreductase (COR) of a purple bacterium happened to show the 8-vinyl reduction of 8-vinyl-chlorophyllide a in vitro. In this study, we made a double mutant lacking BciA and COR of the purple bacterium Rhodobacter sphaeroides in order to investigate whether the mutant still produces pigments with the C8 ethyl group or if COR actually works as the third DVR. The single mutant deleting BciA or COR showed production of the C8 ethyl group pigments, whereas the double mutant accumulated 8-vinyl-chlorophyllide, indicating that there was no enzyme other than BciA and COR functioning as the unknown third DVR in Rhodobacter sphaeroides (note that this bacterium has no bciB gene). Moreover, some COR genes derived from other groups of anoxygenic photosynthetic bacteria were introduced into the double mutant, and all of the complementary strains produced normal bacteriochlorophyll a. This observation indicated that COR of these bacteria performs two functions, reductions of the C8 vinyl group and the C7=C8 double bond, and that such an activity is probably conserved in the widely ranging groups.
Collapse
Affiliation(s)
- Jiro Harada
- From the Department of Medical Biochemistry, Kurume University School of Medicine, Asahi-machi 67, Kurume, Fukuoka 830-0011, Japan
| | | | | | | | | | | |
Collapse
|
105
|
Li Q, Hu Y, Xu Y, Chen J, Fang L, Liu Z, Jiao X. A gene knock-in method used to purify plasmid pSPI12 from Salmonella enterica serovar Pullorum and characterization of IpaJ. J Microbiol Methods 2014; 98:128-33. [DOI: 10.1016/j.mimet.2014.01.011] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2013] [Revised: 01/16/2014] [Accepted: 01/16/2014] [Indexed: 11/30/2022]
|
106
|
Kobayashi E, Kishi H, Ozawa T, Horii M, Hamana H, Nagai T, Muraguchi A. Retroviral vectors for homologous recombination provide efficient cloning and expression in mammalian cells. Biochem Biophys Res Commun 2014; 444:319-24. [PMID: 24462869 DOI: 10.1016/j.bbrc.2014.01.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Accepted: 01/14/2014] [Indexed: 11/19/2022]
Abstract
Homologous recombination technologies enable high-throughput cloning and the seamless insertion of any DNA fragment into expression vectors. Additionally, retroviral vectors offer a fast and efficient method for transducing and expressing genes in mammalian cells, including lymphocytes. However, homologous recombination cannot be used to insert DNA fragments into retroviral vectors; retroviral vectors contain two homologous regions, the 5'- and 3'-long terminal repeats, between which homologous recombination occurs preferentially. In this study, we have modified a retroviral vector to enable the cloning of DNA fragments through homologous recombination. To this end, we inserted a bacterial selection marker in a region adjacent to the gene insertion site. We used the modified retroviral vector and homologous recombination to clone T-cell receptors (TCRs) from single Epstein Barr virus-specific human T cells in a high-throughput and comprehensive manner and to efficiently evaluate their function by transducing the TCRs into a murine T-cell line through retroviral infection. In conclusion, the modified retroviral vectors, in combination with the homologous recombination method, are powerful tools for the high-throughput cloning of cDNAs and their efficient functional analysis.
Collapse
Affiliation(s)
- Eiji Kobayashi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroyuki Kishi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan.
| | - Tatsuhiko Ozawa
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Masae Horii
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Hiroshi Hamana
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Terumi Nagai
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| | - Atsushi Muraguchi
- Department of Immunology, Graduate School of Medicine and Pharmaceutical Sciences, University of Toyama, Toyama, Japan
| |
Collapse
|
107
|
Aubert DF, Hamad MA, Valvano MA. A markerless deletion method for genetic manipulation of Burkholderia cenocepacia and other multidrug-resistant gram-negative bacteria. Methods Mol Biol 2014; 1197:311-327. [PMID: 25172289 DOI: 10.1007/978-1-4939-1261-2_18] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/03/2023]
Abstract
Genetic manipulation of multidrug-resistant bacteria is often difficult and hinders progress in understanding their physiology and pathogenesis. This book chapter highlights advances in genetic manipulation of Burkholderia cenocepacia, which are also applicable to other members of the Burkholderia cepacia complex and multidrug-resistant gram-negative bacteria of other genera. The method detailed here is based on the I-SceI homing endonuclease system, which can be efficiently used for chromosomal integration, deletion, and genetic replacement. This system creates markerless mutations and insertions without leaving a genetic scar and thus can be reused successively to generate multiple modifications in the same strain.
Collapse
Affiliation(s)
- Daniel F Aubert
- Department of Microbiology and Immunology, Centre for Human Immunology, University of Western Ontario, London, ON, Canada, N6A 5C1
| | | | | |
Collapse
|
108
|
Shenkerman Y, Elharar Y, Vishkautzan M, Gur E. Efficient and simple generation of unmarked gene deletions in Mycobacterium smegmatis. Gene 2013; 533:374-8. [PMID: 24100088 DOI: 10.1016/j.gene.2013.09.082] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2013] [Revised: 09/15/2013] [Accepted: 09/23/2013] [Indexed: 10/26/2022]
Abstract
Genetic research in molecular laboratories relies heavily on directed mutagenesis and gene deletion techniques. In mycobacteria, however, genetic analysis is often hindered by difficulties in the preparation of deletion mutants. Indeed, in comparison to the allelic exchange systems available for the study of other common model organisms, such as Saccharomyces cerevisiae and Escherichia coli, mycobacterial gene disruption systems suffer from low mutant isolation success rates, mostly due to inefficient homologous recombination and a high degree of non-specific recombination. Here, we present a gene deletion system that combines efficient homologous recombination with advanced screening of mutants. This novel methodology allows for gene disruption in three consecutive steps. The first step relies on the use of phage Che9c recombineering proteins for directed insertion into the chromosome of a linear DNA fragment that encodes GFP and confers hygromycin resistance. In the second step, GFP positive and hygromycin resistant colonies are selected, and in the last step, the gfp-hyg cassette is excised from the chromosome, thus resulting in the formation of an unmarked deletion. We provide a detailed gene deletion methodology and demonstrate the use of this genetic system by deleting the prcSBA operon of Mycobacterium smegmatis.
Collapse
Affiliation(s)
- Yael Shenkerman
- Department of Life Sciences, Ben-Gurion University of the Negev, Beer-Sheva 84105, Israel
| | | | | | | |
Collapse
|
109
|
Importance of codB for new codA-based markerless gene deletion in Gluconobacter strains. Appl Microbiol Biotechnol 2013; 97:8341-9. [DOI: 10.1007/s00253-013-5164-7] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2013] [Revised: 07/26/2013] [Accepted: 07/29/2013] [Indexed: 10/26/2022]
|
110
|
Angelov A, Li H, Geissler A, Leis B, Liebl W. Toxicity of indoxyl derivative accumulation in bacteria and its use as a new counterselection principle. Syst Appl Microbiol 2013; 36:585-92. [PMID: 23871391 DOI: 10.1016/j.syapm.2013.06.001] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2013] [Revised: 06/11/2013] [Accepted: 06/12/2013] [Indexed: 11/30/2022]
Abstract
In this work we describe the conditional toxic effect of the expression of enzymes that cleave 5-bromo-4-chloro-3-indolyl (BCI) substrates and its use as a new counterselection principle useful for the generation of clean and unmarked mutations in the genomes of bacteria. The application of this principle was demonstrated in the thermophile Thermus thermophilus HB27 and in a mesophile for which currently no counterselection markers are available, Micrococcus luteus ATCC 27141. For T. thermophilus, the indigogenic substrate BCI-β-glucoside was used in combination with the T. thermophilus β-glucosidase gene (bgl). For M. luteus, a combination of BCI-β-galactoside and the E. coli lacZ gene was implemented. We observed a strong growth-inhibiting effect when the strains were grown on agar plates containing the appropriate BCI substrates, the inhibition being proportional to the substrate concentration and the level of bgl/lacZ expression. The growth inhibition apparently depends on intracellular BCI substrate cleavage and accumulation of toxic indoxyl precipitates. The bgl and lacZ genes were used as counterselection markers for the rapid generation of scar-less chromosomal deletions in T. thermophilus HB27 (both in a Δbgl and in a wild type background) and in M. luteus ATCC 27141. In addition to Thermus and Micrococcus, sensitivity to BCI substrate cleavage was observed for other Gram-negative and Gram-positive species belonging to various bacterial phyla, including representatives of the genera Staphylococcus, Bacillus, Corynebacterium, Rhodococcus, Paracoccus and Xanthomonas. Thus, the toxicity of indoxyl derivative accumulation upon BCI substrate cleavage can be used for selection purposes in a broad range of microorganisms.
