101
|
Peng Z, Gao D, Xiang T, Wang X. Achieving stable and efficient single-stage deammonification using plug flow reactor. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:28031-28039. [PMID: 31352595 DOI: 10.1007/s11356-019-06015-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/22/2019] [Indexed: 05/26/2023]
Abstract
The deammonification process is a promising technology, while achieving stable performance is still a challenge for domestic sewage treatment. To investigate the stability of deammonification in the plug flow system, which can be updated from A/O or A/A/O bioreactor, a plug flow fixed biofilm reactor was started-up and fed with synthetic low-strength wastewater. As a result, average ammonium removal efficiency of 90.0 ± 10.0% and total nitrogen removal efficiency of 79.4 ± 9.3% were achieved, while the nitrate production ratio (∆Nitrate/∆Ammonium) was at superior levels (9.5 ± 3.4%). Candidatus Jettenia and Candidatus Brocadia were the anammox bacteria in this reactor, and Candidatus Jettenia was the predominant anammox bacteria. Anammox bacteria were dominated in three of the four sampling points except the first one. Relative abundance of NOB increased along the reactor. The result of the present work implied that the plug flow system was able to maintain stable deammonification process, and NOB was suppressed by higher residual ammonium concentration in the front of reactor while the suppression weakened along the reactor.
Collapse
Affiliation(s)
- Zhengyang Peng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Dawen Gao
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China.
| | - Tao Xiang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| | - Xiaolong Wang
- School of Chemistry and Environmental Engineering, Anyang Institute of Technology, Anyang, 455000, China
| |
Collapse
|
102
|
Component Microenvironments and System Biogeography Structure Microorganism Distributions in Recirculating Aquaculture and Aquaponic Systems. mSphere 2019; 4:4/4/e00143-19. [PMID: 31270175 PMCID: PMC6609224 DOI: 10.1128/msphere.00143-19] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Recirculating aquaculture systems (RAS) are agroecosystems for intensive on-land cultivation of products of fisheries. Practitioners that incorporate edible plant production into RAS refer to these facilities as aquaponic systems (AP). RAS have the potential to offset declining production levels of wild global fisheries while reducing waste and product distance to market, but system optimization is needed to reduce costs. Both RAS and AP rely on microbial consortia for maintaining water quality and promoting fish/plant health, but little is known about the microorganisms actually present. This lack of knowledge prevents optimization of designs and operational controls to target the growth of beneficial microbial species or consortia. The significance of our research is in identifying the common microorganisms that inhabit production RAS and AP and the operational factors that influence which microorganisms colonize and become abundant. Identifying these organisms is a first step toward advanced control of microbial activities that improve reproducibility and reduce costs. Flowthrough and pond aquaculture system microbiome management practices aim to mitigate fish disease and stress. However, the operational success of recirculating aquaculture systems (RAS) depends directly on system microbial community activities. In RAS, each component environment is engineered for a specific microbial niche for waste management, as the water continuously flowing through the system must be processed before returning to the rearing tank. In this study, we compared waste management component microbiomes (rearing tank water, pH correction tank, solid-waste clarifier, biofilter, and degassing tower) within a commercial-scale freshwater RAS by high-throughput 16S rRNA gene sequencing. To assess consistency among freshwater RAS microbiomes, we also compared the microbial community compositions of six aquaculture and aquaponic farms. Community assemblages reflected site and source water relationships, and the presence of a hydroponic subsystem was a major community determinant. In contrast to the facility-specific community composition, some sequence variants, mainly classified into Flavobacterium, Cetobacterium, the family Sphingomonadaceae, and nitrifying guilds of ammonia-oxidizing archaea and Nitrospira, were common across all facilities. The findings of this study suggest that, independently of system design, core taxa exist across RAS rearing similar fish species but that system design informs the individual aquatic microbiome assemblages. Future RAS design would benefit from understanding the roles of these core taxa and then capitalizing on their activities to further reduce system waste/added operational controls. IMPORTANCE Recirculating aquaculture systems (RAS) are agroecosystems for intensive on-land cultivation of products of fisheries. Practitioners that incorporate edible plant production into RAS refer to these facilities as aquaponic systems (AP). RAS have the potential to offset declining production levels of wild global fisheries while reducing waste and product distance to market, but system optimization is needed to reduce costs. Both RAS and AP rely on microbial consortia for maintaining water quality and promoting fish/plant health, but little is known about the microorganisms actually present. This lack of knowledge prevents optimization of designs and operational controls to target the growth of beneficial microbial species or consortia. The significance of our research is in identifying the common microorganisms that inhabit production RAS and AP and the operational factors that influence which microorganisms colonize and become abundant. Identifying these organisms is a first step toward advanced control of microbial activities that improve reproducibility and reduce costs.
Collapse
|
103
|
Roots P, Wang Y, Rosenthal AF, Griffin JS, Sabba F, Petrovich M, Yang F, Kozak JA, Zhang H, Wells GF. Comammox Nitrospira are the dominant ammonia oxidizers in a mainstream low dissolved oxygen nitrification reactor. WATER RESEARCH 2019; 157:396-405. [PMID: 30974288 DOI: 10.1016/j.watres.2019.03.060] [Citation(s) in RCA: 179] [Impact Index Per Article: 29.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 02/25/2019] [Accepted: 03/01/2019] [Indexed: 05/19/2023]
Abstract
Recent findings show that a subset of bacteria affiliated with Nitrospira, a genus known for its importance in nitrite oxidation for biological nutrient removal applications, are capable of complete ammonia oxidation (comammox) to nitrate. Early reports suggested that they were absent or present in low abundance in most activated sludge processes, and thus likely functionally irrelevant. Here we show the accumulation of comammox Nitrospira in a nitrifying sequencing batch reactor operated at low dissolved oxygen (DO) concentrations. Actual mainstream wastewater was used as influent after primary settling and an upstream pre-treatment process for carbon and phosphorus removal. The ammonia removal rate was stable and exceeded that of the treatment plant's parallel full-scale high DO nitrifying activated sludge reactor. 16S rRNA gene sequencing showed a steady accumulation of Nitrospira to 53% total abundance and a decline in conventional ammonia oxidizing bacteria to <1% total abundance over 400 + days of operation. After ruling out other known ammonia oxidizers, qPCR confirmed the accumulation of comammox Nitrospira beginning around day 200, to eventually comprise 94% of all detected amoA and 4% of total bacteria by day 407. Quantitative fluorescence in-situ hybridization confirmed the increasing trend and high relative abundance of Nitrospira. These results demonstrate that comammox can be metabolically relevant to nitrogen transformation in wastewater treatment, and can even dominate the ammonia oxidizing community. Our results suggest that comammox may be an important functional group in energy efficient nitrification systems designed to operate at low DO levels.
Collapse
Affiliation(s)
- Paul Roots
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
| | - Yubo Wang
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
| | - Alex F Rosenthal
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
| | - James S Griffin
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
| | - Fabrizio Sabba
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
| | - Morgan Petrovich
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
| | - Fenghua Yang
- Metropolitan Water Reclamation District of Greater Chicago, 6001 W Pershing Road, Chicago, IL, 60804, USA.
| | - Joseph A Kozak
- Metropolitan Water Reclamation District of Greater Chicago, 6001 W Pershing Road, Chicago, IL, 60804, USA.
| | - Heng Zhang
- Metropolitan Water Reclamation District of Greater Chicago, 6001 W Pershing Road, Chicago, IL, 60804, USA.
| | - George F Wells
- Department of Civil and Environmental Engineering, Northwestern University, 2145 Sheridan Road, Evanston, IL, 60208, USA.
