101
|
Complex I function in mitochondrial supercomplexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2016; 1857:991-1000. [DOI: 10.1016/j.bbabio.2016.01.013] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2015] [Revised: 01/20/2016] [Accepted: 01/22/2016] [Indexed: 02/02/2023]
|
102
|
Arnarez C, Marrink SJ, Periole X. Molecular mechanism of cardiolipin-mediated assembly of respiratory chain supercomplexes. Chem Sci 2016; 7:4435-4443. [PMID: 30155091 PMCID: PMC6014297 DOI: 10.1039/c5sc04664e] [Citation(s) in RCA: 66] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2015] [Accepted: 03/15/2016] [Indexed: 12/22/2022] Open
Abstract
Mitochondria produce most of the ATP consumed by cells through the respiratory chain in their inner membrane. This process involves protein complexes assembled into larger structures, the respiratory supercomplexes (SCs). Cardiolipin (CL), the mitochondrial signature phospholipid, is crucial for the structural and functional integrity of these SCs, but it is as yet unclear by what mechanism it operates. Our data disclose the mechanism for bulk CL in gluing SCs, steering their formation, and suggest how it may stabilize specific interfaces. We describe self-assembly molecular dynamics simulations of 9 cytochrome bc1 (CIII) dimers and 27 cytochrome c oxidase (CIV) monomers from bovine heart mitochondria embedded in a CL-containing model lipid bilayer, aimed at mimicking the crowdedness and complexity of mitochondrial membranes. The simulations reveal a large diversity of interfaces, including those of existing experimental CIII/CIV SC models and an alternative interface with CIV rotated by 180°. SC interfaces enclose 4 to 12 CLs, a ∼10 fold enrichment from the bulk. Half of these CLs glue complexes together using CL binding sites at the surface of both complexes. Free energy calculations demonstrate a larger CL binding strength, compared to other mitochondrial lipids, that is exclusive to these binding sites and results from non-additive electrostatic and van der Waals forces. This study provides a key example of the ability of lipids to selectively mediate protein-protein interactions by altering all ranges of forces, lubricate protein interfaces and act as traffic control agents steering proteins together.
Collapse
Affiliation(s)
- C Arnarez
- Groningen Biomolecular Sciences and Biotechnology Institute , Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands . ; ; Tel: +31-503632462
| | - S J Marrink
- Groningen Biomolecular Sciences and Biotechnology Institute , Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands . ; ; Tel: +31-503632462
| | - X Periole
- Groningen Biomolecular Sciences and Biotechnology Institute , Zernike Institute for Advanced Materials , University of Groningen , Nijenborgh 7 , 9747 AG Groningen , The Netherlands . ; ; Tel: +31-503632462
| |
Collapse
|
103
|
Strecker V, Kadeer Z, Heidler J, Cruciat CM, Angerer H, Giese H, Pfeiffer K, Stuart RA, Wittig I. Supercomplex-associated Cox26 protein binds to cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA 2016; 1863:1643-52. [PMID: 27091403 PMCID: PMC7140176 DOI: 10.1016/j.bbamcr.2016.04.012] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 04/12/2016] [Accepted: 04/14/2016] [Indexed: 10/21/2022]
Abstract
Here we identified a hydrophobic 6.4kDa protein, Cox26, as a novel component of yeast mitochondrial supercomplex comprising respiratory complexes III and IV. Multi-dimensional native and denaturing electrophoretic techniques were used to identify proteins interacting with Cox26. The majority of the Cox26 protein was found non-covalently bound to the complex IV moiety of the III-IV supercomplexes. A population of Cox26 was observed to exist in a disulfide bond partnership with the Cox2 subunit of complex IV. No pronounced growth phenotype for Cox26 deficiency was observed, indicating that Cox26 may not play a critical role in the COX enzymology, and we speculate that Cox26 may serve to regulate or support the Cox2 protein. Respiratory supercomplexes are assembled in the absence of the Cox26 protein, however their pattern slightly differs to the wild type III-IV supercomplex appearance. The catalytic activities of complexes III and IV were observed to be normal and respiration was comparable to wild type as long as cells were cultivated under normal growth conditions. Stress conditions, such as elevated temperatures resulted in mild decrease of respiration in non-fermentative media when the Cox26 protein was absent.
Collapse
Affiliation(s)
- Valentina Strecker
- Molekulare Bioenergetik, Zentrum der Biologischen Chemie, Cluster of Excellence Frankfurt Macromolecular Complexes Goethe-Universität Frankfurt, D-60590 Frankfurt, Germany; Functional Proteomics, Institute of Biochemistry I, Faculty of Medicine, Goethe-University of Frankfurt, D-60590 Frankfurt, Germany
| | - Zibirnisa Kadeer
- Molekulare Bioenergetik, Zentrum der Biologischen Chemie, Cluster of Excellence Frankfurt Macromolecular Complexes Goethe-Universität Frankfurt, D-60590 Frankfurt, Germany
| | - Juliana Heidler
- Functional Proteomics, Institute of Biochemistry I, Faculty of Medicine, Goethe-University of Frankfurt, D-60590 Frankfurt, Germany
| | - Cristina-Maria Cruciat
- Fakultät Angewandte Naturwissenschaften, Hochschule Esslingen, University of Applied Sciences, D-73728 Esslingen, Germany
| | - Heike Angerer
- Molekulare Bioenergetik, Zentrum der Biologischen Chemie, Cluster of Excellence Frankfurt Macromolecular Complexes Goethe-Universität Frankfurt, D-60590 Frankfurt, Germany; Structural Bioenergetics Group, Institute of Biochemistry II, Medical School, Goethe University of Frankfurt, Germany
| | - Heiko Giese
- Molecular Bioinformatics, Institute of Computer Science, Johann Wolfgang Goethe-University, D-60325 Frankfurt am Main, Germany
| | - Kathy Pfeiffer
- Department of Functional Proteomics, Medizinisches Proteom-Center, Ruhr-Universität Bochum, D-44801 Bochum, Germany
| | - Rosemary A Stuart
- Department of Biological Sciences, Marquette University, Milwaukee, WI 53233, USA
| | - Ilka Wittig
- Molekulare Bioenergetik, Zentrum der Biologischen Chemie, Cluster of Excellence Frankfurt Macromolecular Complexes Goethe-Universität Frankfurt, D-60590 Frankfurt, Germany; Functional Proteomics, Institute of Biochemistry I, Faculty of Medicine, Goethe-University of Frankfurt, D-60590 Frankfurt, Germany.
| |
Collapse
|
104
|
Bareth B, Nikolov M, Lorenzi I, Hildenbeutel M, Mick DU, Helbig C, Urlaub H, Ott M, Rehling P, Dennerlein S. Oms1 associates with cytochrome c oxidase assembly intermediates to stabilize newly synthesized Cox1. Mol Biol Cell 2016; 27:1570-80. [PMID: 27030670 PMCID: PMC4865315 DOI: 10.1091/mbc.e15-12-0811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 03/23/2016] [Accepted: 03/24/2016] [Indexed: 12/18/2022] Open
Abstract
The mitochondrial cytochrome c oxidase assembles in the inner membrane from subunits of dual genetic origin. The assembly process of the enzyme is initiated by membrane insertion of the mitochondria-encoded Cox1 subunit. During complex maturation, transient assembly intermediates, consisting of structural subunits and specialized chaperone-like assembly factors, are formed. In addition, cofactors such as heme and copper have to be inserted into the nascent complex. To regulate the assembly process, the availability of Cox1 is under control of a regulatory feedback cycle in which translation of COX1 mRNA is stalled when assembly intermediates of Cox1 accumulate through inactivation of the translational activator Mss51. Here we isolate a cytochrome c oxidase assembly intermediate in preparatory scale from coa1Δ mutant cells, using Mss51 as bait. We demonstrate that at this stage of assembly, the complex has not yet incorporated the heme a cofactors. Using quantitative mass spectrometry, we define the protein composition of the assembly intermediate and unexpectedly identify the putative methyltransferase Oms1 as a constituent. Our analyses show that Oms1 participates in cytochrome c oxidase assembly by stabilizing newly synthesized Cox1.
Collapse
Affiliation(s)
- Bettina Bareth
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Miroslav Nikolov
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Isotta Lorenzi
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Markus Hildenbeutel
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - David U Mick
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Christin Helbig
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry Group, Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany Bioanalytik Group, Department of Clinical Chemistry, University Medical Center Göttingen, D-37075 Göttingen, Germany
| | - Martin Ott
- Center for Biomembrane Research, Department of Biochemistry and Biophysics, Stockholm University, 106 91 Stockholm, Sweden
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany
| | - Sven Dennerlein
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| |
Collapse
|
105
|
Levchenko M, Wuttke JM, Römpler K, Schmidt B, Neifer K, Juris L, Wissel M, Rehling P, Deckers M. Cox26 is a novel stoichiometric subunit of the yeast cytochrome c oxidase. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2016; 1863:1624-32. [PMID: 27083394 DOI: 10.1016/j.bbamcr.2016.04.007] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2016] [Revised: 03/31/2016] [Accepted: 04/06/2016] [Indexed: 11/25/2022]
Abstract
The cytochrome c oxidase (COX) is the terminal enzyme of the respiratory chain. The complex accepts electrons from cytochrome c and passes them onto molecular oxygen. This process contributes to energy capture in the form of a membrane potential across the inner membrane. The enzyme complex assembles in a stepwise process from the three mitochondria-encoded core subunits Cox1, Cox2 and Cox3, which associate with nuclear-encoded subunits and cofactors. In the yeast Saccharomyces cerevisiae, the cytochrome c oxidase associates with the bc1-complex into supercomplexes, allowing efficient energy transduction. Here we report on Cox26 as a protein found in respiratory chain supercomplexes containing cytochrome c oxidase. Our analyses reveal Cox26 as a novel stoichiometric structural subunit of the cytochrome c oxidase. A loss of Cox26 affects cytochrome c oxidase activity and respirasome organization.