Collapse
Affiliation(s)
- Angel Angelov
- Lehrstuhl für Mikrobiologie, Technische Universität München, Emil-Ramann-Straße 4, D-85354 Freising-Weihenstephan, Germany
| | | | | | | | | |
Collapse
|
111
|
The molecular toolbox for chromosomal heterologous multiprotein expression in Escherichia coli. Biochem Soc Trans 2013; 40:1222-6. [PMID: 23176458 DOI: 10.1042/bst20120143] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
Heterologous multiprotein expression is the tool to answer a number of questions in basic science as well as to convert strains into producers and/or consumers of certain compounds in applied sciences. Multiprotein expression can be driven by plasmids with the disadvantages that the gene dosage might, in some cases, lead to toxic effects and that the continuous addition of antibiotics is undesirable. Stable genomic expression of proteins can forgo these problems and is a helpful and promising tool in synthetic biology. In the present paper, we provide an extract of methods from the toolbox for chromosome-based heterologous expression in Escherichia coli.
Collapse
|
112
|
Lee YH, Kim S, Helmann JD, Kim BH, Park YK. RaoN, a small RNA encoded within Salmonella pathogenicity island-11, confers resistance to macrophage-induced stress. MICROBIOLOGY-SGM 2013; 159:1366-1378. [PMID: 23657681 DOI: 10.1099/mic.0.066688-0] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
Bacterial small non-coding RNAs act as important regulators that control numerous cellular processes. Here we identified RaoN, a novel small RNA encoded in the cspH-envE intergenic region on Salmonella pathogenicity island-11 (SPI-11). RaoN contributes to survival under conditions of acid and oxidative stress combined with nutrient limitation, which partially mimic the intramacrophage environment. Indeed, inactivation of raoN reduces the intramacrophage replication of Salmonella enterica serovar Typhimurium. Genome-wide transcriptome analysis revealed that the lactate dehydrogenase gene ldhA is upregulated in the raoN knockout mutant. Notably, both inactivation and overexpression of ldhA in the WT strain render Salmonella more sensitive to oxidative stress, particularly when combined with nutrient limitation. However, ldhA is not the sole determinant of RaoN function in facilitating intramacrophage survival of Salmonella. Together, our data suggest that balanced regulation of ldhA expression by RaoN is necessary for survival under in vitro stress conditions and contributes to the intramacrophage growth of Salmonella.
Collapse
Affiliation(s)
- Yong Heon Lee
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - Sinyeon Kim
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| | - John D Helmann
- Department of Microbiology, Cornell University, Ithaca, NY 14853, USA
| | - Bae-Hoon Kim
- Section of Microbial Pathogenesis, Boyer Center for Molecular Medicine, Yale University School of Medicine, New Haven, CT 06510, USA
| | - Yong Keun Park
- School of Life Sciences and Biotechnology, Korea University, Seoul 136-701, Korea
| |
Collapse
|
113
|
Dziewit L, Pyzik A, Matlakowska R, Baj J, Szuplewska M, Bartosik D. Characterization of Halomonas sp. ZM3 isolated from the Zelazny Most post-flotation waste reservoir, with a special focus on its mobile DNA. BMC Microbiol 2013; 13:59. [PMID: 23497212 PMCID: PMC3606827 DOI: 10.1186/1471-2180-13-59] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2013] [Accepted: 03/08/2013] [Indexed: 11/10/2022] Open
Abstract
Background Halomonas sp. ZM3 was isolated from Zelazny Most post-flotation mineral waste repository (Poland), which is highly contaminated with heavy metals and various organic compounds. Mobile DNA of the strain (i.e. plasmids and transposons) were analyzed in order to identify genetic information enabling adaptation of the bacterium to the harsh environmental conditions. Results The analysis revealed that ZM3 carries plasmid pZM3H1 (31,370 bp), whose replication system may be considered as an archetype of a novel subgroup of IncU-like replicons. pZM3H1 is a narrow host range, mobilizable plasmid (encodes a relaxase of the MOBV family) containing mercury resistance operon (mer) and czcD genes (mediate resistance to zinc and cobalt), which are part of a large truncated Tn3 family transposon. Further analysis demonstrated that the phenotypes determined by the pZM3H1 resistance cassette are highly dependent on the host strain. In another strand of the study, the trap plasmid pMAT1 was employed to identify functional transposable elements of Halomonas sp. ZM3. Using the sacB positive selection strategy two insertion sequences were identified: ISHsp1 - representing IS5 group of IS5 family and ISHsp2 - a distinct member of the IS630 family. Conclusions This study provides the first detailed description of mobile DNA in a member of the family Halomonadaceae. The identified IncU plasmid pZM3H1 confers resistance phenotypes enabling adaptation of the host strain to the Zelazny Most environment. The extended comparative analysis has shed light on the distribution of related IncU plasmids among bacteria, which, in many cases, reflects the frequency and direction of horizontal gene transfer events. Our results also identify plasmid-encoded modules, which may form the basis of novel shuttle vectors, specific for this group of halophilic bacteria.
Collapse
Affiliation(s)
- Lukasz Dziewit
- University of Warsaw, Faculty of Biology, Institute of Microbiology, Department of Bacterial Genetics, Miecznikowa 1, Warsaw, 02-096, Poland
| | | | | | | | | | | |
Collapse
|
114
|
Suzuki N, Inui M. Genome Engineering of Corynebacterium glutamicum. CORYNEBACTERIUM GLUTAMICUM 2013. [DOI: 10.1007/978-3-642-29857-8_3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
|
115
|
Cheah YE, Albers SC, Peebles CAM. A novel counter-selection method for markerless genetic modification inSynechocystissp. PCC 6803. Biotechnol Prog 2012; 29:23-30. [DOI: 10.1002/btpr.1661] [Citation(s) in RCA: 44] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2012] [Revised: 10/15/2012] [Indexed: 11/07/2022]
|
116
|
Yoo AY, Yu JE, Yoo H, Lee TH, Lee WH, Oh JI, Kang HY. Role of sigma factor E in regulation of Salmonella Agf expression. Biochem Biophys Res Commun 2012; 430:131-6. [PMID: 23159630 DOI: 10.1016/j.bbrc.2012.11.025] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2012] [Accepted: 11/07/2012] [Indexed: 10/27/2022]
Abstract
Expression of thin aggregative fimbriae (Agf) in Salmonella, which is responsible for bacterial cell adhesion to surfaces, aggregation, and formation of biofilms, is regulated by a complex mechanism. In order to identify gene(s) involved in the expression of Agf, the TnphoA transposon was introduced into Salmonella typhimurium χ8505 for random mutagenesis. Colonies showing a change from wrinkly-rough morphology to the smooth form were screened for candidates. Through multiple selection processes, a mutant, named S. typhimurium CK167 was selected as the final candidate. Analyses of the nucleotide sequences of TnphoA insertion site identified the insertion in rpoE gene. S. typhimurium CK178, a defined rpoE deletion mutant on χ8505, exhibited the same colony morphology as seen in CK167. The S. typhimurium CK178 strain expressed significantly reduced amounts of AgfD and showed modulated biofilm formation, demonstrating the role of RpoE in AgfD expression. To the best of our knowledge, this is the first report demonstrating that RpoE acts as a regulator in the expression of Agf in Salmonella.