| |
Collapse
|
104
|
Wang J, Wang J, Rhodes G, He JZ, Ge Y. Adaptive responses of comammox Nitrospira and canonical ammonia oxidizers to long-term fertilizations: Implications for the relative contributions of different ammonia oxidizers to soil nitrogen cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 668:224-233. [PMID: 30852199 DOI: 10.1016/j.scitotenv.2019.02.427] [Citation(s) in RCA: 45] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2019] [Revised: 02/27/2019] [Accepted: 02/27/2019] [Indexed: 06/09/2023]
Abstract
The new discovery of complete ammonia oxidizers (comammox), single organisms capable of oxidizing ammonia into nitrate, redefined the traditional view of nitrification. However, little is known about the relative contributions of comammox and other nitrifiers to nitrification, particularly in agricultural soils with long-term intensive input of nutrients. Herein, we investigated the communities of ammonia-oxidizing bacteria (AOB), ammonia-oxidizing archaea (AOA) and comammox Nitrospira in agricultural soils under nutrients input gradient of nitrogen (0-675 kg N ha-1 year-1), phosphorus (0-405 kg P2O5 ha-1 year-1), and potassium (0-675 kg K2O ha-1 year-1) fertilizers for 19 years. The results showed that N and K fertilizers input significantly (P < 0.05) increased the AOB-amoA gene abundance, while AOA were not as sensitive as AOB. The comammox-amoA gene copies were increased in all fertilizer treatments and was significantly correlated (P < 0.05) with the amount of N fertilizer added. Terminal restriction fragment length polymorphism (T-RFLP) combined with clone-library assays of comammox-amoA gene showed that increasing gradient of nutrients input increased the relative abundance of 73 bp T-RF (assigned to Clade A) but decreased the relative abundance of 198 bp T-RF (representing Clade B). Correlation analyses and stepwise linear regression analyses demonstrated that AOB were the dominate contributors to soil potential nitrification, while comammox Nitrospira did not play a significant role (P > 0.05). This study provided insights into the adaptive responses of comammox Nitrospira and canonical ammonia oxidizers to long-term fertilizations and their relative contributions to potential nitrification in arable soils.
Collapse
Affiliation(s)
- Jichen Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jianlei Wang
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Geoff Rhodes
- Department of Plant, Soil and Microbial Sciences, Michigan State University, East Lansing, MI 48824, United States
| | - Ji-Zheng He
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yuan Ge
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
105
|
Tomaszewski M, Cema G, Ciesielski S, Łukowiec D, Ziembińska-Buczyńska A. Cold anammox process and reduced graphene oxide - Varieties of effects during long-term interaction. WATER RESEARCH 2019; 156:71-81. [PMID: 30904712 DOI: 10.1016/j.watres.2019.03.006] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2018] [Revised: 02/15/2019] [Accepted: 03/11/2019] [Indexed: 06/09/2023]
Abstract
Because of its energy efficiency, the anaerobic ammonium oxidation (anammox) process has been recognized as the most promising biological nitrogen removal process, but its implementation in mainstream wastewater treatment plants is limited by its relatively high optimal temperature (30 °C). Recently, it was shown that during short-term batch experiments, reduced graphene oxide (RGO) displayed accelerated reaction activity at low temperatures (10-15 °C). In this study, the long-term effects of RGO on the low-temperature anammox process in a sequencing batch reactor (SBR), are studied for the first time, including different methods of interaction. The results presented here show that RGO can stimulate anammox activity up to 17% through two factors: bacterial growth stimulation, which was especially significant at higher temperatures (>15 °C), and an increase of the anammox reaction rate, which occurred only below 15 °C. The bacterial community structure was not influenced by addition of RGO. Moreover, after incubation in an anammox bioreactor, RGO showed signs of degradation and chemical changes as evidenced by the presence of oxygen and calcium on its surface. According to the literature and the obtained results, it is proposed that RGO is oxidized and oxygen is reduced by the organic mediator that is involved in the enzymatic reactions. However, activated sludge is a very complex structure created by numerous, undefined microorganisms, which makes it difficult to determine the exact oxidation mechanism.
Collapse
Affiliation(s)
- Mariusz Tomaszewski
- Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland.
| | - Grzegorz Cema
- Silesian University of Technology, Environmental Biotechnology Department, Akademicka 2, 44-100 Gliwice, Poland
| | - Slawomir Ciesielski
- University of Warmia and Mazury in Olsztyn, Department of Environmental Biotechnology, Słoneczna 45G, 10-719 Olsztyn, Poland
| | - Dariusz Łukowiec
- Silesian University of Technology, Institute of Engineering Materials and Biomaterials, Konarskiego 18a, 44-100 Gliwice, Poland
| | | |
Collapse
|
106
|
Kantor RS, Miller SE, Nelson KL. The Water Microbiome Through a Pilot Scale Advanced Treatment Facility for Direct Potable Reuse. Front Microbiol 2019; 10:993. [PMID: 31139160 PMCID: PMC6517601 DOI: 10.3389/fmicb.2019.00993] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2018] [Accepted: 04/18/2019] [Indexed: 01/01/2023] Open
Abstract
Advanced treatment facilities for potable water reuse of wastewater are designed to achieve high removal levels of specific pathogens, as well as many other constituents. However, changes to the microbial community throughout treatment, storage, and distribution of this water have not been well characterized. We applied high-throughput amplicon sequencing, read-based, assembly-based, and genome-resolved metagenomics, and flow cytometry to investigate the microbial communities present in a pilot-scale advanced water treatment facility. Advanced treatment of secondary-treated wastewater consisted of ozonation, chloramination, microfiltration, reverse osmosis (RO), advanced oxidation (UV/H2O2), granular activated carbon (GAC) filtration, and chlorination. Treated water was fed into bench-scale simulated distribution systems (SDS). Cell counts and microbial diversity in bulk water decreased until GAC filtration, and the bacterial communities were significantly different following each treatment step. Bacteria grew within GAC media and contributed to a consistent microbial community in the filtrate, which included members of the Rhizobiales and Mycobacteriaceae. After chlorination, some of the GAC filtrate community was maintained within the SDS, and community shifts were associated with stagnation. Putative antibiotic resistance genes and potential opportunistic pathogens were identified before RO and after advanced oxidation, although few if any members of the wastewater microbial community passed through these treatment steps. These findings can contribute to improved design of advanced treatment trains and management of microbial communities in post-treatment steps.
Collapse
Affiliation(s)
- Rose S Kantor
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States.,Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure, Berkeley, CA, United States
| | - Scott E Miller
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States.,Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure, Berkeley, CA, United States
| | - Kara L Nelson
- Department of Civil and Environmental Engineering, University of California, Berkeley, Berkeley, CA, United States.,Engineering Research Center for Re-inventing the Nation's Urban Water Infrastructure, Berkeley, CA, United States
| |
Collapse
|
107
|
Kits KD, Jung MY, Vierheilig J, Pjevac P, Sedlacek CJ, Liu S, Herbold C, Stein LY, Richter A, Wissel H, Brüggemann N, Wagner M, Daims H. Low yield and abiotic origin of N 2O formed by the complete nitrifier Nitrospira inopinata. Nat Commun 2019; 10:1836. [PMID: 31015413 PMCID: PMC6478695 DOI: 10.1038/s41467-019-09790-x] [Citation(s) in RCA: 108] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Accepted: 03/27/2019] [Indexed: 12/11/2022] Open
Abstract
Nitrous oxide (N2O) and nitric oxide (NO) are atmospheric trace gases that contribute to climate change and affect stratospheric and ground-level ozone concentrations. Ammonia oxidizing bacteria (AOB) and archaea (AOA) are key players in the nitrogen cycle and major producers of N2O and NO globally. However, nothing is known about N2O and NO production by the recently discovered and widely distributed complete ammonia oxidizers (comammox). Here, we show that the comammox bacterium Nitrospira inopinata is sensitive to inhibition by an NO scavenger, cannot denitrify to N2O, and emits N2O at levels that are comparable to AOA but much lower than AOB. Furthermore, we demonstrate that N2O formed by N. inopinata formed under varying oxygen regimes originates from abiotic conversion of hydroxylamine. Our findings indicate that comammox microbes may produce less N2O during nitrification than AOB.
