101
|
Tran K, Merika M, Thanos D. Distinct functional properties of IkappaB alpha and IkappaB beta. Mol Cell Biol 1997; 17:5386-99. [PMID: 9271416 PMCID: PMC232389 DOI: 10.1128/mcb.17.9.5386] [Citation(s) in RCA: 138] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/05/2023] Open
Abstract
The biological activity of the transcription factor NF-kappaB is controlled mainly by the IkappaB alpha and IkappaB beta proteins, which restrict NF-kappaB to the cytoplasm and inhibit its DNA binding activity. Here, we carried out experiments to determine and compare the mechanisms by which IkappaB alpha and IkappaB beta inhibit NF-kappaB-dependent transcriptional activation. First, we found that in vivo IkappaB alpha is a stronger inhibitor of NF-kappaB than is IkappaB beta. This difference is directly correlated with their abilities to inhibit NF-kappaB binding to DNA in vitro and in vivo. Moreover, IkappaB alpha, but not IkappaB beta, can remove NF-kappaB from functional preinitiation complexes in in vitro transcription experiments. Second, we showed that both IkappaBs function in vivo not only in the cytoplasm but also in the nucleus, where they inhibit NF-kappaB binding to DNA. Third, the inhibitory activity of IkappaB beta, but not that of IkappaB alpha, is facilitated by phosphorylation of the C-terminal PEST sequence by casein kinase II and/or by the interaction of NF-kappaB with high-mobility group protein I (HMG I) on selected promoters. The unphosphorylated form of IkappaB beta forms stable ternary complexes with NF-kappaB on the DNA either in vitro or in vivo. These experiments suggest that IkappaB alpha works as a postinduction repressor of NF-kappaB independently of HMG I, whereas IkappaB beta functions preferentially in promoters regulated by the NF-kappaB/HMG I complexes.
Collapse
Affiliation(s)
- K Tran
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York, New York 10032, USA
| | | | | |
Collapse
|
102
|
Nazar AS, Cheng G, Shin HS, Brothers PN, Dhib-Jalbut S, Shin ML, Vanguri P. Induction of IP-10 chemokine promoter by measles virus: comparison with interferon-gamma shows the use of the same response element but with differential DNA-protein binding profiles. J Neuroimmunol 1997; 77:116-27. [PMID: 9209276 DOI: 10.1016/s0165-5728(97)00070-2] [Citation(s) in RCA: 50] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Measles virus (MV) and interferon (IFN)-gamma induced IP-10 chemokine mRNA in U373 glioblastoma cells. The minimal response element for both MV and IFN-gamma was localized between nucleotide -231 and -153 of muIP-10 promoter, which contains an IFN-stimulated response element (ISRE) and the distal NF-kappa Bd site. Mutation of individual elements showed that ISRE and NF-kappa Bd were required to function together. DNA-protein binding profiles with the minimal response element showed that IFN-gamma induced a complex consisting of STAT1 while MV induced a complex consisting of p50 and p65 in the absence of new protein synthesis. IFN-gamma and MV also induced IRF-1 DNA binding activity which persisted for longer time periods with IFN-gamma stimulation. Despite the functional requirement of both ISRE and NF-kappa Bd elements, different combinations of DNA binding factors are used in the induction of IP-10 by MV or IFN-gamma.
