101
|
Binding of TFIID and MEF2 to the TATA element activates transcription of the Xenopus MyoDa promoter. Mol Cell Biol 1994. [PMID: 8264638 DOI: 10.1128/mcb.14.1.686] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Members of the MyoD family of helix-loop-helix proteins control expression of the muscle phenotype by regulating the activity of subordinate genes. To investigate processes that control the expression of myogenic factors and regulate the establishment and maintenance of the skeletal muscle phenotype, we have analyzed sequences necessary for transcription of the maternally expressed Xenopus MyoD (XMyoD) gene. A 3.5-kb DNA fragment containing the XMyoDa promoter was expressed in a somite-specific manner in injected frog embryos. The XMyoDa promoter was active in oocytes and cultured muscle cells but not in fibroblasts or nonmuscle cell lines. A 58-bp fragment containing the transcription initiation site, a GC-rich region, and overlapping binding sites for the general transcription factor TFIID and the muscle-specific factor MEF2 was sufficient for muscle-specific transcription. Transcription of the minimal XMyoDa promoter in nonmuscle cells was activated by expression of Xenopus MEF2 (XMEF2) and required binding of both MEF2 and TFIID to the TATA motif. These results demonstrate that the XMyoDa TATA motif is a target for a cell-type-specific regulatory factor and suggests that MEF2 stabilizes and amplifies XMyoDa transcription in mesodermal cells committed to the muscle phenotype.
Collapse
|
102
|
Leibham D, Wong MW, Cheng TC, Schroeder S, Weil PA, Olson EN, Perry M. Binding of TFIID and MEF2 to the TATA element activates transcription of the Xenopus MyoDa promoter. Mol Cell Biol 1994; 14:686-99. [PMID: 8264638 PMCID: PMC358418 DOI: 10.1128/mcb.14.1.686-699.1994] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Members of the MyoD family of helix-loop-helix proteins control expression of the muscle phenotype by regulating the activity of subordinate genes. To investigate processes that control the expression of myogenic factors and regulate the establishment and maintenance of the skeletal muscle phenotype, we have analyzed sequences necessary for transcription of the maternally expressed Xenopus MyoD (XMyoD) gene. A 3.5-kb DNA fragment containing the XMyoDa promoter was expressed in a somite-specific manner in injected frog embryos. The XMyoDa promoter was active in oocytes and cultured muscle cells but not in fibroblasts or nonmuscle cell lines. A 58-bp fragment containing the transcription initiation site, a GC-rich region, and overlapping binding sites for the general transcription factor TFIID and the muscle-specific factor MEF2 was sufficient for muscle-specific transcription. Transcription of the minimal XMyoDa promoter in nonmuscle cells was activated by expression of Xenopus MEF2 (XMEF2) and required binding of both MEF2 and TFIID to the TATA motif. These results demonstrate that the XMyoDa TATA motif is a target for a cell-type-specific regulatory factor and suggests that MEF2 stabilizes and amplifies XMyoDa transcription in mesodermal cells committed to the muscle phenotype.
Collapse
Affiliation(s)
- D Leibham
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston 77030
| | | | | | | | | | | | | |
Collapse
|
103
|
Buonanno A, Edmondson DG, Hayes WP. Upstream sequences of the myogenin gene convey responsiveness to skeletal muscle denervation in transgenic mice. Nucleic Acids Res 1993; 21:5684-93. [PMID: 8284216 PMCID: PMC310536 DOI: 10.1093/nar/21.24.5684] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
Myogenin, as well as other MyoD-related skeletal muscle-specific transcription factors, regulate a large number of skeletal muscle genes during myogenic differentiation. During later development, innervation suppresses myogenin expression in the fetal hind limb musculature. Denervation of skeletal muscle reverses the effects of the nerve, and results in the reactivation of myogenin expression, as well as of other embryonic muscle proteins. Here we report that myogenin upstream sequences confer tissue- and developmental-specific expression in transgenic mice harboring a myogenin/chloramphenicol acetyltransferase (CAT) reporter construct. Using in situ hybridization to analyze serial sections of E12.5 embryos, we found colocalization of CAT and endogenous myogenin transcripts in the primordial muscle of the head and limbs, in the intercostal muscle masses, and in the most caudal somites. Later in development, we observed that the expression of the transgene and endogenous myogenin gene continued to be restricted to skeletal muscle but decreased shortly after birth; a period that coincides with the innervation of secondary myotubes. Furthermore, denervation of the mouse hind limbs induced a 10-fold accumulation of CAT and endogenous myogenin transcripts by 1 day after sciatic nerve resection; a 25-fold increase was observed by 4 days after denervation. Interestingly, we observed that the accumulation of CAT enzyme activity lagged considerably with respect to the increase in CAT transcripts. Our results indicate that the cis-acting elements that temporally and spatially confine transcription of the gene during embryonic development, and that mediate the responses to innervation and denervation of muscle, lie within the upstream sequences analyzed in these studies.