Collapse
Affiliation(s)
- K Dimitri Kits
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Man-Young Jung
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Julia Vierheilig
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- Karl Landsteiner University of Health Sciences, Division of Water Quality and Health, Krems, 3500, Austria
- Interuniversity Cooperation Centre for Water and Health, Krems, 3500, Austria
| | - Petra Pjevac
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Christopher J Sedlacek
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Shurong Liu
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- The Comammox Research Platform, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Craig Herbold
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Lisa Y Stein
- Department of Biological Sciences, University of Alberta, CW405 Biological Sciences Building, Edmonton, AB, T6G 2E9, Canada
| | - Andreas Richter
- The Comammox Research Platform, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- Centre for Microbiology and Environmental Systems Science, Division of Terrestrial Ecosystem Research, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| | - Holger Wissel
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Nicolas Brüggemann
- Institute of Bio- and Geosciences-Agrosphere (IBG-3), Forschungszentrum Jülich GmbH, 52425, Jülich, Germany
| | - Michael Wagner
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
- The Comammox Research Platform, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria.
| | - Holger Daims
- Centre for Microbiology and Environmental Systems Science, Division of Microbial Ecology, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
- The Comammox Research Platform, University of Vienna, Althanstrasse 14, 1090, Vienna, Austria
| |
Collapse
|
108
|
Kong Y, Ling N, Xue C, Chen H, Ruan Y, Guo J, Zhu C, Wang M, Shen Q, Guo S. Long-term fertilization regimes change soil nitrification potential by impacting active autotrophic ammonia oxidizers and nitrite oxidizers as assessed by DNA stable isotope probing. Environ Microbiol 2019; 21:1224-1240. [PMID: 30724443 DOI: 10.1111/1462-2920.14553] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2017] [Revised: 11/19/2018] [Accepted: 01/02/2019] [Indexed: 11/28/2022]
Abstract
Chemoautotrophic ammonia-oxidizers and nitrite-oxidizers are responsible for a significant amount of soil nitrate production. The identity and composition of these active nitrifiers in soils under different long-term fertilization regimes remain largely under-investigated. Based on that soil nitrification potential significantly decreased in soils with chemical fertilization (CF) and increased in soils with organic fertilization (OF), a microcosm experiment with DNA stable isotope probing was further conducted to clarify the active nitrifiers. Both ammonia-oxidizing archaea (AOA) and bacteria (AOB) were found to actively respond to urea addition in soils with OF and no fertilizer (CK), whereas only AOB were detected in soils with CF. Around 98% of active AOB were Nitrosospira cluster 3a.1 in all tested soils, and more than 90% of active AOA were Nitrososphaera subcluster 1.1 in unfertilized and organically fertilized soils. Nitrite oxidation was performed only by Nitrospira-like bacteria in all soils. The relative abundances of Nitrospira lineage I and VI were 32% and 61%, respectively, in unfertilized soils, and that of Nitrospira lineage II was 97% in fertilized soils, indicating long-term fertilization shifted the composition of active Nitrospira-like bacteria in response to urea. This finding indicates that different fertilizer regimes impact the composition of active nitrifiers, thus, impacting soil nitrification potential.
Collapse
Affiliation(s)
- Yali Kong
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Ning Ling
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chao Xue
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Huan Chen
- Crop Research Institute, Anhui Academy of Agricultural Science, Hefei, 230031, China
| | - Yang Ruan
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Junjie Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Chen Zhu
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Min Wang
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Qirong Shen
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| | - Shiwei Guo
- Jiangsu Provincial Key Lab for Organic Solid Waste Utilization, National Engineering Research Center for Organic-Based Fertilizers, Jiangsu Collaborative Innovation Center for Solid Organic Waste Resource Utilization, Nanjing Agricultural University, Nanjing, 210095, China
| |
Collapse
|
109
|
Beach NK, Noguera DR. Design and Assessment of Species-Level qPCR Primers Targeting Comammox. Front Microbiol 2019; 10:36. [PMID: 30766515 PMCID: PMC6365651 DOI: 10.3389/fmicb.2019.00036] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2018] [Accepted: 01/10/2019] [Indexed: 11/18/2022] Open
Abstract
Published PCR primers targeting the ammonia monooxygenase gene (amoA) were applied to samples from activated sludge systems operated with low dissolved oxygen (DO) to quantify total and clade-level Nitrospira that perform complete ammonium oxidation (comammox); however, we found these existing primers resulted in significant artifact-associated non-target amplification. This not only overestimated comammox amoA copies but also resulted in numerous false positive detections in the environmental samples tested, as confirmed by gel electrophoresis. Therefore, instead of attempting to quantify comammox diversity, we focused on accurately quantifying the candidate comammox species. We designed specific and sensitive primers targeting 3 candidate species: Candidatus (Ca.) Nitrospira nitrosa, Ca. N. inopinata, and Ca. N. nitrificans. The primers were tested with amoA templates of these candidate species and used to quantify comammox at the species level in low DO activated sludge systems. We found that comammox related to Ca. N. nitrosa were present and abundant in the majority of samples from low DO bioreactors and were not detected in samples from a high DO system. In addition, the greatest abundance of Ca. N. nitrosa was found in bioreactors operated with a long solids retention time. Ca. N. inopinata and Ca. N. nitrificans were only detected sporadically in these samples, indicating a minor role of these comammox in nitrification under low DO conditions.
Collapse
Affiliation(s)
| | - Daniel R. Noguera
- Department of Civil and Environmental Engineering, University of Wisconsin–Madison, Madison, WI, United States
| |
Collapse
|
110
|
Wang H, Xu J, Tang W, Li H, Xia S, Zhao J, Zhang W, Yang Y. Removal Efficacy of Opportunistic Pathogens and Bacterial Community Dynamics in Two Drinking Water Treatment Trains. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2019; 15:e1804436. [PMID: 30536542 DOI: 10.1002/smll.201804436] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2018] [Revised: 11/16/2018] [Indexed: 06/09/2023]
Abstract
Drinking water treatment processes (DWTPs) impact pathogen colonization and microbial communities in finished water; however, their efficacies against opportunistic pathogens are not fully understood. In this study, the effects of treatment steps on the removal of Legionella spp., Legionella pneumophila, nontuberculous mycobacteria, Mycobacterium avium, and two amoeba hosts (Vermamoeba vermiformis, Acanthamoeba) are evaluated in two parallel trains of DWTPs equipped with different pretreatment units. Quantitative polymerase chain reaction analysis demonstrates significantly reduced numbers of total bacteria, Legionella, and mycobacteria during ozonation, followed by a rebound in granular activated carbon (GAC) filtration, whereas sand filtration exerts an overarching effect in removing microorganisms in both treatment trains. V. vermiformis is more prevalent in biofilm (34%) than water samples (7.7%), while Acanthamoeba is not found in the two trains of DWTPs. Illumina sequencing of bacterial 16S rRNA genes reveals significant community shifts at different treatment steps, as well as distinct bacterial community structures in water and biofilm samples in parallel units (e.g., ozonation, GAC, sand filtration) between the two trains (analysis of similarities (ANOSIM), p < 0.05), implying the potential influence of different pretreatment steps in shaping the downstream microbiome. Overall, the results provide insights to mitigation of opportunistic pathogens and engineer approaches for managing bacterial communities in DWTPs.
Collapse
Affiliation(s)
- Hong Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jiajiong Xu
- Shanghai Municipal Engineering Design Institute (Group) CO., LTD, Shanghai, 200092, China
| | - Wei Tang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Huan Li
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Jianfu Zhao
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Weixian Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai, 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 200092, China
| | - Yang Yang
- Department of Thoracic Surgery, Shanghai Pulmonary Hospital, Tongji University, Shanghai, 200433, China
- Institute for Advanced Study, Tongji University, 1239 Siping Road, Shanghai, 200430, China
| |
Collapse
|
111
|
Holmes DE, Dang Y, Smith JA. Nitrogen cycling during wastewater treatment. ADVANCES IN APPLIED MICROBIOLOGY 2019; 106:113-192. [PMID: 30798802 DOI: 10.1016/bs.aambs.2018.10.003] [Citation(s) in RCA: 60] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Many wastewater treatment plants in the world do not remove reactive nitrogen from wastewater prior to release into the environment. Excess reactive nitrogen not only has a negative impact on human health, it also contributes to air and water pollution, and can cause complex ecosystems to collapse. In order to avoid the deleterious effects of excess reactive nitrogen in the environment, tertiary wastewater treatment practices that ensure the removal of reactive nitrogen species need to be implemented. Many wastewater treatment facilities rely on chemicals for tertiary treatment, however, biological nitrogen removal practices are much more environmentally friendly and cost effective. Therefore, interest in biological treatment is increasing. Biological approaches take advantage of specific groups of microorganisms involved in nitrogen cycling to remove reactive nitrogen from reactor systems by converting ammonia to nitrogen gas. Organisms known to be involved in this process include autotrophic ammonia-oxidizing bacteria, heterotrophic ammonia-oxidizing bacteria, ammonia-oxidizing archaea, anaerobic ammonia oxidizing bacteria (anammox), nitrite-oxidizing bacteria, complete ammonia oxidizers, and dissimilatory nitrate reducing microorganisms. For example, in nitrifying-denitrifying reactors, ammonia- and nitrite-oxidizing bacteria convert ammonia to nitrate and then denitrifying microorganisms reduce nitrate to nonreactive dinitrogen gas. Other nitrogen removal systems (anammox reactors) take advantage of anammox bacteria to convert ammonia to nitrogen gas using NO as an oxidant. A number of promising new biological treatment technologies are emerging and it is hoped that as the cost of these practices goes down more wastewater treatment plants will start to include a tertiary treatment step.
