101
|
Cai L, Feng C, Xie L, Xu B, Wei W, Jiao N, Zhang R. Ecological dynamics and impacts of viruses in Chinese and global estuaries. WATER RESEARCH 2022; 226:119237. [PMID: 36244143 DOI: 10.1016/j.watres.2022.119237] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 10/07/2022] [Accepted: 10/08/2022] [Indexed: 06/16/2023]
Abstract
Estuaries are important ecosystems providing irreplaceable services for humankind and, in turn, are extensively influenced by human activities and climate changes. Microbial processes, which are largely controlled by viruses, are always responsible for the ecological function and environmental problems in estuaries. However, we know little about the ecology and importance of viruses in estuarine systems. Here, we investigated viral ecological dynamics in estuarine systems on local (four largest estuaries in China in different seasons) and global scales. Viral production varied by almost 20-fold in Chinese estuaries with significant seasonality, being responsible for the removal of 1.41%-21.45% of the bacterioplankton standing stock each day, and contributed directly to the organic carbon pool by releasing an average of 3.57 µg of cellular carbon per liter per day. By compiling data from 21 estuaries across the world, we found for the first time that viral population size peaked at mid-latitude and viral production increased towards the equator in estuarine ecosystems. The results indicated the higher viral impact on microbial mortality and dissolved organic matter cycling in tropical estuaries. Our field investigation and global synthesized analysis provide compelling evidence of spatiotemporal variations in estuarine viral dynamics. The global view of viral impacts on estuarine microbial mortality offers important insight for incorporating viruses into ecological models and understanding the environmental implications of the tropicalization of temperate aquatic ecosystems under a scenario of climate warming.
Collapse
Affiliation(s)
- Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Chao Feng
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Fujian, China
| | - Le Xie
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Fujian, China
| | - Bu Xu
- School of Environment, Harbin Institute of Technology, Harbin, China; Department of Ocean Science and Engineering, Southern University of Science and Technology, Guangdong, China
| | - Wei Wei
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Fujian, China
| | - Nianzhi Jiao
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Fujian, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Fujian, China; Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai, Guangdong, China.
| |
Collapse
|
102
|
Zhang QY, Ke F, Gui L, Zhao Z. Recent insights into aquatic viruses: Emerging and reemerging pathogens, molecular features, biological effects, and novel investigative approaches. WATER BIOLOGY AND SECURITY 2022; 1:100062. [DOI: 10.1016/j.watbs.2022.100062] [Citation(s) in RCA: 20] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
|
103
|
Castillo DJ, Dithugoe CD, Bezuidt OK, Makhalanyane TP. Microbial ecology of the Southern Ocean. FEMS Microbiol Ecol 2022; 98:6762916. [PMID: 36255374 DOI: 10.1093/femsec/fiac123] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Revised: 09/23/2022] [Accepted: 10/14/2022] [Indexed: 01/21/2023] Open
Abstract
The Southern Ocean (SO) distributes climate signals and nutrients worldwide, playing a pivotal role in global carbon sequestration. Microbial communities are essential mediators of primary productivity and carbon sequestration, yet we lack a comprehensive understanding of microbial diversity and functionality in the SO. Here, we examine contemporary studies in this unique polar system, focusing on prokaryotic communities and their relationships with other trophic levels (i.e. phytoplankton and viruses). Strong seasonal variations and the characteristic features of this ocean are directly linked to community composition and ecosystem functions. Specifically, we discuss characteristics of SO microbial communities and emphasise differences from the Arctic Ocean microbiome. We highlight the importance of abundant bacteria in recycling photosynthetically derived organic matter. These heterotrophs appear to control carbon flux to higher trophic levels when light and iron availability favour primary production in spring and summer. Conversely, during winter, evidence suggests that chemolithoautotrophs contribute to prokaryotic production in Antarctic waters. We conclude by reviewing the effects of climate change on marine microbiota in the SO.
Collapse
Affiliation(s)
- Diego J Castillo
- Department of Biochemistry, Genetics and Microbiology, Microbiome Research Group, University of Pretoria, Pretoria 0028, South Africa.,Department of Science and Innovation/South African Research Chair in Marine Microbiomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Choaro D Dithugoe
- Department of Biochemistry, Genetics and Microbiology, Microbiome Research Group, University of Pretoria, Pretoria 0028, South Africa.,Department of Science and Innovation/South African Research Chair in Marine Microbiomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Oliver K Bezuidt
- Department of Biochemistry, Genetics and Microbiology, Microbiome Research Group, University of Pretoria, Pretoria 0028, South Africa.,Department of Science and Innovation/South African Research Chair in Marine Microbiomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| | - Thulani P Makhalanyane
- Department of Biochemistry, Genetics and Microbiology, Microbiome Research Group, University of Pretoria, Pretoria 0028, South Africa.,Department of Science and Innovation/South African Research Chair in Marine Microbiomics, Department of Biochemistry, Genetics and Microbiology, University of Pretoria, Pretoria 0028, South Africa
| |
Collapse
|
104
|
Structure of virioplankton and viral lysis of prokaryotes on the shelf of Siberian Arctic seas: impact of large river runoff. Polar Biol 2022. [DOI: 10.1007/s00300-022-03087-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/17/2022]
|
105
|
Abstract
Over the past 20 years, our knowledge of virus diversity and abundance in subsurface environments has expanded dramatically through application of quantitative metagenomic approaches. In most subsurface environments, viral diversity and abundance rival viral diversity and abundance observed in surface environments. Most of these viruses are uncharacterized in terms of their hosts and replication cycles. Analysis of accessory metabolic genes encoded by subsurface viruses indicates that they evolved to replicate within the unique features of their environments. The key question remains: What role do these viruses play in the ecology and evolution of the environments in which they replicate? Undoubtedly, as more virologists examine the role of viruses in subsurface environments, new insights will emerge.
Collapse
Affiliation(s)
- Jennifer Wirth
- Department of Plant Science and Plant Pathology and Thermal Biology Institute, Montana State University, Bozeman, Montana, USA;
| | - Mark Young
- Department of Plant Science and Plant Pathology and Thermal Biology Institute, Montana State University, Bozeman, Montana, USA;
| |
Collapse
|
106
|
Delesalle VA, Tomko BE, Vill AC, Lichty KB, Krukonis GP. Forty Years without Family: Three Novel Bacteriophages with High Similarity to SPP1 Reveal Decades of Evolutionary Stasis since the Isolation of Their Famous Relative. Viruses 2022; 14:2106. [PMID: 36298661 PMCID: PMC9607348 DOI: 10.3390/v14102106] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 09/12/2022] [Accepted: 09/17/2022] [Indexed: 11/26/2023] Open
Abstract
SPP1, an extensively studied bacteriophage of the Gram-positive Bacillus subtilis, is a model system for the study of phage-host interactions. Despite progress in the isolation and characterization of Bacillus phages, no previously fully sequenced phages have shared more than passing genetic similarity to SPP1. Here, we describe three virulent phages very similar to SPP1; SPP1 has greater than 80% nucleotide sequence identity and shares more that 85% of its protein coding genes with these phages. This is remarkable, given more than 40 years between the isolation of SPP1 and these phages. All three phages have somewhat larger genomes and more genes than SPP1. We identified a new putative gene in SPP1 based on a conserved sequence found in all phages. Gene conservation connotes purifying selection and is observed in structural genes and genes involved in DNA metabolism, but also in genes of unknown function, suggesting an important role in phage survival independent of the environment. Patterns of divergence point to genes or gene domains likely involved in adaptation to diverse hosts or different environments. Ultimately, comparative genomics of related phages provides insight into the long-term selective pressures that affect phage-bacteria interactions and alter phage genome content.
Collapse
Affiliation(s)
- Véronique A. Delesalle
- Department of Biology, Gettysburg College, 300 N Washington St., Gettysburg, PA 17325, USA
| | - Brianne E. Tomko
- Department of Biology, Gettysburg College, 300 N Washington St., Gettysburg, PA 17325, USA
| | - Albert C. Vill
- Department of Biology, Gettysburg College, 300 N Washington St., Gettysburg, PA 17325, USA
- Department of Molecular Biology and Genetics, Cornell University, 526 Campus Rd., Ithaca, NY 14850, USA
| | - Katherine B. Lichty
- Department of Biology, Gettysburg College, 300 N Washington St., Gettysburg, PA 17325, USA
- Department of Biological Sciences, University of Delaware, Wolf Hall, Newark, DE 19716, USA
| | - Greg P. Krukonis
- Department of Biology, Gettysburg College, 300 N Washington St., Gettysburg, PA 17325, USA
- Department of Biology, Angelo State University, Cavness Science Building 101, ASU Station #10890, San Angelo, TX 76909, USA
| |
Collapse
|
107
|
Daubie V, Chalhoub H, Blasdel B, Dahma H, Merabishvili M, Glonti T, De Vos N, Quintens J, Pirnay JP, Hallin M, Vandenberg O. Determination of phage susceptibility as a clinical diagnostic tool: A routine perspective. Front Cell Infect Microbiol 2022; 12:1000721. [PMID: 36211951 PMCID: PMC9532704 DOI: 10.3389/fcimb.2022.1000721] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
As the global burden of disease caused by multidrug resistant bacteria is a major source of concern, credible clinical alternatives to antibiotic therapy, such as personalized phage therapy, are actively explored. Although phage therapy has been used for more than a century, the issue of an easy to implement diagnostic tool for determining phage susceptibility that meets current routine clinical needs is still open. In this Review, we summarize the existing methods used for determining phage activity on bacteria, including the three reference methods: the spot test, the double agar overlay plaque assay, and the Appelmans method. The first two methods rely on the principle of challenging the overnight growth of a lawn of bacteria in an agar matrix to a known relative phage to bacteria concentration and represent good screening tools to determine if the tested phage can be used for a “passive” and or “active” treatment. Beside these methods, several techniques, based on “real-time” growth kinetics assays (GKA) have been developed or are under development. They all monitor the growth of clinical isolates in the presence of phages, but use various detection methods, from classical optical density to more sophisticated techniques such as computer-assisted imagery, flow-cytometry, quantitative real-time polymerase chain reaction (qPCR) or metabolic indicators. Practical considerations as well as information provided about phage activity are reviewed for each technique. Finally, we also discuss the analytical and interpretative requirements for the implementation of a phage susceptibility testing tool in routine clinical microbiology.
Collapse
Affiliation(s)
- Valéry Daubie
- Innovation and Business Development Unit, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
- Department of Microbiology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Houssein Chalhoub
- Innovation and Business Development Unit, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
- Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Bob Blasdel
- R&D department, Vesale Bioscience, Noville-sur-Mehaigne, Belgium
| | - Hafid Dahma
- Department of Microbiology, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Maya Merabishvili
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Tea Glonti
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Nathalie De Vos
- Department of Clinical Chemistry, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
| | - Johan Quintens
- R&D department, Vesale Bioscience, Noville-sur-Mehaigne, Belgium
| | - Jean-Paul Pirnay
- Laboratory for Molecular and Cellular Technology, Queen Astrid Military Hospital, Brussels, Belgium
| | - Marie Hallin
- Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Olivier Vandenberg
- Innovation and Business Development Unit, LHUB-ULB, Université Libre de Bruxelles, Brussels, Belgium
- Centre for Environmental Health and Occupational Health, School of Public Health, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Division of Infection and Immunity, Faculty of Medical Sciences, University College London, London, United Kingdom
- *Correspondence: Olivier Vandenberg,
| |
Collapse
|
108
|
Harilanto AF, Christelle D, Philippe C, Bettarel Y. Viral life strategies in a heavily anthropized tropical lagoon. FEMS Microbiol Lett 2022; 369:6698716. [DOI: 10.1093/femsle/fnac091] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Revised: 08/25/2022] [Accepted: 08/30/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
Ecological traits of aquatic microorganisms have been poorly investigated in tropical latitudes, especially in lagoons, which are often subjected to strong anthropogenic influence, conducive to microbial development. In this study, we examined the abundance of both viral and bacterial communities, as well as their interactions (lytic and lysogenic infections) in the water and sediment of seven main stations of the Ebrié Lagoon (Ivory Coast) with contrasting levels of eutrophication. The highest bacterial and viral concentrations in both planktonic and benthic samples were found in the most eutrophicated stations, where viral lytic infections also exhibited their highest values. Conversely, the highest fractions of inducible lysogens were measured in the most oligotrophic stations, suggesting that these two main viral life strategies are mutually exclusive in this lagoon. Our findings also revealed the importance that nutrients (especially ammonium) play as drivers of the interactions between viruses and their bacterial hosts in tropical lagoons.