Collapse
Affiliation(s)
- Ah Young Yoo
- Department of Microbiology, Pusan National University, Busan 609-735, Republic of Korea
| | | | | | | | | | | | | |
Collapse
|
117
|
Deletion of pyruvate decarboxylase by a new method for efficient markerless gene deletions in Gluconobacter oxydans. Appl Microbiol Biotechnol 2012; 97:2521-30. [DOI: 10.1007/s00253-012-4354-z] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2012] [Revised: 08/03/2012] [Accepted: 08/05/2012] [Indexed: 11/26/2022]
|
118
|
Park Y, Moon Y, Ryoo J, Kim N, Cho H, Ahn JH. Identification of the minimal region in lipase ABC transporter recognition domain of Pseudomonas fluorescens for secretion and fluorescence of green fluorescent protein. Microb Cell Fact 2012; 11:60. [PMID: 22578275 PMCID: PMC3430570 DOI: 10.1186/1475-2859-11-60] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2012] [Accepted: 04/11/2012] [Indexed: 11/22/2022] Open
Abstract
Background TliA is a thermostable lipase secreted by the type 1 secretion system (T1SS) of Pseudomonas fluorescens. The secretion is promoted by its secretion/chaperone domain located near the C-terminus, which is composed mainly of four Repeat-in-Toxin (RTX) repeats. In order to identify the minimal region of TliA responsible for its secretion, five different copies of the secretion/chaperone domain, each involving truncated N-terminal residues and a common C-terminus, were acquired and named as lipase ABC transporter recognition domains (LARDs). Each LARD was fused to epidermal growth factor (EGF) or green fluorescent protein (GFP), and the secretion of EGF-LARD or GFP-LARD fusion proteins was assessed in Escherichia coli with ABC transporter. Results Among the fusion proteins, GFP or EGF with 105-residue LARD3 was most efficiently secreted. In addition, GFP-LARD3 emitted wild type GFP fluorescence. Structurally, LARD3 had the 4 RTX repeats exposed at the N-terminus, while other LARDs had additional residues prior to them or missed some of the RTX repeats. LARD3 was both necessary and sufficient for efficient secretion and maintenance of GFP fluorescence in E. coli, which was also confirmed in P. fluorescens and P. fluorescens ▵tliA, a knock-out mutant of tliA. Conclusion LARD3 was a potent secretion signal in T1SS for its fusion flanking RTX motif, which enhanced secretion and preserved the fluorescence of GFP. LARD3-mediated secretion in E. coli or P. fluorescens will enable the development of enhanced protein manufacturing factory and recombinant microbe secreting protein of interest in situ.
Collapse
Affiliation(s)
- Yeonwoo Park
- Korea Science Academy of KAIST, 899 Tanggam 3-Dong, Busanjin-Gu, Busan, 614-822, Korea
| | | | | | | | | | | |
Collapse
|
119
|
Development of a suicidal vector-cloning system based on butanal susceptibility due to an expression of YqhD aldehyde reductase. J Microbiol 2012; 50:249-55. [DOI: 10.1007/s12275-012-1438-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2011] [Accepted: 11/02/2011] [Indexed: 11/26/2022]
|
120
|
Abstract
Coxiella burnetii is a ubiquitous zoonotic bacterial pathogen and the cause of human acute Q fever, a disabling influenza-like illness. C. burnetii's former obligate intracellular nature significantly impeded the genetic characterization of putative virulence factors. However, recent host cell-free (axenic) growth of the organism has enabled development of shuttle vector, transposon, and inducible gene expression technologies, with targeted gene inactivation remaining an important challenge. In the present study, we describe two methods for generating targeted gene deletions in C. burnetii that exploit pUC/ColE1 ori-based suicide plasmids encoding sacB for positive selection of mutants. As proof of concept, C. burnetii dotA and dotB, encoding structural components of the type IVB secretion system (T4BSS), were selected for deletion. The first method exploited Cre-lox-mediated recombination. Two suicide plasmids carrying different antibiotic resistance markers and a loxP site were integrated into 5' and 3' flanking regions of dotA. Transformation of this strain with a third suicide plasmid encoding Cre recombinase resulted in the deletion of dotA under sucrose counterselection. The second method utilized a loop-in/loop-out strategy to delete dotA and dotB. A single suicide plasmid was first integrated into 5' or 3' target gene flanking regions. Resolution of the plasmid cointegrant by a second crossover event under sucrose counterselection resulted in gene deletion that was confirmed by PCR and Southern blot. ΔdotA and ΔdotB mutants failed to secrete T4BSS substrates and to productively infect host cells. The repertoire of C. burnetii genetic tools now allows ready fulfillment of molecular Koch's postulates for suspected virulence genes.
Collapse
|
121
|
Cloning and characterization of genes involved in nostoxanthin biosynthesis of Sphingomonas elodea ATCC 31461. PLoS One 2012; 7:e35099. [PMID: 22509387 PMCID: PMC3324416 DOI: 10.1371/journal.pone.0035099] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 03/08/2012] [Indexed: 01/29/2023] Open
Abstract
Most Sphingomonas species synthesize the yellow carotenoid nostoxanthin. However, the carotenoid biosynthetic pathway of these species remains unclear. In this study, we cloned and characterized a carotenoid biosynthesis gene cluster containing four carotenogenic genes (crtG, crtY, crtI and crtB) and a β-carotene hydroxylase gene (crtZ) located outside the cluster, from the gellan-gum producing bacterium Sphingomonas elodea ATCC 31461. Each of these genes was inactivated, and the biochemical function of each gene was confirmed based on chromatographic and spectroscopic analysis of the intermediates accumulated in the knockout mutants. Moreover, the crtG gene encoding the 2,2′-β-hydroxylase and the crtZ gene encoding the β-carotene hydroxylase, both responsible for hydroxylation of β-carotene, were confirmed by complementation studies using Escherichia coli producing different carotenoids. Expression of crtG in zeaxanthin and β-carotene accumulating E. coli cells resulted in the formation of nostoxanthin and 2,2′-dihydroxy-β-carotene, respectively. Based on these results, a biochemical pathway for synthesis of nostoxanthin in S. elodea ATCC 31461 is proposed.