Collapse
|
112
|
Xia F, Wang JG, Zhu T, Zou B, Rhee SK, Quan ZX. Ubiquity and Diversity of Complete Ammonia Oxidizers (Comammox). Appl Environ Microbiol 2018; 84:e01390-18. [PMID: 30315079 PMCID: PMC6275355 DOI: 10.1128/aem.01390-18] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2018] [Accepted: 10/03/2018] [Indexed: 11/20/2022] Open
Abstract
The discovery of complete ammonia oxidizers (comammox) refutes the century-old paradigm that nitrification requires the activity of two types of microbes. Determining the distribution and abundance of comammox in various environments is important for revealing the ecology of microbial nitrification within the global nitrogen cycle. In this study, the ubiquity and diversity of comammox were analyzed for samples from different types of environments, including soil, sediment, sludge, and water. The results of a two-step PCR using highly degenerate primers (THDP-PCR) and quantitative real-time PCR (qPCR) supported the relatively high abundance of comammox in nearly half of all samples tested, sometimes even outnumbering canonical ammonia-oxidizing bacteria (AOB). In addition, a relatively high proportion of comammox in tap and coastal water samples was confirmed via analysis of metagenomic data sets in public databases. The diversity of comammox was estimated by comammox-specific partial nested PCR amplification of the ammonia monooxygenase subunit A (amoA) gene, and phylogenetic analysis of comammox AmoA clearly showed a split of clade A into clades A.1 and A.2, with the proportions of clades A.1, A.2, and B differing among the various environmental samples. Moreover, compared to the amoA genes of AOB and ammonia-oxidizing archaea (AOA), the comammox amoA gene exhibited higher diversity indices. The ubiquitous distribution and high diversity of comammox indicate that they are likely overlooked contributors to nitrification in various ecosystems.IMPORTANCE The discovery of complete ammonia oxidizers (comammox), which oxidize ammonia to nitrate via nitrite, refutes the century-old paradigm that nitrification requires the activity of two types of microbes and redefines a key process in the biogeochemical nitrogen cycle. Understanding the functional relationships between comammox and other nitrifiers is important for ecological studies on the nitrogen cycle. Therefore, the diversity and contribution of comammox should be considered during ecological analyses of nitrifying microorganisms. In this study, a ubiquitous and highly diverse distribution of comammox was observed in various environmental samples, similar to the distribution of canonical ammonia-oxidizing bacteria. The proportion of comammox was relatively high in coastal water and sediment samples, whereas it was nearly undetectable in open-ocean samples. The ubiquitous distribution and high diversity of comammox indicate that these microorganisms might be important contributors to nitrification.
Collapse
Affiliation(s)
- Fei Xia
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
- School of Food and Biological Engineering, Shaanxi University of Science and Technology, Xi'an, China
| | - Jian-Gong Wang
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Ting Zhu
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Bin Zou
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| | - Sung-Keun Rhee
- Department of Microbiology, Chungbuk National University, Cheongju, Republic of Korea
| | - Zhe-Xue Quan
- Ministry of Education Key Laboratory for Biodiversity Science and Ecological Engineering, Institute of Biodiversity Science, School of Life Sciences, Fudan University, Shanghai, China
| |
Collapse
|
113
|
Boddicker AM, Mosier AC. Genomic profiling of four cultivated Candidatus Nitrotoga spp. predicts broad metabolic potential and environmental distribution. THE ISME JOURNAL 2018; 12:2864-2882. [PMID: 30050164 PMCID: PMC6246548 DOI: 10.1038/s41396-018-0240-8] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2018] [Revised: 06/28/2018] [Accepted: 07/03/2018] [Indexed: 12/21/2022]
Abstract
Nitrite-oxidizing bacteria (NOB) play a critical role in the mitigation of nitrogen pollution by metabolizing nitrite to nitrate, which is removed via assimilation, denitrification, or anammox. Recent studies showed that NOB are phylogenetically and metabolically diverse, yet most of our knowledge of NOB comes from only a few cultured representatives. Using cultivation and genomic sequencing, we identified four putative Candidatus Nitrotoga NOB species from freshwater sediments and water column samples in Colorado, USA. Genome analyses indicated highly conserved 16S rRNA gene sequences, but broad metabolic potential including genes for nitrogen, sulfur, hydrogen, and organic carbon metabolism. Genomic predictions suggested that Ca. Nitrotoga can metabolize in low oxygen or anoxic conditions, which may support an expanded environmental niche for Ca. Nitrotoga similar to other NOB. An array of antibiotic and metal resistance genes likely allows Ca. Nitrotoga to withstand environmental pressures in impacted systems. Phylogenetic analyses highlighted a deeply divergent nitrite oxidoreductase alpha subunit (NxrA), suggesting a novel evolutionary trajectory for Ca. Nitrotoga separate from any other NOB and further revealing the complex evolutionary history of nitrite oxidation in the bacterial domain. Ca. Nitrotoga-like 16S rRNA gene sequences were prevalent in globally distributed environments over a range of reported temperatures. This work considerably expands our knowledge of the Ca. Nitrotoga genus and suggests that their contribution to nitrogen cycling should be considered alongside other NOB in wide variety of habitats.
Collapse
Affiliation(s)
- Andrew M Boddicker
- Department of Integrative Biology, University of Colorado Denver, Campus Box 171, Denver, CO, USA
| | - Annika C Mosier
- Department of Integrative Biology, University of Colorado Denver, Campus Box 171, Denver, CO, USA.
| |
Collapse
|
114
|
Aggarwal S, Gomez-Smith CK, Jeon Y, LaPara TM, Waak MB, Hozalski RM. Effects of Chloramine and Coupon Material on Biofilm Abundance and Community Composition in Bench-Scale Simulated Water Distribution Systems and Comparison with Full-Scale Water Mains. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2018; 52:13077-13088. [PMID: 30351033 DOI: 10.1021/acs.est.8b02607] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
The vast majority of bacteria in drinking water distribution systems (DWDSs) reside in biofilms on the interior walls of water mains. Little is known about how water quality conditions affect water-main biofilms because of the inherent limitations in experimenting with drinking water supplies and accessing the water mains for sampling. Bench-scale reactors permit experimentation and ease of biofilm sampling, yet questions remain as to how well biofilms in laboratory reactors represent those on water mains. In this study, the effects of DWDS pipe materials and chloramine residual on biofilms were investigated by cultivating biofilms on cement, polyvinyl chloride, and high density polyethylene coupons in CDC reactors for up to 28 months in the presence of chloraminated or dechlorinated tap water. The bench-scale biofilm microbiomes were then compared with the microbiome on a water main from the full-scale system that supplied the water to the reactors. The presence of a chloramine residual (1.74 ± 0.21 mg/L) suppressed biofilm accumulation and selected for Mycobacterium-like and Sphingopyxis-like operational taxonomic units (OTUs) while the destruction of the chloramine residual resulted in a significant increase in biomass quantity and a shift toward a more diverse community dominated by Nitrospira-like OTUs, which, our results suggest, may be complete ammonia oxidizers (comammox). Coupon material, however, had a relatively minor effect on the abundance and community composition of the biofilm bacteria. Although biofilm communities from the chloraminated water reactor and the water mains shared some dominant populations (namely, Mycobacterium- and Nitrosomonas-like OTUs), the communities were significantly different. This manuscript provides novel insights into the effects of dechlorination and pipe material on biofilm community composition. Furthermore, to our knowledge, it is the first study to compare biofilm in a tap water-fed, bench-scale simulated distribution system to biofilm on water mains from the full-scale system supplying the tap water.