Collapse
Affiliation(s)
- A Buonanno
- Laboratory of Developmental Neurobiology, National Institutes of Health, Bethesda, MD 20892
| | | | | |
Collapse
|
104
|
cis-acting sequences of the rat troponin I slow gene confer tissue- and development-specific transcription in cultured muscle cells as well as fiber type specificity in transgenic mice. Mol Cell Biol 1993. [PMID: 8413291 DOI: 10.1128/mcb.13.11.7019] [Citation(s) in RCA: 43] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Transcription of the genes coding for troponin I slow (TnIslow) and other contractile proteins is activated during skeletal muscle differentiation, and their expression is later restricted to specific fiber types during maturation. We have isolated and characterized the rat TnIslow gene in order to begin elucidating its regulation during myogenesis. Transcriptional regulatory regions were delineated by using constructs, containing TnIslow gene sequences driving the expression of the chloramphenicol acetyltransferase (CAT) reporter gene, that were transiently transfected into undifferentiated and differentiated C2C12 cells. TnIslow 5'-flanking sequences directed transcription specifically in differentiated cells. However, transcription rates were approximately 10-fold higher in myotubes transfected with constructs containing the 5'-flanking sequences plus the intragenic region residing upstream of the translation initiation site (introns 1 and 2), indicative of interactions between elements residing upstream and in the introns of the gene. Deletion analysis of the 5' region of the TnIslow gene showed that the 200 bp upstream of the transcription initiation site is sufficient to confer differentiation-specific transcription in C2C12 myocytes. MyoD consensus binding sites were found both in the upstream 200-bp region and in a region residing in the second intron that is highly homologous to the quail TnIfast enhancer. Transactivation experiments using transfected NIH 3T3 fibroblasts with TnI-CAT constructs containing intragenic and/or upstream sequences and with the myogenic factors MyoD, myogenin, and MRF4 showed different potentials of these factors to induce transcription. Transgenic mice harboring the rat TnI-CAT fusion gene expressed the reporter specifically in the skeletal muscle. Furthermore, CAT levels were approximately 50-fold higher in the soleus than in the extensor digitorum longus, gastrocnemius, or tibialis muscle, indicating that the regulatory elements that restrict TnI transcription to slow-twitch myofibers reside in the sequences we have analyzed.