Collapse
Affiliation(s)
- Andrianjakarivony Felana Harilanto
- Microbes, Evolution, Phylogeny, and Infection (MEФI) , IHU - Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005, Marseille , France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO) , 163 avenue de Luminy 13009, Marseille , France
| | - Desnues Christelle
- Microbes, Evolution, Phylogeny, and Infection (MEФI) , IHU - Méditerranée Infection, 19–21 Boulevard Jean Moulin, 13005, Marseille , France
- Microbiologie Environnementale Biotechnologie (MEB), Mediterranean Institute of Oceanography (MIO) , 163 avenue de Luminy 13009, Marseille , France
| | - Cecchi Philippe
- MARBEC, Marine Biodiversity, Exploitation & Conservation, Univ. Montpellier , CNRS, Ifremer, IRD, 093 Place Eugène Bataillon 34090, Montpellier , France
| | - Yvan Bettarel
- MARBEC, Marine Biodiversity, Exploitation & Conservation, Univ. Montpellier , CNRS, Ifremer, IRD, 093 Place Eugène Bataillon 34090, Montpellier , France
| |
Collapse
|
109
|
Guo R, Zheng K, Luo L, Liu Y, Shao H, Guo C, He H, Wang H, Sung YY, Mok WJ, Wong LL, Zhang YZ, Liang Y, McMinn A, Wang M. Characterization and Genomic Analysis of ssDNA Vibriophage vB_VpaM_PG19 within Microviridae, Representing a Novel Viral Genus. Microbiol Spectr 2022; 10:e0058522. [PMID: 35862991 PMCID: PMC9431446 DOI: 10.1128/spectrum.00585-22] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Accepted: 06/10/2022] [Indexed: 12/02/2022] Open
Abstract
Vibrio parahaemolyticus, a widespread marine bacterium, is responsible for a variety of diseases in marine organisms. Consumption of raw or undercooked seafood contaminated with V. parahaemolyticus is also known to cause acute gastroenteritis in humans. While numerous dsDNA vibriophages have been isolated so far, there have been few studies of vibriophages belonging to the ssDNA Microviridae family. In this study, a novel ssDNA phage, vB_VpaM_PG19 infecting V. parahaemolyticus, with a 5,572 bp ssDNA genome with a G+C content of 41.31% and encoded eight open reading frames, was isolated. Genome-wide phylogenetic analysis of the total phage isolates in the GenBank database revealed that vB_VpaM_PG19 was only related to the recently deposited vibriophage vB_VpP_WS1. The genome-wide average nucleotide homology of the two phages was 89.67%. The phylogenetic tree and network analysis showed that vB_VpaM_PG19 was different from other members of the Microviridae family and might represent a novel viral genus, together with vibriophage vB_VpP_WS1, named Vimicrovirus. One-step growth curves showed that vB_VpaM_PG19 has a short incubation period, suggesting its potential as an antimicrobial agent for pathogenic V. parahaemolyticus. IMPORTANCE Vibriophage vB_VpaM_PG19 was distant from other isolated microviruses in the phylogenetic tree and network analysis and represents a novel microviral genus, named Vimicrovirus. Our report describes the genomic and phylogenetic features of vB_VpaM_PG19 and provides a potential antimicrobial candidate for pathogenic V. parahaemolyticus.
Collapse
Affiliation(s)
- Ruizhe Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Kaiyang Zheng
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Lin Luo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Yundan Liu
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
| | - Hongbing Shao
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Cui Guo
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Hui He
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Hualong Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Yeong Yik Sung
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, University Malaysia Terengganu (UMT), Kuala Nerus, Malaysia
| | - Wen Jye Mok
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, University Malaysia Terengganu (UMT), Kuala Nerus, Malaysia
| | - Li Lian Wong
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- Institute of Marine Biotechnology, University Malaysia Terengganu (UMT), Kuala Nerus, Malaysia
| | - Yu-Zhong Zhang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, China
| | - Yantao Liang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
| | - Andrew McMinn
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, Australia
| | - Min Wang
- College of Marine Life Sciences, Frontiers Science Center for Deep Ocean Multispheres and Earth System, Institute of Evolution and Marine Biodiversity, Ocean University of China, Qingdao, China
- UMT-OUC Joint Centre for Marine Studies, Qingdao, China
- The Affiliated Hospital of Qingdao University, Qingdao, China
| |
Collapse
|
110
|
Zhang M, Zhang T, Yu M, Chen YL, Jin M. The Life Cycle Transitions of Temperate Phages: Regulating Factors and Potential Ecological Implications. Viruses 2022; 14:1904. [PMID: 36146712 PMCID: PMC9502458 DOI: 10.3390/v14091904] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2022] [Revised: 08/25/2022] [Accepted: 08/25/2022] [Indexed: 11/17/2022] Open
Abstract
Phages are viruses that infect bacteria. They affect various microbe-mediated processes that drive biogeochemical cycling on a global scale. Their influence depends on whether the infection is lysogenic or lytic. Temperate phages have the potential to execute both infection types and thus frequently switch their infection modes in nature, potentially causing substantial impacts on the host-phage community and relevant biogeochemical cycling. Understanding the regulating factors and outcomes of temperate phage life cycle transition is thus fundamental for evaluating their ecological impacts. This review thus systematically summarizes the effects of various factors affecting temperate phage life cycle decisions in both culturable phage-host systems and natural environments. The review further elucidates the ecological implications of the life cycle transition of temperate phages with an emphasis on phage/host fitness, host-phage dynamics, microbe diversity and evolution, and biogeochemical cycles.
Collapse
Affiliation(s)
- Menghui Zhang
- School of Advanced Manufacturing, Fuzhou University, Fuzhou 350000, China
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| | - Tianyou Zhang
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| | - Meishun Yu
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
| | - Yu-Lei Chen
- College of Ocean Food and Biological Engineering, Jimei University, Xiamen 361000, China
| | - Min Jin
- School of Advanced Manufacturing, Fuzhou University, Fuzhou 350000, China
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China
- Southern Marine Science and Engineering Guangdong Laboratory, Zhuhai 519000, China
| |
Collapse
|
111
|
Wang J, Xiao J, Zhu Z, Wang S, Zhang L, Fan Z, Deng Y, Hu Z, Peng F, Shen S, Deng F. Diverse viromes in polar regions: A retrospective study of metagenomic data from Antarctic animal feces and Arctic frozen soil in 2012-2014. Virol Sin 2022; 37:883-893. [PMID: 36028202 PMCID: PMC9797369 DOI: 10.1016/j.virs.2022.08.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Accepted: 08/17/2022] [Indexed: 01/01/2023] Open
Abstract
Antarctica and the Arctic are the coldest places, containing a high diversity of microorganisms, including viruses, which are important components of polar ecosystems. However, owing to the difficulties in obtaining access to animal and environmental samples, the current knowledge of viromes in polar regions is still limited. To better understand polar viromes, this study performed a retrospective analysis using metagenomic sequencing data of animal feces from Antarctica and frozen soil from the Arctic collected during 2012-2014. The results reveal diverse communities of DNA and RNA viruses from at least 23 families from Antarctic animal feces and 16 families from Arctic soils. Although the viral communities from Antarctica and the Arctic show a large diversity, they have genetic similarities with known viruses from different ecosystems and organisms with similar viral proteins. Phylogenetic analysis of Microviridae, Parvoviridae, and Larvidaviridae was further performed, and complete genomic sequences of two novel circular replication-associated protein (rep)-encoding single-stranded (CRESS) DNA viruses closely related to Circoviridae were identified. These results reveal the high diversity, complexity, and novelty of viral communities from polar regions, and suggested the genetic similarity and functional correlations of viromes between the Antarctica and Arctic. Variations in viral families in Arctic soils, Arctic freshwater, and Antarctic soils are discussed. These findings improve our understanding of polar viromes and suggest the importance of performing follow-up in-depth investigations of animal and environmental samples from Antarctica and the Arctic, which would reveal the substantial role of these viruses in the global viral community.
Collapse
Affiliation(s)
- Jun Wang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Jian Xiao
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zheng Zhu
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Siyuan Wang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China,Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, 830046, China
| | - Lei Zhang
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhaojun Fan
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Yali Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Zhihong Hu
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China
| | - Fang Peng
- China Center for Type Culture Collection (CCTCC), College of Life Sciences, Wuhan University, Wuhan, 430072, China,Corresponding authors.
| | - Shu Shen
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China,Corresponding authors.
| | - Fei Deng
- State Key Laboratory of Virology and National Virus Resource Center, Wuhan Institute of Virology, Chinese Academy of Sciences, Wuhan 430071, China,Corresponding authors.
| |
Collapse
|
112
|
Eissler Y, Castillo-Reyes A, Dorador C, Cornejo-D'Ottone M, Celis-Plá PSM, Aguilar P, Molina V. Virus-to-prokaryote ratio in the Salar de Huasco and different ecosystems of the Southern hemisphere and its relationship with physicochemical and biological parameters. Front Microbiol 2022; 13:938066. [PMID: 36060762 PMCID: PMC9434117 DOI: 10.3389/fmicb.2022.938066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Accepted: 07/31/2022] [Indexed: 11/13/2022] Open
Abstract
The virus-to-prokaryote ratio (VPR) has been used in many ecosystems to study the relationship between viruses and their hosts. While high VPR values indicate a high rate of prokaryotes' cell lysis, low values are interpreted as a decrease in or absence of viral activity. Salar de Huasco is a high-altitude wetland characterized by a rich microbial diversity associated with aquatic sites like springs, ponds, streams and a lagoon with variable physicochemical conditions. Samples from two ponds, Poza Rosada (PR) and Poza Verde (PV), were analyzed by epifluorescence microscopy to determine variability of viral and prokaryotic abundance and to calculate the VPR in a dry season. In addition, to put Salar de Huasco results into perspective, a compilation of research articles on viral and prokaryotic abundance, VPR, and metadata from various Southern hemisphere ecosystems was revised. The ecosystems were grouped into six categories: high-altitude wetlands, Pacific, Atlantic, Indian, and Southern Oceans and Antarctic lakes. Salar de Huasco ponds recorded similar VPR values (an average of 7.4 and 1.7 at PR and PV, respectively), ranging from 3.22 to 15.99 in PR. The VPR variability was associated with VA and chlorophyll a, when considering all data available for this ecosystem. In general, high-altitude wetlands recorded the highest VPR average (53.22 ± 95.09), followed by the Oceans, Southern (21.91 ± 25.72), Atlantic (19.57 ± 15.77) and Indian (13.43 ± 16.12), then Antarctic lakes (11.37 ± 15.82) and the Pacific Ocean (6.34 ± 3.79). Physicochemical variables, i.e., temperature, conductivity, nutrients (nitrate, ammonium, and phosphate) and chlorophyll a as a biological variable, were found to drive the VPR in the ecosystems analyzed. Thus, the viral activity in the Wetland followed similar trends of previous reports based on larger sets of metadata analyses. In total, this study highlights the importance of including viruses as a biological variable to study microbial temporal dynamics in wetlands considering their crucial role in the carbon budgets of these understudied ecosystems in the southern hemisphere.
Collapse
Affiliation(s)
- Yoanna Eissler
- Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Valparaíso, Chile
- *Correspondence: Yoanna Eissler
| | - Alonso Castillo-Reyes
- Escuela de Biología Marina, Facultad de Ciencias del Mar y de Recursos Naturales, Universidad de Valparaíso, Viña del Mar, Chile
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto de Antofagasta, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Santiago, Chile
| | - Marcela Cornejo-D'Ottone
- Escuela de Ciencias del Mar e Instituto Milenio de Oceanografía, Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile
| | - Paula S. M. Celis-Plá
- Laboratory of Aquatic Environmental Research, Centro de Estudios Avanzados, Universidad de Playa Ancha, Viña del Mar, Chile
- HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile
| | - Polette Aguilar
- HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile
| | - Verónica Molina
- HUB Ambiental UPLA, Universidad de Playa Ancha, Valparaíso, Chile
- Departamento de Ciencias y Geografía, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
- Centro de Investigación Oceanográfica COPAS COASTAL, Universidad de Concepción, Concepción, Chile
- Verónica Molina
| |
Collapse
|
113
|
Isolation and Characterization of a Newly Discovered Phage, V-YDF132, for Lysing Vibrio harveyi. Viruses 2022; 14:v14081802. [PMID: 36016424 PMCID: PMC9413028 DOI: 10.3390/v14081802] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 11/30/2022] Open
Abstract
A newly discovered lytic bacteriophage, V-YDF132, which efficiently infects the pathogenic strain of Vibrio harveyi, was isolated from aquaculture water collected in Yangjiang, China. Electron microscopy studies revealed that V-YDF132 belonged to the Siphoviridae family, with an icosahedral head and a long noncontractile tail. The phage has a latent period of 25 min and a burst size of 298 pfu/infected bacterium. V-YDF132 was stable from 37 to 50 °C. It has a wide range of stability (pH 5-11) and can resist adverse external environments. In addition, in vitro the phage V-YDF132 has a strong lytic effect on the host. Genome sequencing results revealed that V-YDF132 has a DNA genome of 84,375 bp with a GC content of 46.97%. In total, 115 putative open reading frames (ORFs) were predicted in the phage V-YDF132 genome. Meanwhile, the phage genome does not contain any known bacterial virulence genes or antimicrobial resistance genes. Comparison of the genomic features of the phage V-YDF132 and phylogenetic analysis revealed that V-YDF132 is a newly discovered Vibrio phage. Multiple genome comparisons and comparative genomics showed that V-YDF132 is in the same genus as Vibrio phages vB_VpS_PG28 (MT735630.2) and VH2_2019 (MN794238.1). Overall, the results indicate that V-YDF132 is potentially applicable for biological control of vibriosis.