Collapse
Affiliation(s)
- Srijan Aggarwal
- Department of Civil and Environmental Engineering , University of Alaska Fairbanks , Fairbanks , Alaska 99775 , United States
| | - C Kimloi Gomez-Smith
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
| | - Youchul Jeon
- Department of Civil and Environmental Engineering , University of Toledo , Toledo , Ohio 43606-339 , United States
| | - Timothy M LaPara
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- BioTechnology Institute , University of Minnesota , St. Paul , Minnesota 55108 , United States
| | - Michael B Waak
- Department of Civil and Environmental Engineering , Norwegian University of Science and Technology , 7491 Trondheim , Norway
| | - Raymond M Hozalski
- Department of Civil, Environmental, and Geo-Engineering , University of Minnesota , Minneapolis , Minnesota 55455 , United States
- BioTechnology Institute , University of Minnesota , St. Paul , Minnesota 55108 , United States
| |
Collapse
|
115
|
Pan KL, Gao JF, Fan XY, Li DC, Dai HH. The more important role of archaea than bacteria in nitrification of wastewater treatment plants in cold season despite their numerical relationships. WATER RESEARCH 2018; 145:552-561. [PMID: 30199800 DOI: 10.1016/j.watres.2018.08.066] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2018] [Revised: 08/24/2018] [Accepted: 08/30/2018] [Indexed: 05/04/2023]
Abstract
Nitrification failure of wastewater treatment plants (WWTPs) in cold season calls into investigations of the functional ammonia-oxidizing microorganisms (AOMs). In this study, we report the abundance of ammonia-oxidizing archaea (AOA), bacteria (AOB) and complete ammonia-oxidizing (comammox) Nitrospira in 23 municipal WWTPs in cold season, and explore the correlations between AOMs abundance and their relative contribution to nitrification. The copy numbers of AOA and AOB amoA gene ranged from 2.42 × 107 to 2.47 × 109 and 5.54 × 106 to 3.31 × 109 copies/g sludge, respectively. The abundance of amoA gene of Candidatus Nitrospira inopinata, an important strain of comammox Nitrospira, was stable with averaged abundance of 8.47 × 106 copies/g sludge. DNA-based stable isotope probing (DNA-SIP) assays were conducted with three typical WWTPs in which the abundance of AOA was lower than, similar to and higher than that of AOB, respectively. The results showed that considerable 13C-assimilation by AOA was detected during active nitrification in all WWTPs, whereas just a much lesser extent of 13C-incorporation by AOB and comammox Nitrospira was found in one WWTP. High-throughput sequencing with 13C-labeled DNA also showed the higher reads abundance of AOA than AOB and comammox Nitrospira. Nitrososphaera viennensis was the dominant active AOA, while Nitrosomonas oligotropha and Nitrosomonas europaea were identified as active AOB. The results obtained suggest that AOA, rather than AOB and comammox Nitrospira, dominate ammonia oxidation in WWTPs in cold season despite the numerical relationships of AOMs.
Collapse
Affiliation(s)
- Kai-Ling Pan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Jing-Feng Gao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China.
| | - Xiao-Yan Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Ding-Chang Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| | - Hui-Hui Dai
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, College of Environmental and Energy Engineering, Beijing University of Technology, Beijing, 100124, China
| |
Collapse
|
116
|
Dai D, Rhoads WJ, Edwards MA, Pruden A. Shotgun Metagenomics Reveals Taxonomic and Functional Shifts in Hot Water Microbiome Due to Temperature Setting and Stagnation. Front Microbiol 2018; 9:2695. [PMID: 30542327 PMCID: PMC6277882 DOI: 10.3389/fmicb.2018.02695] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2018] [Accepted: 10/23/2018] [Indexed: 12/20/2022] Open
Abstract
Hot water premise plumbing has emerged as a critical nexus of energy, water, and public health. The composition of hot water microbiomes is of special interest given daily human exposure to resident flora, especially opportunistic pathogens (OPs), which rely on complex microbial ecological interactions for their proliferation. Here, we applied shotgun metagenomic sequencing to characterize taxonomic and functional shifts in microbiomes as a function of water heater temperature setting, stagnation in distal pipes, and associated shifts in water chemistry. A cross-section of samples from controlled, replicated, pilot-scale hot water plumbing rigs representing different temperature settings (39, 42, and 51°C), stagnation periods (8 h vs. 7 days), and time-points, were analyzed. Temperature setting exhibited an overarching impact on taxonomic and functional gene composition. Further, distinct taxa were selectively enriched by specific temperature settings (e.g., Legionella at 39°C vs. Deinococcus at 51°C), while relative abundances of genes encoding corresponding cellular functions were highly consistent with expectations based on the taxa driving these shifts. Stagnation in distal taps diminished taxonomic and functional differences induced by heating the cold influent water to hot water in recirculating line. In distal taps relative to recirculating hot water, reads annotated as being involved in metabolism and growth decreased, while annotations corresponding to stress response (e.g., virulence disease and defense, and specifically antibiotic resistance) increased. Reads corresponding to OPs were readily identified by metagenomic analysis, with L. pneumophila reads in particular correlating remarkably well with gene copy numbers measured by quantitative polymerase chain reaction. Positive correlations between L. pneumophila reads and those of known protozoan hosts were also identified. Elevated proportions of genes encoding metal resistance and hydrogen metabolism were noted, which was consistent with elevated corrosion-induced metal concentrations and hydrogen generation. This study provided new insights into real-world factors influencing taxonomic and functional compositions of hot water microbiomes. Here metagenomics is demonstrated as an effective tool for screening for potential presence, and even quantities, of pathogens, while also providing diagnostic capabilities for assessing functional responses of microbiomes to various operational conditions. These findings can aid in informing future monitoring and intentional control of hot water microbiomes.
Collapse
Affiliation(s)
| | | | | | - Amy Pruden
- Department of Civil and Environmental Engineering, Virginia Polytechnic Institute and State University, Blacksburg, VA, United States
| |
Collapse
|
117
|
Jia W, Chen Y, Zhang J, Li C, Wang Q, Li G, Yang W. Response of greenhouse gas emissions and microbial community dynamics to temperature variation during partial nitrification. BIORESOURCE TECHNOLOGY 2018; 261:19-27. [PMID: 29653330 DOI: 10.1016/j.biortech.2018.03.137] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 03/29/2018] [Accepted: 03/30/2018] [Indexed: 06/08/2023]
Abstract
This study investigated the greenhouse gas emission characteristics and microbial community dynamics with the variation of temperature during partial nitrification. Low temperature weakened nitrite accumulation, and partial nitrification would shift to complete nitrification easily at 15 °C. Based on CO2 equivalents (CO2-eq), partial nitrification process released 2.7 g of greenhouse gases per gMLSS per cycle, and N2O accounted for more than 98% of the total CO2-eq emission. The total CO2-eq emission amount at 35 °C was 45.6% and 153.4% higher than that at 25 °C and 15 °C, respectively. During partial nitrification, the microbial community diversity greatly declined compared with seed sludge. However, the diversity was enhanced at low temperature. The abundance of Betaproteobacteria at class level increased greatly during partial nitrification. Proteobacteria abundance declined while Nitrospira raised at low temperature. The nosZ community abundance was not affected by temperature, although N2O emission was varied with the operating temperature.
Collapse
Affiliation(s)
- Wenlin Jia
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Yunfan Chen
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Jian Zhang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Jinan 250100, China
| | - Cong Li
- School of Environment and Planning, Liaocheng University, Liaocheng 252000, China
| | - Qian Wang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Guangchao Li
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China
| | - Weihua Yang
- School of Chemistry and Materials Science, Jiangsu Normal University, Xuzhou 221116, China.
| |
Collapse
|
118
|
Borthong J, Omori R, Sugimoto C, Suthienkul O, Nakao R, Ito K. Comparison of Database Search Methods for the Detection of Legionella pneumophila in Water Samples Using Metagenomic Analysis. Front Microbiol 2018; 9:1272. [PMID: 29971047 PMCID: PMC6018159 DOI: 10.3389/fmicb.2018.01272] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2017] [Accepted: 05/24/2018] [Indexed: 12/12/2022] Open
Abstract
Metagenomic analysis has become a powerful tool to analyze bacterial communities in environmental samples. However, the detection of a specific bacterial species using metagenomic analysis remains difficult due to false positive detections of sequences shared between different bacterial species. In this study, 16S rRNA amplicon and shotgun metagenomic analyses were conducted on samples collected along a stream and ponds in the campus of Hokkaido University. We compared different database search methods for bacterial detection by focusing on Legionella pneumophila. In this study, we used L. pneumophila-specific nested PCR as a gold standard to evaluate the results of the metagenomic analysis. Comparison with the results from L. pneumophila-specific nested PCR indicated that a blastn search of shotgun reads against the NCBI-NT database led to false positive results and had problems with specificity. We also found that a blastn search of shotgun reads against a database of the catalase-peroxidase (katB) gene detected L. pneumophila with the highest area under the receiver operating characteristic curve among the tested search methods; indicating that a blastn search against the katB gene database had better diagnostic ability than searches against other databases. Our results suggest that sequence searches targeting long genes specifically associated with the bacterial species of interest is a prerequisite to detecting the bacterial species in environmental samples using metagenomic analyses.