Collapse
|
122
|
Dziewit L, Baj J, Szuplewska M, Maj A, Tabin M, Czyzkowska A, Skrzypczyk G, Adamczuk M, Sitarek T, Stawinski P, Tudek A, Wanasz K, Wardal E, Piechucka E, Bartosik D. Insights into the transposable mobilome of Paracoccus spp. (Alphaproteobacteria). PLoS One 2012; 7:e32277. [PMID: 22359677 PMCID: PMC3281130 DOI: 10.1371/journal.pone.0032277] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2011] [Accepted: 01/24/2012] [Indexed: 11/30/2022] Open
Abstract
Several trap plasmids (enabling positive selection of transposition events) were used to identify a pool of functional transposable elements (TEs) residing in bacteria of the genus Paracoccus (Alphaproteobacteria). Complex analysis of 25 strains representing 20 species of this genus led to the capture and characterization of (i) 37 insertion sequences (ISs) representing 9 IS families (IS3, IS5, IS6, IS21, IS66, IS256, IS1182, IS1380 and IS1634), (ii) a composite transposon Tn6097 generated by two copies of the ISPfe2 (IS1634 family) containing two predicted genetic modules, involved in the arginine deiminase pathway and daunorubicin/doxorubicin resistance, (iii) 3 non-composite transposons of the Tn3 family, including Tn5393 carrying streptomycin resistance and (iv) a transposable genomic island TnPpa1 (45 kb). Some of the elements (e.g. Tn5393, Tn6097 and ISs of the IS903 group of the IS5 family) were shown to contain strong promoters able to drive transcription of genes placed downstream of the target site of transposition. Through the application of trap plasmid pCM132TC, containing a promoterless tetracycline resistance reporter gene, we identified five ways in which transposition can supply promoters to transcriptionally silent genes. Besides highlighting the diversity and specific features of several TEs, the analyses performed in this study have provided novel and interesting information on (i) the dynamics of the process of transposition (e.g. the unusually high frequency of transposition of TnPpa1) and (ii) structural changes in DNA mediated by transposition (e.g. the generation of large deletions in the recipient molecule upon transposition of ISPve1 of the IS21 family). We also demonstrated the great potential of TEs and transposition in the generation of diverse phenotypes as well as in the natural amplification and dissemination of genetic information (of adaptative value) by horizontal gene transfer, which is considered the driving force of bacterial evolution.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Dariusz Bartosik
- Department of Bacterial Genetics, Faculty of Biology, Institute of Microbiology, University of Warsaw, Warsaw, Poland
| |
Collapse
|
123
|
Hansen GA, Ahmad R, Hjerde E, Fenton CG, Willassen NP, Haugen P. Expression profiling reveals Spot 42 small RNA as a key regulator in the central metabolism of Aliivibrio salmonicida. BMC Genomics 2012; 13:37. [PMID: 22272603 PMCID: PMC3295665 DOI: 10.1186/1471-2164-13-37] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2011] [Accepted: 01/24/2012] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND Spot 42 was discovered in Escherichia coli nearly 40 years ago as an abundant, small and unstable RNA. Its biological role has remained obscure until recently, and is today implicated in having broader roles in the central and secondary metabolism. Spot 42 is encoded by the spf gene. The gene is ubiquitous in the Vibrionaceae family of gamma-proteobacteria. One member of this family, Aliivibrio salmonicida, causes cold-water vibriosis in farmed Atlantic salmon. Its genome encodes Spot 42 with 84% identity to E. coli Spot 42. RESULTS We generated a A. salmonicida spf deletion mutant. We then used microarray and Northern blot analyses to monitor global effects on the transcriptome in order to provide insights into the biological roles of Spot 42 in this bacterium. In the presence of glucose, we found a surprisingly large number of ≥ 2X differentially expressed genes, and several major cellular processes were affected. A gene encoding a pirin-like protein showed an on/off expression pattern in the presence/absence of Spot 42, which suggests that Spot 42 plays a key regulatory role in the central metabolism by regulating the switch between fermentation and respiration. Interestingly, we discovered an sRNA named VSsrna24, which is encoded immediately downstream of spf. This new sRNA has an expression pattern opposite to that of Spot 42, and its expression is repressed by glucose. CONCLUSIONS We hypothesize that Spot 42 plays a key role in the central metabolism, in part by regulating the pyruvat dehydrogenase enzyme complex via pirin.
Collapse
Affiliation(s)
- Geir A Hansen
- Department of chemistry, Faculty of science and technology, University of Tromsø, N-9037, Tromsø, Norway
| | | | | | | | | | | |
Collapse
|
124
|
Gardner JG, Keating DH. Genetic and Functional Genomic Approaches for the Study of Plant Cell Wall Degradation in Cellvibrio japonicus. Methods Enzymol 2012; 510:331-47. [DOI: 10.1016/b978-0-12-415931-0.00018-5] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022]
|
125
|
|
126
|
Tanaka M, Wali UM, Nakayashiki H, Fukuda T, Mizumoto H, Ohnishi K, Kiba A, Hikichi Y. Implication of an Aldehyde Dehydrogenase Gene and a Phosphinothricin N-Acetyltransferase Gene in the Diversity of Pseudomonas cichorii Virulence. Genes (Basel) 2011; 3:62-80. [PMID: 24704843 PMCID: PMC3899961 DOI: 10.3390/genes3010062] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2011] [Revised: 10/28/2011] [Accepted: 11/07/2011] [Indexed: 01/14/2023] Open
Abstract
Pseudomonas cichorii harbors the hrp genes. hrp-mutants lose their virulence on eggplant but not on lettuce. A phosphinothricin N-acetyltransferase gene (pat) is located between hrpL and an aldehyde dehydrogenase gene (aldH) in the genome of P. cichorii. Comparison of nucleotide sequences and composition of the genes among pseudomonads suggests a common ancestor of hrp and pat between P. cichorii strains and P. viridiflava strains harboring the single hrp pathogenicity island. In contrast, phylogenetic diversification of aldH corresponded to species diversification amongst pseudomonads. In this study, the involvement of aldH and pat in P. cichorii virulence was analyzed. An aldH-deleted mutant (ΔaldH) and a pat-deleted mutant (Δpat) lost their virulence on eggplant but not on lettuce. P. cichorii expressed both genes in eggplant leaves, independent of HrpL, the transcriptional activator for the hrp. Inoculation into Asteraceae species susceptible to P. cichorii showed that the involvement of hrp, pat and aldH in P. cichorii virulence is independent of each other and has no relationship with the phylogeny of Asteraceae species based on the nucleotide sequences of ndhF and rbcL. It is thus thought that not only the hrp genes but also pat and aldH are implicated in the diversity of P. cichorii virulence on susceptible host plant species.
Collapse
Affiliation(s)
- Masayuki Tanaka
- Laboratory of Plant Pathology and Biotechnology, Kochi University, Nankoku, Kochi 783-8502, Japan.
| | - Ullah Md Wali
- Laboratory of Plant Pathology and Biotechnology, Kochi University, Nankoku, Kochi 783-8502, Japan.
| | - Hitoshi Nakayashiki
- Laboratory of Plant Pathology, Kobe University, Kobe, Hyogo 657-8501, Japan.
| | - Tatsuya Fukuda
- Faculty of Agriculture, Kochi University, Nankoku 783-8502, Japan.
| | - Hiroyuki Mizumoto
- Laboratory of Plant Pathology and Biotechnology, Kochi University, Nankoku, Kochi 783-8502, Japan.
| | - Kouhei Ohnishi
- Research Institute of Molecular Genetics, Kochi University, Nankoku, Kochi 783-8502, Japan.
| | - Akinori Kiba
- Laboratory of Plant Pathology and Biotechnology, Kochi University, Nankoku, Kochi 783-8502, Japan.
| | - Yasufumi Hikichi
- Laboratory of Plant Pathology and Biotechnology, Kochi University, Nankoku, Kochi 783-8502, Japan.
| |
Collapse
|
127
|
Traore SM, Zhao B. A novel Gateway®-compatible binary vector allows direct selection of recombinant clones in Agrobacterium tumefaciens. PLANT METHODS 2011; 7:42. [PMID: 22145613 PMCID: PMC3265438 DOI: 10.1186/1746-4811-7-42] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/24/2011] [Accepted: 12/07/2011] [Indexed: 05/31/2023]
Abstract
BACKGROUND Cloning genes into plasmid vectors is one of the key steps for studying gene function. Recently, Invitrogen™ developed a convenient Gateway® cloning system based on the site-specific DNA recombination properties of bacteriophage lambda and the cytotoxic protein ccdB, which is lethal to most E. coli strains. The ccdB protein, however, is not toxic to Agrobacterium tumefaciens, an important player often used for studying gene function in planta. This limits the direct application of the Gateway® cloning system in plant transformation-mediated research. RESULTS In this study, we constructed a novel Gateway®-compatible destination vector, pEG101-SacB/R, by replacing the ccdB gene with a SacB-SacR gene cassette as the negative selectable marker. CONCLUSION Our results demonstrate that the new pEG101-SacB/R destination vector can be used for Gateway® cloning in Agrobacterium tumefaciens. pEG101-SacB/R will be a valuable tool for high-throughput functional analysis of genes in planta.
Collapse
Affiliation(s)
- Sy Mamadou Traore
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| | - Bingyu Zhao
- Department of Horticulture, Virginia Polytechnic Institute and State University, Blacksburg, VA, 24061, USA
| |
Collapse
|
128
|
Tan Y, Xu D, Li Y, Wang X. Construction of a novel sacB-based system for marker-free gene deletion in Corynebacterium glutamicum. Plasmid 2011; 67:44-52. [PMID: 22100974 DOI: 10.1016/j.plasmid.2011.11.001] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Revised: 10/25/2011] [Accepted: 11/02/2011] [Indexed: 11/24/2022]
Abstract
Bacillus subtilis sacB gene with its 463bp upstream region including its native promoter has been used for marker-free gene deletion in Corynebacterium glutamicum, but the role of this upstream region is not clear. In this study, it was demonstrated that the upstream region of sacB failed to efficiently promote its expression in C. glutamicum, and the native promoter of sacB is weak in C. glutamicum. The expression level of sacB under its native promoter in C. glutamicum is not high enough for cells to confer sucrose sensitivity. Therefore, a new promoter PlacM and a novel vector pDXW-3 were constructed. PlacM is 18 times stronger than the native promoter of sacB in C. glutamicum. The pDXW-3 contains B. subtilissacB with the PlacM fused at the 5'-end, a general Escherichia coli replicon oriE for easy cloning, a kanamycin resistance marker for selection, and a multiple unique restriction sites for XhoI, NotI, EagI, SalI, SacI, BamHI, and NheI, respectively. By using pDXW-3, the aceE gene in the chromosome of C. glutamicum was deleted. This sacB-based system should facilitate gene disruption and allelic exchange by homologous recombination in many bacteria.