Collapse
|
114
|
Rossi A, Morlino MS, Gaspari M, Basile A, Kougias P, Treu L, Campanaro S. Analysis of the anaerobic digestion metagenome under environmental stresses stimulating prophage induction. MICROBIOME 2022; 10:125. [PMID: 35965344 PMCID: PMC9377139 DOI: 10.1186/s40168-022-01316-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Accepted: 06/25/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND The viral community has the potential to influence the structure of the microbiome and thus the yield of the anaerobic digestion process. However, the virome composition in anaerobic digestion is still under-investigated. A viral induction experiment was conducted on separate batches undergoing a series of DNA-damaging stresses, in order to coerce temperate viruses to enter the lytic cycle. RESULTS The sequencing of the metagenome revealed a viral community almost entirely composed of tailed bacteriophages of the order Caudovirales. Following a binning procedure 1,092 viral and 120 prokaryotic genomes were reconstructed, 64 of which included an integrated prophage in their sequence. Clustering of coverage profiles revealed the presence of species, both viral and microbial, sharing similar reactions to shocks. A group of viral genomes, which increase under organic overload and decrease under basic pH, uniquely encode the yopX gene, which is involved in the induction of temperate prophages. Moreover, the in-silico functional analysis revealed an enrichment of sialidases in viral genomes. These genes are associated with tail proteins and, as such, are hypothesised to be involved in the interaction with the host. Archaea registered the most pronounced changes in relation to shocks and featured behaviours not shared with other species. Subsequently, data from 123 different samples of the global anaerobic digestion database was used to determine coverage profiles of host and viral genomes on a broader scale. CONCLUSIONS Viruses are key components in anaerobic digestion environments, shaping the microbial guilds which drive the methanogenesis process. In turn, environmental conditions are pivotal in shaping the viral community and the rate of induction of temperate viruses. This study provides an initial insight into the complexity of the anaerobic digestion virome and its relation with the microbial community and the diverse environmental parameters. Video Abstract.
Collapse
Affiliation(s)
- Alessandro Rossi
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy
| | - Maria Silvia Morlino
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy
| | - Maria Gaspari
- Department of Hydraulics, Soil Science and Agricultural Engineering, Faculty of Agriculture, Aristotle University of Thessaloniki, GR-54124, Thessaloniki, Greece
| | - Arianna Basile
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy
| | - Panagiotis Kougias
- Soil and Water Resources Institute, Hellenic Agricultural Organisation Demeter, Thermi, 57001, Thessaloniki, Greece
| | - Laura Treu
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy.
| | - Stefano Campanaro
- Department of Biology, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy
- CRIBI biotechnology center, University of Padua, via U. Bassi 58/b, 35131, Padova, Italy
| |
Collapse
|
115
|
Abundance and activity of sympagic viruses near the Western Antarctic Peninsula. Polar Biol 2022. [DOI: 10.1007/s00300-022-03073-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/16/2022]
|
116
|
Zucker F, Bischoff V, Olo Ndela E, Heyerhoff B, Poehlein A, Freese HM, Roux S, Simon M, Enault F, Moraru C. New Microviridae isolated from Sulfitobacter reveals two cosmopolitan subfamilies of single-stranded DNA phages infecting marine and terrestrial Alphaproteobacteria. Virus Evol 2022; 8:veac070. [PMID: 36533142 PMCID: PMC9753089 DOI: 10.1093/ve/veac070] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 05/24/2022] [Accepted: 07/28/2022] [Indexed: 10/01/2023] Open
Abstract
The Microviridae family represents one of the major clades of single-stranded DNA (ssDNA) phages. Their cultivated members are lytic and infect Proteobacteria, Bacteroidetes, and Chlamydiae. Prophages have been predicted in the genomes from Bacteroidales, Hyphomicrobiales, and Enterobacteriaceae and cluster within the 'Alpavirinae', 'Amoyvirinae', and Gokushovirinae. We have isolated 'Ascunsovirus oldenburgi' ICBM5, a novel phage distantly related to known Microviridae. It infects Sulfitobacter dubius SH24-1b and uses both a lytic and a carrier-state life strategy. Using ICBM5 proteins as a query, we uncovered in publicly available resources sixty-five new Microviridae prophages and episomes in bacterial genomes and retrieved forty-seven environmental viral genomes (EVGs) from various viromes. Genome clustering based on protein content and phylogenetic analysis showed that ICBM5, together with Rhizobium phages, new prophages, episomes, and EVGs cluster within two new phylogenetic clades, here tentatively assigned the rank of subfamily and named 'Tainavirinae' and 'Occultatumvirinae'. They both infect Rhodobacterales. Occultatumviruses also infect Hyphomicrobiales, including nitrogen-fixing endosymbionts from cosmopolitan legumes. A biogeographical assessment showed that tainaviruses and occultatumviruses are spread worldwide, in terrestrial and marine environments. The new phage isolated here sheds light onto new and diverse branches of the Microviridae tree, suggesting that much of the ssDNA phage diversity remains in the dark.
Collapse
Affiliation(s)
- Falk Zucker
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9−11, Oldenburg D-26111, Germany
| | - Vera Bischoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9−11, Oldenburg D-26111, Germany
| | - Eric Olo Ndela
- Laboratoire Microorganismes: Genome Environment (LMGE), Université Clermont Auvergne, CNRS, 1 Imp. Amélie Murat, Aubière 63170, Frankreich
| | - Benedikt Heyerhoff
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9−11, Oldenburg D-26111, Germany
| | - Anja Poehlein
- Department of Genomic and Applied Microbiology & Göttingen Genomics Laboratory, Georg-August-University Göttingen, Institute of Microbiology and Genetics, Grisebachstr. 8, Göttingen D-37077, Germany
| | - Heike M Freese
- Leibniz-Institut DSMZ, Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH, Inhoffenstraße 7 B, Braunschweig D-38124, Germany
| | - Simon Roux
- Lawrence Berkeley National Laboratory, DOE Joint Genome Institute, Berkeley, CA 94720, USA
| | - Meinhard Simon
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9−11, Oldenburg D-26111, Germany
| | - Francois Enault
- Laboratoire Microorganismes: Genome Environment (LMGE), Université Clermont Auvergne, CNRS, 1 Imp. Amélie Murat, Aubière 63170, Frankreich
| | - Cristina Moraru
- Institute for Chemistry and Biology of the Marine Environment, University of Oldenburg, Carl-von-Ossietzky-Str. 9−11, Oldenburg D-26111, Germany
| |
Collapse
|
117
|
Heyerhoff B, Engelen B, Bunse C. Auxiliary Metabolic Gene Functions in Pelagic and Benthic Viruses of the Baltic Sea. Front Microbiol 2022; 13:863620. [PMID: 35875520 PMCID: PMC9301287 DOI: 10.3389/fmicb.2022.863620] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 06/02/2022] [Indexed: 11/13/2022] Open
Abstract
Marine microbial communities are facing various ecosystem fluctuations (e.g., temperature, organic matter concentration, salinity, or redox regimes) and thus have to be highly adaptive. This might be supported by the acquisition of auxiliary metabolic genes (AMGs) originating from virus infections. Marine bacteriophages frequently contain AMGs, which allow them to augment their host’s metabolism or enhance virus fitness. These genes encode proteins for the same metabolic functions as their highly similar host homologs. In the present study, we analyzed the diversity, distribution, and composition of marine viruses, focusing on AMGs to identify their putative ecologic role. We analyzed viruses and assemblies of 212 publicly available metagenomes obtained from sediment and water samples across the Baltic Sea. In general, the virus composition in both compartments differed compositionally. While the predominant viral lifestyle was found to be lytic, lysogeny was more prevalent in sediments than in the pelagic samples. The highest proportion of AMGs was identified in the genomes of Myoviridae. Overall, the most abundantly occurring AMGs are encoded for functions that protect viruses from degradation by their hosts, such as methylases. Additionally, some detected AMGs are known to be involved in photosynthesis, 7-cyano-7-deazaguanine synthesis, and cobalamin biosynthesis among other functions. Several AMGs that were identified in this study were previously detected in a large-scale analysis including metagenomes from various origins, i.e., different marine sites, wastewater, and the human gut. This supports the theory of globally conserved core AMGs that are spread over virus genomes, regardless of host or environment.
Collapse
|
118
|
Chu Y, Zhao Z, Cai L, Zhang G. Viral diversity and biogeochemical potential revealed in different prawn-culture sediments by virus-enriched metagenome analysis. ENVIRONMENTAL RESEARCH 2022; 210:112901. [PMID: 35227678 DOI: 10.1016/j.envres.2022.112901] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 02/01/2022] [Accepted: 02/03/2022] [Indexed: 06/14/2023]
Abstract
As the most numerous biological entities on Earth, viruses affect the microbial dynamics, metabolism and biogeochemical cycles in the aquatic ecosystems. Viral diversity and functions in ocean have been relatively well studied, but our understanding of viruses in mariculture systems is limited. To fill this knowledge gap, we studied viral diversity and potential biogeochemical impacts of sediments from four different prawn-mariculture ecosystems (mono-culture of prawn and poly-culture of prawn with jellyfish, sea cucumber, and clam) using a metagenomic approach with prior virus-like particles (VLPs) separation. We found that the order Caudovirales was the predominant viral category and accounted for the most volume (78.39% of classified viruses). Sediment viruses were verified to have a high diversity by using the construct phylogenetic tree of terL gene, with three potential novel clades being identified. Meanwhile, compared with viruses inhabiting other ecosystems based on gene-sharing network, our results revealed that mariculture sediments harbored considerable unexplored viral diversity and that maricultural species were potentially important drivers of the viral community structure. Notably, viral auxiliary metabolic genes were identified and suggested that viruses influence carbon and sulfur cycling, as well as cofactors/vitamins and amino acid metabolism, which indirectly participate in biogeochemical cycling. Overall, our findings revealed the genomic diversity and ecological function of viral communities in prawn mariculture sediments, and suggested the role of viruses in microbial ecology and biogeochemistry.
Collapse
Affiliation(s)
- Yunmeng Chu
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, Fujian, China
| | - Zelong Zhao
- Shanghai BIOZERON Biotechnology Co., Ltd., Shanghai, 201800, China
| | - Lixi Cai
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, Fujian, China; Faculty of Basic Medicine, Putian University, Putian, 351100, Fujian, China
| | - Guangya Zhang
- Department of Bioengineering and Biotechnology, Huaqiao University, Xiamen, 361021, Fujian, China.
| |
Collapse
|
119
|
Reduced bacterial mortality and enhanced viral productivity during sinking in the ocean. THE ISME JOURNAL 2022; 16:1668-1675. [PMID: 35365738 PMCID: PMC9123201 DOI: 10.1038/s41396-022-01224-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/28/2021] [Revised: 01/14/2022] [Accepted: 03/14/2022] [Indexed: 12/03/2022]
Abstract
Particle sinking is an important process in the ocean, influencing the biogeochemical cycle and driving the long-term preservation of carbon into the deep sea via the biological pump. However, as an important component of marine ecosystems, the role of viruses during sinking is still poorly understood. Therefore, we performed a series of transplantation experiments in the South China Sea to simulate environmental changes during sinking and investigate their effects on viral eco-dynamics and life strategy. Our study demonstrated increased viral production but decreased virus-mediated bacterial mortality after transplantation. A larger burst size and switch from the lysogenic to lytic strategy were shown to contribute to enhanced viral productivity. We provide experimental evidence that surface viral ecological characteristics changed dramatically after transplantation into deep-sea waters, indicating a potential importance of viruses during vertical sinking in the ocean. This effect probably provides positive feedback on the efficiency of the biological pump.
Collapse
|
120
|
Mosharova IV, Ilinskiy VV, Kozlova IA, Akylova AY, Hazanova KP, Mosharov SA. Virio- and Bacterioplankton of the Coastal Water of the Moscow River. DOKLADY BIOLOGICAL SCIENCES : PROCEEDINGS OF THE ACADEMY OF SCIENCES OF THE USSR, BIOLOGICAL SCIENCES SECTIONS 2022; 503:58-62. [PMID: 35437736 DOI: 10.1134/s001249662202003x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2021] [Revised: 11/30/2021] [Accepted: 12/01/2021] [Indexed: 06/14/2023]
Abstract
The first study on the dynamics of virioplankton abundance (VA) in the coastal waters of the Moscow River in the autumn-winter period at stations differing in the level of anthropogenic impact has been performed. The VA in the waters of the more polluted Dzerzhinsky st. (with a mean of 235.6 ± 71.5 × 106 particles/mL, varying from 167.79 to 397.39 × 106 particles/mL) was higher than in the waters of the less polluted Tushino st. (with a mean value of 129.0 ± 39.6 × 106 particles/mL, varying from 61.01 to 186.85 × 106 particles/mL) throughout the study. Positive correlation was observed (R = 0.6, p < 0.01) between the abundances of virio- and bacterioplankton in the waters of the Dzerzhinsky st. We assume that a significant proportion of the virioplankton of the coastal waters o of the Moscow River is represented by bacteriophages. Three quarters of the differences in the VA dynamics were significantly positively correlated with the content of ammonium and phosphates in the waters at the Dzerzhinsky st. Apparently, an increase in the nutrient load is the main factor responsible for the high VA in the waters of the Moscow River in the autumn-winter period.