Collapse
Affiliation(s)
- Maria Levchenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Jan-Moritz Wuttke
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Katharina Römpler
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Bernhard Schmidt
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Klaus Neifer
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Lisa Juris
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Mirjam Wissel
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany; Max Planck Institute for Biophysical Chemistry, D-37077 Göttingen, Germany.
| | - Markus Deckers
- Department of Cellular Biochemistry, University Medical Center Göttingen, D-37073 Göttingen, Germany
| |
Collapse
|
106
|
Differential root transcriptomics in a polyploid non-model crop: the importance of respiration during osmotic stress. Sci Rep 2016; 6:22583. [PMID: 26935041 PMCID: PMC4776286 DOI: 10.1038/srep22583] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Accepted: 02/18/2016] [Indexed: 12/20/2022] Open
Abstract
To explore the transcriptomic global response to osmotic stress in roots, 18 mRNA-seq libraries were generated from three triploid banana genotypes grown under mild osmotic stress (5% PEG) and control conditions. Illumina sequencing produced 568 million high quality reads, of which 70-84% were mapped to the banana diploid reference genome. Using different uni- and multivariate statistics, 92 genes were commonly identified as differentially expressed in the three genotypes. Using our in house workflow to analyze GO enriched and underlying biochemical pathways, we present the general processes affected by mild osmotic stress in the root and focus subsequently on the most significantly overrepresented classes associated with: respiration, glycolysis and fermentation. We hypothesize that in fast growing and oxygen demanding tissues, mild osmotic stress leads to a lower energy level, which induces a metabolic shift towards (i) a higher oxidative respiration, (ii) alternative respiration and (iii) fermentation. To confirm the mRNA-seq results, a subset of twenty up-regulated transcripts were further analysed by RT-qPCR in an independent experiment at three different time points. The identification and annotation of this set of genes provides a valuable resource to understand the importance of energy sensing during mild osmotic stress.
Collapse
|
107
|
Cogliati S, Enriquez JA, Scorrano L. Mitochondrial Cristae: Where Beauty Meets Functionality. Trends Biochem Sci 2016; 41:261-273. [PMID: 26857402 DOI: 10.1016/j.tibs.2016.01.001] [Citation(s) in RCA: 582] [Impact Index Per Article: 64.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2015] [Revised: 01/07/2016] [Accepted: 01/08/2016] [Indexed: 01/30/2023]
Abstract
Mitochondrial cristae are dynamic bioenergetic compartments whose shape changes under different physiological conditions. Recent discoveries have unveiled the relation between cristae shape and oxidative phosphorylation (OXPHOS) function, suggesting that membrane morphology modulates the organization and function of the OXPHOS system, with a direct impact on cellular metabolism. As a corollary, cristae-shaping proteins have emerged as potential modulators of mitochondrial bioenergetics, a concept confirmed by genetic experiments in mouse models of respiratory chain deficiency. Here, we review our knowledge of mitochondrial ultrastructural organization and how it impacts mitochondrial metabolism.
Collapse
Affiliation(s)
- Sara Cogliati
- Centro Nacional de Investigaciònes Cardiovasculares Carlos III, Madrid, Spain
| | - Jose A Enriquez
- Centro Nacional de Investigaciònes Cardiovasculares Carlos III, Madrid, Spain; Departamento de Bioquímica, Universidad Zaragoza, Zaragoza, Spain
| | - Luca Scorrano
- Dulbecco Telethon Institute, Venetian Institute of Molecular Medicine, Padova, Italy; Department of Biology, University of Padova, Padova, Italy.
| |
Collapse
|
108
|
Dudek J, Cheng IF, Chowdhury A, Wozny K, Balleininger M, Reinhold R, Grunau S, Callegari S, Toischer K, Wanders RJ, Hasenfuß G, Brügger B, Guan K, Rehling P. Cardiac-specific succinate dehydrogenase deficiency in Barth syndrome. EMBO Mol Med 2016; 8:139-54. [PMID: 26697888 PMCID: PMC4734842 DOI: 10.15252/emmm.201505644] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2015] [Revised: 11/20/2015] [Accepted: 11/27/2015] [Indexed: 01/29/2023] Open
Abstract
Barth syndrome (BTHS) is a cardiomyopathy caused by the loss of tafazzin, a mitochondrial acyltransferase involved in the maturation of the glycerophospholipid cardiolipin. It has remained enigmatic as to why a systemic loss of cardiolipin leads to cardiomyopathy. Using a genetic ablation of tafazzin function in the BTHS mouse model, we identified severe structural changes in respiratory chain supercomplexes at a pre-onset stage of the disease. This reorganization of supercomplexes was specific to cardiac tissue and could be recapitulated in cardiomyocytes derived from BTHS patients. Moreover, our analyses demonstrate a cardiac-specific loss of succinate dehydrogenase (SDH), an enzyme linking the respiratory chain with the tricarboxylic acid cycle. As a similar defect of SDH is apparent in patient cell-derived cardiomyocytes, we conclude that these defects represent a molecular basis for the cardiac pathology in Barth syndrome.
Collapse
Affiliation(s)
- Jan Dudek
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - I-Fen Cheng
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany
| | - Arpita Chowdhury
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Katharina Wozny
- Heidelberg University Biochemistry Center, University Heidelberg, Heidelberg, Germany
| | - Martina Balleininger
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Robert Reinhold
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Silke Grunau
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Sylvie Callegari
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany German Center for Cardiovascular Research (DZHK), Göttingen, Germany
| | - Ronald Ja Wanders
- Departments of Clinical Chemistry and Pediatrics, Academic Medical Center, University of Amsterdam, Amsterdam, The Netherlands
| | - Gerd Hasenfuß
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany German Center for Cardiovascular Research (DZHK), Göttingen, Germany Heart Research Center Göttingen, Göttingen, Germany
| | - Britta Brügger
- Heidelberg University Biochemistry Center, University Heidelberg, Heidelberg, Germany
| | - Kaomei Guan
- Department of Cardiology and Pneumology, University Medical Center Göttingen, Göttingen, Germany German Center for Cardiovascular Research (DZHK), Göttingen, Germany Heart Research Center Göttingen, Göttingen, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany Heart Research Center Göttingen, Göttingen, Germany Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
109
|
Khalfaoui-Hassani B, Verissimo AF, Shroff NP, Ekici S, Trasnea PI, Utz M, Koch HG, Daldal F. Biogenesis of Cytochrome c Complexes: From Insertion of Redox Cofactors to Assembly of Different Subunits. ADVANCES IN PHOTOSYNTHESIS AND RESPIRATION 2016. [DOI: 10.1007/978-94-017-7481-9_27] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
110
|
Abstract
Since the discovery of the existence of superassemblies between mitochondrial respiratory complexes, such superassemblies have been the object of a passionate debate. It is accepted that respiratory supercomplexes are structures that occur in vivo, although which superstructures are naturally occurring and what could be their functional role remain open questions. The main difficulty is to make compatible the existence of superassemblies with the corpus of data that drove the field to abandon the early understanding of the physical arrangement of the mitochondrial respiratory chain as a compact physical entity (the solid model). This review provides a nonexhaustive overview of the evolution of our understanding of the structural organization of the electron transport chain from the original idea of a compact organization to a view of freely moving complexes connected by electron carriers. Today supercomplexes are viewed not as a revival of the old solid model but rather as a refined revision of the fluid model, which incorporates a new layer of structural and functional complexity.
Collapse
Affiliation(s)
- José Antonio Enríquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), 28029 Madrid, Spain;
| |
Collapse
|
111
|
Melo AMP, Teixeira M. Supramolecular organization of bacterial aerobic respiratory chains: From cells and back. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2015; 1857:190-7. [PMID: 26546715 DOI: 10.1016/j.bbabio.2015.11.001] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2015] [Revised: 10/31/2015] [Accepted: 11/02/2015] [Indexed: 10/22/2022]
Abstract
Aerobic respiratory chains from all life kingdoms are composed by several complexes that have been deeply characterized in their isolated form. These membranous complexes link the oxidation of reducing substrates to the reduction of molecular oxygen, in a process that conserves energy by ion translocation between both sides of the mitochondrial or prokaryotic cytoplasmatic membranes. In recent years there has been increasing evidence that those complexes are organized as supramolecular structures, the so-called supercomplexes and respirasomes, being available for eukaryotes strong data namely obtained by electron microscopy and single particle analysis. A parallel study has been developed for prokaryotes, based on blue native gels and mass spectrometry analysis, showing that in these more simple unicellular organisms such supercomplexes also exist, involving not only typical aerobic-respiration associated complexes, but also anaerobic-linked enzymes. After a short overview of the data on eukaryotic supercomplexes, we will analyse comprehensively the different types of prokaryotic aerobic respiratory supercomplexes that have been thus far suggested, in both bacteria and archaea. This article is part of a Special Issue entitled Organization and dynamics of bioenergetic systems in bacteria, edited by Prof Conrad Mullineaux.
Collapse
Affiliation(s)
- Ana M P Melo
- Instituto Superior de Agronomia, Universidade de Lisboa, Tapada da Ajuda, 1349-017, Lisboa, Portugal.
| | - Miguel Teixeira
- Instituto de Tecnologia Química e Biológica António Xavier, Universidade Nova de Lisboa, Av. da República, 2780-157, Oeiras, Portugal
| |
Collapse
|
112
|
Metalloprotease OMA1 Fine-tunes Mitochondrial Bioenergetic Function and Respiratory Supercomplex Stability. Sci Rep 2015; 5:13989. [PMID: 26365306 PMCID: PMC4568518 DOI: 10.1038/srep13989] [Citation(s) in RCA: 50] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2015] [Accepted: 08/13/2015] [Indexed: 12/11/2022] Open
Abstract
Mitochondria are involved in key cellular functions including energy production, metabolic homeostasis, and apoptosis. Normal mitochondrial function is preserved by several interrelated mechanisms. One mechanism - intramitochondrial quality control (IMQC) - is represented by conserved proteases distributed across mitochondrial compartments. Many aspects and physiological roles of IMQC components remain unclear. Here, we show that the IMQC protease Oma1 is required for the stability of the respiratory supercomplexes and thus balanced and tunable bioenergetic function. Loss of Oma1 activity leads to a specific destabilization of respiratory supercomplexes and consequently to unbalanced respiration and progressive respiratory decline in yeast. Similarly, experiments in cultured Oma1-deficient mouse embryonic fibroblasts link together impeded supercomplex stability and inability to maintain proper respiration under conditions that require maximal bioenergetic output. Finally, transient knockdown of OMA1 in zebrafish leads to impeded bioenergetics and morphological defects of the heart and eyes. Together, our biochemical and genetic studies in yeast, zebrafish and mammalian cells identify a novel and conserved physiological role for Oma1 protease in fine-tuning of respiratory function. We suggest that this unexpected physiological role is important for cellular bioenergetic plasticity and may contribute to Oma1-associated disease phenotypes in humans.