Collapse
Affiliation(s)
- Jednipit Borthong
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan
| | - Ryosuke Omori
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Precursory Research for Embryonic Science and Technology, Japan Science and Technology Agency, Kawaguchi, Japan
| | - Chihiro Sugimoto
- Division of Collaboration and Education, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Institute for Collaborative Research and Education, Hokkaido University, Sapporo, Japan
| | - Orasa Suthienkul
- Faculty of Public Health, Thammasat University, Rangsit Campus, Pathumthani, Thailand
| | - Ryo Nakao
- Laboratory of Parasitology, Graduate School of Veterinary Medicine, Hokkaido University, Sapporo, Japan
| | - Kimihito Ito
- Division of Bioinformatics, Research Center for Zoonosis Control, Hokkaido University, Sapporo, Japan.,Global Institute for Collaborative Research and Education, Hokkaido University, Sapporo, Japan.,Faculty of Public Health, Thammasat University, Rangsit Campus, Pathumthani, Thailand
| |
Collapse
|
119
|
Dat TTH, Steinert G, Thi Kim Cuc N, Smidt H, Sipkema D. Archaeal and bacterial diversity and community composition from 18 phylogenetically divergent sponge species in Vietnam. PeerJ 2018; 6:e4970. [PMID: 29900079 PMCID: PMC5995103 DOI: 10.7717/peerj.4970] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2017] [Accepted: 05/22/2018] [Indexed: 11/20/2022] Open
Abstract
Sponge-associated prokaryotic diversity has been studied from a wide range of marine environments across the globe. However, for certain regions, e.g., Vietnam, Thailand, Cambodia, and Singapore, an overview of the sponge-associated prokaryotic communities is still pending. In this study we characterized the prokaryotic communities from 27 specimens, comprising 18 marine sponge species, sampled from the central coastal region of Vietnam. Illumina MiSeq sequencing of 16S ribosomal RNA (rRNA) gene fragments was used to investigate sponge-associated bacterial and archaeal diversity. Overall, 14 bacterial phyla and one archaeal phylum were identified among all 27 samples. The phylum Proteobacteria was present in all sponges and the most prevalent phylum in 15 out of 18 sponge species, albeit with pronounced differences at the class level. In contrast, Chloroflexi was the most abundant phylum in Halichondria sp., whereas Spirastrella sp. and Dactylospongia sp. were dominated by Actinobacteria. Several bacterial phyla such as Acidobacteria, Actinobacteria, Bacteroidetes, Chloroflexi, Deferribacteres, Gemmatimonadetes, and Nitrospirae were found in two-thirds of the sponge species. Moreover, the phylum Thaumarchaeota (Archaea), which is known to comprise nitrifying archaea, was highly abundant among the majority of the 18 investigated sponge species. Altogether, this study demonstrates that the diversity of prokaryotic communities associated with Vietnamese sponges is comparable to sponge-prokaryotic assemblages from well-documented regions. Furthermore, the phylogenetically divergent sponges hosted species-specific prokaryotic communities, thus demonstrating the influence of host identity on the composition and diversity of the associated communities. Therefore, this high-throughput 16S rRNA gene amplicon analysis of Vietnamese sponge-prokaryotic communities provides a foundation for future studies on sponge symbiont function and sponge-derived bioactive compounds from this region.
Collapse
Affiliation(s)
- Ton That Huu Dat
- Mientrung Institute for Scientific Research, Vietnam Academy of Science and Technology, Hanoi, Vietnam
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Georg Steinert
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Nguyen Thi Kim Cuc
- Institute of Marine Biochemistry, Vietnam Academy of Science and Technology, Ha Noi, Vietnam
| | - Hauke Smidt
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| | - Detmer Sipkema
- Laboratory of Microbiology, Wageningen University & Research, Wageningen, The Netherlands
| |
Collapse
|
120
|
in ‘t Zandt MH, de Jong AEE, Slomp CP, Jetten MSM. The hunt for the most-wanted chemolithoautotrophic spookmicrobes. FEMS Microbiol Ecol 2018; 94:4966976. [PMID: 29873717 PMCID: PMC5989612 DOI: 10.1093/femsec/fiy064] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 04/09/2018] [Indexed: 11/16/2022] Open
Abstract
Microorganisms are the drivers of biogeochemical methane and nitrogen cycles. Essential roles of chemolithoautotrophic microorganisms in these cycles were predicted long before their identification. Dedicated enrichment procedures, metagenomics surveys and single-cell technologies have enabled the identification of several new groups of most-wanted spookmicrobes, including novel methoxydotrophic methanogens that produce methane from methylated coal compounds and acetoclastic 'Candidatus Methanothrix paradoxum', which is active in oxic soils. The resultant energy-rich methane can be oxidized via a suite of electron acceptors. Recently, 'Candidatus Methanoperedens nitroreducens' ANME-2d archaea and 'Candidatus Methylomirabilis oxyfera' bacteria were enriched on nitrate and nitrite under anoxic conditions with methane as an electron donor. Although 'Candidatus Methanoperedens nitroreducens' and other ANME archaea can use iron citrate as an electron acceptor in batch experiments, the quest for anaerobic methane oxidizers that grow via iron reduction continues. In recent years, the nitrogen cycle has been expanded by the discovery of various ammonium-oxidizing prokaryotes, including ammonium-oxidizing archaea, versatile anaerobic ammonium-oxidizing (anammox) bacteria and complete ammonium-oxidizing (comammox) Nitrospira bacteria. Several biogeochemical studies have indicated that ammonium conversion occurs under iron-reducing conditions, but thus far no microorganism has been identified. Ultimately, iron-reducing and sulfate-dependent ammonium-oxidizing microorganisms await discovery.
Collapse
Affiliation(s)
- Michiel H in ‘t Zandt
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Anniek EE de Jong
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
| | - Caroline P Slomp
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
- Department of Earth Sciences, Geochemistry, Utrecht University, Princetonlaan 8a, 3584 CB Utrecht, The Netherlands
| | - Mike SM Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
- Netherlands Earth System Science Center, Utrecht University, Heidelberglaan 2, 3584 CS Utrecht, The Netherlands
- Soehngen Institute of Anaerobic Microbiology, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| |
Collapse
|
121
|
Yepsen DV, Levipan HA, Molina V. Nitrospina bacteria in a rocky intertidal habitat (Quintay Bay, central Chile). Microbiologyopen 2018; 8:e00646. [PMID: 29799171 PMCID: PMC6436435 DOI: 10.1002/mbo3.646] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2018] [Revised: 02/27/2018] [Accepted: 03/30/2018] [Indexed: 11/06/2022] Open
Abstract
Nitrospina bacteria are among the most important nitrite oxidizers in coastal and open-ocean environments, but the relevance of the genus contrasts with the scarceness of information on their ecophysiology and habitat range. Thus far, Nitrospina bacteria have been the only nitrite oxidizers detected at high abundance in Chilean coastal waters. These levels are often higher than at other latitudes. In this study, the abundance of 16S-rRNA gene transcripts of Nitrospina (hereafter just transcripts) was measured by reverse transcription quantitative PCR in a rocky intertidal gradient and compared with the nearshore counterpart off central Chile (~33°S). Rocky pond transcripts were also compared with the taxonomic composition of the macrobiota and bacterioplankton (by 16S-rRNA gene-based T-RFLP) in the intertidal gradient. Transcripts increased from warmer, saltier, and low-nitrite ponds in the upper intertidal zone (19.5 ± 1.6°C, 39.0 ± 1.0 psu, 0.98 ± 0.17 μmol/L) toward cooler, less salty, and high-nitrite ponds (17.8 ± 2.6°C, 37.7 ± 0.82 psu, 1.23 ± 0.21 μmol/L) from middle and low zones. These varied from ~1,000 up to 62,800 transcripts. This increasing trend in the number of transcripts toward the lower zone was positively associated with the Shannon's diversity index for the macrobiota (r = .81, p < .01). Moreover, an important increase in the average number of transcripts was observed in ponds with a greater number of fish in the upper (7,846 transcripts during 2013) and lower zones (62,800 transcripts during 2015). Altogether, intertidal and nearshore transcripts were significantly correlated with nitrite concentrations (r = .804, p ˂ .01); rocky pond transcripts outnumbered nearshore ones by almost two orders of magnitude. In summary, rocky ponds favored both the presence and activity of Nitrospina bacteria that are tolerant to environmental stress. This in turn was positively influenced by the presence of ammonia- or urea-producing macrobiota.