Collapse
Affiliation(s)
- I V Mosharova
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 117218, Moscow, Russia.
| | - V V Ilinskiy
- Biological Faculty, Moscow State University, 119991, Moscow, Russia
| | - I A Kozlova
- Biological Faculty, Moscow State University, 119991, Moscow, Russia
| | - A Y Akylova
- Biological Faculty, Moscow State University, 119991, Moscow, Russia
| | - K P Hazanova
- Biological Faculty, Moscow State University, 119991, Moscow, Russia
| | - S A Mosharov
- Shirshov Institute of Oceanology, Russian Academy of Sciences, 117218, Moscow, Russia
| |
Collapse
|
121
|
Pelagic Bacteria and Viruses in a High Arctic Region: Environmental Control in the Autumn Period. BIOLOGY 2022; 11:biology11060845. [PMID: 35741365 PMCID: PMC9220044 DOI: 10.3390/biology11060845] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 05/28/2022] [Accepted: 05/30/2022] [Indexed: 11/17/2022]
Abstract
In the marine environment, bacteria and viruses play a significant role in carbon fluxes, remineralization processes, and the infection of various organisms. We performed a survey in the northeastern Barents Sea, a region adjacent to the Arctic Ocean, to investigate spatial patterns of microbial plankton, after the main productive period, in October 2020. Two main water masses occurred in the study region—colder Arctic Water and warmer Barents Sea Water, representing transformed Atlantic Water. Multivariate analyses detected patchiness in the horizontal distribution of bacteria and viruses, and their abundances showed no clear association with the water masses. There was an obvious vertical pattern in microbial concentration, with the highest estimates in the upper layers. Surface viral and bacterial abundance varied in a wide range (2.20 × 105−10.7 × 105 cells·mL−1 and 0.86 × 106−14.98 × 106 particles·mL−1, respectively) and were correlated with each other. Bacterioplankton was dominated by small-sized cells (<2 μm, 0.04−0.06 µm3), and the average volume of bacterial cells tended to increase toward the seafloor. The ratio of viral to bacterial abundance (VBR) was 11 ± 1 and did not differ between water masses and depth layers. VBR were higher, compared to summer values, suggesting a strong impact of viruses on bacterioplankton, after the main productive season. Redundancy and correlation analyses showed that inorganic nutrients (nitrate and phosphate) and organic carbon from zooplankton were most responsible for the total variability in the microbial parameters. Water temperature and salinity, also, had a measurable impact, but their influence was lower. Bacterial abundance was lower than in other seasons and regions of the Barents Sea, while viral abundance was comparable, suggesting a stronger viral impact on Arctic marine bacteria in the autumn season.
Collapse
|
122
|
Karwautz C, Zhou Y, Kerros ME, Weinbauer MG, Griebler C. Bottom-Up Control of the Groundwater Microbial Food-Web in an Alpine Aquifer. Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.854228] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Groundwater ecosystems are typically poor in organic carbon and productivity sustaining a low standing stock of microbial biomass. In consequence, microbial food webs in oligotrophic groundwater are hypothesized to be bottom-up controlled. To date, quantitative information on groundwater microbial communities, food web interactions, and carbon flow is relatively lacking in comparison to that of surface waters. Studying a shallow, porous alpine aquifer we collected data on the numbers of prokaryotes, virus-like particles and heterotrophic nanoflagellates (HNFs), the concentration of dissolved (DOC) and assimilable organic carbon (AOC), bacterial carbon production (BCP), and physical-chemical conditions for a 1 year hydrological cycle. The potential effects of protozoan grazing and viral lysis onto the prokaryotic biomass was tested. Flow of organic carbon through the microbial food web was estimated based on data from the literature. The abundance of prokaryotes in groundwater was low with 6.1 ± 6.9 × 104 cells mL–1, seasonally influenced by the hydrological dynamics, with higher densities coinciding with a lower groundwater table. Overall, the variability in cell numbers was moderate, and so it was for HNFs (179 ± 103 HNFs mL–1) and virus-like particles (9.6 ± 5.7 × 105 VLPs mL–1). The virus to prokaryotes and prokaryote to HNF ratios ranged between 2–230 and 33–2,084, respectively. We found no evidence for a viral control of prokaryotic biomass, and the biomass of HNFs being bottom-up controlled. First estimations point at carbon use efficiencies of 0.2–4.2% with prokaryotic production, and carbon consumed and recycled by HNFs and phages to be of minor importance. This first groundwater microbial food web analysis strongly hints at a bottom-up control on productivity and standing stock in oligotrophic groundwater ecosystems. However, direct measurement of protozoan grazing and phage mediated lysis rates of prokaryotic cells are urgently needed to deepen our mechanistic understanding. The effect of microbial diversity on the population dynamics still needs to be addressed.
Collapse
|
123
|
Chen J, Gissendanner CR, Tikhe CV, Li HF, Sun Q, Husseneder C. Genomics and Geographic Diversity of Bacteriophages Associated With Endosymbionts in the Guts of Workers and Alates of Coptotermes Species (Blattodea: Rhinotermitidae). Front Ecol Evol 2022. [DOI: 10.3389/fevo.2022.881538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Subterranean termites depend nutritionally on their gut microbiota, which includes protozoa as well as taxonomically and functionally diverse bacteria. Our previous metavirome study revealed a high diversity and novel families of bacteriophages in the guts of Coptotermes formosanus workers from New Orleans, Louisiana, United States. Two assembled bacteriophage genomes (Phages TG-crAlp-04 and 06, family Podoviridae) existed in all colonies and showed similarity to a prophage (ProJPt-Bp1) previously sequenced from a bacterial endosymbiont (Candidatus Azobacteroides pseudotrichonymphae, CAP) of protozoa in the gut of a termite species of the genus Prorhinotermes from Taiwan. In this study the genomes of Phage TG-crAlp-04 and 06 were subjected to detailed functional annotation. Both phage genomes contained conserved genes for DNA packaging, head and tail morphogenesis, and phage replication. Approximately 30% of the amino acid sequences derived from genes in both genomes matched to those of ProJPt-Bp1 phage or other phages from the crAss-like phage group. No integrase was identified; the lack of a lysogeny module is a characteristic of crAss-like phages. Primers were designed to sequence conserved genes of the two phages and their putative host bacterium (CAP) to detect their presence in different termite species from native and introduced distribution ranges. Related strains of the host bacterium were found across different termite genera and geographic regions. Different termite species had separate CAP strains, but intraspecific geographical variation was low. These results together with the fact that CAP is an important intracellular symbiont of obligate cellulose-digesting protozoa, suggest that CAP is a core gut bacterium and co-evolved across several subterranean termite species. Variants of both crAss-like phages were detected in different Coptotermes species from the native and introduced range, but they did not differentiate by species or geographic region. Since similar phages were detected in different termite species, we propose the existence of a core virome associated with core bacterial endosymbionts of protozoa in the guts of subterranean termites. This work provides a strong basis for further study of the quadripartite relationship of termites, protozoa, bacteria, and bacteriophages.
Collapse
|
124
|
Wang S, Yang Y, Jing J. A Synthesis of Viral Contribution to Marine Nitrogen Cycling. Front Microbiol 2022; 13:834581. [PMID: 35547115 PMCID: PMC9083009 DOI: 10.3389/fmicb.2022.834581] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 04/04/2022] [Indexed: 11/22/2022] Open
Abstract
Nitrogen is an essential component of major cellular macromolecules, such as DNA and proteins. Its bioavailability has a fundamental influence on the primary production of both terrestrial and oceanic ecosystems. Diverse marine microbes consume nitrogen, while only a limited taxon could replenish it, leaving nitrogen one of the most deficient nutrients in the ocean. A variety of microbes are involved in complex biogeochemical transformations of nitrogen compounds, and their ecological functions might be regulated by viruses in different manners. First and foremost, viruses drive marine nitrogen flow via host cell lysis, releasing abundant organic nitrogen into the surrounding environment. Secondly, viruses can also participate in the marine nitrogen cycle by expressing auxiliary metabolic genes (AMGs) to modulate host nitrogen metabolic pathways, such as nitrification, denitrification, anammox, and nitrogen transmembrane transport. Additionally, viruses also serve as a considerable reservoir of nitrogen element. The efficient turnover of viruses fundamentally promotes nitrogen flow in the oceans. In this review, we summarize viral contributions in the marine nitrogen cycling in different aspects and discuss challenges and issues based on recent discoveries of novel viruses involved in different processes of nitrogen biotransformation.
Collapse
Affiliation(s)
- Shuai Wang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| | - Yu Yang
- Shandong Collaborative Innovation Center for Diagnosis, Treatment and Behavioral Interventions of Mental Disorders, Institute of Mental Health, Jining Medical University, Jining, China
| | - Jiaojiao Jing
- Key Laboratory of Shaanxi Province for Craniofacial Precision Medicine Research, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Department of Pediatric Dentistry, College of Stomatology, Xi'an Jiaotong University, Xi'an, China.,Stomatological Center, Peking University Shenzhen Hospital, Shenzhen, China
| |
Collapse
|
125
|
Picton DM, Harling-Lee JD, Duffner SJ, Went SC, Morgan RD, Hinton JCD, Blower TR. A widespread family of WYL-domain transcriptional regulators co-localizes with diverse phage defence systems and islands. Nucleic Acids Res 2022; 50:5191-5207. [PMID: 35544231 PMCID: PMC9122601 DOI: 10.1093/nar/gkac334] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 03/28/2022] [Accepted: 04/21/2022] [Indexed: 01/21/2023] Open
Abstract
Bacteria are under constant assault by bacteriophages and other mobile genetic elements. As a result, bacteria have evolved a multitude of systems that protect from attack. Genes encoding bacterial defence mechanisms can be clustered into 'defence islands', providing a potentially synergistic level of protection against a wider range of assailants. However, there is a comparative paucity of information on how expression of these defence systems is controlled. Here, we functionally characterize a transcriptional regulator, BrxR, encoded within a recently described phage defence island from a multidrug resistant plasmid of the emerging pathogen Escherichia fergusonii. Using a combination of reporters and electrophoretic mobility shift assays, we discovered that BrxR acts as a repressor. We present the structure of BrxR to 2.15 Å, the first structure of this family of transcription factors, and pinpoint a likely binding site for ligands within the WYL-domain. Bioinformatic analyses demonstrated that BrxR-family homologues are widespread amongst bacteria. About half (48%) of identified BrxR homologues were co-localized with a diverse array of known phage defence systems, either alone or clustered into defence islands. BrxR is a novel regulator that reveals a common mechanism for controlling the expression of the bacterial phage defence arsenal.
Collapse
Affiliation(s)
- David M Picton
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Joshua D Harling-Lee
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK.,The Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush Campus, Edinburgh EH25 9RG, UK
| | - Samuel J Duffner
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Sam C Went
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | | | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| |
Collapse
|
126
|
Newly identified HMO-2011-type phages reveal genomic diversity and biogeographic distributions of this marine viral group. THE ISME JOURNAL 2022; 16:1363-1375. [PMID: 35022515 PMCID: PMC9038755 DOI: 10.1038/s41396-021-01183-7] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Revised: 12/17/2021] [Accepted: 12/23/2021] [Indexed: 12/13/2022]
Abstract
Viruses play critical roles in influencing biogeochemical cycles and adjusting host mortality, population structure, physiology, and evolution in the ocean. Marine viral communities are composed of numerous genetically distinct subfamily/genus-level viral groups. Among currently identified viral groups, the HMO-2011-type group is known to be dominant and broadly distributed. However, only four HMO-2011-type cultivated representatives that infect marine SAR116 and Roseobacter strains have been reported to date, and the genetic diversity, potential hosts, and ecology of this group remain poorly elucidated. Here, we present the genomes of seven HMO-2011-type phages that were isolated using four Roseobacter strains and one SAR11 strain, as well as additional 207 HMO-2011-type metagenomic viral genomes (MVGs) identified from various marine viromes. Phylogenomic and shared-gene analyses revealed that the HMO-2011-type group is a subfamily-level group comprising at least 10 discernible genus-level subgroups. Moreover, >2000 HMO-2011-type DNA polymerase sequences were identified, and the DNA polymerase phylogeny also revealed that the HMO-2011-type group contains diverse subgroups and is globally distributed. Metagenomic read-mapping results further showed that most HMO-2011-type phages are prevalent in global oceans and display distinct geographic distributions, with the distribution of most HMO-2011-type phages being associated with temperature. Lastly, we found that members in subgroup IX, represented by pelagiphage HTVC033P, were among the most abundant HMO-2011-type phages, which implies that SAR11 bacteria are crucial hosts for this viral group. In summary, our findings substantially expand current knowledge regarding the phylogenetic diversity, evolution, and distribution of HMO-2011-type phages, highlighting HMO-2011-type phages as major ecological agents that can infect certain key bacterial groups.