Collapse
|
113
|
RCF1-dependent respiratory supercomplexes are integral for lifespan-maintenance in a fungal ageing model. Sci Rep 2015. [PMID: 26220011 PMCID: PMC4518240 DOI: 10.1038/srep12697] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Mitochondrial respiratory supercomplexes (mtRSCs) are stoichiometric assemblies of electron transport chain (ETC) complexes in the inner mitochondrial membrane. They are hypothesized to regulate electron flow, the generation of reactive oxygen species (ROS) and to stabilize ETC complexes. Using the fungal ageing model Podospora anserina, we investigated the impact of homologues of the Saccharomyces cerevisiae respiratory supercomplex factors 1 and 2 (termed PaRCF1 and PaRCF2) on mtRSC formation, fitness and lifespan. Whereas PaRCF2’s role seems negligible, ablation of PaRCF1 alters size of monomeric complex IV, reduces the abundance of complex IV-containing supercomplexes, negatively affects vital functions and shortens lifespan. PaRcf1 overexpression slightly prolongs lifespan, though without appreciably influencing ETC organization. Overall, our results identify PaRCF1 as necessary yet not sufficient for mtRSC formation and demonstrate that PaRCF1-dependent stability of complex IV and associated supercomplexes is highly relevant for maintenance of the healthy lifespan in a eukaryotic model organism.
Collapse
|
114
|
Abstract
SIGNIFICANCE The molecular mechanism of aging is still vigorously debated, although a general consensus exists that mitochondria are significantly involved in this process. However, the previously postulated role of mitochondrial-derived reactive oxygen species (ROS) as the damaging agents inducing functional loss in aging has fallen out of favor in the recent past. In this review, we critically examine the role of ROS in aging in the light of recent advances on the relationship between mitochondrial structure and function. RECENT ADVANCES The functional mitochondrial respiratory chain is now recognized as a reflection of the dynamic association of respiratory complexes in the form of supercomplexes (SCs). Besides providing kinetic advantage (channeling), SCs control ROS generation by the respiratory chain, thus providing a means to regulate ROS levels in the cell. Depending on their concentration, these ROS are either physiological signals essential for the life of the cell or toxic species that damage cell structure and functions. CRITICAL ISSUES We propose that under physiological conditions the dynamic nature of SCs reversibly controls the generation of ROS as signals involved in mitochondrial-nuclear communication. During aging, there is a progressive loss of control of ROS generation so that their production is irreversibly enhanced, inducing a vicious circle in which signaling is altered and structural damage takes place. FUTURE DIRECTIONS A better understanding on the forces affecting SC association would allow the manipulation of ROS generation, directing these species to their physiological signaling role.
Collapse
Affiliation(s)
- Maria Luisa Genova
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum-Università di Bologna , Bologna, Italy
| | - Giorgio Lenaz
- Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum-Università di Bologna , Bologna, Italy
| |
Collapse
|
115
|
Stomatin-like protein 2 is required for in vivo mitochondrial respiratory chain supercomplex formation and optimal cell function. Mol Cell Biol 2015; 35:1838-47. [PMID: 25776552 DOI: 10.1128/mcb.00047-15] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2015] [Accepted: 03/05/2015] [Indexed: 11/20/2022] Open
Abstract
Stomatin-like protein 2 (SLP-2) is a mainly mitochondrial protein that is widely expressed and is highly conserved across evolution. We have previously shown that SLP-2 binds the mitochondrial lipid cardiolipin and interacts with prohibitin-1 and -2 to form specialized membrane microdomains in the mitochondrial inner membrane, which are associated with optimal mitochondrial respiration. To determine how SLP-2 functions, we performed bioenergetic analysis of primary T cells from T cell-selective Slp-2 knockout mice under conditions that forced energy production to come almost exclusively from oxidative phosphorylation. These cells had a phenotype characterized by increased uncoupled mitochondrial respiration and decreased mitochondrial membrane potential. Since formation of mitochondrial respiratory chain supercomplexes (RCS) may correlate with more efficient electron transfer during oxidative phosphorylation, we hypothesized that the defect in mitochondrial respiration in SLP-2-deficient T cells was due to deficient RCS formation. We found that in the absence of SLP-2, T cells had decreased levels and activities of complex I-III2 and I-III2-IV(1-3) RCS but no defects in assembly of individual respiratory complexes. Impaired RCS formation in SLP-2-deficient T cells correlated with significantly delayed T cell proliferation in response to activation under conditions of limiting glycolysis. Altogether, our findings identify SLP-2 as a key regulator of the formation of RCS in vivo and show that these supercomplexes are required for optimal cell function.
Collapse
|
116
|
Ameri K, Jahangiri A, Rajah AM, Tormos KV, Nagarajan R, Pekmezci M, Nguyen V, Wheeler ML, Murphy MP, Sanders TA, Jeffrey SS, Yeghiazarians Y, Rinaudo PF, Costello JF, Aghi MK, Maltepe E. HIGD1A Regulates Oxygen Consumption, ROS Production, and AMPK Activity during Glucose Deprivation to Modulate Cell Survival and Tumor Growth. Cell Rep 2015; 10:891-899. [PMID: 25683712 DOI: 10.1016/j.celrep.2015.01.020] [Citation(s) in RCA: 70] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Revised: 10/27/2014] [Accepted: 01/09/2015] [Indexed: 02/07/2023] Open
Abstract
Hypoxia-inducible gene domain family member 1A (HIGD1A) is a survival factor induced by hypoxia-inducible factor 1 (HIF-1). HIF-1 regulates many responses to oxygen deprivation, but viable cells within hypoxic perinecrotic solid tumor regions frequently lack HIF-1α. HIGD1A is induced in these HIF-deficient extreme environments and interacts with the mitochondrial electron transport chain to repress oxygen consumption, enhance AMPK activity, and lower cellular ROS levels. Importantly, HIGD1A decreases tumor growth but promotes tumor cell survival in vivo. The human Higd1a gene is located on chromosome 3p22.1, where many tumor suppressor genes reside. Consistent with this, the Higd1a gene promoter is differentially methylated in human cancers, preventing its hypoxic induction. However, when hypoxic tumor cells are confronted with glucose deprivation, DNA methyltransferase activity is inhibited, enabling HIGD1A expression, metabolic adaptation, and possible dormancy induction. Our findings therefore reveal important new roles for this family of mitochondrial proteins in cancer biology.
Collapse
Affiliation(s)
- Kurosh Ameri
- Department of Pediatrics/Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Arman Jahangiri
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Anthony M Rajah
- Department of Pediatrics/Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Kathryn V Tormos
- Department of Pediatrics/Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Ravi Nagarajan
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Melike Pekmezci
- Department of Pathology, University of California San Francisco, San Francisco, CA 94143, USA
| | - Vien Nguyen
- Department of Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Matthew L Wheeler
- Department of Microbiology/Immunology, University of California San Francisco, San Francisco, CA 94143, USA
| | | | - Timothy A Sanders
- Department of Pediatrics/Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Stefanie S Jeffrey
- Department of Surgery, Stanford University School of Medicine, Stanford, CA 94305, USA
| | - Yerem Yeghiazarians
- Department of Medicine/CVRI/Eli and Edythe Broad Center for Regeneration Medicine, University of California San Francisco, San Francisco, CA 94143, USA
| | - Paolo F Rinaudo
- Department of Obstetrics, Gynecology/Reproductive Sciences, University of California San Francisco, San Francisco, CA 94143, USA
| | - Joseph F Costello
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Manish K Aghi
- Department of Neurological Surgery, University of California San Francisco, San Francisco, CA 94143, USA
| | - Emin Maltepe
- Department of Pediatrics/Biomedical Sciences, University of California San Francisco, San Francisco, CA 94143, USA.
| |
Collapse
|
117
|
Abstract
Cytochrome c oxidase (CcO) is the only enzyme that uses oxygen to produce a proton gradient for ATP production during mitochondrial oxidative phosphorylation. Although CcO activity increases in response to hypoxia, the underlying regulatory mechanism remains elusive. By screening for hypoxia-inducible genes in cardiomyocytes, we identified hypoxia inducible domain family, member 1A (Higd1a) as a positive regulator of CcO. Recombinant Higd1a directly integrated into highly purified CcO and increased its activity. Resonance Raman analysis revealed that Higd1a caused structural changes around heme a, the active center that drives the proton pump. Using a mitochondria-targeted ATP biosensor, we showed that knockdown of endogenous Higd1a reduced oxygen consumption and subsequent mitochondrial ATP synthesis, leading to increased cell death in response to hypoxia; all of these phenotypes were rescued by exogenous Higd1a. These results suggest that Higd1a is a previously unidentified regulatory component of CcO, and represents a therapeutic target for diseases associated with reduced CcO activity.