Collapse
Affiliation(s)
- Daniela V Yepsen
- Programa de Doctorado en Ciencias con mención en Manejo de Recursos Acuáticos Renovables, Universidad de Concepción, Concepción, Chile
| | - Héctor A Levipan
- Centro de Investigación Marina Quintay (CIMARQ), Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Valparaíso, Chile
| | - Verónica Molina
- Programa de Biodiversidad, Departamento de Biología, Observatorio de Ecología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha, Valparaíso, Chile
| |
Collapse
|
122
|
Molina V, Dorador C, Fernández C, Bristow L, Eissler Y, Hengst M, Hernandez K, Olsen LM, Harrod C, Marchant F, Anguita C, Cornejo M. The activity of nitrifying microorganisms in a high-altitude Andean wetland. FEMS Microbiol Ecol 2018; 94:4969675. [DOI: 10.1093/femsec/fiy062] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Accepted: 04/09/2018] [Indexed: 11/13/2022] Open
Affiliation(s)
- Verónica Molina
- Departamento de Biología, Observatorio de Ecología Microbiana, Facultad de Ciencias Naturales y Exactas, Universidad de Playa Ancha. Avenida Leopoldo Carvallo 270, Playa Ancha, Valparaíso, Chile
| | - Cristina Dorador
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto de Antofagasta, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta. Avenida Universidad de Antofagasta s/n, Antofagasta, Chile
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Beaucheff 851 (Piso 7)
| | - Camila Fernández
- Sorbonne Universités, UPMC Univ Paris 06, CNRS, Laboratoire d'Océanographie Microbienne (LOMIC), Observatoire Océanologique, F-66650, Banyuls/mer, France
- Interdisciplinary Center for Aquaculture Research (INCAR), COPAS SUR-AUSTRAL Program, Barrio Universitario s/n, Universidad de Concepción, Concepción, Chile
| | - Laura Bristow
- Nordic Center for Earth Evolution (NordCEE), Department of Biology, University of Southern Denmark, Campusvej 55-5230, Odense, Denmark
| | - Yoanna Eissler
- Centro de Investigación y Gestión de Recursos Naturales, Instituto de Química y Bioquímica, Facultad de Ciencias, Universidad de Valparaíso, Gran Bretaña 1111, Playa Ancha, Valparaíso, Chile
| | - Martha Hengst
- Centre for Biotechnology and Bioengineering, Universidad de Chile, Beaucheff 851 (Piso 7)
- Departamento de Ciencias Farmacéuticas, Facultad de Ciencias, Universidad Católica del Norte. Av Angamos 0610 Antofagasta, Chile
| | - Klaudia Hernandez
- Centro de Investigacion Marina Quintay, Facultad de Ecología y Recursos Naturales, Universidad Andres Bello, Avenida República 440, Santiago, Chile10
| | | | - Chris Harrod
- Fish and Stable Isotope Ecology Laboratory, Instituto de Ciencias Naturales Alexander von Humboldt, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta, Antofagasta, Chile
| | - Francisca Marchant
- Laboratorio de Complejidad Microbiana y Ecología Funcional, Instituto de Antofagasta, Departamento de Biotecnología, Facultad de Ciencias del Mar y Recursos Biológicos, Universidad de Antofagasta. Avenida Universidad de Antofagasta s/n, Antofagasta, Chile
| | - Cristobal Anguita
- Departamento de Ecologia y Biodiversidad, Facultad de Ecologia y Recursos Naturales, Universidad Andres Bello, Av. Republica 440, Santiago, Chile
| | - Marcela Cornejo
- Escuela de Ciencias del Mar e Instituto Milenio de Oceanografía , Pontificia Universidad Católica de Valparaíso, Valparaíso, Chile, Altamirano 1480, Valparaíso
| |
Collapse
|
123
|
Comparative genomics sheds light on niche differentiation and the evolutionary history of comammox Nitrospira. ISME JOURNAL 2018. [PMID: 29515170 DOI: 10.1038/s41396-018-0083-3] [Citation(s) in RCA: 173] [Impact Index Per Article: 24.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
The description of comammox Nitrospira spp., performing complete ammonia-to-nitrate oxidation, and their co-occurrence with canonical β-proteobacterial ammonia oxidizing bacteria (β-AOB) in the environment, calls into question the metabolic potential of comammox Nitrospira and the evolutionary history of their ammonia oxidation pathway. We report four new comammox Nitrospira genomes, constituting two novel species, and the first comparative genomic analysis on comammox Nitrospira. Unlike canonical Nitrospira, comammox Nitrospira genomes lack genes for assimilatory nitrite reduction, suggesting that they have lost the potential to use external nitrite nitrogen sources. By contrast, compared to canonical Nitrospira, comammox Nitrospira harbor a higher diversity of urea transporters and copper homeostasis genes and lack cyanate hydratase genes. Additionally, the two comammox clades differ in their ammonium uptake systems. Contrary to β-AOB, comammox Nitrospira genomes have single copies of the two central ammonia oxidation pathway operons. Similar to ammonia oxidizing archaea and some oligotrophic AOB strains, they lack genes involved in nitric oxide reduction. Furthermore, comammox Nitrospira genomes encode genes that might allow efficient growth at low oxygen concentrations. Regarding the evolutionary history of comammox Nitrospira, our analyses indicate that several genes belonging to the ammonia oxidation pathway could have been laterally transferred from β-AOB to comammox Nitrospira. We postulate that the absence of comammox genes in other sublineage II Nitrospira genomes is the result of subsequent loss.
Collapse
|
124
|
Pillonel T, Bertelli C, Greub G. Environmental Metagenomic Assemblies Reveal Seven New Highly Divergent Chlamydial Lineages and Hallmarks of a Conserved Intracellular Lifestyle. Front Microbiol 2018. [PMID: 29515524 PMCID: PMC5826181 DOI: 10.3389/fmicb.2018.00079] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The Chlamydiae phylum exclusively encompasses bacteria sharing a similar obligate intracellular life cycle. Existing 16S rDNA data support a high diversity within the phylum, however genomic data remain scarce owing to the difficulty in isolating strains using culture systems with eukaryotic cells. Yet, Chlamydiae genome data extracted from large scale metagenomic studies might help fill this gap. This work compares 33 cultured and 27 environmental, uncultured chlamydial genomes, in order to clarify the phylogenetic relatedness of the new chlamydial clades and to investigate the genetic diversity of the Chlamydiae phylum. The analysis of published chlamydial genomes from metagenomics bins and single cell sequencing allowed the identification of seven new deeply branching chlamydial clades sharing genetic hallmarks of parasitic Chlamydiae. Comparative genomics suggests important biological differences between those clades, including loss of many proteins involved in cell division in the genus Similichlamydia, and loss of respiratory chain and tricarboxylic acid cycle in several species. Comparative analyses of chlamydial genomes with two proteobacterial orders, the Rhizobiales and the Rickettsiales showed that genomes of different Rhizobiales families are much more similar than genomes of different Rickettsiales families. On the other hand, the chlamydial 16S rRNAs exhibit a higher sequence conservation than their Rickettsiales counterparts, while chlamydial proteins exhibit increased sequence divergence. Studying the diversity and genome plasticity of the entire Chlamydiae phylum is of major interest to better understand the emergence and evolution of this ubiquitous and ancient clade of obligate intracellular bacteria.