Collapse
|
127
|
Cao MM, Liu SY, Bi L, Chen SJ, Wu HY, Ge Y, Han B, Zhang LM, He JZ, Han LL. Distribution Characteristics of Soil Viruses Under Different Precipitation Gradients on the Qinghai-Tibet Plateau. Front Microbiol 2022; 13:848305. [PMID: 35464951 PMCID: PMC9022101 DOI: 10.3389/fmicb.2022.848305] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Accepted: 02/07/2022] [Indexed: 11/13/2022] Open
Abstract
Viruses are extremely abundant in the soil environment and have potential roles in impacting on microbial population, evolution, and nutrient biogeochemical cycles. However, how environment and climate changes affect soil viruses is still poorly understood. Here, a metagenomic approach was used to investigate the distribution, diversity, and potential biogeochemical impacts of DNA viruses in 12 grassland soils under three precipitation gradients on the Qinghai-Tibet Plateau, which is one of the most sensitive areas to climate change. A total of 557 viral operational taxonomic units were obtained, spanning 152 viral families from the 30 metagenomes. Both virus-like particles (VLPs) and microbial abundance increased with average annual precipitation. A significant positive correlation of VLP counts was observed with soil water content, total carbon, total nitrogen, soil organic matter, and total phosphorus. Among these biological and abiotic factors, SWC mainly contributed to the variability in VLP abundance. The order Caudovirales (70.1% of the identified viral order) was the predominant viral type in soils from the Qinghai-Tibet Plateau, with the Siphoviridae family being the most abundant. Remarkably, abundant auxiliary carbohydrate-active enzyme (CAZyme) genes represented by glycoside hydrolases were identified, indicating that soil viruses may play a potential role in the carbon cycle on the Qinghai-Tibet Plateau. There were more diverse hosts and abundant CAZyme genes in soil with moderate precipitation. Our study provides a strong evidence that changes in precipitation impact not only viral abundance and virus–host interactions in soil but also the viral functional potential, especially carbon cycling.
Collapse
Affiliation(s)
- Miao-Miao Cao
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Si-Yi Liu
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,The Zhongke-Ji'an Institute for Eco-Environmental Sciences, Ji'an, China
| | - Li Bi
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia
| | - Shu-Jun Chen
- Information Technology Center, Tsinghua University, Beijing, China
| | - Hua-Yong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, China
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| | - Bing Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Li-Mei Zhang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China.,University of Chinese Academy of Sciences, Beijing, China
| | - Ji-Zheng He
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, VIC, Australia.,Key Laboratory for Humid Subtropical Eco-Geographical Processes of the Ministry of Education, Fujian Normal University, Fuzhou, China
| | - Li-Li Han
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
128
|
Zell R, Groth M, Selinka L, Selinka HC. Picorna-Like Viruses of the Havel River, Germany. Front Microbiol 2022; 13:865287. [PMID: 35444619 PMCID: PMC9013969 DOI: 10.3389/fmicb.2022.865287] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2022] [Accepted: 03/14/2022] [Indexed: 11/13/2022] Open
Abstract
To improve the understanding of the virome diversity of riverine ecosystems in metropolitan areas, a metagenome analysis was performed with water collected in June 2018 from the river Havel in Berlin, Germany. After enrichment of virus particles and RNA extraction, paired-end Illumina sequencing was conducted and assignment to virus groups and families was performed. This paper focuses on picorna-like viruses, the most diverse and abundant group of viruses with impact on human, animal, and environmental health. Here, we describe altogether 166 viral sequences ranging in size from 1 to 11.5 kb. The 71 almost complete genomes are comprised of one candidate iflavirus, one picornavirus, two polycipiviruses, 27 marnaviruses, 27 dicistro-like viruses, and 13 untypeable viruses. Many partial picorna-like virus sequences up to 10.2 kb were also investigated. The sequences of the Havel picorna-like viruses represent genomes of seven of eight so far known Picornavirales families. Detection of numerous distantly related dicistroviruses suggests the existence of additional, yet unexplored virus groups with dicistronic genomes, including few viruses with unusual genome layout. Of special interest is a clade of dicistronic viruses with capsid protein-encoding sequences at the 5′-end of the genome. Also, monocistronic viruses with similarity of their polymerase and capsid proteins to those of dicistroviruses are interesting. A second protein with NTP-binding site present in the polyprotein of solinviviruses and related viruses needs further attention. The results underline the importance to study the viromes of fluvial ecosystems. So far acknowledged marnaviruses have been isolated from marine organisms. However, the present study and available sequence data suggest that rivers and limnic habitats are relevant ecosystems with circulation of marnaviruses as well as a plethora of unknown picorna-like viruses.
Collapse
Affiliation(s)
- Roland Zell
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Marco Groth
- CF DNA Sequencing, Leibniz Institute on Aging, Fritz Lipmann Institute, Jena, Germany
| | - Lukas Selinka
- Section of Experimental Virology, Institute for Medical Microbiology, Jena University Hospital, Friedrich Schiller University, Jena, Germany
| | - Hans-Christoph Selinka
- Section II 1.4 Microbiological Risks, Department of Environmental Hygiene, German Environment Agency, Berlin, Germany
| |
Collapse
|
129
|
Gao Y, Lu Y, Dungait JAJ, Liu J, Lin S, Jia J, Yu G. The "Regulator" Function of Viruses on Ecosystem Carbon Cycling in the Anthropocene. Front Public Health 2022; 10:858615. [PMID: 35425734 PMCID: PMC9001988 DOI: 10.3389/fpubh.2022.858615] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 03/07/2022] [Indexed: 01/18/2023] Open
Abstract
Viruses act as "regulators" of the global carbon cycle because they impact the material cycles and energy flows of food webs and the microbial loop. The average contribution of viruses to the Earth ecosystem carbon cycle is 8.6‰, of which its contribution to marine ecosystems (1.4‰) is less than its contribution to terrestrial (6.7‰) and freshwater (17.8‰) ecosystems. Over the past 2,000 years, anthropogenic activities and climate change have gradually altered the regulatory role of viruses in ecosystem carbon cycling processes. This has been particularly conspicuous over the past 200 years due to rapid industrialization and attendant population growth. The progressive acceleration of the spread and reproduction of viruses may subsequently accelerate the global C cycle.
Collapse
Affiliation(s)
- Yang Gao
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Yao Lu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Jennifer A J Dungait
- Geography, College of Life and Environmental Science, University of Exeter, Exeter, United Kingdom.,Carbon Management Centre, SRUC-Scotland's Rural College, Edinburgh, United Kingdom
| | - Jianbao Liu
- Key Laboratory of Alpine Ecology, Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, China.,Chinese Academy of Sciences (CAS) Center for Excellence in Tibetan Plateau Earth Sciences, Chinese Academy of Sciences, Beijing, China
| | - Shunhe Lin
- Department of Obstetrics and Gynecology, Fujian Maternity and Child Health Hospital, Fuzhou, China
| | - Junjie Jia
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| | - Guirui Yu
- Key Laboratory of Ecosystem Network Observation and Modeling, Institute of Geographic Sciences and Natural Resources Research, Chinese Academy of Sciences, Beijing, China.,College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
130
|
Buchholz HH, Bolaños LM, Bell AG, Michelsen ML, Allen MJ, Temperton B. A Novel and Ubiquitous Marine Methylophage Provides Insights into Viral-Host Coevolution and Possible Host-Range Expansion in Streamlined Marine Heterotrophic Bacteria. Appl Environ Microbiol 2022; 88:e0025522. [PMID: 35311512 PMCID: PMC9004378 DOI: 10.1128/aem.00255-22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 11/25/2022] Open
Abstract
The methylotrophic OM43 clade are Gammaproteobacteria that comprise some of the smallest free-living cells known and have highly streamlined genomes. OM43 represents an important microbial link between marine primary production and remineralization of carbon back to the atmosphere. Bacteriophages shape microbial communities and are major drivers of mortality and global marine biogeochemistry. Recent cultivation efforts have brought the first viruses infecting members of the OM43 clade into culture. Here, we characterize a novel myophage infecting OM43 called Melnitz. Melnitz was isolated independently from water samples from a subtropical ocean gyre (Sargasso Sea) and temperate coastal (Western English Channel) systems. Metagenomic recruitment from global ocean viromes confirmed that Melnitz is globally ubiquitous, congruent with patterns of host abundance. Bacteria with streamlined genomes such as OM43 and the globally dominant SAR11 clade use riboswitches as an efficient method to regulate metabolism. Melnitz encodes a two-piece tmRNA (ssrA), controlled by a glutamine riboswitch, providing evidence that riboswitch use also occurs for regulation during phage infection of streamlined heterotrophs. Virally encoded tRNAs and ssrA found in Melnitz were phylogenetically more closely related to those found within the alphaproteobacterial SAR11 clade and their associated myophages than those within their gammaproteobacterial hosts. This suggests the possibility of an ancestral host transition event between SAR11 and OM43. Melnitz and a related myophage that infects SAR11 were unable to infect hosts of the SAR11 and OM43, respectively, suggesting host transition rather than a broadening of host range. IMPORTANCE Isolation and cultivation of viruses are the foundations on which the mechanistic understanding of virus-host interactions and parameterization of bioinformatic tools for viral ecology are based. This study isolated and characterized the first myophage known to infect the OM43 clade, expanding our knowledge of this understudied group of microbes. The nearly identical genomes of four strains of Melnitz isolated from different marine provinces and the global abundance estimations from metagenomic data suggest that this viral population is globally ubiquitous. Genome analysis revealed several unusual features in Melnitz and related genomes recovered from viromes, such as a curli operon and virally encoded tmRNA controlled by a glutamine riboswitch, neither of which are found in the host. Further phylogenetic analysis of shared genes indicates that this group of viruses infecting the gammaproteobacterial OM43 shares a recent common ancestor with viruses infecting the abundant alphaproteobacterial SAR11 clade. Host ranges are affected by compatible cell surface receptors, successful circumvention of superinfection exclusion systems, and the presence of required accessory proteins, which typically limits phages to singular narrow groups of closely related bacterial hosts. This study provides intriguing evidence that for streamlined heterotrophic bacteria, virus-host transitioning may not be necessarily restricted to phylogenetically related hosts but is a function of shared physical and biochemical properties of the cell.
Collapse
Affiliation(s)
| | | | | | | | - Michael J. Allen
- University of Exeter, School of Biosciences, Exeter, UK
- Plymouth Marine Laboratory, Plymouth, UK
| | - Ben Temperton
- University of Exeter, School of Biosciences, Exeter, UK
| |
Collapse
|
131
|
Dynamic Behaviors of a Stochastic Eco-Epidemiological Model for Viral Infection in the Toxin-Producing Phytoplankton and Zooplankton System. MATHEMATICS 2022. [DOI: 10.3390/math10081218] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
It is well known that the evolution of natural populations is almost inevitably disturbed by various environmental factors. Various experiments have shown that the growth of phytoplankton might be affected by nutrient availability, water temperature, and light, while the development of zooplankton is more disturbed by the pH value of the seawater, water temperature, and water movement. However, it is not clear how these environmental fluctuations affect the dynamical behavior of the phytoplankton and zooplankton system. In this paper, a stochastic eco-epidemiological model for viral infection in the toxin-producing phytoplankton and zooplankton system is proposed. Firstly, the existence and uniqueness of globally positive solutions for this model is shown. Secondly, the stochastic boundedness of solutions for the model is proved. Moreover, sufficient conditions for the extinction and persistence in the mean for the phytoplankton and zooplankton are obtained by constructing appropriate stochastic Lyapunov functions and using analytical techniques. Numerical simulations are carried out to demonstrate different dynamical behaviors including coexistence, extinction of the whole plankton system, partial persistence and extinction, and their corresponding probability density curves.
Collapse
|
132
|
Nair A, Ghugare GS, Khairnar K. An Appraisal of Bacteriophage Isolation Techniques from Environment. MICROBIAL ECOLOGY 2022; 83:519-535. [PMID: 34136953 DOI: 10.1007/s00248-021-01782-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2021] [Accepted: 05/23/2021] [Indexed: 06/12/2023]
Abstract
Researchers have recently renewed interest in bacteriophages. Being valuable models for the study of eukaryotic viruses, and more importantly, natural killers of bacteria, bacteriophages are being tapped for their potential role in multiple applications. Bacteriophages are also being increasingly sought for bacteriophage therapy due to rising antimicrobial resistance among pathogens. Reports show that there is an increasing trend in therapeutic application of natural bacteriophages, genetically engineered bacteriophages, and bacteriophage-encoded products as antimicrobial agents. In view of these applications, the isolation and characterization of bacteriophages from the environment has caught attention. In this review, various methods for isolation of bacteriophages from environmental sources like water, soil, and air are comprehensively described. The review also draws attention towards a handful on-field bacteriophage isolation techniques and the need for their further rapid development.