Collapse
|
118
|
C11orf83, a mitochondrial cardiolipin-binding protein involved in bc1 complex assembly and supercomplex stabilization. Mol Cell Biol 2015; 35:1139-56. [PMID: 25605331 DOI: 10.1128/mcb.01047-14] [Citation(s) in RCA: 55] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Mammalian mitochondria may contain up to 1,500 different proteins, and many of them have neither been confidently identified nor characterized. In this study, we demonstrated that C11orf83, which was lacking experimental characterization, is a mitochondrial inner membrane protein facing the intermembrane space. This protein is specifically associated with the bc1 complex of the electron transport chain and involved in the early stages of its assembly by stabilizing the bc1 core complex. C11orf83 displays some overlapping functions with Cbp4p, a yeast bc1 complex assembly factor. Therefore, we suggest that C11orf83, now called UQCC3, is the functional human equivalent of Cbp4p. In addition, C11orf83 depletion in HeLa cells caused abnormal crista morphology, higher sensitivity to apoptosis, a decreased ATP level due to impaired respiration and subtle, but significant, changes in cardiolipin composition. We showed that C11orf83 binds to cardiolipin by its α-helices 2 and 3 and is involved in the stabilization of bc1 complex-containing supercomplexes, especially the III2/IV supercomplex. We also demonstrated that the OMA1 metalloprotease cleaves C11orf83 in response to mitochondrial depolarization, suggesting a role in the selection of cells with damaged mitochondria for their subsequent elimination by apoptosis, as previously described for OPA1.
Collapse
|
119
|
Porras CAM, Bai Y. Respiratory supercomplexes: plasticity and implications. Front Biosci (Landmark Ed) 2015; 20:621-34. [PMID: 25553469 DOI: 10.2741/4327] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The plasticity model of the electron transport chain has slowly begun to replace both the liquid model of free complexes and the solid model of supercomplexes. The plasticity model predicts that respiratory complexes exist and function both as single complexes and as supercomplexes. The advantages of this system is an electron transport train which is able to adapt to changes in its environment. This review will investigate the current body of work on supercomplexes including their assembly, regulation, and plasticity, and particularly their role in the generation of reactive oxygen species and aging.
Collapse
Affiliation(s)
- Christina Ann-Marie Porras
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| | - Yidong Bai
- Department of Cellular and Structural Biology, University of Texas Health Science Center at San Antonio, San Antonio, Texas 78229
| |
Collapse
|
120
|
The respiratory chain supercomplex organization is independent of COX7a2l isoforms. Cell Metab 2014; 20:1069-75. [PMID: 25470551 PMCID: PMC4261080 DOI: 10.1016/j.cmet.2014.11.005] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Revised: 09/25/2014] [Accepted: 11/05/2014] [Indexed: 01/09/2023]
Abstract
The organization of individual respiratory chain complexes into supercomplexes or respirasomes has attracted great interest because of the implications for cellular energy conversion. Recently, it was reported that commonly used mouse strains harbor a short COX7a2l (SCAFI) gene isoform that supposedly precludes the formation of complex IV-containing supercomplexes. This claim potentially has serious implications for numerous mouse studies addressing important topics in metabolism, including adaptation to space flights. Using several complementary experimental approaches, we show that mice with the short COX7a2l isoform have normal biogenesis and steady-state levels of complex IV-containing supercomplexes and consequently have normal respiratory chain function. Furthermore, we use a mouse knockout of Lrpprc and show that loss of complex IV compromises respirasome formation. We conclude that the presence of the short COX7a2l isoform in the commonly used C57BL/6 mouse strains does not prevent their use in metabolism research.
Collapse
|
121
|
Kinetic evidence against partitioning of the ubiquinone pool and the catalytic relevance of respiratory-chain supercomplexes. Proc Natl Acad Sci U S A 2014; 111:15735-40. [PMID: 25331896 DOI: 10.1073/pnas.1413855111] [Citation(s) in RCA: 131] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
In mitochondria, four respiratory-chain complexes drive oxidative phosphorylation by sustaining a proton-motive force across the inner membrane that is used to synthesize ATP. The question of how the densely packed proteins of the inner membrane are organized to optimize structure and function has returned to prominence with the characterization of respiratory-chain supercomplexes. Supercomplexes are increasingly accepted structural entities, but their functional and catalytic advantages are disputed. Notably, substrate "channeling" between the enzymes in supercomplexes has been proposed to confer a kinetic advantage, relative to the rate provided by a freely accessible, common substrate pool. Here, we focus on the mitochondrial ubiquinone/ubiquinol pool. We formulate and test three conceptually simple predictions of the behavior of the mammalian respiratory chain that depend on whether channeling in supercomplexes is kinetically important, and on whether the ubiquinone pool is partitioned between pathways. Our spectroscopic and kinetic experiments demonstrate how the metabolic pathways for NADH and succinate oxidation communicate and catalyze via a single, universally accessible ubiquinone/ubiquinol pool that is not partitioned or channeled. We reevaluate the major piece of contrary evidence from flux control analysis and find that the conclusion of substrate channeling arises from the particular behavior of a single inhibitor; we explain why different inhibitors behave differently and show that a robust flux control analysis provides no evidence for channeling. Finally, we discuss how the formation of respiratory-chain supercomplexes may confer alternative advantages on energy-converting membranes.
Collapse
|
122
|
Demine S, Reddy N, Renard P, Raes M, Arnould T. Unraveling biochemical pathways affected by mitochondrial dysfunctions using metabolomic approaches. Metabolites 2014; 4:831-78. [PMID: 25257998 PMCID: PMC4192695 DOI: 10.3390/metabo4030831] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2014] [Revised: 09/02/2014] [Accepted: 09/18/2014] [Indexed: 02/06/2023] Open
Abstract
Mitochondrial dysfunction(s) (MDs) can be defined as alterations in the mitochondria, including mitochondrial uncoupling, mitochondrial depolarization, inhibition of the mitochondrial respiratory chain, mitochondrial network fragmentation, mitochondrial or nuclear DNA mutations and the mitochondrial accumulation of protein aggregates. All these MDs are known to alter the capacity of ATP production and are observed in several pathological states/diseases, including cancer, obesity, muscle and neurological disorders. The induction of MDs can also alter the secretion of several metabolites, reactive oxygen species production and modify several cell-signalling pathways to resolve the mitochondrial dysfunction or ultimately trigger cell death. Many metabolites, such as fatty acids and derived compounds, could be secreted into the blood stream by cells suffering from mitochondrial alterations. In this review, we summarize how a mitochondrial uncoupling can modify metabolites, the signalling pathways and transcription factors involved in this process. We describe how to identify the causes or consequences of mitochondrial dysfunction using metabolomics (liquid and gas chromatography associated with mass spectrometry analysis, NMR spectroscopy) in the obesity and insulin resistance thematic.
Collapse
Affiliation(s)
- Stéphane Demine
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Nagabushana Reddy
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Patricia Renard
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Martine Raes
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| | - Thierry Arnould
- Laboratory of Biochemistry and Cell Biology (URBC), NARILIS (Namur Research Institute for Life Sciences), University of Namur (UNamur), 61 rue de Bruxelles, Namur 5000, Belgium.
| |
Collapse
|
123
|
Enriquez JA, Lenaz G. Coenzyme q and the respiratory chain: coenzyme q pool and mitochondrial supercomplexes. Mol Syndromol 2014; 5:119-40. [PMID: 25126045 DOI: 10.1159/000363364] [Citation(s) in RCA: 57] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Two alternative models of organization of the mitochondrial electron transport chain (mETC) have been alternatively favored or questioned by the accumulation evidences of different sources, the solid model or the random collision model. Both agree in the number of respiratory complexes (I-IV) that participate in the mETC, but while the random collision model proposes that Complexes I-IV do not interact physically and that electrons are transferred between them by coenzyme Q and cytochrome c, the solid model proposes that all complexes super-assemble in the so-called respirasome. Recently, the plasticity model has been developed to incorporate the solid and the random collision model as extreme situations of a dynamic organization, allowing super-assembly free movement of the respiratory complexes. In this review, we evaluate the supporting evidences of each model and the implications of the super-assembly in the physiological role of coenzyme Q.
Collapse
Affiliation(s)
| | - Giorgio Lenaz
- Dipartimento di Scienze Biomediche e Neuromotorie, Università di Bologna, Bologna, Italy
| |
Collapse
|
124
|
Identification of hypoxia-inducible target genes of Aspergillus fumigatus by transcriptome analysis reveals cellular respiration as an important contributor to hypoxic survival. EUKARYOTIC CELL 2014; 13:1241-53. [PMID: 25084861 DOI: 10.1128/ec.00084-14] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Aspergillus fumigatus is an opportunistic, airborne pathogen that causes invasive aspergillosis in immunocompromised patients. During the infection process, A. fumigatus is challenged by hypoxic microenvironments occurring in inflammatory, necrotic tissue. To gain further insights into the adaptation mechanism, A. fumigatus was cultivated in an oxygen-controlled chemostat under hypoxic and normoxic conditions. Transcriptome analysis revealed a significant increase in transcripts associated with cell wall polysaccharide metabolism, amino acid and metal ion transport, nitrogen metabolism, and glycolysis. A concomitant reduction in transcript levels was observed with cellular trafficking and G-protein-coupled signaling. To learn more about the functional roles of hypoxia-induced transcripts, we deleted A. fumigatus genes putatively involved in reactive nitrogen species detoxification (fhpA), NAD(+) regeneration (frdA and osmA), nitrogen metabolism (niaD and niiA), and respiration (rcfB). We show that the nitric oxygen (NO)-detoxifying flavohemoprotein gene fhpA is strongly induced by hypoxia independent of the nitrogen source but is dispensable for hypoxic survival. By deleting the nitrate reductase gene niaD, the nitrite reductase gene niiA, and the two fumarate reductase genes frdA and osmA, we found that alternative electron acceptors, such as nitrate and fumarate, do not have a significant impact on growth of A. fumigatus during hypoxia, but functional mitochondrial respiratory chain complexes are essential under these conditions. Inhibition studies indicated that primarily complexes III and IV play a crucial role in the hypoxic growth of A. fumigatus.
Collapse
|
125
|
Lytovchenko O, Naumenko N, Oeljeklaus S, Schmidt B, von der Malsburg K, Deckers M, Warscheid B, van der Laan M, Rehling P. The INA complex facilitates assembly of the peripheral stalk of the mitochondrial F1Fo-ATP synthase. EMBO J 2014; 33:1624-38. [PMID: 24942160 DOI: 10.15252/embj.201488076] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Mitochondrial F1Fo-ATP synthase generates the bulk of cellular ATP. This molecular machine assembles from nuclear- and mitochondria-encoded subunits. Whereas chaperones for formation of the matrix-exposed hexameric F1-ATPase core domain have been identified, insight into how the nuclear-encoded F1-domain assembles with the membrane-embedded Fo-region is lacking. Here we identified the INA complex (INAC) in the inner membrane of mitochondria as an assembly factor involved in this process. Ina22 and Ina17 are INAC constituents that physically associate with the F1-module and peripheral stalk, but not with the assembled F1Fo-ATP synthase. Our analyses show that loss of Ina22 and Ina17 specifically impairs formation of the peripheral stalk that connects the catalytic F1-module to the membrane embedded Fo-domain. We conclude that INAC represents a matrix-exposed inner membrane protein complex that facilitates peripheral stalk assembly and thus promotes a key step in the biogenesis of mitochondrial F1Fo-ATP synthase.