Collapse
Affiliation(s)
- Yanzhen Tan
- State Key Laboratory of Food Science and Technology, Jiangnan University, Wuxi 214000, China
| | | | | | | |
Collapse
|
129
|
Miniature transposable sequences are frequently mobilized in the bacterial plant pathogen Pseudomonas syringae pv. phaseolicola. PLoS One 2011; 6:e25773. [PMID: 22016774 PMCID: PMC3189936 DOI: 10.1371/journal.pone.0025773] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/09/2011] [Indexed: 01/01/2023] Open
Abstract
Mobile genetic elements are widespread in Pseudomonas syringae, and often associate with virulence genes. Genome reannotation of the model bean pathogen P. syringae pv. phaseolicola 1448A identified seventeen types of insertion sequences and two miniature inverted-repeat transposable elements (MITEs) with a biased distribution, representing 2.8% of the chromosome, 25.8% of the 132-kb virulence plasmid and 2.7% of the 52-kb plasmid. Employing an entrapment vector containing sacB, we estimated that transposition frequency oscillated between 2.6×10−5 and 1.1×10−6, depending on the clone, although it was stable for each clone after consecutive transfers in culture media. Transposition frequency was similar for bacteria grown in rich or minimal media, and from cells recovered from compatible and incompatible plant hosts, indicating that growth conditions do not influence transposition in strain 1448A. Most of the entrapped insertions contained a full-length IS801 element, with the remaining insertions corresponding to sequences smaller than any transposable element identified in strain 1448A, and collectively identified as miniature sequences. From these, fragments of 229, 360 and 679-nt of the right end of IS801 ended in a consensus tetranucleotide and likely resulted from one-ended transposition of IS801. An average 0.7% of the insertions analyzed consisted of IS801 carrying a fragment of variable size from gene PSPPH_0008/PSPPH_0017, showing that IS801 can mobilize DNA in vivo. Retrospective analysis of complete plasmids and genomes of P. syringae suggests, however, that most fragments of IS801 are likely the result of reorganizations rather than one-ended transpositions, and that this element might preferentially contribute to genome flexibility by generating homologous regions of recombination. A further miniature sequence previously found to affect host range specificity and virulence, designated MITEPsy1 (100-nt), represented an average 2.4% of the total number of insertions entrapped in sacB, demonstrating for the first time the mobilization of a MITE in bacteria.
Collapse
|
130
|
Poelwijk F, de Vos M, Tans S. Tradeoffs and Optimality in the Evolution of Gene Regulation. Cell 2011; 146:462-70. [DOI: 10.1016/j.cell.2011.06.035] [Citation(s) in RCA: 78] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2010] [Revised: 05/05/2011] [Accepted: 06/16/2011] [Indexed: 02/06/2023]
|
131
|
Selection of available suicide vectors for gene mutagenesis using chiA (a chitinase encoding gene) as a new reporter and primary functional analysis of chiA in Lysobacter enzymogenes strain OH11. World J Microbiol Biotechnol 2011; 28:549-57. [PMID: 22806850 DOI: 10.1007/s11274-011-0846-8] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 07/08/2011] [Indexed: 10/18/2022]
Abstract
Here, three different suicide vectors were evaluated for the possibility of performing gene mutagenesis in strain OH11 using the chiA gene (accession number: DQ888611) as a new reporter. Suicide vector pEX18GM was selected, and it was successfully applied for disruption and in-frame deletions in the chiA gene in strain OH11, which was confirmed by PCR amplification and Southern hybridization. The chiA-deletion mutant OH11-3 did not have the ability to produce chitinase on chitine selection medium. Interestingly, the chiA-deletion mutants displayed wild-type antimicrobial activity against Saccharomyces cerevisiae, Magnaporthe grisea, Phytophthora capsici, Rhizoctonia solani, Sclerotinia sclerotiorum and Pythium ultimum. Our data suggest that chitinase might not be a unique lytic enzyme in controlling S. cerevisiae, M. grisea, P. capsici, and P. ultimum. R. solani, S. sclerotiorum. Also, suicide vector pEX18GM might be explored as a potential tool for gene deletions in L. enzymogenes, which will facilitate the molecular study of mechanisms of biological control in L. enzymogenes.
Collapse
|
132
|
van Aartsen JJ, Rajakumar K. An optimized method for suicide vector-based allelic exchange in Klebsiella pneumoniae. J Microbiol Methods 2011; 86:313-9. [PMID: 21699924 DOI: 10.1016/j.mimet.2011.06.006] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2011] [Revised: 05/31/2011] [Accepted: 06/05/2011] [Indexed: 10/18/2022]
Abstract
Klebsiella pneumoniae is an important and versatile bacterium that can be found in diverse environments and is also a frequent cause of human infections. Limited data exists on the mechanisms of interaction between K. pneumoniae and the human host and of adaptations to other environments. Coupled with the high genetic diversity of this species, these factors highlight the necessity for substantial further K. pneumoniae-focused molecular genetics studies. In this report we describe a simple and efficient experimental protocol for suicide vector-based allelic exchange in K. pneumoniae. The protocol has been validated by mutating multiple loci in four distinct K. pneumoniae strains, including highly capsulated and/or multi-antibiotic resistant clinical isolates. Three key enhancements are reported:(1) Use of pDS132-derived conjugative plasmids carrying improved cloning sites, (2) Performance of sacB counterselection at 25°C as opposed to higher temperatures, and (3) Exploitation of Flp-recombinase-mediated deletion of FRT (Flp recombinase target) flanked resistance cassettes to allow for reiterative manipulations with a single selectable marker. This study also highlights a problem that may be encountered when the aacC1 gentamicin resistance marker is used in K. pneumoniae and suggests alternative markers. The protocol developed in this study will help investigate the plethora of uncharacterized genes present in the K. pneumoniae pan-genome and shed further light upon clinically and industrially important phenotypes observed in this ubiquitous species.
Collapse
Affiliation(s)
- Jon Jurriaan van Aartsen
- Department of Infection, Immunity and Inflammation, Maurice Shock Medical Sciences Building, University of Leicester, University Road, Leicester, LE1 9HN, United Kingdom
| | | |
Collapse
|
133
|
Kakirde KS, Wild J, Godiska R, Mead DA, Wiggins AG, Goodman RM, Szybalski W, Liles MR. Gram negative shuttle BAC vector for heterologous expression of metagenomic libraries. Gene 2011; 475:57-62. [PMID: 21112378 PMCID: PMC3058121 DOI: 10.1016/j.gene.2010.11.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2010] [Revised: 11/08/2010] [Accepted: 11/09/2010] [Indexed: 11/29/2022]
Abstract
Bacterial artificial chromosome (BAC) vectors enable stable cloning of large DNA fragments from single genomes or microbial assemblages. A novel shuttle BAC vector was constructed that permits replication of BAC clones in diverse Gram-negative species. The "Gram-negative shuttle BAC" vector (pGNS-BAC) uses the F replicon for stable single-copy replication in E. coli and the broad-host-range RK2 mini-replicon for high-copy replication in diverse Gram-negative bacteria. As with other BAC vectors containing the oriV origin, this vector is capable of an arabinose-inducible increase in plasmid copy number. Resistance to both gentamicin and chloramphenicol is encoded on pGNS-BAC, permitting selection for the plasmid in diverse bacterial species. The oriT from an IncP plasmid was cloned into pGNS-BAC to enable conjugal transfer, thereby allowing both electroporation and conjugation of pGNS-BAC DNA into bacterial hosts. A soil metagenomic library was constructed in pGNS-BAC-1 (the first version of the vector, lacking gentamicin resistance and oriT), and recombinant clones were demonstrated to replicate in diverse Gram-negative hosts, including Escherichia coli, Pseudomonas spp., Salmonella enterica, Serratia marcescens, Vibrio vulnificus and Enterobacter nimipressuralis. This shuttle BAC vector can be utilized to clone genomic DNA from diverse sources, and then transfer it into diverse Gram-negative bacterial species to facilitate heterologous expression of recombinant pathways.