Collapse
Affiliation(s)
- A S Nazar
- Department of Neurology, University of Maryland, Baltimore 21201, USA
| | | | | | | | | | | | | |
Collapse
|
103
|
Zhou G, Kuo MT. NF-kappaB-mediated induction of mdr1b expression by insulin in rat hepatoma cells. J Biol Chem 1997; 272:15174-83. [PMID: 9182539 DOI: 10.1074/jbc.272.24.15174] [Citation(s) in RCA: 153] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
The expression of P-glycoproteins encoded by the mdr gene family is associated with the emergence of multidrug resistance phenotype in animal cells. However, the mechanisms controlling the expression of these genes have not been well elucidated. Here, we report that the expression of rat mdr1b gene in cultured H-4-II-E hepatoma cells can be induced by insulin. Transient transfection assays using reporter gene constructs containing various 5' mdr1b sequences showed that the sequence located between base pairs -243 and -163 is important for insulin's induction of mdr1b promoter activity. Further analyses revealed that a NF-kappaB-binding site (located between base pairs -167 and -158) is required for insulin-induced promoter activity. Gel mobility shift assay demonstrated that insulin stimulates the binding of nuclear p50/p65 subunits to the mdr1b NF-kappaB sequence. Cotransfection of plasmids expressing either the p50/p65 NF-kappaB subunits or Raf-1 kinase or both resulted in increased expression of the gene containing wild-type but not NF-kappaB site-mutated mdr1b promoter. Finally, expression of either the antisense p65 subunit of NF-kappaB or dominant negative Raf-1 kinase blocked insulin's induction of the mdr1b promoter activity. Taken together, our results suggest that the insulin-induced mdr1b expression is mediated by transcription factor NF-kappaB via the Raf-1 kinase signaling pathway.
Collapse
Affiliation(s)
- G Zhou
- Department of Molecular Pathology, University of Texas M. D. Anderson Cancer Center, Houston, Texas 77030, USA
| | | |
Collapse
|
104
|
Ma X, Neurath M, Gri G, Trinchieri G. Identification and characterization of a novel Ets-2-related nuclear complex implicated in the activation of the human interleukin-12 p40 gene promoter. J Biol Chem 1997; 272:10389-95. [PMID: 9099678 DOI: 10.1074/jbc.272.16.10389] [Citation(s) in RCA: 122] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023] Open
Abstract
Interleukin-12 (IL-12) is a proinflammatory cytokine produced by antigen-presenting cells in response to many microbial infections. IL-12 plays an important role in the generation of T helper type-1 cells, which favor cell-mediated immune response. IL-12 is composed of two different subunits, p40 and p35, whose expression can be regulated concomitantly or differentially. Monocytic cells, the major producers of IL-12, can be primed by interferon-gamma (IFN-gamma) to produce optimal amounts of IL-12 in response to LPS stimulation as a consequence of bacterial infection. The priming effect is exerted primarily at the transcriptional level on the p40 promoter in conjunction with the effects of LPS, possibly by inducing specific transcription factors, which individually have no direct effect but which cooperatively can activate the promoter. We examined in detail one of these DNA-protein interactions observed around an Ets-2 element situated at -211/-207 of the p40 promoter, which is known to be a functionally critical site. This region interacts with a nuclear complex termed F1 that appears to be highly inducible by either IFN-gamma treatment for 16 h or lipopolysaccharide stimulation for 8 h. F1 binding to the Ets-2 site requires a considerable amount of spacing around the Ets-2 site, as revealed by gel mobility shift and in vitro methylation assays. Supershift experiments and DNA affinity purification indicated that both Ets-2 and a novel, antigenically related protein with an approximate molecular mass of 109 kDa are part of the F1 complex, together with additional components including IRF-1 and c-Rel. This novel protein is designated GLp109 for its inducibility by IFN-gamma or lipopolysaccharide. Its possible role in the activation of the IL-12 p40 promoter is discussed.
Collapse
Affiliation(s)
- X Ma
- Wistar Institute, Philadelphia, Pennsylvania 19104, USA
| | | | | | | |
Collapse
|
105
|
Linderson Y, Cross D, Neurath MF, Pettersson S. NFE, a new transcriptional activator that facilitates p50 and c-Rel-dependent IgH 3' enhancer activity. Eur J Immunol 1997; 27:468-75. [PMID: 9045919 DOI: 10.1002/eji.1830270218] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
The induction of immunoglobulin heavy chain (IgH) 3' enhancer activity has been coupled to ligand/receptor-dependent activation of resting B cells. To search for transcriptional target sites that account for this induction, extracts from lipopolysaccharide (LPS)-stimulated B cells and cell lines were used. Here we describe, by gel-retardation analysis, the identification of an NF-kappaB site and an adjacent nuclear factor ets-like (NFE) site in the 3' enhancer. The NFE motif binds four protein complexes in resting B cell extracts, of which two are down-regulated upon LPS stimulation. Gel shift-shift experiments of the NF-kappaB complexes with specific antibodies identified p50 and c-Rel proteins to be the predominant factors in primary LPS-stimulated cell extracts. Site-directed mutagenesis of these motifs demonstrates that they contribute to part of the enhancer activity in plasma cells. One copy of the NFkappaB/NFE motifs, linked to a heterologous reporter construct, displays lymphoid-restricted reporter gene activity in transient transfection assays. Mutation of either site abrogates all promoter activity. Complementation experiments demonstrate that although p50 and c-Rel expression vectors reconstitute transcription of an intact NF-kappaB/NFE reporter construct in a dose-dependent manner, mutation of the NFE site or the NF-kappaB site abrogates essentially all transcriptional activity in both plasma cells and in COS cells. Taken together, we provide evidence for the existence of an activator, NFE, which in combination with the p50 and c-Rel proteins, are part of the transcription factor machinery that regulates 3' enhancer activity, and thus the control of the IgH locus in late B lymphocyte development.