Collapse
Affiliation(s)
- Aparna Nair
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Gaurav S Ghugare
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India
| | - Krishna Khairnar
- Environmental Virology Cell, Council of Scientific and Industrial Research-National Environmental Engineering Research Institute, Nehru Marg, Nagpur, 440020, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
| |
Collapse
|
133
|
Liu J, Chen L, Zhang X. Current research scenario for biological effect of exogenous factors on microcystin synthesis. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:26190-26201. [PMID: 35089514 DOI: 10.1007/s11356-021-18256-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Accepted: 12/17/2021] [Indexed: 06/14/2023]
Abstract
In natural water bodies, numerous cyanobacteria have the potential to intracellularly synthesize cyanotoxins, among which microcystin (MC) is the ubiquitous toxin that has been well known to be carcinogenic for hepatocytes. MC synthesis is a complex process, which involves about 10 non-ribosomal proteins encoded by the mcy gene cluster. In the natural environments containing MC-producing cyanobacteria, a variety of external factors can affect the generation of MC by mediating the expression of synthesizing genes. These factors can be generally divided into biotic factors (e.g., daphnia, virioplankton, MC-degrading bacteria, algicidal bacteria) and abiotic factors (e.g., nutrients, physical factors, chemicals, phytochemicals, essential trace elements), which are of great significance to the effective reduction of MC. Furthermore, comparison of MC-synthesizing genes in different cyanobacterial strains was performed, and the related factors affecting MC synthesis were summarized. Then, the problems and gaps regarding the biological effect of exogenous factors on microcystin synthesis were discussed. This review article may provide new ideas for addressing the challenges and bottlenecks of MC management.
Collapse
Affiliation(s)
- Jiahui Liu
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Lv Chen
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China
| | - Xian Zhang
- Department of Occupational and Environmental Health, Xiangya School of Public Health, Central South University, Changsha, China.
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Central South University, Changsha, China.
| |
Collapse
|
134
|
Zheng H, Liu B, Xu Y, Zhang Z, Man H, Liu J, Chen F. An Inducible Microbacterium Prophage vB_MoxS-R1 Represents a Novel Lineage of Siphovirus. Viruses 2022; 14:v14040731. [PMID: 35458461 PMCID: PMC9030533 DOI: 10.3390/v14040731] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/25/2022] [Accepted: 03/28/2022] [Indexed: 12/02/2022] Open
Abstract
Lytic and lysogenic infections are the main strategies used by viruses to interact with microbial hosts. The genetic information of prophages provides insights into the nature of phages and their potential influences on hosts. Here, the siphovirus vB_MoxS-R1 was induced from a Microbacterium strain isolated from an estuarine Synechococcus culture. vB_MoxS-R1 has a high replication capability, with an estimated burst size of 2000 virions per cell. vB_MoxS-R1 represents a novel phage genus-based genomic analysis. Six transcriptional regulator (TR) genes were predicted in the vB_MoxS-R1 genome. Four of these TR genes are involved in stress responses, virulence and amino acid transportation in bacteria, suggesting that they may play roles in regulating the host cell metabolism in response to external environmental changes. A glycerophosphodiester phosphodiesterase gene related to phosphorus acquisition was also identified in the vB_MoxS-R1 genome. The presence of six TR genes and the phosphorus-acquisition gene suggests that prophage vB_MoxS-R1 has the potential to influence survival and adaptation of its host during lysogeny. Possession of four endonuclease genes in the prophage genome suggests that vB_MoxS-R1 is likely involved in DNA recombination or gene conversion and further influences host evolution.
Collapse
Affiliation(s)
- Hongrui Zheng
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
| | - Binbin Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
| | - Yongle Xu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
- Fujian Key Laboratory of Marine Carbon Sequestration, Xiamen University, Xiamen 361000, China
- Correspondence: (Y.X.); (J.L.)
| | - Zefeng Zhang
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
| | - Hongcong Man
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
| | - Jihua Liu
- Institute of Marine Science and Technology, Shandong University, Qingdao 266000, China; (H.Z.); (B.L.); (Z.Z.); (H.M.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Joint Laboratory for Ocean Research and Education at Dalhousie University, Shandong University and Xiamen University, Qingdao 266237, China
- Correspondence: (Y.X.); (J.L.)
| | - Feng Chen
- Institute of Marine and Environmental Technology, University of Maryland Center for Environmental Science, Baltimore, MD 21202, USA;
| |
Collapse
|
135
|
Abstract
Temperate phages (prophages) are ubiquitous in nature and persist as dormant components of host cells (lysogenic stage) before activating and lysing the host (lytic stage). Actively replicating prophages contribute to central community processes, such as enabling bacterial virulence, manipulating biogeochemical cycling, and driving microbial community diversification. Recent advances in sequencing technology have allowed for the identification and characterization of diverse phages, yet no approaches currently exist for identifying if a prophage has activated. Here, we present PropagAtE (Prophage Activity Estimator), an automated software tool for estimating if a prophage is in the lytic or lysogenic stage of infection. PropagAtE uses statistical analyses of prophage-to-host read coverage ratios to decipher actively replicating prophages, irrespective of whether prophages were induced or spontaneously activated. We demonstrate that PropagAtE is fast, accurate, and sensitive, regardless of sequencing depth. Application of PropagAtE to prophages from 348 complex metagenomes from human gut, murine gut, and soil environments identified distinct spatial and temporal prophage activation signatures, with the highest proportion of active prophages in murine gut samples. In infants treated with antibiotics or infants without treatment, we identified active prophage populations correlated with specific treatment groups. Within time series samples from the human gut, 11 prophage populations, some encoding the sulfur metabolism gene cysH or a rhuM-like virulence factor, were consistently present over time but not active. Overall, PropagAtE will facilitate accurate representations of viruses in microbiomes by associating prophages with their active roles in shaping microbial communities in nature. IMPORTANCE Viruses that infect bacteria are key components of microbiomes and ecosystems. They can kill and manipulate microorganisms, drive planetary-scale processes and biogeochemical cycling, and influence the structures of entire food networks. Prophages are viruses that can exist in a dormant state within the genome of their host (lysogenic stage) before activating in order to replicate and kill the host (lytic stage). Recent advances have allowed for the identification of diverse viruses in nature, but no approaches exist for characterizing prophages and their stages of infection (prophage activity). We develop and benchmark an automated approach, PropagAtE, to identify the stages of infection of prophages from genomic data. We provide evidence that active prophages vary in identity and abundance across multiple environments and scales. Our approach will enable accurate and unbiased analyses of viruses in microbiomes and ecosystems.
Collapse
|
136
|
Li Y, Bao Q, Yang S, Yang M, Mao C. Bionanoparticles in cancer imaging, diagnosis, and treatment. VIEW 2022. [DOI: 10.1002/viw.20200027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Affiliation(s)
- Yan Li
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Qing Bao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
| | - Shuxu Yang
- Department of Neurosurgery Sir Run Run Shaw Hospital School of Medicine Zhejiang University Hangzhou Zhejiang China
| | - Mingying Yang
- Institute of Applied Bioresource Research College of Animal Science Zhejiang University Hangzhou Zhejiang China
| | - Chuanbin Mao
- School of Materials Science and Engineering Zhejiang University Hangzhou Zhejiang China
- Department of Chemistry and Biochemistry Stephenson Life Science Research Center University of Oklahoma Norman Oklahoma USA
| |
Collapse
|
137
|
Monitoring coliphages to reduce waterborne infectious disease transmission in the One Water framework. Int J Hyg Environ Health 2022; 240:113921. [DOI: 10.1016/j.ijheh.2022.113921] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/31/2021] [Accepted: 01/05/2022] [Indexed: 02/07/2023]
|
138
|
Marois C, Girard C, Klanten Y, Vincent WF, Culley AI, Antoniades D. Local Habitat Filtering Shapes Microbial Community Structure in Four Closely Spaced Lakes in the High Arctic. Front Microbiol 2022; 13:779505. [PMID: 35222324 PMCID: PMC8873593 DOI: 10.3389/fmicb.2022.779505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2021] [Accepted: 01/20/2022] [Indexed: 11/13/2022] Open
Abstract
Arctic lakes are experiencing increasingly shorter periods of ice cover due to accelerated warming at northern high latitudes. Given the control of ice cover thickness and duration over many limnological processes, these changes will have pervasive effects. However, due to their remote and extreme locations even first-order data on lake ecology is lacking for many ecosystems. The aim of this study was to characterize and compare the microbial communities of four closely spaced lakes in Stuckberry Valley (northern Ellesmere Island, Canadian Arctic Archipelago), in the coastal margin zone of the Last Ice Area, that differed in their physicochemical, morphological and catchment characteristics. We performed high-throughput amplicon sequencing of the V4 16S rRNA gene to provide inter- and intra-lake comparisons. Two deep (>25 m) and mostly oxygenated lakes showed highly similar community assemblages that were distinct from those of two shallower lakes (<10 m) with anoxic bottom waters. Proteobacteria, Verrucomicrobia, and Planctomycetes were the major phyla present in the four water bodies. One deep lake contained elevated proportions of Cyanobacteria and Thaumarchaeota that distinguished it from the others, while the shallow lakes had abundant communities of predatory bacteria, as well as microbes in their bottom waters that contribute to sulfur and methane cycles. Despite their proximity, our data suggest that local habitat filtering is the primary determinant of microbial diversity in these systems. This study provides the first detailed examination of the microbial assemblages of the Stuckberry lakes system, resulting in new insights into the microbial ecology of the High Arctic.
Collapse
Affiliation(s)
- Catherine Marois
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, QC, Canada
- Centre d’Études Nordiques (CEN), Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Catherine Girard
- Centre d’Études Nordiques (CEN), Université Laval, Québec, QC, Canada
- Département des Sciences Fondamentales, Université du Québec à Chicoutimi, Chicoutimi, QC, Canada
| | - Yohanna Klanten
- Centre d’Études Nordiques (CEN), Université Laval, Québec, QC, Canada
- Département de Géographie, Université Laval, Québec, QC, Canada
| | - Warwick F. Vincent
- Centre d’Études Nordiques (CEN), Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative des Systèmes (IBIS), Université Laval, Québec, QC, Canada
- Département de Biologie, Université Laval, Québec, QC, Canada
| | - Alexander I. Culley
- Département de Biochimie, Microbiologie et Bio-Informatique, Université Laval, Québec, QC, Canada
- Centre d’Études Nordiques (CEN), Université Laval, Québec, QC, Canada
- Institut de Biologie Intégrative des Systèmes (IBIS), Université Laval, Québec, QC, Canada
| | - Dermot Antoniades
- Centre d’Études Nordiques (CEN), Université Laval, Québec, QC, Canada
- Département de Géographie, Université Laval, Québec, QC, Canada
- *Correspondence: Dermot Antoniades,
| |
Collapse
|
139
|
Abstract
Intestinal microbiota, dominated by bacteria, plays an important role in the occurrence and the development of alcohol-associated liver disease (ALD), which is one of the most common liver diseases around the world. With sufficient studies focusing on the gut bacterial community, chronic alcohol consumption is now known as a key factor that alters the composition of gut bacterial community, increases intestinal permeability, causes intestinal dysfunction, induces bacterial translocation, and exacerbates the process of ALD via gut-liver axis. However, gut non-bacterial communities including fungi, viruses, and archaea, which may also participate in the disease, has received little attention relative to the gut bacterial community. This paper will systematically collect the latest literatures reporting non-bacterial communities in mammalian health and disease, and review their mechanisms in promoting the development of ALD including CLEC7A pathway, Candidalysin (a peptide toxin secreted by Candida albicans), metabolites, and other chemical substances secreted or regulated by gut commensal mycobiome, virome, and archaeome, hoping to bring novel insights on our current knowledge of ALD.
Collapse
Affiliation(s)
- Wenkang Gao
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yixin Zhu
- Department of Medicine, University of California San Diego, La Jolla, California, USA
| | - Jin Ye
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Huikuan Chu
- Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China,CONTACT Huikuan Chu Division of Gastroenterology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Avenue, Wuhan, 430022, China
| |
Collapse
|
140
|
Retel C, Kowallik V, Becks L, Feulner PGD. Strong Selection and High Mutation Supply Characterize Experimental Chlorovirus Evolution. Virus Evol 2022; 8:veac003. [PMID: 35169490 PMCID: PMC8838748 DOI: 10.1093/ve/veac003] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2021] [Revised: 01/14/2022] [Accepted: 01/25/2022] [Indexed: 11/24/2022] Open
Abstract
Characterizing how viruses evolve expands our understanding of the underlying fundamental processes, such as mutation, selection and drift. One group of viruses whose evolution has not yet been extensively studied is the Phycodnaviridae, a globally abundant family of aquatic large double-stranded (ds) DNA viruses. Here we studied the evolutionary change of Paramecium bursaria chlorella virus 1 during experimental coevolution with its algal host. We used pooled genome sequencing of six independently evolved populations to characterize genomic change over five time points. Across six experimental replicates involving either strong or weak demographic fluctuations, we found single nucleotide polymorphisms (SNPs) at sixty-seven sites. The occurrence of genetic variants was highly repeatable, with just two of the SNPs found in only a single experimental replicate. Three genes A122/123R, A140/145R and A540L showed an excess of variable sites, providing new information about potential targets of selection during Chlorella–Chlorovirus coevolution. Our data indicated that the studied populations were not mutation-limited and experienced strong positive selection. Our investigation highlighted relevant processes governing the evolution of aquatic large dsDNA viruses, which ultimately contributes to a better understanding of the functioning of natural aquatic ecosystems.