Collapse
|
105
|
Banerjee-Basu S, Buonanno A. cis-acting sequences of the rat troponin I slow gene confer tissue- and development-specific transcription in cultured muscle cells as well as fiber type specificity in transgenic mice. Mol Cell Biol 1993; 13:7019-28. [PMID: 8413291 PMCID: PMC364763 DOI: 10.1128/mcb.13.11.7019-7028.1993] [Citation(s) in RCA: 21] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
Transcription of the genes coding for troponin I slow (TnIslow) and other contractile proteins is activated during skeletal muscle differentiation, and their expression is later restricted to specific fiber types during maturation. We have isolated and characterized the rat TnIslow gene in order to begin elucidating its regulation during myogenesis. Transcriptional regulatory regions were delineated by using constructs, containing TnIslow gene sequences driving the expression of the chloramphenicol acetyltransferase (CAT) reporter gene, that were transiently transfected into undifferentiated and differentiated C2C12 cells. TnIslow 5'-flanking sequences directed transcription specifically in differentiated cells. However, transcription rates were approximately 10-fold higher in myotubes transfected with constructs containing the 5'-flanking sequences plus the intragenic region residing upstream of the translation initiation site (introns 1 and 2), indicative of interactions between elements residing upstream and in the introns of the gene. Deletion analysis of the 5' region of the TnIslow gene showed that the 200 bp upstream of the transcription initiation site is sufficient to confer differentiation-specific transcription in C2C12 myocytes. MyoD consensus binding sites were found both in the upstream 200-bp region and in a region residing in the second intron that is highly homologous to the quail TnIfast enhancer. Transactivation experiments using transfected NIH 3T3 fibroblasts with TnI-CAT constructs containing intragenic and/or upstream sequences and with the myogenic factors MyoD, myogenin, and MRF4 showed different potentials of these factors to induce transcription. Transgenic mice harboring the rat TnI-CAT fusion gene expressed the reporter specifically in the skeletal muscle. Furthermore, CAT levels were approximately 50-fold higher in the soleus than in the extensor digitorum longus, gastrocnemius, or tibialis muscle, indicating that the regulatory elements that restrict TnI transcription to slow-twitch myofibers reside in the sequences we have analyzed.
Collapse
MESH Headings
- Animals
- Base Sequence
- Blotting, Northern
- Cell Line
- Cells, Cultured
- Chloramphenicol O-Acetyltransferase/biosynthesis
- Cloning, Molecular
- DNA Primers
- DNA, Complementary/chemistry
- DNA, Complementary/isolation & purification
- Gene Expression Regulation
- Mice
- Mice, Transgenic
- Molecular Sequence Data
- Muscles/metabolism
- Polymerase Chain Reaction
- Promoter Regions, Genetic
- RNA, Messenger/biosynthesis
- RNA, Messenger/metabolism
- Rats
- Recombinant Fusion Proteins/biosynthesis
- Regulatory Sequences, Nucleic Acid
- Restriction Mapping
- Transcription, Genetic
- Transfection
- Troponin/biosynthesis
- Troponin/genetics
- Troponin I
Collapse
Affiliation(s)
- S Banerjee-Basu
- Unit on Molecular Neurobiology, National Institute of Child Health and Human Development, Bethesda, Maryland 20892
| | | |
Collapse
|
106
|
The MEF-3 motif is required for MEF-2-mediated skeletal muscle-specific induction of the rat aldolase A gene. Mol Cell Biol 1993. [PMID: 8413246 DOI: 10.1128/mcb.13.10.6469] [Citation(s) in RCA: 29] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The rat aldolase A gene contains two alternative promoters and two alternative first exons. The distal promoter M is expressed at a high level only in skeletal muscle. Previous in vitro transfection studies identified the region from -202 to -85 as an enhancer that is responsible for dramatic activation during the differentiation of chicken primary myoblasts. This enhancer contains an A/T-rich sequence resembling the MEF-2 motif, which is an important element of muscle enhancers and promoters. In this study, we demonstrate that the MEF-2 sequence is essential but not sufficient for the activity of the enhancer. Another region required for the activity was recognized by a nuclear factor, tentatively named MAF1. MAF1 was found in both muscle cells and nonmuscle cells, and MAF1 from both cell types was indistinguishable by gel retardation and DNase I footprint experiments. The sequence required for MAF1 binding is very similar to the MEF-3 motif, which is an element of the skeletal muscle-specific enhancer of the cardiac troponin C gene. Because MAF1 and MEF-3 are closely related in both recognition sequence and distribution, MAF1 and MEF-3 probably represent the same nuclear factor which may play an important role in muscle gene transcription. Thus, the muscle-specific induction of the aldolase A gene is governed by muscle-specific MEF-2 and existing MEF-3 (MAF1).