Collapse
Affiliation(s)
- Y Linderson
- Center For Biotechnology, Karolinska Institute, Huddinge, Sweden
| | | | | | | |
Collapse
|
106
|
Schaefer BC, Paulson E, Strominger JL, Speck SH. Constitutive activation of Epstein-Barr virus (EBV) nuclear antigen 1 gene transcription by IRF1 and IRF2 during restricted EBV latency. Mol Cell Biol 1997; 17:873-86. [PMID: 9001242 PMCID: PMC231814 DOI: 10.1128/mcb.17.2.873] [Citation(s) in RCA: 62] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023] Open
Abstract
The Epstein-Barr virus (EBV) EBNA1 gene promoter active in the type I program of restricted viral latency was recently identified and shown to reside in the viral BamHI Q fragment. This promoter, Qp, is active in a wide variety of cell lines and has an architecture reminiscent of eukaryotic housekeeping gene promoters (B. C. Schaefer, J. L. Strominger, and S. H. Speck, Proc. Natl. Acad. Sci. USA 92:10565-10569, 1995; B. C. Schaefer, J. L. Strominger, and S. H. Speck, Mol. Cell. Biol. 17:364-377, 1997). Here we demonstrate by deletion analysis that the important cis-acting elements regulating Qp are clustered in a relatively small region (ca. 80 bp) surrounding the site of transcription initiation. Immediately upstream of the site of initiation is a region which is protected from DNase I digestion by crude nuclear extracts. Electrophoretic mobility shift analyses (EMSA) employing probes spanning this region demonstrated the presence of two major protein complexes. Deletion analysis of Qp demonstrated that at least one of these complexes plays an important role in Qp activity. Evidence that interferon response factor 2 (IRF2) is a major constituent of the most prominent EMSA complex and that IRF1 may be a minor component of this complex is presented. Transfections into IRF1-/-, IRF2-/-, and IRF1,2-/- fibroblasts demonstrated that absence of both IRF1 and IRF2 reduced Qp activity to approximately the same extent as mutation of the IRF-binding site in Qp, strongly implicating IRF2, and perhaps IRF1, in the regulation of Qp activity. Notably, transcription from Qp was not inducible by either alpha or gamma interferon in EBV-negative B cells but rather was shown to be constitutively activated by IRF1 and IRF2. This observation suggests that IRF1 and IRF2 have a previously unrecognized role as constitutive activators of specific genes. Additionally, data presented indicate that a protein complex containing the nonhistone architectural protein HMG-I(Y) binds to the region identified as the major transcription initiation site for Qp. This observation raises the possibility that HMG-I(Y)-induced DNA bending plays a role in the initiation of transcription from Qp.