Collapse
Affiliation(s)
| | - Jadwiga Wild
- Department of Oncology, University of Wisconsin, Madison, WI
| | | | | | | | - Robert M. Goodman
- School of Environmental and Biological Sciences, Rutgers, The State University of New Jersey, New Brunswick, New Jersey
| | | | - Mark R. Liles
- Department of Biological Sciences, Auburn University, Auburn, AL
| |
Collapse
|
134
|
Zhu L, Wu X, Li O, Chen Y, Qian C, Teng Y, Tao X, Gao H. Cloning and knockout of phytoene desaturase gene in Sphingomonas elodea ATCC 31461 for economic recovery of gellan gum. J Ind Microbiol Biotechnol 2011; 38:1507-13. [DOI: 10.1007/s10295-010-0937-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Accepted: 12/27/2010] [Indexed: 11/29/2022]
|
135
|
Jaschke PR, Saer RG, Noll S, Beatty JT. Modification of the genome of Rhodobacter sphaeroides and construction of synthetic operons. Methods Enzymol 2011; 497:519-38. [PMID: 21601102 DOI: 10.1016/b978-0-12-385075-1.00023-8] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The α-proteobacterium Rhodobacter sphaeroides is an exemplary model organism for the creation and study of novel protein expression systems, especially membrane protein complexes that harvest light energy to yield electrical energy. Advantages of this organism include a sequenced genome, tools for genetic engineering, a well-characterized metabolism, and a large membrane surface area when grown under hypoxic or anoxic conditions. This chapter provides a framework for the utilization of R. sphaeroides as a model organism for membrane protein expression, highlighting key advantages and shortcomings. Procedures covered in this chapter include the creation of chromosomal gene deletions, disruptions, and replacements, as well as the construction of a synthetic operon using a model promoter to induce expression of modified photosynthetic reaction center proteins for structural and functional analysis.
Collapse
Affiliation(s)
- Paul R Jaschke
- Department of Microbiology and Immunology, University of British Columbia, Life Sciences Centre, Vancouver, British Columbia, Canada
| | | | | | | |
Collapse
|
136
|
Abstract
Cyanobacteria are the only prokaryotes capable of using sunlight as their energy, water as an electron donor, and air as a source of carbon and, for some nitrogen-fixing strains, nitrogen. Compared to algae and plants, cyanobacteria are much easier to genetically engineer, and many of the standard biological parts available for Synthetic Biology applications in Escherichia coli can also be used in cyanobacteria. However, characterization of such parts in cyanobacteria reveals differences in performance when compared to E. coli, emphasizing the importance of detailed characterization in the cellular context of a biological chassis. Furthermore, cyanobacteria possess special characteristics (e.g., multiple copies of their chromosomes, high content of photosynthetically active proteins in the thylakoids, the presence of exopolysaccharides and extracellular glycolipids, and the existence of a circadian rhythm) that have to be taken into account when genetically engineering them. With this chapter, the synthetic biologist is given an overview of existing biological parts, tools and protocols for the genetic engineering, and molecular analysis of cyanobacteria for Synthetic Biology applications.
Collapse
|
137
|
Biedendieck R, Borgmeier C, Bunk B, Stammen S, Scherling C, Meinhardt F, Wittmann C, Jahn D. Systems biology of recombinant protein production using Bacillus megaterium. Methods Enzymol 2011; 500:165-95. [PMID: 21943898 DOI: 10.1016/b978-0-12-385118-5.00010-4] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
The Gram-negative bacterium Escherichia coli is the most widely used production host for recombinant proteins in both academia and industry. The Gram-positive bacterium Bacillus megaterium represents an increasingly used alternative for high yield intra- and extracellular protein synthesis. During the past two decades, multiple tools including gene expression plasmids and production strains have been developed. Introduction of free replicating and integrative plasmids into B. megaterium is possible via protoplasts transformation or transconjugation. Using His(6)- and StrepII affinity tags, the intra- or extracellular produced proteins can easily be purified in one-step procedures. Different gene expression systems based on the xylose controlled promoter P(xylA) and various phage RNA polymerase (T7, SP6, K1E) driven systems enable B. megaterium to produce up to 1.25g of recombinant protein per liter. Biomass concentrations of up to 80g/l can be achieved by high cell density cultivations in bioreactors. Gene knockouts and gene replacements in B. megaterium are possible via an optimized gene disruption system. For a safe application in industry, sporulation and protease-deficient as well as UV-sensitive mutants are available. With the help of the recently published B. megaterium genome sequence, it is possible to characterize bottle necks in the protein production process via systems biology approaches based on transcriptome, proteome, metabolome, and fluxome data. The bioinformatical platform (Megabac, http://www.megabac.tu-bs.de) integrates obtained theoretical and experimental data.
Collapse
Affiliation(s)
- Rebekka Biedendieck
- Institute of Microbiology, Technische Universität Braunschweig, Spielmannstrasse 7, Braunschweig, Germany
| | | | | | | | | | | | | | | |
Collapse
|
138
|
Li C, Zhang F, Kelly WL. Heterologous production of thiostrepton A and biosynthetic engineering of thiostrepton analogs. ACTA ACUST UNITED AC 2011; 7:82-90. [DOI: 10.1039/c0mb00129e] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
139
|
Gong S, Kus L, Heintz N. Rapid bacterial artificial chromosome modification for large-scale mouse transgenesis. Nat Protoc 2010; 5:1678-96. [PMID: 20885380 PMCID: PMC3104474 DOI: 10.1038/nprot.2010.131] [Citation(s) in RCA: 50] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
We report here a high-throughput method for the modification of bacterial artificial chromosomes (BACs) that uses a novel two-plasmid approach. In this protocol, a vector modified in our laboratory to hold an R6Kγ origin of replication and a marker recombination cassette is inserted into a BAC in a single recombination step. Temporal control of recombination is achieved through the use of a second plasmid, pSV1.RecA, which possesses a recombinase gene and a temperature-sensitive origin of replication. This highly efficient protocol has allowed us to successfully modify more than 2,000 BACs, from which over 1,000 BAC transgenic mice have been generated. A complete cycle from BAC choice to embryo implantation takes about 5 weeks. Marker genes introduced into the mice include EGFP and EGFP-L10a. All vectors used in this project can be obtained from us by request, and the EGFP reporter mice are available through the Mutant Mouse Regional Resource Center (NINDS/GENSAT collection). CNS anatomical expression maps of the mice are available to the public at http://www.gensat.org/.