Collapse
|
107
|
Hidaka K, Yamamoto I, Arai Y, Mukai T. The MEF-3 motif is required for MEF-2-mediated skeletal muscle-specific induction of the rat aldolase A gene. Mol Cell Biol 1993; 13:6469-78. [PMID: 8413246 PMCID: PMC364706 DOI: 10.1128/mcb.13.10.6469-6478.1993] [Citation(s) in RCA: 26] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The rat aldolase A gene contains two alternative promoters and two alternative first exons. The distal promoter M is expressed at a high level only in skeletal muscle. Previous in vitro transfection studies identified the region from -202 to -85 as an enhancer that is responsible for dramatic activation during the differentiation of chicken primary myoblasts. This enhancer contains an A/T-rich sequence resembling the MEF-2 motif, which is an important element of muscle enhancers and promoters. In this study, we demonstrate that the MEF-2 sequence is essential but not sufficient for the activity of the enhancer. Another region required for the activity was recognized by a nuclear factor, tentatively named MAF1. MAF1 was found in both muscle cells and nonmuscle cells, and MAF1 from both cell types was indistinguishable by gel retardation and DNase I footprint experiments. The sequence required for MAF1 binding is very similar to the MEF-3 motif, which is an element of the skeletal muscle-specific enhancer of the cardiac troponin C gene. Because MAF1 and MEF-3 are closely related in both recognition sequence and distribution, MAF1 and MEF-3 probably represent the same nuclear factor which may play an important role in muscle gene transcription. Thus, the muscle-specific induction of the aldolase A gene is governed by muscle-specific MEF-2 and existing MEF-3 (MAF1).
Collapse
Affiliation(s)
- K Hidaka
- Department of Bioscience, National Cardiovascular Center Research Institute, Osaka, Japan
| | | | | | | |
Collapse
|
108
|
Hollenberg SM, Cheng PF, Weintraub H. Use of a conditional MyoD transcription factor in studies of MyoD trans-activation and muscle determination. Proc Natl Acad Sci U S A 1993; 90:8028-32. [PMID: 8396258 PMCID: PMC47281 DOI: 10.1073/pnas.90.17.8028] [Citation(s) in RCA: 160] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
DNA sequences encoding the hormone-binding domains of several steroid hormone receptors were fused in frame to the MyoD gene. When the gene for this chimeric protein was expressed in NIH 3T3 or 10T1/2 fibroblasts, these cells displayed hormone-dependent induction of myogenesis. Our experiments focused on cell lines expressing estrogen receptor-MyoD chimeras. Induction of these lines in the presence of estradiol and an inhibitor of protein synthesis, cycloheximide, resulted in the activation of the endogenous myogenin gene but did not activate the muscle-specific creatine kinase or cardiac alpha-actin gene. This result suggests that MyoD is not a "direct" activator of these downstream myogenic genes but must first activate myogenin as an intermediary. Once muscle is induced by estrogen receptor-MyoD the muscle phenotype is very stable and does not need the continued presence of estradiol for its maintenance.
Collapse
Affiliation(s)
- S M Hollenberg
- Howard Hughes Medical Institute Laboratory, Fred Hutchinson Cancer Research Center, Seattle, WA 98104
| | | | | |
Collapse
|
109
|
A novel, tissue-restricted zinc finger protein (HF-1b) binds to the cardiac regulatory element (HF-1b/MEF-2) in the rat myosin light-chain 2 gene. Mol Cell Biol 1993. [PMID: 8321243 DOI: 10.1128/mcb.13.7.4432] [Citation(s) in RCA: 61] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
The AT-rich element MEF-2 plays an important role in the maintenance of the muscle-specific expression of a number of cardiac and skeletal muscle genes. In the MLC-2 gene, an AT-rich element (HF-1b) which contains a consensus MEF-2 site is required for cardiac tissue-specific expression. The present study reports the isolation and characterization of a cDNA which encodes a novel C2H2 zinc finger (HF-1b) that binds in a sequence-specific manner to the HF-1b/MEF-2 site in the MLC-2 promoter. A number of independent criteria suggest that this HF-1b zinc finger protein is a component of the endogenous HF-1b/MEF-2 binding activity in cardiac muscle cells and that it can serve as a transcriptional activator of the MLC-2 promoter in transient assays. These studies suggest that, in addition to the previously reported RSRF proteins, structurally divergent transcriptional factors can bind to MEF-2-like sites in muscle promoters. These results underscore the complexity of the regulation of the muscle gene program via these AT-rich elements in cardiac and skeletal muscle.