Collapse
Affiliation(s)
- Cas Retel
- Department of Fish Ecology and Evolution, Center for Ecology, Evolution and Bio-geochemistry, EAWAG, Swiss Federal Institute of Aquatic Science and Technology, Seestrasse 79, Kastanienbaum 6047, Switzerland
- Division of Aquatic Ecology, Institute of Ecology and Evolution, University of Bern, Baltzerstrasse 6, Bern 3012, Switzerland
| | | | | | | |
Collapse
|
141
|
Chen CW, Yuan L, Zhang YS, Mgomi FC, Wang Y, Yang ZQ, Jiao XA. Comparision of biological and genomic characteristics of five virulent bacteriophages against Enterobacter hormaechei. Microb Pathog 2022; 162:105375. [PMID: 34974119 DOI: 10.1016/j.micpath.2021.105375] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2021] [Revised: 12/13/2021] [Accepted: 12/28/2021] [Indexed: 11/24/2022]
Abstract
Enterobacter hormaechei is a zoonotic bacteria that may cause respiratory diseases in animals and neonatal sepsis in humans. Bacteriophages are increasingly considered as potential biocontrol agents to control pathogens in the food industry. In this study, five E. hormaechei virulent phages, named as Ehp-YZU08, Ehp-YZU10, Ehp-YZU9-1, Ehp-YZU9-2 and Ehp-YZU9-3, were isolated from sewage in China and analyzed for their biological and whole-genome characteristics, and a comparative genomic analysis was performed to study the functional genes and phylogenetic evolution of phages. The results showed that four of the phage strains belong to the Podoviridae family and one belongs to the Myoviridae family. The burst sizes were 70-283 PFU/cell after a latent period of 5-40 min. Phages were able to survive in a pH range of 5-10 and resist temperatures up to 60 °C for 60 min. The sequencing results showed that the full length of the genomes of the five phages ranged from 39,502 to 173,418 bp. Each phage contained multiple genes related to phage replication, and genes related to bacterial virulence or drug resistance were not found. The five phages belonged to three different groups by a construction of a phylogenetic tree, and the significant genetic evolutionary distance from each E. hormaechei phage was observed. The inhibition assay showed that all five phages could completely inhibit the growth of E. hormaechei at 37 °C within 8 h, suggesting that the phages in this study have great potential for the development of biocontrol agents against E. hormaechei in the food industry.
Collapse
Affiliation(s)
- Cao-Wei Chen
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Lei Yuan
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Yuan-Song Zhang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Fedrick C Mgomi
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Yang Wang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China
| | - Zhen-Quan Yang
- School of Food Science and Technology, Yangzhou University, Yangzhou, Jiangsu, 225127, PR China; Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009, PR China.
| | - Xin-An Jiao
- Jiangsu Key Laboratory of Zoonoses, Yangzhou, Jiangsu, 225009, PR China
| |
Collapse
|
142
|
Zang L, Liu Y, Song X, Cai L, Liu K, Luo T, Zhang R. Unique T4-like phages in high-altitude lakes above 4500 m on the Tibetan Plateau. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149649. [PMID: 34428653 DOI: 10.1016/j.scitotenv.2021.149649] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/11/2021] [Revised: 07/24/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Viruses are the most abundant biological entities in the biosphere; however, little is known about viral ecology in high altitude lakes. Here, we characterized viruses from 13 lakes, nine of which located ≥4500 m above sea level, on the Tibetan Plateau, the highest plateau on Earth. The abundance of virus-like particle (VLP) in Tibetan lakes ranged from 4.8 ± 0.2 × 105 VLPs mL-1 to 6.0 ± 0.2 × 107 VLPs mL-1 and the virus-to-bacterium ratio was in the lower range of values reported for other lakes. The viral population size was positively correlated with turbidity and negatively correlated with particulate organic carbon concentration. Highly diverse VLP morphologies, including large (~300 nm) morphotypes, were observed. Phylogenetic analysis of T4-like bacteriophages based on major capsid gene (g23) identified a novel viral group, which were detected in abundance in hyposaline and mesosaline Tibetan lakes. Adaptation to lake evolution, water source (glacier-fed or non-glacier-fed) and environmental conditions (e.g., salinity, phosphorus concentration and productivity) are likely responsible for the variation in T4-like myovirus community composition in contrasting Tibetan lakes. This first investigation of viruses in high-altitude alpine lakes above 4500 m could contribute to our understanding of viral ecology in global alpine lakes.
Collapse
Affiliation(s)
- Lin Zang
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; University of Chinese Academy of Science, Beijing 100101, China
| | - Yongqin Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China; Center for the Pan-Third Pole Environment, Lanzhou University, Lanzhou 730000, China; University of Chinese Academy of Science, Beijing 100101, China.
| | - Xuanying Song
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Lanlan Cai
- Department of Ocean Science, The Hong Kong University of Science and Technology, Hong Kong, China; Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519080, China
| | - Keshao Liu
- State Key Laboratory of Tibetan Plateau Earth System, Resources and Environment (TPESRE), Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing 100101, China
| | - Tingwei Luo
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China
| | - Rui Zhang
- State Key Laboratory of Marine Environmental Science, Fujian Key Laboratory of Marine Carbon Sequestration, College of Ocean and Earth Sciences, Xiamen University, Xiamen 361102, Fujian, China.
| |
Collapse
|
143
|
Fillinger L, Hürkamp K, Stumpp C, Weber N, Forster D, Hausmann B, Schultz L, Griebler C. Spatial and Annual Variation in Microbial Abundance, Community Composition, and Diversity Associated With Alpine Surface Snow. Front Microbiol 2021; 12:781904. [PMID: 34912321 PMCID: PMC8667604 DOI: 10.3389/fmicb.2021.781904] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2021] [Accepted: 11/08/2021] [Indexed: 01/04/2023] Open
Abstract
Understanding microbial community dynamics in the alpine cryosphere is an important step toward assessing climate change impacts on these fragile ecosystems and meltwater-fed environments downstream. In this study, we analyzed microbial community composition, variation in community alpha and beta diversity, and the number of prokaryotic cells and virus-like particles (VLP) in seasonal snowpack from two consecutive years at three high altitude mountain summits along a longitudinal transect across the European Alps. Numbers of prokaryotic cells and VLP both ranged around 104 and 105 per mL of snow meltwater on average, with variation generally within one order of magnitude between sites and years. VLP-to-prokaryotic cell ratios spanned two orders of magnitude, with median values close to 1, and little variation between sites and years in the majority of cases. Estimates of microbial community alpha diversity inferred from Hill numbers revealed low contributions of common and abundant microbial taxa to the total taxon richness, and thus low community evenness. Similar to prokaryotic cell and VLP numbers, differences in alpha diversity between years and sites were generally relatively modest. In contrast, community composition displayed strong variation between sites and especially between years. Analyses of taxonomic and phylogenetic community composition showed that differences between sites within years were mainly characterized by changes in abundances of microbial taxa from similar phylogenetic clades, whereas shifts between years were due to significant phylogenetic turnover. Our findings on the spatiotemporal dynamics and magnitude of variation of microbial abundances, community diversity, and composition in surface snow may help define baseline levels to assess future impacts of climate change on the alpine cryosphere.
Collapse
Affiliation(s)
- Lucas Fillinger
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Kerstin Hürkamp
- Institute of Radiation Medicine, Helmholtz Zentrum München, Neuherberg, Germany
| | - Christine Stumpp
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Nina Weber
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Dominik Forster
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| | - Bela Hausmann
- Joint Microbiome Facility of the Medical University of Vienna and the University of Vienna, Vienna, Austria
- Department of Laboratory Medicine, Medical University of Vienna, Vienna, Austria
| | - Lotta Schultz
- Department of Functional and Evolutionary Ecology, University of Vienna, Vienna, Austria
| | - Christian Griebler
- Institute of Groundwater Ecology, Helmholtz Zentrum München, Neuherberg, Germany
| |
Collapse
|
144
|
Matharu RK, Cheong YK, Ren G, Edirisinghe M, Ciric L. Exploiting the antiviral potential of intermetallic nanoparticles. EMERGENT MATERIALS 2021; 5:1251-1260. [PMID: 34778706 PMCID: PMC8577177 DOI: 10.1007/s42247-021-00306-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/14/2021] [Accepted: 09/08/2021] [Indexed: 06/13/2023]
Abstract
Viral pandemic outbreaks cause a significant burden on global health as well as healthcare expenditure. The use of antiviral agents not only reduces the spread of viral pathogens but also diminishes the likelihood of them causing infection. The antiviral properties of novel copper-silver and copper-zinc intermetallic nanoparticles against Escherichia coli bacteriophage MS2 (RNA virus) and Escherichia coli bacteriophage T4 (DNA virus) are presented. The intermetallic nanoparticles were spherical in shape and were between 90 and 120 nm. Antiviral activity was assessed at concentrations ranging from 0.05 to 2.0 wt/v% for 3 and 24 h using DNA and RNA virus model organisms. Both types of nanoparticles demonstrated strong potency towards RNA viruses (> 89% viral reduction), whilst copper-silver nanoparticles were slightly more toxic towards DNA viruses when compared to copper-zinc nanoparticles. Both nanoparticles were then incorporated into polymeric fibres (carrier) to investigate their antiviral effectiveness when composited into polymeric matrices. Fibres containing copper-silver nanoparticles exhibited favourable antiviral properties, with a viral reduction of 75% after 3 h of exposure. The excellent antiviral properties of the intermetallic nanoparticles reported in this study against both types of viruses together with their unique material properties can make them significant alternatives to conventional antiviral therapies and decontamination agents.
Collapse
Affiliation(s)
- Rupy Kaur Matharu
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE UK
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London, WC1E 6BT UK
| | - Yuen-Ki Cheong
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield, AL10 9AB UK
| | - Guogang Ren
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield, AL10 9AB UK
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, Torrington Place, London, WC1E 7JE UK
| | - Lena Ciric
- Department of Civil, Environmental and Geomatic Engineering, University College London, Gower Street, London, WC1E 6BT UK
| |
Collapse
|
145
|
Picton DM, Luyten YA, Morgan RD, Nelson A, Smith DL, Dryden DTF, Hinton JCD, Blower TR. The phage defence island of a multidrug resistant plasmid uses both BREX and type IV restriction for complementary protection from viruses. Nucleic Acids Res 2021; 49:11257-11273. [PMID: 34657954 PMCID: PMC8565348 DOI: 10.1093/nar/gkab906] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 09/20/2021] [Accepted: 09/23/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteria have evolved a multitude of systems to prevent invasion by bacteriophages and other mobile genetic elements. Comparative genomics suggests that genes encoding bacterial defence mechanisms are often clustered in 'defence islands', providing a concerted level of protection against a wider range of attackers. However, there is a comparative paucity of information on functional interplay between multiple defence systems. Here, we have functionally characterised a defence island from a multidrug resistant plasmid of the emerging pathogen Escherichia fergusonii. Using a suite of thirty environmentally-isolated coliphages, we demonstrate multi-layered and robust phage protection provided by a plasmid-encoded defence island that expresses both a type I BREX system and the novel GmrSD-family type IV DNA modification-dependent restriction enzyme, BrxU. We present the structure of BrxU to 2.12 Å, the first structure of the GmrSD family of enzymes, and show that BrxU can utilise all common nucleotides and a wide selection of metals to cleave a range of modified DNAs. Additionally, BrxU undergoes a multi-step reaction cycle instigated by an unexpected ATP-dependent shift from an intertwined dimer to monomers. This direct evidence that bacterial defence islands can mediate complementary layers of phage protection enhances our understanding of the ever-expanding nature of phage-bacterial interactions.