Collapse
Affiliation(s)
- Oleksandr Lytovchenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Nataliia Naumenko
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Silke Oeljeklaus
- Department of Biochemistry and Functional Proteomics, Faculty for Biology, University of Freiburg, Freiburg, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Bernhard Schmidt
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Karina von der Malsburg
- Institute for Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Freiburg, Germany
| | - Markus Deckers
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany
| | - Bettina Warscheid
- Department of Biochemistry and Functional Proteomics, Faculty for Biology, University of Freiburg, Freiburg, Germany BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany
| | - Martin van der Laan
- BIOSS Centre for Biological Signalling Studies, University of Freiburg, Freiburg, Germany Institute for Biochemistry and Molecular Biology, ZBMZ, University of Freiburg, Freiburg, Germany
| | - Peter Rehling
- Department of Cellular Biochemistry, University Medical Center Göttingen, Göttingen, Germany Max Planck Institute for Biophysical Chemistry, Göttingen, Germany
| |
Collapse
|
126
|
Deckers M, Balleininger M, Vukotic M, Römpler K, Bareth B, Juris L, Dudek J. Aim24 stabilizes respiratory chain supercomplexes and is required for efficient respiration. FEBS Lett 2014; 588:2985-92. [PMID: 24928273 DOI: 10.1016/j.febslet.2014.06.006] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2014] [Revised: 05/24/2014] [Accepted: 06/02/2014] [Indexed: 10/25/2022]
Abstract
The mitochondrial respiratory chain is essential for the conversion of energy derived from the oxidation of metabolites into the membrane potential, which drives the synthesis of ATP. The electron transporting complexes bc1 complex and the cytochrome c oxidase assemble into large supercomplexes, allowing efficient energy transduction. Currently, we have only limited information about what determines the structure of the supercomplex. Here, we characterize Aim24 in baker's yeast as a protein, which is integrated in the mitochondrial inner membrane and is required for the structural integrity of the supercomplex. Deletion of AIM24 strongly affects activity of the respiratory chain and induces a growth defect on non-fermentable medium. Our data indicate that Aim24 has a function in stabilizing the respiratory chain supercomplexes.
Collapse
Affiliation(s)
- Markus Deckers
- Department of Cellular Biochemistry, University of Göttingen, D-37073 Göttingen, Germany
| | - Martina Balleininger
- Department of Cellular Biochemistry, University of Göttingen, D-37073 Göttingen, Germany
| | - Milena Vukotic
- Department of Cellular Biochemistry, University of Göttingen, D-37073 Göttingen, Germany
| | - Katharina Römpler
- Department of Cellular Biochemistry, University of Göttingen, D-37073 Göttingen, Germany
| | - Bettina Bareth
- Department of Cellular Biochemistry, University of Göttingen, D-37073 Göttingen, Germany
| | - Lisa Juris
- Department of Cellular Biochemistry, University of Göttingen, D-37073 Göttingen, Germany
| | - Jan Dudek
- Department of Cellular Biochemistry, University of Göttingen, D-37073 Göttingen, Germany.
| |
Collapse
|
127
|
Chaban Y, Boekema EJ, Dudkina NV. Structures of mitochondrial oxidative phosphorylation supercomplexes and mechanisms for their stabilisation. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:418-26. [DOI: 10.1016/j.bbabio.2013.10.004] [Citation(s) in RCA: 200] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/28/2013] [Revised: 10/01/2013] [Accepted: 10/15/2013] [Indexed: 01/13/2023]
|
128
|
Functional role of mitochondrial respiratory supercomplexes. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2014; 1837:427-43. [DOI: 10.1016/j.bbabio.2013.11.002] [Citation(s) in RCA: 224] [Impact Index Per Article: 20.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2013] [Revised: 10/30/2013] [Accepted: 11/02/2013] [Indexed: 12/30/2022]
|
129
|
Abstract
The yeast cytochrome oxidase Cox3p assembly module is shown to consist of Cox3p, Cox4p, Cox7p, Cox13p, and accessory factor Rcf1p. The results support an assembly model in which three modules, each containing one of the three core subunits and a unique subset of nuclear-derived subunits, interact to form the holoenzyme. Yeast cytochrome oxidase (COX) was previously inferred to assemble from three modules, each containing one of the three mitochondrially encoded subunits and a different subset of the eight nuclear gene products that make up this respiratory complex. Pull-down assays of pulse-labeled mitochondria enabled us to characterize Cox3p subassemblies that behave as COX precursors and contain Cox4p, Cox7p, and Cox13p. Surprisingly, Cox4p is a constituent of two other complexes, one of which was previously proposed to be an intermediate of Cox1p biogenesis. This suggests that Cox4p, which contacts Cox1p and Cox3p in the holoenzyme, can be incorporated into COX by two alternative pathways. In addition to subunits of COX, some Cox3p intermediates contain Rcf1p, a protein associated with the supercomplex that stabilizes the interaction of COX with the bc1 (ubiquinol-cytochrome c reductase) complex. Finally, our results indicate that although assembly of the Cox1p module is not contingent on the presence of Cox3p, the converse is not true, as none of the Cox3p subassemblies were detected in a mutant blocked in translation of Cox1p. These studies support our proposal that Cox3p and Cox1p are separate assembly modules with unique compositions of ancillary factors and subunits derived from the nuclear genome.
Collapse
Affiliation(s)
- Chen-Hsien Su
- Department of Biological Sciences, Columbia University, New York, NY 10027
| | | | | |
Collapse
|
130
|
Kocmarek AL, Ferguson MM, Danzmann RG. Differential gene expression in small and large rainbow trout derived from two seasonal spawning groups. BMC Genomics 2014; 15:57. [PMID: 24450799 PMCID: PMC3931318 DOI: 10.1186/1471-2164-15-57] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2013] [Accepted: 01/17/2014] [Indexed: 12/24/2022] Open
Abstract
Background Growth in fishes is regulated via many environmental and physiological factors and is shaped by the genetic background of each individual. Previous microarray studies of salmonid growth have examined fish experiencing either muscle wastage or accelerated growth patterns following refeeding, or the influence of growth hormone and transgenesis. This study determines the gene expression profiles of genetically unmanipulated large and small fish from a domesticated salmonid strain reared on a typical feeding regime. Gene expression profiles of white muscle and liver from rainbow trout (Oncorhynchus mykiss) from two seasonal spawning groups (September and December lots) within a single strain were examined when the fish were 15 months of age to assess the influence of season (late fall vs. onset of spring) and body size (large vs. small). Results Although IGFBP1 gene expression was up-regulated in the livers of small fish in both seasonal lots, few expression differences were detected in the liver overall. Faster growing Dec. fish showed a greater number of differences in white muscle expression compared to Sept. fish. Significant differences in the GO Generic Level 3 categories ‘response to external stimulus’, ‘establishment of localization’, and ‘response to stress’ were detected in white muscle tissue between large and small fish. Larger fish showed up-regulation of cytoskeletal component genes while many genes related to myofibril components of muscle tissue were up-regulated in small fish. Most of the genes up-regulated in large fish within the ‘response to stress’ category are involved in immunity while in small fish most of these gene functions are related to apoptosis. Conclusions A higher proportion of genes in white muscle compared to liver showed similar patterns of up- or down-regulation within the same size class across seasons supporting their utility as biomarkers for growth in rainbow trout. Differences between large and small Sept. fish in the ‘response to stress’ and ‘response to external stimulus’ categories for white muscle tissue, suggests that smaller fish have a greater inability to handle stress compared to the large fish. Sampling season had a significant impact on the expression of genes related to the growth process in rainbow trout.
Collapse
Affiliation(s)
- Andrea L Kocmarek
- Department of Integrative Biology, University of Guelph, 50 Stone Rd, East, Guelph, Ontario N1G 2W1, Canada.
| | | | | |
Collapse
|
131
|
Davoudi M, Kotarsky H, Hansson E, Fellman V. Complex I function and supercomplex formation are preserved in liver mitochondria despite progressive complex III deficiency. PLoS One 2014; 9:e86767. [PMID: 24466228 PMCID: PMC3899299 DOI: 10.1371/journal.pone.0086767] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2013] [Accepted: 12/13/2013] [Indexed: 02/02/2023] Open
Abstract
Functional oxidative phosphorylation requires appropriately assembled mitochondrial respiratory complexes and their supercomplexes formed mainly of complexes I, III and IV. BCS1L is the chaperone needed to incorporate the catalytic subunit, Rieske iron-sulfur protein, into complex III at the final stage of its assembly. In cell culture studies, this subunit has been considered necessary for supercomplex formation and for maintaining the stability of complex I. Our aim was to assess the importance of fully assembled complex III for supercomplex formation in intact liver tissue. We used our transgenic mouse model with a homozygous c.232A>G mutation in Bcs1l leading to decreased expression of BCS1L and progressive decrease of Rieske iron-sulfur protein in complex III, resulting in hepatopathy. We studied supercomplex formation at different ages using blue native gel electrophoresis and complex activity using high-resolution respirometry. In isolated liver mitochondria of young and healthy homozygous mutant mice, we found similar supercomplexes as in wild type. In homozygotes aged 27–29 days with liver disorder, complex III was predominantly a pre-complex lacking Rieske iron-sulfur protein. However, the main supercomplex was clearly detected and contained complex III mainly in the pre-complex form. Oxygen consumption of complex IV was similar and that of complex I was twofold compared with controls. These complexes in free form were more abundant in homozygotes than in controls, and the mRNA of complex I subunits were upregulated. In conclusion, when complex III assembly is deficient, the pre-complex without Rieske iron-sulfur protein can participate with available fully assembled complex III in supercomplex formation, complex I function is preserved, and respiratory chain stability is maintained.