Collapse
|
110
|
Zhu H, Nguyen VT, Brown AB, Pourhosseini A, Garcia AV, van Bilsen M, Chien KR. A novel, tissue-restricted zinc finger protein (HF-1b) binds to the cardiac regulatory element (HF-1b/MEF-2) in the rat myosin light-chain 2 gene. Mol Cell Biol 1993; 13:4432-44. [PMID: 8321243 PMCID: PMC360013 DOI: 10.1128/mcb.13.7.4432-4444.1993] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/29/2023] Open
Abstract
The AT-rich element MEF-2 plays an important role in the maintenance of the muscle-specific expression of a number of cardiac and skeletal muscle genes. In the MLC-2 gene, an AT-rich element (HF-1b) which contains a consensus MEF-2 site is required for cardiac tissue-specific expression. The present study reports the isolation and characterization of a cDNA which encodes a novel C2H2 zinc finger (HF-1b) that binds in a sequence-specific manner to the HF-1b/MEF-2 site in the MLC-2 promoter. A number of independent criteria suggest that this HF-1b zinc finger protein is a component of the endogenous HF-1b/MEF-2 binding activity in cardiac muscle cells and that it can serve as a transcriptional activator of the MLC-2 promoter in transient assays. These studies suggest that, in addition to the previously reported RSRF proteins, structurally divergent transcriptional factors can bind to MEF-2-like sites in muscle promoters. These results underscore the complexity of the regulation of the muscle gene program via these AT-rich elements in cardiac and skeletal muscle.
Collapse
Affiliation(s)
- H Zhu
- Department of Medicine, University of California, San Diego, School of Medicine, La Jolla 92093
| | | | | | | | | | | | | |
Collapse
|
111
|
Martin JF, Schwarz JJ, Olson EN. Myocyte enhancer factor (MEF) 2C: a tissue-restricted member of the MEF-2 family of transcription factors. Proc Natl Acad Sci U S A 1993; 90:5282-6. [PMID: 8506376 PMCID: PMC46700 DOI: 10.1073/pnas.90.11.5282] [Citation(s) in RCA: 204] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
MEF-2 is a muscle-specific DNA binding activity that recognizes an A+T-rich sequence found in the control regions of numerous muscle-specific genes. The recent cloning of MEF-2 showed that it belongs to the MADS (MCM1, Agamous, Deficiens, and serum-response factor) box family of transcription factors and that MEF-2 mRNA is expressed ubiquitously. Here we describe the cloning of a member of the MEF-2 gene family, referred to as MEF-2C, that is nearly identical to other MEF-2 gene products in the MADS box but diverges from other members of the family outside of this domain. MEF-2C binds the MEF-2 site with high affinity and can activate transcription of a reporter gene linked to tandem copies of that site. In contrast to previously described members of the MEF-2 family, MEF-2C transcripts are highly enriched in skeletal muscle, spleen, and brain of adult mice and are upregulated during myoblast differentiation. These results suggest that the MEF-2 site is a target for a diverse family of proteins that regulates transcription in a variety of cell types.
Collapse
Affiliation(s)
- J F Martin
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston 77030
| | | | | |
Collapse
|
112
|
Abstract
The myocyte enhancer-binding factor 2 (MEF2) site is an essential element of many muscle-specific enhancers and promoters that binds nuclear proteins from muscle and brain. Recently, we have cloned a family of MEF2 transcription factors produced by two genes that, at the mRNA level, are broadly expressed and produce tissue-specific isoforms by posttranscriptional processes (Y.-T. Yu, R. E. Breitbart, L. B. Smoot, Y. Lee, V. Mahdavi, and B. Nadal-Ginard, Genes Dev. 6:1783-1798, 1992). Here, we report the isolation and functional characterization of cDNA clones encoding four MEF2 factors derived from a separate gene that we have named hMEF2C. In contrast to those of the previously reported genes, the transcripts of the hMEF2C gene are restricted to skeletal muscle and brain. One of the alternate exons is exclusively present in brain transcripts. The products of this gene have DNA-binding and trans-activating activities indistinguishable from those of the previously reported MEF2 factors. The hMEF2C gene is induced late during myogenic differentiation, and its expression is limited to a subset of cortical neurons. The potential targets for this transcription factor in a subset of neurons are not known at this time. The strict tissue-specific pattern of expression of hMEF2C in comparison with the more ubiquitous expression of other MEF2 genes suggests a different mode of regulation and a potentially important role of hMEF2C factors in myogenesis and neurogenesis.