Collapse
|
140
|
Salmonella vaccine vectors displaying delayed antigen synthesis in vivo to enhance immunogenicity. Infect Immun 2010; 78:3969-80. [PMID: 20605977 DOI: 10.1128/iai.00444-10] [Citation(s) in RCA: 57] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
We have developed a regulated delayed antigen synthesis (RDAS) system for use in recombinant attenuated Salmonella vaccine (RASV) strains to enhance immune responses by reducing the adverse effects of high-level antigen synthesis. This system includes a chromosomal repressor gene, lacI, expressed from the arabinose-regulated araC PBAD promoter. LacI serves to regulate expression from a plasmid promoter, Ptrc, that directs antigen synthesis. In the presence of arabinose LacI is produced, which binds to Ptrc, blocking antigen synthesis. In vivo, an arabinose-poor environment, the concentration of LacI decreases with each cell division, allowing increased antigen synthesis. To optimize the system and for comparison, we altered the lacI ribosome-binding site, start codon, and/or codon content to construct RDAS strains chi9095, chi9959, and chi9241, synthesizing from low to high levels of LacI, respectively, and non-RDAS strain chi9555 as a control. We evaluated this system with two test antigens, the green fluorescent protein for initial in vitro assessment and the Streptococcus pneumoniae PspA protein for validation of our system in mice. All RASV strains expressing PspA generated high antilipopolysaccharide antibody titers, indicating that expression of lacI did not interfere with the capacity to induce an immune response. Strain chi9241 induced significantly higher anti-PspA IgG and IgA antibody titers than strain chi9555, which expressed PspA constitutively. Anti-PspA antibody titers were inversely correlated to the level of LacI synthesis. Strain chi9241 also induced significantly greater protective efficacy against challenge with virulent S. pneumoniae. These results suggest that regulated delayed antigen synthesis is useful for improving immunogenicity of RASV strains.
Collapse
|
141
|
Xu J, Olson ME, Kahn ML, Hurlbert RE. Characterization of Tn5-Induced Mutants of Xenorhabdus nematophilus ATCC 19061. Appl Environ Microbiol 2010; 57:1173-80. [PMID: 16348462 PMCID: PMC182864 DOI: 10.1128/aem.57.4.1173-1180.1991] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
A negative-selection vector, pHX1, was constructed for use in transposon mutagenesis of Xenorhabdus nematophilus ATCC 19061. pHX1 contains the Bacillus subtilis levansucrase gene which confers sucrose sensitivity. In addition, various Tn5-containing plasmids with different replication origins were transferred by conjugation from Escherichia coli into X. nematophilus ATCC 19061, and one of these plasmids, pGS9, yields Tn5 insertion mutants of X. nematophilus ATCC 19061. By using these two delivery vehicles, more than 250 putative Tn5 insertion mutants of X. nematophilus ATCC 19061 were isolated and were then characterized. Mutants that were altered in bromothymol blue adsorption, ability to lyse sheep erythrocytes, production of antibiotics on a variety of media, and virulence for Galleria mellonella were found.
Collapse
Affiliation(s)
- J Xu
- Department of Microbiology, Washington State University, Pullman, Washington 99164
| | | | | | | |
Collapse
|
142
|
Nelson RJ, Baraoidan MR, Cruz CM, Yap IV, Leach JE, Mew TW, Leung H. Relationship between Phylogeny and Pathotype for the Bacterial Blight Pathogen of Rice. Appl Environ Microbiol 2010; 60:3275-83. [PMID: 16349380 PMCID: PMC201799 DOI: 10.1128/aem.60.9.3275-3283.1994] [Citation(s) in RCA: 76] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Several transposable elements were isolated from the genome of Xanthomonas oryzae pv. oryzae. These elements and an avirulence gene isolated from X. oryzae pv. oryzae were used as hybridization probes for a collection of X. oryzae pv. oryzae strains from the Philippines. Each of the sequences was present in multiple copies in all strains examined and showed distinct patterns of hybridizing bands. Phenograms were derived from the restriction fragment length polymorphism data obtained for each of the individual probes and for pooled data from multiple probes. The phenograms derived from the different probes differed in topology and, on the basis of bootstrap analysis, were not equally robust. For all of the probes, including the avirulence gene, some groups (even some haplotypes) consisted of multiple races. The strains were grouped into four major clusters on the basis of the two probes giving the highest bootstrap values. These groups were inferred to represent phylogenetic lineages. Three of the six races of X. oryzae pv. oryzae appeared in more than one of the lineages, and another was present in two sublineages. For three of the races, strains representing different phenetic groups were inoculated on rice cultivars carrying 10 resistance genes. Two new races were differentiated, corresponding to pathogen lineages identified by DNA typing. On the basis of DNA and pathotypic analyses, together with information on the spatial and temporal distribution of the pathogen types from this and other studies, a general picture of X. oryzae pv. oryzae evolution in the Philippines is presented.
Collapse
Affiliation(s)
- R J Nelson
- Division of Entomology and Plant Pathology, International Rice Research Institute, 1099 Manila, Philippines
| | | | | | | | | | | | | |
Collapse
|
143
|
Chen QJ, Xie M, Ma XX, Dong L, Chen J, Wang XC. MISSA is a highly efficient in vivo DNA assembly method for plant multiple-gene transformation. PLANT PHYSIOLOGY 2010; 153:41-51. [PMID: 20200068 PMCID: PMC2862421 DOI: 10.1104/pp.109.152249] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 03/01/2010] [Indexed: 05/20/2023]
Abstract
We describe a highly efficient in vivo DNA assembly method, multiple-round in vivo site-specific assembly (MISSA), which facilitates plant multiple-gene transformation. MISSA is based on conjugational transfer, which is driven by donor strains, and two in vivo site-specific recombination events, which are mediated by inducible Cre recombinase and phage lambda site-specific recombination proteins in recipient strains, to enable in vivo transfer and in vivo assembly of multiple transgenic DNA. The assembly reactions can be performed circularly and iteratively through alternate use of the two specially designed donor vectors. As proof-of-principle experiments, we constructed a few plant multigene binary vectors. One of these vectors was generated by 15 rounds of MISSA reactions and was confirmed in transgenic Arabidopsis (Arabidopsis thaliana). As MISSA simplifies the tedious and time-consuming in vitro manipulations to a simple mixing of bacterial strains, it will greatly save time, effort, and expense associated with the assembly of multiple transgenic or synthetic DNA. The principle that underlies MISSA is applicable to engineering polygenic traits, biosynthetic pathways, or protein complexes in all organisms, such as Escherichia coli, yeast, plants, and animals. MISSA also has potential applications in synthetic biology, whether for basic theory or for applied biotechnology, aiming at the assembly of genetic pathways for the production of biofuels, pharmaceuticals, and industrial compounds from natural or synthetic DNA.
Collapse
Affiliation(s)
- Qi-Jun Chen
- State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100193, China.
| | | | | | | | | | | |
Collapse
|
144
|
Metabolic engineering for production of biorenewable fuels and chemicals: contributions of synthetic biology. J Biomed Biotechnol 2010; 2010:761042. [PMID: 20414363 PMCID: PMC2857869 DOI: 10.1155/2010/761042] [Citation(s) in RCA: 114] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2009] [Revised: 12/18/2009] [Accepted: 01/13/2010] [Indexed: 12/18/2022] Open
Abstract
Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.
Collapse
|
145
|
Voss J, Ehrenreich A, Liebl W. Characterization and inactivation of the membrane-bound polyol dehydrogenase in Gluconobacter oxydans DSM 7145 reveals a role in meso-erythritol oxidation. MICROBIOLOGY-SGM 2010; 156:1890-1899. [PMID: 20223802 DOI: 10.1099/mic.0.037598-0] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Abstract
The growth of Gluconobacter oxydans DSM 7145 on meso-erythritol is characterized by two stages: in the first stage, meso-erythritol is oxidized almost stoichiometrically to L-erythrulose according to the Bertrand-Hudson rule. The second phase is distinguished from the first phase by a global metabolic change from membrane-bound meso-erythritol oxidation to L-erythrulose assimilation with concomitant accumulation of acetic acid. The membrane-associated erythritol-oxidizing enzyme was found to be encoded by a gene homologous to sldA known from other species of acetic acid bacteria. Disruption of this gene in the genome of G. oxydans DSM 7145 revealed that the membrane-bound polyol dehydrogenase not only oxidizes meso-erythritol but also has a broader substrate spectrum which includes C3-C6 polyols and D-gluconate and supports growth on these substrates. Cultivation of G. oxydans DSM 7145 on different substrates indicated that expression of the polyol dehydrogenase was not regulated, implying that the production of biomass of G. oxydans to be used as whole-cell biocatalysts in the biotechnological conversion of meso-erythritol to L-erythrulose, which is used as a tanning agent in the cosmetics industry, can be conveniently carried out with glucose as the growth substrate.