Collapse
Affiliation(s)
- Mina Davoudi
- Department of Pediatrics, Clinical Sciences, Lund University, Lund, Sweden
| | - Heike Kotarsky
- Department of Pediatrics, Clinical Sciences, Lund University, Lund, Sweden
| | - Eva Hansson
- Department of Pediatrics, Clinical Sciences, Lund University, Lund, Sweden
| | - Vineta Fellman
- Department of Pediatrics, Clinical Sciences, Lund University, Lund, Sweden
- Folkhälsan Research Center, Helsinki, Finland
- Children’s Hospital, Helsinki University Hospital, University of Helsinki, Helsinki, Finland
- * E-mail:
| |
Collapse
|
132
|
Cui TZ, Conte A, Fox JL, Zara V, Winge DR. Modulation of the respiratory supercomplexes in yeast: enhanced formation of cytochrome oxidase increases the stability and abundance of respiratory supercomplexes. J Biol Chem 2014; 289:6133-41. [PMID: 24421313 DOI: 10.1074/jbc.m113.523688] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Yeast cells deficient in the Rieske iron-sulfur subunit (Rip1) of ubiquinol-cytochrome c reductase (bc1) accumulate a late core assembly intermediate, which weakly associates with cytochrome oxidase (CcO) in a respiratory supercomplex. Expression of the N-terminal half of Rip1, which lacks the C-terminal FeS-containing globular domain (designated N-Rip1), results in a marked stabilization of trimeric and tetrameric bc1-CcO supercomplexes. Another bc1 mutant (qcr9Δ) stalled at the same assembly intermediate is likewise converted to stable supercomplex species by the expression of N-Rip1, but not by expression of intact Rip1. The N-Rip1-induced stabilization of bc1-CcO supercomplexes is independent of the Bcs1 translocase, which mediates Rip1 translocation during bc1 biogenesis. N-Rip1 induces the stabilization of bc1-CcO supercomplexes through an enhanced formation of CcO. The association of N-Rip1 with the late core bc1 assembly intermediate appears to confer stabilization of a CcO assembly intermediate. This induced stabilization of CcO is dependent on the Rcf1 supercomplex stabilization factor and only partially dependent on the presence of cardiolipin. N-Rip1 exerts a related induction of CcO stabilization in WT yeast, resulting in enhanced respiration. Additionally, the impact of CcO stabilization on supercomplexes was observed by means other than expression of N-Rip1 (via overexpression of CcO subunits Cox4 and Cox5a), demonstrating that this is a general phenomenon. This study presents the first evidence showing that supercomplexes can be stabilized by the stimulated formation of CcO.
Collapse
Affiliation(s)
- Tie-Zhong Cui
- From the Departments of Medicine and Biochemistry, University of Utah Health Sciences Center, Salt Lake City, Utah 84132 and
| | | | | | | | | |
Collapse
|
133
|
Acin-Perez R, Enriquez JA. The function of the respiratory supercomplexes: the plasticity model. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1837:444-50. [PMID: 24368156 DOI: 10.1016/j.bbabio.2013.12.009] [Citation(s) in RCA: 206] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2013] [Revised: 12/12/2013] [Accepted: 12/17/2013] [Indexed: 01/16/2023]
Abstract
Mitochondria are important organelles not only as efficient ATP generators but also in controlling and regulating many cellular processes. Mitochondria are dynamic compartments that rearrange under stress response and changes in food availability or oxygen concentrations. The mitochondrial electron transport chain parallels these rearrangements to achieve an optimum performance and therefore requires a plastic organization within the inner mitochondrial membrane. This consists in a balanced distribution between free respiratory complexes and supercomplexes. The mechanisms by which the distribution and organization of supercomplexes can be adjusted to the needs of the cells are still poorly understood. The aim of this review is to focus on the functional role of the respiratory supercomplexes and its relevance in physiology. This article is part of a Special Issue entitled: Dynamic and ultrastructure of bioenergetic membranes and their components.
Collapse
Affiliation(s)
- Rebeca Acin-Perez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Melchor Fernández Almagro, 3, 28029 Madrid, Spain
| | - Jose A Enriquez
- Centro Nacional de Investigaciones Cardiovasculares Carlos III, Melchor Fernández Almagro, 3, 28029 Madrid, Spain.
| |
Collapse
|
134
|
Evaluation of intramitochondrial ATP levels identifies G0/G1 switch gene 2 as a positive regulator of oxidative phosphorylation. Proc Natl Acad Sci U S A 2013; 111:273-8. [PMID: 24344269 DOI: 10.1073/pnas.1318547111] [Citation(s) in RCA: 77] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
The oxidative phosphorylation (OXPHOS) system generates most of the ATP in respiring cells. ATP-depleting conditions, such as hypoxia, trigger responses that promote ATP production. However, how OXPHOS is regulated during hypoxia has yet to be elucidated. In this study, selective measurement of intramitochondrial ATP levels identified the hypoxia-inducible protein G0/G1 switch gene 2 (G0s2) as a positive regulator of OXPHOS. A mitochondria-targeted, FRET-based ATP biosensor enabled us to assess OXPHOS activity in living cells. Mitochondria-targeted, FRET-based ATP biosensor and ATP production assay in a semiintact cell system revealed that G0s2 increases mitochondrial ATP production. The expression of G0s2 was rapidly and transiently induced by hypoxic stimuli, and G0s2 interacts with OXPHOS complex V (FoF1-ATP synthase). Furthermore, physiological enhancement of G0s2 expression prevented cells from ATP depletion and induced a cellular tolerance for hypoxic stress. These results show that G0s2 positively regulates OXPHOS activity by interacting with FoF1-ATP synthase, which causes an increase in ATP production in response to hypoxic stress and protects cells from a critical energy crisis. These findings contribute to the understanding of a unique stress response to energy depletion. Additionally, this study shows the importance of assessing intramitochondrial ATP levels to evaluate OXPHOS activity in living cells.
Collapse
|
135
|
Bourens M, Fontanesi F, Soto IC, Liu J, Barrientos A. Redox and reactive oxygen species regulation of mitochondrial cytochrome C oxidase biogenesis. Antioxid Redox Signal 2013; 19:1940-52. [PMID: 22937827 PMCID: PMC3852343 DOI: 10.1089/ars.2012.4847] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
SIGNIFICANCE Cytochrome c oxidase (COX), the last enzyme of the mitochondrial respiratory chain, is the major oxygen consumer enzyme in the cell. COX biogenesis involves several redox-regulated steps. The process is highly regulated to prevent the formation of pro-oxidant intermediates. RECENT ADVANCES Regulation of COX assembly involves several reactive oxygen species and redox-regulated steps. These include: (i) Intricate redox-controlled machineries coordinate the expression of COX isoenzymes depending on the environmental oxygen concentration. (ii) COX is a heme A-copper metalloenzyme. COX copper metallation involves the copper chaperone Cox17 and several other recently described cysteine-rich proteins, which are oxidatively folded in the mitochondrial intermembrane space. Copper transfer to COX subunits 1 and 2 requires concomitant transfer of redox power. (iii) To avoid the accumulation of reactive assembly intermediates, COX is regulated at the translational level to minimize synthesis of the heme A-containing Cox1 subunit when assembly is impaired. CRITICAL ISSUES An increasing number of regulatory pathways converge to facilitate efficient COX assembly, thus preventing oxidative stress. FUTURE DIRECTIONS Here we will review on the redox-regulated COX biogenesis steps and will discuss their physiological relevance. Forthcoming insights into the precise regulation of mitochondrial COX biogenesis in normal and stress conditions will likely open future perspectives for understanding mitochondrial redox regulation and prevention of oxidative stress.
Collapse
Affiliation(s)
- Myriam Bourens
- 1 Department of Neurology, University of Miami Miller School of Medicine , Miami, Florida
| | | | | | | | | |
Collapse
|
136
|
Cardiolipin-dependent formation of mitochondrial respiratory supercomplexes. Chem Phys Lipids 2013; 179:42-8. [PMID: 24220496 DOI: 10.1016/j.chemphyslip.2013.10.012] [Citation(s) in RCA: 192] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2013] [Revised: 10/21/2013] [Accepted: 10/30/2013] [Indexed: 11/20/2022]
Abstract
The organization of individual respiratory Complexes I, III, and IV (mammalian cells) or III and IV (yeast) of the mitochondria into higher order supercomplexes (SCs) is generally accepted. However, the factors that regulate SC formation and the functional significance of SCs are not well understood. The mitochondrial signature phospholipid cardiolipin (CL) plays a central role in formation and stability of respiratory SCs from yeast to man. Studies in yeast mutants in which the CL level can be regulated displayed a direct correlation between CL levels and SC formation. Disease states in which CL levels are reduced also show defects in SC formation. Three-dimensional density maps of yeast and bovine SCs by electron cryo-microscopy show gaps between the transmembrane-localized interfaces of individual complexes consistent with the large excess of CL in SCs over that integrated into the structure of individual respiratory complexes. Finally, the yeast SC composed of Complex III and two Complexes IV was reconstituted in liposomes from purified individual complexes containing integrated CLs. Reconstitution was wholly dependent on inclusion of additional CL in the liposomes. Therefore, non-integral CL molecules play an important role in SC formation and may be involved in regulation of SC stability under metabolic conditions where CL levels fluctuate.