Collapse
Affiliation(s)
- B C Schaefer
- Division of Tumor Virology, Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts 02115, USA
| | | | | | | |
Collapse
|
107
|
Zakhari S. NF-kappa B, a prototypical cytokine-regulated transcription factor: implications for alcohol-mediated responses. Alcohol Clin Exp Res 1996; 20:236A-242A. [PMID: 8947272 DOI: 10.1111/j.1530-0277.1996.tb01783.x] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Affiliation(s)
- S Zakhari
- Division of Basic Research, National Institute on Alcohol Abuse and Alcoholism, NIH, Bethesda, MD, USA
| |
Collapse
|
108
|
Freter RR, Alberta JA, Hwang GY, Wrentmore AL, Stiles CD. Platelet-derived growth factor induction of the immediate-early gene MCP-1 is mediated by NF-kappaB and a 90-kDa phosphoprotein coactivator. J Biol Chem 1996; 271:17417-24. [PMID: 8663287 DOI: 10.1074/jbc.271.29.17417] [Citation(s) in RCA: 68] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023] Open
Abstract
A broad panel of agents including serum, interleukin-1, double-stranded RNA, and platelet-derived growth factor (PDGF) stimulate transcription of the "slow" immediate-early gene MCP-1. These disparate inducers act through a tight cluster of regulatory elements in the distal 5'-flanking sequences of the MCP-1 gene. We describe a 22-base element in this cluster which, in single copy, confers PDGF-inducibility to a tagged MCP-1 reporter gene. In mobility shift assays, the element binds a PDGF-activated form of NF-kappaB, and a 90-kDa protein (p90) which binds constitutively. Antibody supershift and UV cross-linking experiments indicate that the PDGF-activated NF-kappaB species is a Rel A homodimer. The DNA binding form of p90 is a nuclear-restricted serine/threonine phosphoprotein. Mutagenesis of the 22-base element shows that the NF-kappaB and p90 binding sites overlap, but binding of the two species is mutually independent. Both sites, however, are required for optimum PDGF induction of MCP-1. Therefore, p90 appears to be a coactivator with NF-kappaB in PDGF-mediated induction of MCP-1.
Collapse
Affiliation(s)
- R R Freter
- Department of Microbiology, Harvard Medical School and the Dana-Farber Cancer Institute, Boston, Massachusetts 02115, USA
| | | | | | | | | |
Collapse
|
109
|
Ping D, Jones PL, Boss JM. TNF regulates the in vivo occupancy of both distal and proximal regulatory regions of the MCP-1/JE gene. Immunity 1996; 4:455-69. [PMID: 8630731 DOI: 10.1016/s1074-7613(00)80412-4] [Citation(s) in RCA: 105] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
In vivo genomic footprinting (IVGF) was used to examine regulatory site occupancy during the activation of the murine inflammatory response gene MCP-1/JE by TNF. In response to TNF, both promoter distal and proximal regulatory regions became occupied in vivo. EMSA analysis showed that while some of the factors involved in expression, including NF-kappa B, were translocated to the nucleus following TNF treatment, others were already present and able to bind DNA in vitro. Protein kinase inhibitor studies showed that protein phosphorylation was required for TNF activation but not factor assembly. These studies provide evidence for a multistep model of TNF-mediated gene regulation involving chromatin accessibility, transcription factor complex assembly, and protein phosphorylation.
Collapse
Affiliation(s)
- D Ping
- Department of Microbiology and Immunology, Emory University School of Medicine, Atlanta, Georgia 30322, USA
| | | | | |
Collapse
|
110
|
Abstract
The transcription factor NF-kappa B has attracted widespread attention among researchers in many fields based on the following: its unusual and rapid regulation, the wide range of genes that it controls, its central role in immunological processes, the complexity of its subunits, and its apparent involvement in several diseases. A primary level of control for NF-kappa B is through interactions with an inhibitor protein called I kappa B. Recent evidence confirms the existence of multiple forms of I kappa B that appear to regulate NF-kappa B by distinct mechanisms. NF-kappa B can be activated by exposure of cells to LPS or inflammatory cytokines such as TNF or IL-1, viral infection or expression of certain viral gene products, UV irradiation, B or T cell activation, and by other physiological and nonphysiological stimuli. Activation of NF-kappa B to move into the nucleus is controlled by the targeted phosphorylation and subsequent degradation of I kappa B. Exciting new research has elaborated several important and unexpected findings that explain mechanisms involved in the activation of NF-kappa B. In the nucleus, NF-kappa B dimers bind to target DNA elements and activate transcription of genes encoding proteins involved with immune or inflammation responses and with cell growth control. Recent data provide evidence that NF-kappa B is constitutively active in several cell types, potentially playing unexpected roles in regulation of gene expression. In addition to advances in describing the mechanisms of NF-kappa B activation, excitement in NF-kappa B research has been generated by the first report of a crystal structure for one form of NF-kappa B, the first gene knockout studies for different forms of NF-kB and of I kappa B, and the implications for therapies of diseases thought to involve the inappropriate activation of NF-kappa B.