Collapse
|
113
|
McDermott JC, Cardoso MC, Yu YT, Andres V, Leifer D, Krainc D, Lipton SA, Nadal-Ginard B. hMEF2C gene encodes skeletal muscle- and brain-specific transcription factors. Mol Cell Biol 1993; 13:2564-77. [PMID: 8455629 PMCID: PMC359588 DOI: 10.1128/mcb.13.4.2564-2577.1993] [Citation(s) in RCA: 90] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023] Open
Abstract
The myocyte enhancer-binding factor 2 (MEF2) site is an essential element of many muscle-specific enhancers and promoters that binds nuclear proteins from muscle and brain. Recently, we have cloned a family of MEF2 transcription factors produced by two genes that, at the mRNA level, are broadly expressed and produce tissue-specific isoforms by posttranscriptional processes (Y.-T. Yu, R. E. Breitbart, L. B. Smoot, Y. Lee, V. Mahdavi, and B. Nadal-Ginard, Genes Dev. 6:1783-1798, 1992). Here, we report the isolation and functional characterization of cDNA clones encoding four MEF2 factors derived from a separate gene that we have named hMEF2C. In contrast to those of the previously reported genes, the transcripts of the hMEF2C gene are restricted to skeletal muscle and brain. One of the alternate exons is exclusively present in brain transcripts. The products of this gene have DNA-binding and trans-activating activities indistinguishable from those of the previously reported MEF2 factors. The hMEF2C gene is induced late during myogenic differentiation, and its expression is limited to a subset of cortical neurons. The potential targets for this transcription factor in a subset of neurons are not known at this time. The strict tissue-specific pattern of expression of hMEF2C in comparison with the more ubiquitous expression of other MEF2 genes suggests a different mode of regulation and a potentially important role of hMEF2C factors in myogenesis and neurogenesis.
Collapse
Affiliation(s)
- J C McDermott
- Howard Hughes Medical Institute, Children's Hospital, Boston, Massachusetts
| | | | | | | | | | | | | | | |
Collapse
|
114
|
Cheng TC, Hanley TA, Mudd J, Merlie JP, Olson EN. Mapping of myogenin transcription during embryogenesis using transgenes linked to the myogenin control region. J Biophys Biochem Cytol 1992; 119:1649-56. [PMID: 1334962 PMCID: PMC2289748 DOI: 10.1083/jcb.119.6.1649] [Citation(s) in RCA: 62] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
During vertebrate embryogenesis, the muscle-specific helix-loop-helix protein myogenin is expressed in muscle cell precursors in the developing somite myotome and limb bud before muscle fiber formation and is further upregulated during myogenesis. We show that cis-acting DNA sequences within the 5' flanking region of the mouse myogenin gene are sufficient to direct appropriate temporal, spatial, and tissue-specific transcription of myogenin during mouse embryogenesis. Myogenin-lacZ transgenes trace the fate of embryonic cells that activate myogenin transcription and suggest that myogenic precursor cells that migrate from the somite myotome to the limb bud are committed to a myogenic fate in the absence of myogenin transcription. Activation of a myogenin-lacZ transgene can occur in limb bud explants in culture, indicating that signals required for activation of myogenin transcription are intrinsic to the limb bud and independent of other parts of the embryo. These results reveal multiple populations of myogenic precursor cells during development and suggest the existence of regulators other than myogenic helix-loop-helix proteins that maintain cells in the early limb bud in the myogenic lineage.
Collapse
Affiliation(s)
- T C Cheng
- Department of Biochemistry and Molecular Biology, University of Texas M. D. Anderson Cancer Center, Houston 77030
| | | | | | | | | |
Collapse
|