Collapse
Affiliation(s)
- David M Picton
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Yvette A Luyten
- New England Biolabs, 240 County Road, Ipswich, MA 01938, USA
| | | | - Andrew Nelson
- Department of Applied Sciences, University of Northumbria, Newcastle Upon Tyne NE1 8ST, UK
| | - Darren L Smith
- Department of Applied Sciences, University of Northumbria, Newcastle Upon Tyne NE1 8ST, UK
| | - David T F Dryden
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| | - Jay C D Hinton
- Institute of Infection, Veterinary and Ecological Sciences, University of Liverpool, Liverpool L69 7ZB, UK
| | - Tim R Blower
- Department of Biosciences, Durham University, Stockton Road, Durham DH1 3LE, UK
| |
Collapse
|
146
|
Genomic Characterization of Two Novel RCA Phages Reveals New Insights into the Diversity and Evolution of Marine Viruses. Microbiol Spectr 2021; 9:e0123921. [PMID: 34668749 PMCID: PMC8528129 DOI: 10.1128/spectrum.01239-21] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023] Open
Abstract
Viruses are the most abundant living entities in marine ecosystems, playing critical roles in altering the structure and function of microbial communities and driving ocean biogeochemistry. Phages that infect Roseobacter clade-affiliated (RCA) cluster strains are an important component of marine viral communities. Here, we characterize the genome sequences of two new RCA phages, CRP-9 and CRP-13, which infect RCA strain FZCC0023. Genomic analysis reveals that CRP-9 and CRP-13 represent a novel evolutionary lineage of marine phages. They both have a DNA replication module most similar to those in Cobavirus group phages. In contrast, their morphogenesis and packaging modules are distinct from those in cobaviruses but homologous to those in HMO-2011-type phages. The genomic architecture of CRP-9 and CRP-13 suggests a genomic recombination event between distinct phage groups. Metagenomic data sets were examined for metagenome-assembled viral genomes (MAVGs) with similar recombinant genome architectures. Fifteen CRP-9-type MAVGs were identified from marine viromes. Additionally, 158 MAVGs were identified containing HMO-2011-type morphogenesis and packaging modules with other types of DNA replication genes, providing more evidence that recombination between different phage groups is a major driver of phage evolution. Altogether, this study significantly expands the understanding of diversity and evolution of marine roseophages. Meanwhile, the analysis of these novel RCA phages and MAVGs highlights the critical role of recombination in shaping phage diversity. These phage sequences are valuable resources for inferring the evolutionary connection of distinct phage groups. IMPORTANCE Diversity and evolution of phages that infect the relatively slow-growing but dominant Roseobacter lineages are largely unknown. In this study, RCA phages CRP-9 and CRP-13 have been isolated on a Roseobacter RCA strain and shown to have a unique genomic architecture, which appears to be the result of a recombination event. CRP-9 and CRP-13 have a DNA replication module most similar to those in Cobavirus group phages and morphogenesis and packaging modules most similar to those in HMO-2011-type phages. HMO-2011-type morphogenesis and packaging modules are found in combination with distinct types of DNA replication genes, suggesting compatibility with various DNA replication modules. Altogether, this study contributes toward a better understanding of marine viral diversity and evolution.
Collapse
|
147
|
Viral Characteristics of the Warm Atlantic and Cold Arctic Water Masses in the Nordic Seas. Appl Environ Microbiol 2021; 87:e0116021. [PMID: 34469192 DOI: 10.1128/aem.01160-21] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
Nordic Seas are the subarctic seas connecting the Arctic Ocean and North Atlantic Ocean with complex water masses, experiencing an abrupt climate change. Though knowledge of the marine virosphere has expanded rapidly, the diversity of viruses and their relationships with host cells and water masses in the Nordic Seas remain to be fully revealed. Here, we establish the Nordic Sea DNA virome (NSV) data set of 55,315 viral contigs including 1,478 unique viral populations from seven stations influenced by both the warm Atlantic and cold Arctic water masses. Caudovirales dominated in the seven NSVs, especially in the warm Atlantic waters. The major giant nucleocytoplasmic large DNA viruses (NCLDVs) contributed a significant proportion of the classified viral contigs in the NSVs (32.2%), especially in the cold Arctic waters (44.9%). The distribution patterns of Caudovirales and NCLDVs were a reflection of the community structure of their hosts in the corresponding water masses and currents. Latitude, pH, and flow speed were found to be key factors influencing the microbial communities and coinfluencing the variation of viral communities. Network analysis illustrated the tight coupling between the variation of viral communities and microbial communities in the Nordic Seas. This study suggests a probable linkage between viromes, host cells, and surface water masses from both the cool Arctic and warm Atlantic Oceans. IMPORTANCE This is a systematic study of Nordic Sea viromes using metagenomic analysis. The viral diversity, community structure, and their relationships with host cells and the complex water masses from both the cool Arctic and the warm Atlantic oceans were illustrated. The NCLDVs and Caudovirales are proposed as the viral characteristics of the cold Arctic and warm Atlantic waters, respectively. This study provides an important background for the viromes in the subarctic seas connecting the Arctic Ocean and North Atlantic Ocean and sheds light on their responses to abrupt climate change in the future.
Collapse
|
148
|
Sugimoto R, Nishimura L, Nguyen PT, Ito J, Parrish NF, Mori H, Kurokawa K, Nakaoka H, Inoue I. Comprehensive discovery of CRISPR-targeted terminally redundant sequences in the human gut metagenome: Viruses, plasmids, and more. PLoS Comput Biol 2021; 17:e1009428. [PMID: 34673779 PMCID: PMC8530359 DOI: 10.1371/journal.pcbi.1009428] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Accepted: 09/07/2021] [Indexed: 12/12/2022] Open
Abstract
Viruses are the most numerous biological entity, existing in all environments and infecting all cellular organisms. Compared with cellular life, the evolution and origin of viruses are poorly understood; viruses are enormously diverse, and most lack sequence similarity to cellular genes. To uncover viral sequences without relying on either reference viral sequences from databases or marker genes that characterize specific viral taxa, we developed an analysis pipeline for virus inference based on clustered regularly interspaced short palindromic repeats (CRISPR). CRISPR is a prokaryotic nucleic acid restriction system that stores the memory of previous exposure. Our protocol can infer CRISPR-targeted sequences, including viruses, plasmids, and previously uncharacterized elements, and predict their hosts using unassembled short-read metagenomic sequencing data. By analyzing human gut metagenomic data, we extracted 11,391 terminally redundant CRISPR-targeted sequences, which are likely complete circular genomes. The sequences included 2,154 tailed-phage genomes, together with 257 complete crAssphage genomes, 11 genomes larger than 200 kilobases, 766 genomes of Microviridae species, 56 genomes of Inoviridae species, and 95 previously uncharacterized circular small genomes that have no reliably predicted protein-coding gene. We predicted the host(s) of approximately 70% of the discovered genomes at the taxonomic level of phylum by linking protospacers to taxonomically assigned CRISPR direct repeats. These results demonstrate that our protocol is efficient for de novo inference of CRISPR-targeted sequences and their host prediction. The evolution and origins of viruses are long-standing questions in the field of biology. Viral genomes provide fundamental information to infer the evolution and origin of viruses. However, viruses are extraordinarily diverse, and there are no single genes shared across entire species. Several methods were developed to collect viral genomes from metagenome. To infer viral genomes from metagenome, previous approaches relied on reference viral genomes. We thought that such reference-based methods may not be sufficient to uncover diverse viral genomes; therefore, we developed a pipeline that utilizes CRISPR, a prokaryotic adaptive immunological memory. Using this pipeline, we discovered more than 10,000 positively complete CRISPR-targeted genomes from human gut metagenome datasets. A substantial portion of the discovered genomes encoded various types of capsid proteins, supporting the contention that these sequences are viral. Although the majority of these capsid-protein-coding sequences were previously characterized, we notably discovered Inoviridae genomes that were previously difficult to infer as being viral. Furthermore, some of the remaining unclassified sequences without a detectable capsid-protein-encoding gene had a notably low protein-coding ratio. Overall, our pipeline successfully discovered viruses and previously uncharacterized presumably mobile genetic elements targeted by CRISPR.
Collapse
Affiliation(s)
- Ryota Sugimoto
- Human Genetics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
| | - Luca Nishimura
- Human Genetics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
| | - Phuong Thanh Nguyen
- Human Genetics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- The Graduate University for Advanced Studies, SOKENDAI, Mishima, Shizuoka, Japan
| | - Jumpei Ito
- Division of Systems Virology, Department of Infectious Disease Control, International Research Center for Infectious Diseases, Institute of Medical Science, The University of Tokyo, Minato-ku, Tokyo, Japan
| | - Nicholas F. Parrish
- Genome Immunobiology RIKEN Hakubi Research Team, Center for Integrative Medical Sciences, RIKEN, Tsurumi-ku, Yokohama, Kanagawa, Japan
| | - Hiroshi Mori
- Genome Diversity Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
| | - Ken Kurokawa
- Genome Evolution Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
| | - Hirofumi Nakaoka
- Department of Cancer Genome Research, Sasaki Institute, Chiyoda-ku, Tokyo, Japan
| | - Ituro Inoue
- Human Genetics Laboratory, National Institute of Genetics, Research Organization of Information and Systems, Mishima, Shizuoka, Japan
- * E-mail:
| |
Collapse
|
149
|
Hussain FA, Dubert J, Elsherbini J, Murphy M, VanInsberghe D, Arevalo P, Kauffman K, Rodino-Janeiro BK, Gavin H, Gomez A, Lopatina A, Le Roux F, Polz MF. Rapid evolutionary turnover of mobile genetic elements drives bacterial resistance to phages. Science 2021; 374:488-492. [PMID: 34672730 DOI: 10.1126/science.abb1083] [Citation(s) in RCA: 95] [Impact Index Per Article: 23.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
[Figure: see text].
Collapse
Affiliation(s)
- Fatima Aysha Hussain
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Javier Dubert
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Department of Microbiology and Parasitology, University of Santiago de Compostela, Santiago de Compostela, Spain
| | - Joseph Elsherbini
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Mikayla Murphy
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - David VanInsberghe
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Philip Arevalo
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Kathryn Kauffman
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Bruno Kotska Rodino-Janeiro
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Hannah Gavin
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Annika Gomez
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA
| | - Anna Lopatina
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| | - Frédérique Le Roux
- Ifremer, Unité Physiologie Fonctionnelle des Organismes Marins, CS 10070, F-29280 Plouzané, France.,Sorbonne Universités, UPMC Paris 06, CNRS, UMR 8227, Integrative Biology of Marine Models, Station Biologique de Roscoff, CS 90074, F-29688 Roscoff Cedex, France
| | - Martin F Polz
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge, MA, USA.,Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Center for Microbiology and Environmental Systems Science, University of Vienna, Vienna, Austria
| |
Collapse
|
150
|
Zhang J, He X, Shen S, Shi M, Zhou Q, Liu J, Wang M, Sun Y. Effects of the Newly Isolated T4-like Phage on Transmission of Plasmid-Borne Antibiotic Resistance Genes via Generalized Transduction. Viruses 2021; 13:v13102070. [PMID: 34696499 PMCID: PMC8538795 DOI: 10.3390/v13102070] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Accepted: 10/07/2021] [Indexed: 01/21/2023] Open
Abstract
Bacteriophages are the most abundant biological entities on earth and may play an important role in the transmission of antibiotic resistance genes (ARG) from host bacteria. Although the specialized transduction mediated by the temperate phage targeting a specific insertion site is widely explored, the carrying characteristics of “transducing particles” for different ARG subtypes in the process of generalized transduction remains largely unclear. Here, we isolated a new T4-like lytic phage targeting transconjugant Escherichia coli C600 that contained plasmid pHNAH67 (KX246266) and encoded 11 different ARG subtypes. We found that phage AH67C600_Q9 can misload plasmid-borne ARGs and package host DNA randomly. Moreover, for any specific ARG subtype, the carrying frequency was negatively correlated with the multiplicity of infection (MOI). Further, whole genome sequencing (WGS) identified that only 0.338% (4/1183) of the contigs of an entire purified phage population contained ARG sequences; these were floR, sul2, aph(4)-Ia, and fosA. The low coverage indicated that long-read sequencing methods are needed to explore the mechanism of ARG transmission during generalized transduction.
Collapse
Affiliation(s)
- Junxuan Zhang
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (X.H.); (S.S.); (M.S.); (Q.Z.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510000, China
| | - Xiaolu He
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (X.H.); (S.S.); (M.S.); (Q.Z.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510000, China
| | - Shuqing Shen
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (X.H.); (S.S.); (M.S.); (Q.Z.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510000, China
| | - Mengya Shi
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (X.H.); (S.S.); (M.S.); (Q.Z.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510000, China
| | - Qin Zhou
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (X.H.); (S.S.); (M.S.); (Q.Z.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510000, China
| | - Junlin Liu
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (X.H.); (S.S.); (M.S.); (Q.Z.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510000, China
| | - Mianzhi Wang
- College of Veterinary Medicine, Yangzhou University, Yangzhou 225009, China
- Jiangsu Co-Innovation Center for Prevention and Control of Important Animal Infectious Diseases and Zoonoses, Yangzhou 225009, China
- Correspondence: (M.W.); (Y.S.); Tel.: +86-159-5270-4257 (M.W.); +86-135-0304-8309 (Y.S.)
| | - Yongxue Sun
- College of Veterinary Medicine, South China Agricultural University, Guangzhou 510642, China; (J.Z.); (X.H.); (S.S.); (M.S.); (Q.Z.); (J.L.)
- National Risk Assessment Laboratory for Antimicrobial Resistance of Animal Original Bacteria, South China Agricultural University, Guangzhou 510642, China
- National Laboratory of Safety Evaluation (Environmental Assessment) of Veterinary Drugs, South China Agricultural University, Guangzhou 510642, China
- Guangdong Provincial Key Laboratory of Veterinary Pharmaceutics Development and Safety Evaluation, South China Agricultural University, Guangzhou 510642, China
- Guangdong Laboratory for Lingnan Modern Agriculture, Guangzhou 510000, China
- Correspondence: (M.W.); (Y.S.); Tel.: +86-159-5270-4257 (M.W.); +86-135-0304-8309 (Y.S.)
| |
Collapse
|