Collapse
|
137
|
Maranzana E, Barbero G, Falasca AI, Lenaz G, Genova ML. Mitochondrial respiratory supercomplex association limits production of reactive oxygen species from complex I. Antioxid Redox Signal 2013; 19:1469-80. [PMID: 23581604 PMCID: PMC3797460 DOI: 10.1089/ars.2012.4845] [Citation(s) in RCA: 313] [Impact Index Per Article: 26.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
AIMS The mitochondrial respiratory chain is recognized today to be arranged in supramolecular assemblies (supercomplexes). Besides conferring a kinetic advantage (substrate channeling) and being required for the assembly and stability of Complex I, indirect considerations support the view that supercomplexes may also prevent excessive formation of reactive oxygen species (ROS) from the respiratory chain. In the present study, we have directly addressed this issue by testing the ROS generation by Complex I in two experimental systems in which the supramolecular organization of the respiratory assemblies is impaired by: (i) treatment either of bovine heart mitochondria or liposome-reconstituted supercomplex I-III with dodecyl maltoside; (ii) reconstitution of Complexes I and III at high phospholipids to protein ratio. RESULTS The results of our investigation provide experimental evidence that the production of ROS is strongly increased in either model, supporting the view that disruption or prevention of the association between Complex I and Complex III by different means enhances the generation of superoxide from Complex I. INNOVATION Dissociation of supercomplexes may link oxidative stress and energy failure in a vicious circle. CONCLUSION Our findings support a central role of mitochondrial supramolecular structure in the development of the aging process and in the etiology and pathogenesis of most major chronic diseases.
Collapse
Affiliation(s)
- Evelina Maranzana
- 1 Dipartimento di Scienze Biomediche e Neuromotorie, Alma Mater Studiorum, Università di Bologna , Bologna, Italy
| | | | | | | | | |
Collapse
|
138
|
Cogliati S, Frezza C, Soriano ME, Varanita T, Quintana-Cabrera R, Corrado M, Cipolat S, Costa V, Casarin A, Gomes LC, Perales-Clemente E, Salviati L, Fernandez-Silva P, Enriquez JA, Scorrano L. Mitochondrial cristae shape determines respiratory chain supercomplexes assembly and respiratory efficiency. Cell 2013; 155:160-71. [PMID: 24055366 PMCID: PMC3790458 DOI: 10.1016/j.cell.2013.08.032] [Citation(s) in RCA: 951] [Impact Index Per Article: 79.3] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2012] [Revised: 07/25/2013] [Accepted: 08/19/2013] [Indexed: 11/20/2022]
Abstract
Respiratory chain complexes assemble into functional quaternary structures called supercomplexes (RCS) within the folds of the inner mitochondrial membrane, or cristae. Here, we investigate the relationship between respiratory function and mitochondrial ultrastructure and provide evidence that cristae shape determines the assembly and stability of RCS and hence mitochondrial respiratory efficiency. Genetic and apoptotic manipulations of cristae structure affect assembly and activity of RCS in vitro and in vivo, independently of changes to mitochondrial protein synthesis or apoptotic outer mitochondrial membrane permeabilization. We demonstrate that, accordingly, the efficiency of mitochondria-dependent cell growth depends on cristae shape. Thus, RCS assembly emerges as a link between membrane morphology and function. Dissociation of cristae remodeling from OMM permeabilization Cristae shape determines assembly of respiratory chain supercomplexes Efficiency of mitochondrial respiration and cellular growth depends on cristae shape
Collapse
Affiliation(s)
- Sara Cogliati
- Dulbecco-Telethon Institute, Venetian Institute of Molecular Medicine, Via Orus 2, 35129 Padova, Italy; Department of Biology, University of Padova, Via U. Bassi 58B, 35121 Padova, Italy
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
139
|
McStay GP, Su CH, Thomas SM, Xu JT, Tzagoloff A. Characterization of assembly intermediates containing subunit 1 of yeast cytochrome oxidase. J Biol Chem 2013; 288:26546-56. [PMID: 23897805 DOI: 10.1074/jbc.m113.498592] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Mitochondrial-encoded Cox1p, one of the three core subunits of yeast cytochrome oxidase (COX), was previously shown to associate with regulatory proteins and nuclear-encoded subunits into five high molecular weight complexes that were proposed to constitute the pathway for biogenesis of the Cox1p assembly module. One of the intermediates (D5) was inferred, but not directly shown to exist. In the present study mitochondria of strains expressing C-terminal-tagged subunits of COX that had not been looked at previously were pulse-labeled and analyzed for the presence of newly translated Cox1p in the immunoprecipitates. These studies revealed that of the eight nuclear-encoded COX subunits, only Cox5ap, Cox6p, and Cox8p are present in the Cox1p module. Both Cox5ap and Cox8p share interfaces with Cox1p in the holoenzyme, whereas Cox6p interacts indirectly through Cox5ap. These results suggest that the subunit contacts in the holoenzyme are probably established during biogenesis of the Cox1p module. To confirm the existence of the largest Cox1p intermediates (D5), which was only inferred previously, radiolabeled Cox1p with a C-terminal tag was expressed in COX-deficient pet111 and pet494 mutants. Pulldown assays confirmed the presence of newly translated Cox1p in D5, which in wild type cannot be demonstrated directly because of its co-migration with COX in the native electrophoresis system used to separate the intermediates. Jointly, the results of these analyses substantiate our previous proposal that COX is assembled from separate assembly modules, each containing one of the mitochondrial-translated core subunits in association with a unique set of nuclear-encoded subunits.
Collapse
Affiliation(s)
- Gavin P McStay
- From the Department of Biological Sciences, Columbia University, New York, New York 10027
| | | | | | | | | |
Collapse
|
140
|
Respiratory supercomplexes: structure, function and assembly. Protein Cell 2013; 4:582-90. [PMID: 23828195 DOI: 10.1007/s13238-013-3032-y] [Citation(s) in RCA: 71] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 05/23/2013] [Indexed: 12/11/2022] Open
Abstract
The mitochondrial respiratory chain consists of 5 enzyme complexes that are responsible for ATP generation. The paradigm of the electron transport chain as discrete enzymes diffused in the inner mitochondrial membrane has been replaced by the solid state supercomplex model wherein the respiratory complexes associate with each other to form supramolecular complexes. Defects in these supercomplexes, which have been shown to be functionally active and required for forming stable respiratory complexes, have been associated with many genetic and neurodegenerative disorders demonstrating their biomedical significance. In this review, we will summarize the functional and structural significance of supercomplexes and provide a comprehensive review of their assembly and the assembly factors currently known to play a role in this process.
Collapse
|
141
|
Lapuente-Brun E, Moreno-Loshuertos R, Acín-Pérez R, Latorre-Pellicer A, Colás C, Balsa E, Perales-Clemente E, Quirós PM, Calvo E, Rodríguez-Hernández MA, Navas P, Cruz R, Carracedo Á, López-Otín C, Pérez-Martos A, Fernández-Silva P, Fernández-Vizarra E, Enríquez JA. Supercomplex Assembly Determines Electron Flux in the Mitochondrial Electron Transport Chain. Science 2013; 340:1567-70. [DOI: 10.1126/science.1230381] [Citation(s) in RCA: 555] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The textbook description of mitochondrial respiratory complexes (RCs) views them as free-moving entities linked by the mobile carriers coenzyme Q (CoQ) and cytochrome c (cyt c). This model (known as the fluid model) is challenged by the proposal that all RCs except complex II can associate in supercomplexes (SCs). The proposed SCs are the respirasome (complexes I, III, and IV), complexes I and III, and complexes III and IV. The role of SCs is unclear, and their existence is debated. By genetic modulation of interactions between complexes I and III and III and IV, we show that these associations define dedicated CoQ and cyt c pools and that SC assembly is dynamic and organizes electron flux to optimize the use of available substrates.
Collapse
|
142
|
Abstract
The mitochondrion is arguably the most complex organelle in the budding yeast cell cytoplasm. It is essential for viability as well as respiratory growth. Its innermost aqueous compartment, the matrix, is bounded by the highly structured inner membrane, which in turn is bounded by the intermembrane space and the outer membrane. Approximately 1000 proteins are present in these organelles, of which eight major constituents are coded and synthesized in the matrix. The import of mitochondrial proteins synthesized in the cytoplasm, and their direction to the correct soluble compartments, correct membranes, and correct membrane surfaces/topologies, involves multiple pathways and macromolecular machines. The targeting of some, but not all, cytoplasmically synthesized mitochondrial proteins begins with translation of messenger RNAs localized to the organelle. Most proteins then pass through the translocase of the outer membrane to the intermembrane space, where divergent pathways sort them to the outer membrane, inner membrane, and matrix or trap them in the intermembrane space. Roughly 25% of mitochondrial proteins participate in maintenance or expression of the organellar genome at the inner surface of the inner membrane, providing 7 membrane proteins whose synthesis nucleates the assembly of three respiratory complexes.
Collapse
|
143
|
Dudek J, Cheng IF, Balleininger M, Vaz FM, Streckfuss-Bömeke K, Hübscher D, Vukotic M, Wanders RJA, Rehling P, Guan K. Cardiolipin deficiency affects respiratory chain function and organization in an induced pluripotent stem cell model of Barth syndrome. Stem Cell Res 2013; 11:806-19. [PMID: 23792436 DOI: 10.1016/j.scr.2013.05.005] [Citation(s) in RCA: 130] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/11/2013] [Revised: 04/03/2013] [Accepted: 05/15/2013] [Indexed: 01/12/2023] Open
Abstract
Barth syndrome (BTHS) patients carrying mutations in tafazzin (TAZ1), which is involved in the final maturation of cardiolipin, present with dilated cardiomyopathy, skeletal myopathy, growth retardation and neutropenia. To study how mitochondrial function is impaired in BTHS patients, we generated induced pluripotent stem cells (iPSCs) to develop a novel and relevant human model system for BTHS. BTHS-iPSCs generated from dermal fibroblasts of three patients with different mutations in TAZ1 expressed pluripotency markers, and were able to differentiate into cells derived from all three germ layers both in vitro and in vivo. We used these cells to study the impact of tafazzin deficiency on mitochondrial oxidative phosphorylation. We found an impaired remodeling of cardiolipin, a dramatic decrease in basal oxygen consumption rate and in the maximal respiratory capacity in BTHS-iPSCs. Simultaneous measurement of extra-cellular acidification rate allowed us a thorough assessment of the metabolic deficiency in BTHS patients. Blue native gel analyses revealed that decreased respiration coincided with dramatic structural changes in respiratory chain supercomplexes leading to a massive increase in generation of reactive oxygen species. Our data demonstrate that BTHS-iPSCs are capable of modeling BTHS by recapitulating the disease phenotype and thus are important tools for studying the disease mechanism.