Collapse
Affiliation(s)
- A S Baldwin
- Lineberger Comprehensive Cancer Center, University of North Carolina, Chapel Hill 27599, USA
| |
Collapse
|
111
|
Thanos D. Mechanisms of transcriptional synergism of eukaryotic genes. The interferon-beta paradigm. Hypertension 1996; 27:1025-9. [PMID: 8613258 DOI: 10.1161/01.hyp.27.4.1025] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
The virus-inducible enhancer of the human interferon-beta gene has served as an excellent example for the mechanisms controlling the activation and repression of transcription. This enhancer is activated by three different transcription factors that, with the help of the high mobility group protein HMG I(Y), assemble in a unique nucleoprotein complex that interacts as a unit with the basal transcriptional machinery. The assembly of unique enhancer complexes from similar sets of transcription factors may provide the specificity required for regulation of complex patterns of gene expression in higher eukaryotes.
Collapse
Affiliation(s)
- D Thanos
- Department of Biochemistry and Molecular Biophysics, Columbia University, New York 10032, USA
| |
Collapse
|
112
|
Müller CW, Rey FA, Harrison SC. Comparison of two different DNA-binding modes of the NF-kappa B p50 homodimer. NATURE STRUCTURAL BIOLOGY 1996; 3:224-7. [PMID: 8605622 DOI: 10.1038/nsb0396-224] [Citation(s) in RCA: 19] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Analysis of the NF-kappa B p50 homodimer bound to different DNA sequences shows that the protein can recognize half-site spacings of either three or four base pairs. The protein can maintain most of its DNA contacts by a relative reorientation of its two domains.
Collapse
|
113
|
Min W, Ghosh S, Lengyel P. The interferon-inducible p202 protein as a modulator of transcription: inhibition of NF-kappa B, c-Fos, and c-Jun activities. Mol Cell Biol 1996; 16:359-68. [PMID: 8524315 PMCID: PMC231010 DOI: 10.1128/mcb.16.1.359] [Citation(s) in RCA: 128] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023] Open
Abstract
The antimicrobial, immunomodulatory, and cell growth-regulatory activities of the interferons are mediated by interferon-inducible proteins. One of these is p202, a nuclear protein that is encoded by the Ifi 202 gene from the interferon-activatable gene 200 cluster. Overexpression of p202 in transfected cells slows down cell proliferation. As shown earlier, p202 binds to the hypophosphorylated form of the retinoblastoma susceptibility protein. Here we report that p202 inhibits the activities of the NF-kappa B and the AP-1 enhancers both in transiently transfected cells and in transfected stable cell lines overexpressing p202. Furthermore, p202 binds the NF-kappa B p50 and p65 and the AP-1 c-Fos and c-Jun transcription factors in vitro and in vivo. NF-kappa B, c-Fos, and c-Jun participate in the transcription of various cellular and viral genes, and thus p202 can modulate the expression of these genes in response to interferons.
Collapse
Affiliation(s)
- W Min
- Department of Molecular Biophysics and Biochemistry, Yale University, New Haven, Connecticut 06520, USA
| | | | | |
Collapse
|
114
|
Falvo JV, Thanos D, Maniatis T. Reversal of intrinsic DNA bends in the IFN beta gene enhancer by transcription factors and the architectural protein HMG I(Y). Cell 1995; 83:1101-11. [PMID: 8548798 DOI: 10.1016/0092-8674(95)90137-x] [Citation(s) in RCA: 244] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
In this paper, we investigate DNA bending induced by proteins required for virus induction of the human interferon-beta (IFN beta) gene. We show that NF-kappa B-DNA complexes that are functionally distinct in the context of the IFN beta enhancer are also conformationally distinct and that two sites in the enhancer contain in-phase bends that are counteracted or reversed by the binding of NF-kappa B, ATF-2/c-Jun, and HMG I(Y). Strikingly, this modulation of intrinsic enhancer architecture results in an orientation that favors predicted protein-protein interactions in a functional nucleoprotein complex, the enhanceosome. Furthermore, the subtle modulation of DNA structure by HMG I(Y) in this process distinguishes it from other architectural factors.