Collapse
Affiliation(s)
- Jörn Voss
- Institute of Microbiology and Genetics, Georg-August Universität, Grisebachstr. 8, D-37077 Göttingen, Germany
| | - Armin Ehrenreich
- Department of Microbiology, Technische Universität München, Emil-Ramann-Str. 4, D-85354 Freising-Weihenstephan, Germany
| | - Wolfgang Liebl
- Department of Microbiology, Technische Universität München, Emil-Ramann-Str. 4, D-85354 Freising-Weihenstephan, Germany
| |
Collapse
|
146
|
An improved transconjugation protocol for Bacillus megaterium facilitating a direct genetic knockout. Appl Microbiol Biotechnol 2010; 86:1959-65. [PMID: 20217076 DOI: 10.1007/s00253-010-2503-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2010] [Revised: 02/08/2010] [Accepted: 02/09/2010] [Indexed: 10/19/2022]
Abstract
We provide a simple but very efficient transconjugation protocol for Bacillus megaterium. By combining utile attributes of known transconjugation methods (small size of the transferred DNA, close physical contact between donor and recipient cells, and heat treatment of the latter) and by determining the appropriate donor/recipient ratio, mating approaches yielded 5 x 10(-5) transconjugants/recipient. Counter-selection for eliminating Escherichia coli donor cells from the mating mixture was possible by pasteurization in case a wild type sporulation proficient B. megaterium served as the mating partner. For nonsporulating mutants, the sacB gene from Bacillus subtilis coding for levansucrase was successfully employed to select against the E. coli donor. The transfer efficiency, up to 15,000 transconjugants acquirable in a single experiment, sufficed--for the first time in this species--to directly select a gene (uvrA) knockout in a one-step procedure. By making use of a mobilizable B. megaterium suicide vector, ten out of the 40 sampled putative transconjugants displayed the expected UV sensitivity and were found to harbor the suicide vector at the anticipated position. Along with the soon available information arising from current B. megaterium sequencing projects, the possibility to quickly inactivate genetic loci will considerably speed up genetic work with this biotechnologically relevant species.
Collapse
|
147
|
King JD, Vinogradov E, Tran V, Lam JS. Biosynthesis of uronamide sugars in Pseudomonas aeruginosa O6 and Escherichia coli O121 O antigens. Environ Microbiol 2010; 12:1531-44. [PMID: 20192967 DOI: 10.1111/j.1462-2920.2010.02182.x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
The major component of the outer leaflet of the outer membrane of Gram-negative bacteria is lipopolysaccharide (LPS). The outermost domain of LPS is a polysaccharide called O antigen. Pseudomonas aeruginosa establishes biofilms on wet surfaces in a wide range of habitats and mutations in O-antigen biosynthesis genes affect bacterial adhesion and the structure of these biofilms. The P. aeruginosa O6 O antigen contains a 2-acetamido-2-deoxy-d-galacturonamide (d-GalNAcAN) residue. O-antigen biosynthesis in this serotype requires the wbpS gene, which encodes a protein with conserved domains of the glutamine-dependent amidotransferase family. Replacement of conserved amino acids in the N-terminal glutaminase conserved domain of WbpS inhibited O-antigen biosynthesis under restricted-ammonia conditions, but not in rich media; suggesting that this domain functions to provide ammonia for O-antigen biosynthesis under restricted-ammonia conditions, by hydrolysis of glutamine. Escherichia coli O121 also produces a d-GalNAcAN-containing O antigen, and possesses a homologue of wbpS called wbqG. An E. coli O121 wbqG mutant was cross-complemented by providing wbpS in trans, and vice versa, showing that these two genes are functionally interchangeable. The E. coli O121 wbqG mutant O antigen contains 2-acetamido-2-deoxy-d-galacturonate (d-GalNAcA), instead of d-GalNAcAN, demonstrating that wbqG is specifically required for biosynthesis of the carboxamide in this sugar.
Collapse
Affiliation(s)
- Jerry D King
- Department of Molecular and Cellular Biology, University of Guelph, Ontario N1G 2W1, Canada
| | | | | | | |
Collapse
|
148
|
Gagnon MG, Boutorine YI, Steinberg SV. Recurrent RNA motifs as probes for studying RNA-protein interactions in the ribosome. Nucleic Acids Res 2010; 38:3441-53. [PMID: 20139416 PMCID: PMC2879513 DOI: 10.1093/nar/gkq031] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
To understand how the nucleotide sequence of ribosomal RNA determines its tertiary structure, we developed a new approach for identification of those features of rRNA sequence that are responsible for formation of different short- and long-range interactions. The approach is based on the co-analysis of several examples of a particular recurrent RNA motif. For different cases of the motif, we design combinatorial gene libraries in which equivalent nucleotide positions are randomized. Through in vivo expression of the designed libraries we select those variants that provide for functional ribosomes. Then, analysis of the nucleotide sequences of the selected clones would allow us to determine the sequence constraints imposed on each case of the motif. The constraints shared by all cases are interpreted as providing for the integrity of the motif, while those ones specific for individual cases would enable the motif to fit into the particular structural context. Here we demonstrate the validity of this approach for three examples of the so-called along-groove packing motif found in different parts of ribosomal RNA.
Collapse
Affiliation(s)
- Matthieu G Gagnon
- Département de Biochimie, Université de Montréal, Montréal, CP 6128, Succursale Centre-Ville, QC H3C 3J7, Canada
| | | | | |
Collapse
|
149
|
Pasternak C, Ton-Hoang B, Coste G, Bailone A, Chandler M, Sommer S. Irradiation-induced Deinococcus radiodurans genome fragmentation triggers transposition of a single resident insertion sequence. PLoS Genet 2010; 6:e1000799. [PMID: 20090938 PMCID: PMC2806898 DOI: 10.1371/journal.pgen.1000799] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2009] [Accepted: 12/07/2009] [Indexed: 11/18/2022] Open
Abstract
Stress-induced transposition is an attractive notion since it is potentially important in creating diversity to facilitate adaptation of the host to severe environmental conditions. One common major stress is radiation-induced DNA damage. Deinococcus radiodurans has an exceptional ability to withstand the lethal effects of DNA-damaging agents (ionizing radiation, UV light, and desiccation). High radiation levels result in genome fragmentation and reassembly in a process which generates significant amounts of single-stranded DNA. This capacity of D. radiodurans to withstand irradiation raises important questions concerning its response to radiation-induced mutagenic lesions. A recent study analyzed the mutational profile in the thyA gene following irradiation. The majority of thyA mutants resulted from transposition of one particular Insertion Sequence (IS), ISDra2, of the many different ISs in the D. radiodurans genome. ISDra2 is a member of a newly recognised class of ISs, the IS200/IS605 family of insertion sequences.
Collapse
Affiliation(s)
- Cécile Pasternak
- Université Paris-Sud, Centre National de Recherche Scientifique, Unité Mixte de Recherche 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Bât. 409, Orsay, France
| | - Bao Ton-Hoang
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de Recherche Scientifique, Unité Mixte de Recherche 5100, Toulouse, France
| | - Geneviève Coste
- Université Paris-Sud, Centre National de Recherche Scientifique, Unité Mixte de Recherche 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Bât. 409, Orsay, France
| | - Adriana Bailone
- Université Paris-Sud, Centre National de Recherche Scientifique, Unité Mixte de Recherche 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Bât. 409, Orsay, France
| | - Michael Chandler
- Laboratoire de Microbiologie et Génétique Moléculaires, Centre National de Recherche Scientifique, Unité Mixte de Recherche 5100, Toulouse, France
| | - Suzanne Sommer
- Université Paris-Sud, Centre National de Recherche Scientifique, Unité Mixte de Recherche 8621, LRC CEA 42V, Institut de Génétique et Microbiologie, Bât. 409, Orsay, France
| |
Collapse
|
150
|
Alvarez AF, Georgellis D. In Vitro and In Vivo Analysis of the ArcB/A Redox Signaling Pathway. Methods Enzymol 2010; 471:205-28. [DOI: 10.1016/s0076-6879(10)71012-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|