Collapse
Affiliation(s)
- Jan Dudek
- Department of Biochemistry II, University Medical Center Göttingen, Humboldtallee 23, 37073 Göttingen, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
144
|
Fontanesi F. Mechanisms of mitochondrial translational regulation. IUBMB Life 2013; 65:397-408. [PMID: 23554047 DOI: 10.1002/iub.1156] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2012] [Accepted: 01/31/2013] [Indexed: 11/11/2022]
Abstract
The mitochondrial oxidative phosphorylation system is formed by multimeric enzymes. In the yeast Saccharomyces cerevisiae, the bc1 complex, cytochrome c oxidase and the F1 FO ATP synthase contain subunits of dual genetic origin. It has been recently established that key subunits of these enzymes, translated on mitochondrial ribosomes, are the subjects of assembly-dependent translational regulation. This type of control of gene expression plays a pivotal role in optimizing the biogenesis of mitochondrial respiratory membranes by coordinating protein synthesis and complex assembly and by limiting the accumulation of potentially harmful assembly intermediates. Here, the author will discuss the mechanisms governing translational regulation in yeast mitochondria in the light of the most recent discoveries in the field.
Collapse
Affiliation(s)
- Flavia Fontanesi
- Department of Neurology, University of Miami, Miller School of Medicine, Miami, FL, USA.
| |
Collapse
|
145
|
Lanciano P, Khalfaoui-Hassani B, Selamoglu N, Ghelli A, Rugolo M, Daldal F. Molecular mechanisms of superoxide production by complex III: a bacterial versus human mitochondrial comparative case study. BIOCHIMICA ET BIOPHYSICA ACTA-BIOENERGETICS 2013; 1827:1332-9. [PMID: 23542447 DOI: 10.1016/j.bbabio.2013.03.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2012] [Revised: 02/14/2013] [Accepted: 03/20/2013] [Indexed: 12/23/2022]
Abstract
In this mini review, we briefly survey the molecular processes that lead to reactive oxygen species (ROS) production by the respiratory complex III (CIII or cytochrome bc1). In particular, we discuss the "forward" and "reverse" electron transfer pathways that lead to superoxide generation at the quinol oxidation (Qo) site of CIII, and the components that affect these reactions. We then describe and compare the properties of a bacterial (Rhodobacter capsulatus) mutant enzyme producing ROS with its mitochondrial (human cybrids) counterpart associated with a disease. The mutation under study is located at a highly conserved tyrosine residue of cytochrome b (Y302C in R. capsulatus and Y278C in human mitochondria) that is at the heart of the quinol oxidation (Qo) site of CIII. Similarities of the major findings of bacterial and human mitochondrial cases, including decreased catalytic activity of CIII, enhanced ROS production and ensuing cellular responses and damages, are remarkable. This case illustrates the usefulness of undertaking parallel and complementary studies using biologically different yet evolutionarily related systems, such as α-proteobacteria and human mitochondria. It progresses our understanding of CIII mechanism of function and ROS production, and underlines the possible importance of supra-molecular organization of bacterial and mitochondrial respiratory chains (i.e., respirasomes) and their potential disease-associated protective roles. This article is part of a Special Issue entitled: Respiratory complex III and related bc complexes.
Collapse
Affiliation(s)
- Pascal Lanciano
- University of Pennsylvania, Department of Biology, Philadelphia, PA, USA
| | | | | | | | | | | |
Collapse
|
146
|
Ikeda K, Shiba S, Horie-Inoue K, Shimokata K, Inoue S. A stabilizing factor for mitochondrial respiratory supercomplex assembly regulates energy metabolism in muscle. Nat Commun 2013; 4:2147. [PMID: 23857330 DOI: 10.1038/ncomms3147] [Citation(s) in RCA: 116] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2013] [Accepted: 06/14/2013] [Indexed: 12/31/2022] Open
Abstract
The mitochondrial respiratory chain is essential for oxidative phosphorylation and comprises multiple complexes, including cytochrome c oxidase, assembled in macromolecular supercomplexes. Little is known about factors that contribute to supercomplex organization. Here we identify COX7RP as a factor that promotes supercomplex assembly. Cox7rp-knockout mice exhibit decreased muscular activity and heat production failure in the cold due to reduced COX activity. In contrast, COX7RP-transgenic mice exhibit increased exercise performance with increased cytochrome c oxidase activity. Two-dimensional blue native electrophoresis reveals that COX7RP is a key molecule that promotes assembly of the III2/IVn supercomplex with complex I. Our study identified COX7RP as a protein that functions in I/III2/IVn supercomplex assembly and is required for full activity of mitochondrial respiration.
Collapse
Affiliation(s)
- Kazuhiro Ikeda
- Division of Gene Regulation and Signal Transduction, Research Center for Genomic Medicine, Saitama Medical University, 1397-1 Yamane, Hidaka-shi, Saitama, Japan
| | | | | | | | | |
Collapse
|
147
|
Abstract
Pulse-chase labeling of isolated yeast mitochondria identifies new assembly intermediates of Cox1p, characterizes their compositions, and orders them sequentially. The results indicate that cytochrome oxidase is assembled from separate modules, each consisting of different mitochondrial and nuclear gene products. Previous studies of yeast cytochrome oxidase (COX) biogenesis identified Cox1p, one of the three mitochondrially encoded core subunits, in two high–molecular weight complexes combined with regulatory/assembly factors essential for expression of this subunit. In the present study we use pulse-chase labeling experiments in conjunction with isolated mitochondria to identify new Cox1p intermediates and place them in an ordered pathway. Our results indicate that before its assimilation into COX, Cox1p transitions through five intermediates that are differentiated by their compositions of accessory factors and of two of the eight imported subunits. We propose a model of COX biogenesis in which Cox1p and the two other mitochondrial gene products, Cox2p and Cox3p, constitute independent assembly modules, each with its own complement of subunits. Unlike their bacterial counterparts, which are composed only of the individual core subunits, the final sequence in which the mitochondrial modules associate to form the holoenzyme may have been conserved during evolution.
Collapse
Affiliation(s)
- Gavin P McStay
- Department of Biological Sciences, Columbia University, New York, NY 10027, USA
| | | | | |
Collapse
|
148
|
Mick D, Dennerlein S, Wiese H, Reinhold R, Pacheu-Grau D, Lorenzi I, Sasarman F, Weraarpachai W, Shoubridge E, Warscheid B, Rehling P. MITRAC Links Mitochondrial Protein Translocation to Respiratory-Chain Assembly and Translational Regulation. Cell 2012; 151:1528-41. [DOI: 10.1016/j.cell.2012.11.053] [Citation(s) in RCA: 158] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2012] [Revised: 10/10/2012] [Accepted: 11/30/2012] [Indexed: 11/25/2022]
|
149
|
Bazán S, Mileykovskaya E, Mallampalli VKPS, Heacock P, Sparagna GC, Dowhan W. Cardiolipin-dependent reconstitution of respiratory supercomplexes from purified Saccharomyces cerevisiae complexes III and IV. J Biol Chem 2012; 288:401-11. [PMID: 23172229 DOI: 10.1074/jbc.m112.425876] [Citation(s) in RCA: 108] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022] Open
Abstract
Here, we report for the first time in vitro reconstitution of the respiratory supercomplexes from individual complexes III and IV. Complexes III and IV were purified from Saccharomyces cerevisiae mitochondria. Complex III contained eight molecules of cardiolipin, and complex IV contained two molecules of cardiolipin, as determined by electrospray ionization-mass spectrometry. Complex IV also contained Rcf1p. No supercomplexes were formed upon mixing of the purified complexes, and low amounts of the supercomplex trimer III(2)IV(1) were formed after reconstitution into proteoliposomes containing only phosphatidylcholine and phosphatidylethanolamine. Further addition of cardiolipin to the proteoliposome reconstitution mixture resulted in distinct formation of both the III(2)IV(1) supercomplex trimer and III(2)IV(2) supercomplex tetramer. No other anionic phospholipid was as effective as cardiolipin in supporting tetramer formation. Phospholipase treatment of complex IV prevented trimer formation in the absence of cardiolipin. Both trimer and tetramer formations were restored by cardiolipin. Analysis of the reconstituted tetramer by single particle electron microscopy confirmed native organization of individual complexes within the supercomplex. In conclusion, although some trimer formation occurred dependent only on tightly bound cardiolipin, tetramer formation required additional cardiolipin. This is consistent with the high cardiolipin content in the native tetramer. The dependence on cardiolipin for supercomplex formation suggests that changes in cardiolipin levels resulting from changes in physiological conditions may control the equilibrium between individual respiratory complexes and supercomplexes in vivo.
Collapse
Affiliation(s)
- Soledad Bazán
- Department of Biochemistry and Molecular Biology, University of Texas at Houston Medical School, Houston, Texas 77030, USA
| | | | | | | | | | | |
Collapse
|
150
|
Abstract
Mitochondrial oxidative phosphorylation (OXPHOS) sustains organelle function and plays a central role in cellular energy metabolism. The OXPHOS system consists of 5 multisubunit complexes (CI-CV) that are built up of 92 different structural proteins encoded by the nuclear (nDNA) and mitochondrial DNA (mtDNA). Biogenesis of a functional OXPHOS system further requires the assistance of nDNA-encoded OXPHOS assembly factors, of which 35 are currently identified. In humans, mutations in both structural and assembly genes and in genes involved in mtDNA maintenance, replication, transcription, and translation induce 'primary' OXPHOS disorders that are associated with neurodegenerative diseases including Leigh syndrome (LS), which is probably the most classical OXPHOS disease during early childhood. Here, we present the current insights regarding function, biogenesis, regulation, and supramolecular architecture of the OXPHOS system, as well as its genetic origin. Next, we provide an inventory of OXPHOS structural and assembly genes which, when mutated, induce human neurodegenerative disorders. Finally, we discuss the consequences of mutations in OXPHOS structural and assembly genes at the single cell level and how this information has advanced our understanding of the role of OXPHOS dysfunction in neurodegeneration.
Collapse
|