Collapse
Affiliation(s)
- J V Falvo
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | | | |
Collapse
|
115
|
Thanos D, Maniatis T. Virus induction of human IFN beta gene expression requires the assembly of an enhanceosome. Cell 1995; 83:1091-100. [PMID: 8548797 DOI: 10.1016/0092-8674(95)90136-1] [Citation(s) in RCA: 821] [Impact Index Per Article: 27.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
We present evidence that transcriptional activation of the human interferon-beta (IFN beta) gene requires the assembly of a higher order transcription enhancer complex (enhanceosome). This multicomponent complex includes at least three distinct transcription factors and the high mobility group protein HMG I(Y). Both the in vitro assembly and in vivo transcriptional activity of this complex require a precise helical relationship between individual transcription factor-binding sites. In addition, HMG I(Y), which binds specifically to three sites within the enhancer, promotes cooperative binding of transcriptional factors in vitro and is required for transcriptional synergy between these factors in vivo. Thus, HMG I(Y) plays an essential role in the assembly and function of the IFN beta gene enhanceosome.
Collapse
Affiliation(s)
- D Thanos
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, Massachusetts 02138, USA
| | | |
Collapse
|
116
|
Megyeri K, Au WC, Rosztoczy I, Raj NB, Miller RL, Tomai MA, Pitha PM. Stimulation of interferon and cytokine gene expression by imiquimod and stimulation by Sendai virus utilize similar signal transduction pathways. Mol Cell Biol 1995; 15:2207-18. [PMID: 7534379 PMCID: PMC230449 DOI: 10.1128/mcb.15.4.2207] [Citation(s) in RCA: 103] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
The imidazoquinolineamine derivative 1-(2-methyl propyl)-1H-imidazole [4,5-c]quinoline-4-amine (imiquimod) has been shown to induce alpha interferon (IFN-alpha) synthesis both in vivo and in peripheral blood mononuclear cells in vitro. In this study, we show that, in these cells, imiquimod induces expression of several IFNA genes (IFNA1, IFNA2, IFNA5, IFNA6, and IFNA8) as well as the IFNB gene. Imiquimod also induced the expression of interleukin (IL)-6, IL-8, and tumor necrosis factor alpha genes. Expression of all these genes was transient, independent of cellular protein synthesis, and inhibited in the presence of tyrosine kinase and protein kinase C inhibitors. Infection with Sendai virus led to expression of a similar set of cytokine genes and several of the IFNA genes. Imiquimod stimulates binding of several induction-specific nuclear complexes: (i) the NF-kappa B-specific complexes binding to the kappa B enhancer present in the promoters of all cytokine genes, but not in IFNA genes, and (ii) the complex(es) binding to the A4F1 site, 5'-GTAAAGAAAGT-3', conserved in the inducible element of IFNA genes. These results indicate that imiquimod, similar to viral infection, stimulates expression of a large number of cytokine genes, including IFN-alpha/beta, and that the signal transduction pathway induced by both of these stimuli requires tyrosine kinase and protein kinase activity.
Collapse
Affiliation(s)
- K Megyeri
- Oncology Center, Johns Hopkins University School of Medicine, Baltimore, Maryland 21231
| | | | | | | | | | | | | |
Collapse
|
117
|
Affiliation(s)
- D Thanos
- Harvard University, Department of Molecular and Cellular Biology, Cambridge, Massachusetts 02138
| | | |
Collapse
|
118
|
Abstract
An unexpected mode of binding to DNA is revealed in two crystal structures of a transcription factor that is essential for many signalling pathways in eukaryotic cells.
Collapse
Affiliation(s)
- J Kuriyan
- Howard Hughes Medical Institute, Rockefeller University, New York, NY 10021, USA
| | | |
Collapse
|