Collapse
Affiliation(s)
- Trestan Pillonel
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Claire Bertelli
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Gilbert Greub
- Center for Research on Intracellular Bacteria, Institute of Microbiology, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| |
Collapse
|
125
|
Albers CN, Ellegaard-Jensen L, Hansen LH, Sørensen SR. Bioaugmentation of rapid sand filters by microbiome priming with a nitrifying consortium will optimize production of drinking water from groundwater. WATER RESEARCH 2018; 129:1-10. [PMID: 29127829 DOI: 10.1016/j.watres.2017.11.009] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 11/03/2017] [Accepted: 11/03/2017] [Indexed: 06/07/2023]
Abstract
Ammonium oxidation to nitrite and then to nitrate (nitrification) is a key process in many waterworks treating groundwater to make it potable. In rapid sand filters, nitrifying microbial communities may evolve naturally from groundwater bacteria entering the filters. However, in new filters this may take several months, and in some cases the nitrification process is never sufficiently rapid to be efficient or is only performed partially, with nitrite as an undesired end product. The present study reports the first successful priming of nitrification in a rapid sand filter treating groundwater. It is shown that nitrifying communities could be enriched by microbiomes from well-functioning rapid sand filters in waterworks and that the enriched nitrifying consortium could be used to inoculate fresh filters, significantly shortening the time taken for the nitrification process to start. The key nitrifiers in the enrichment were different from those in the well-functioning filter, but similar to those that initiated the nitrification process in fresh filters without inoculation. Whether or not the nitrification was primed with the enriched nitrifying consortium, the bacteria performing the nitrification process during start-up appeared to be slowly outcompeted by Nitrospira, the dominant nitrifying bacterium in well-functioning rapid sand filters.
Collapse
Affiliation(s)
- Christian Nyrop Albers
- Geological Survey of Denmark and Greenland (GEUS), Department of Geochemistry, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark.
| | - Lea Ellegaard-Jensen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Lars Hestbjerg Hansen
- Department of Environmental Science, Aarhus University, Frederiksborgvej 399, DK-4000 Roskilde, Denmark
| | - Sebastian R Sørensen
- Geological Survey of Denmark and Greenland (GEUS), Department of Geochemistry, Øster Voldgade 10, DK-1350, Copenhagen K, Denmark
| |
Collapse
|
126
|
ezTree: an automated pipeline for identifying phylogenetic marker genes and inferring evolutionary relationships among uncultivated prokaryotic draft genomes. BMC Genomics 2018; 19:921. [PMID: 29363425 PMCID: PMC5780852 DOI: 10.1186/s12864-017-4327-9] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023] Open
Abstract
BACKGROUND Inferring phylogenetic trees for newly recovered genomes from metagenomic samples is very useful in determining the identities of uncultivated microorganisms. Even though 16S ribosomal RNA small subunit genes have been established as "gold standard" markers for inferring phylogenetic trees, they usually cannot be assembled very well in metagenomes due to shared regions among 16S genes. Using single-copy marker genes to build genome trees has become increasingly popular for uncultivated species. Predefined marker gene sets were discovered and have been applied in various genomic studies; however these gene sets might not be adequate for novel, uncultivated, draft, or incomplete genomes. The automatic identification of marker gene sets among a set of genomes with different assembly qualities has thus become a very important task for inferring reliable phylogenetic relationships for microbial populations. RESULTS A computational pipeline, ezTree, was developed to automatically identify single-copy marker genes for a group of genomes and build phylogenetic trees from the marker genes. Testing ezTree on a group of proteobacteria species revealed that ezTree was highly effective in pinpointing marker genes and constructing reliable trees for different groups of bacterial genomes. Applying ezTree to genomes that were recently recovered from metagenomes also showed that ezTree can help elucidate taxonomic relationships among newly recovered genomes and existing ones. CONCLUSIONS The development of ezTree can help scientists build reliable phylogenetic trees for uncultivated species retrieved from environmental samples. The uncovered single-copy marker genes may also provide crucial hints for understanding shared features of a group of microbes. The ezTree pipeline is freely available at https://github.com/yuwwu/ezTree under a GNU GPLv3 license.
Collapse
|
127
|
Ushiki N, Fujitani H, Shimada Y, Morohoshi T, Sekiguchi Y, Tsuneda S. Genomic Analysis of Two Phylogenetically Distinct Nitrospira Species Reveals Their Genomic Plasticity and Functional Diversity. Front Microbiol 2018; 8:2637. [PMID: 29375506 PMCID: PMC5767232 DOI: 10.3389/fmicb.2017.02637] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2017] [Accepted: 12/18/2017] [Indexed: 02/02/2023] Open
Abstract
The genus Nitrospira represents a dominant group of nitrite-oxidizing bacteria in natural and engineered ecosystems. This genus is phylogenetically divided into six lineages, for which vast phylogenetic and functional diversity has been revealed by recent molecular ecophysiological analyses. However, the genetic basis underlying these phenotypic differences remains largely unknown because of the lack of genome sequences representing their diversity. To gain a more comprehensive understanding of Nitrospira, we performed genomic comparisons between two Nitrospira strains (ND1 and NJ1 belonging to lineages I and II, respectively) previously isolated from activated sludge. In addition, the genomes of these strains were systematically compared with previously reported six Nitrospira genomes to reveal their similarity and presence/absence of several functional genes/operons. Comparisons of Nitrospira genomes indicated that their genomic diversity reflects phenotypic differences and versatile nitrogen metabolisms. Although most genes involved in key metabolic pathways were conserved between strains ND1 and NJ1, assimilatory nitrite reduction pathways of the two Nitrospira strains were different. In addition, the genomes of both strains contain a phylogenetically different urease locus and we confirmed their ureolytic activity. During gene annotation of strain NJ1, we found a gene cluster encoding a quorum-sensing system. From the enriched supernatant of strain NJ1, we successfully identified seven types of acyl-homoserine lactones with a range of C10–C14. In addition, the genome of strain NJ1 lacks genes relevant to flagella and the clustered regularly interspaced short palindromic repeat (CRISPR)-Cas (CRISPR-associated genes) systems, whereas most nitrifying bacteria including strain ND1 possess these genomic elements. These findings enhance our understanding of genomic plasticity and functional diversity among members of the genus Nitrospira.
Collapse
Affiliation(s)
- Norisuke Ushiki
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Hirotsugu Fujitani
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Yu Shimada
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| | - Tomohiro Morohoshi
- Department of Material and Environmental Chemistry, Graduate School of Engineering, Utsunomiya University, Tochigi, Japan
| | - Yuji Sekiguchi
- Bio-Measurement Research Group, Biomedical Research Institute, National Institute of Advanced Industrial Science and Technology, Ibaraki, Japan
| | - Satoshi Tsuneda
- Department of Life Science and Medical Bioscience, Waseda University, Tokyo, Japan
| |
Collapse
|
128
|
Laanbroek HJ, Veenhuizen PTM, Keijzer RM, Hefting MM. Numerical Relationships Between Archaeal and Bacterial amoA Genes Vary by Icelandic Andosol Classes. MICROBIAL ECOLOGY 2018; 75:204-215. [PMID: 28707145 PMCID: PMC5742608 DOI: 10.1007/s00248-017-1032-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 06/30/2017] [Indexed: 05/26/2023]
Abstract
Bacterial amoA genes had not been detectable by qPCR in freshly sampled Icelandic Andosols thus far. Hence, a new primer set yielding shorter gene fragments has been designed to verify the absence of ammonia-oxidizing bacteria in different Icelandic Andosol classes. At the same time, a new primer set was also constructed for archaeal amoA genes that should improve the quality of PCR products. Although a large part of the soil samples were found to be amoA-negative, bacterial amoA genes were detectable with new as well as old primer sets. The same results were obtained for the archaeal amoA genes. The relative distribution of archaeal and bacterial amoA genes varied between Andosol classes. Archaeal amoA genes were significantly more abundant in Brown than in Histic Andosols, while the opposite was observed for bacterial amoA genes. The numbers of archaeal and bacterial amoA genes in Gleyic Andosols were not significantly different from those in Histic and Brown Andosols. The numbers of bacterial amoA genes, but not the numbers of archaeal amoA genes, correlated significantly and positively with potential ammonia oxidation activities. The presence of the bacterial nitrification inhibitor allylthiourea inhibited the potential ammonia oxidation activities during the first 12 h of incubation. Hence, it was concluded that ammonia-oxidizing bacteria profited most from the conditions during the measurements of potential ammonia oxidation activities.
Collapse
Affiliation(s)
- Hendrikus J Laanbroek
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, the Netherlands.
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, the Netherlands.
| | - Peter T M Veenhuizen
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, the Netherlands
| | - Rosalinde M Keijzer
- Department of Microbial Ecology, Netherlands Institute of Ecology (NIOO-KNAW), P.O. Box 50, 6700 AB, Wageningen, the Netherlands
| | - Mariet M Hefting
- Ecology and Biodiversity Group, Department of Biology, Utrecht University, Utrecht, the Netherlands
| |
Collapse
|
129
|
Annavajhala MK, Kapoor V, Santo-Domingo J, Chandran K. Comammox Functionality Identified in Diverse Engineered Biological Wastewater Treatment Systems. ENVIRONMENTAL SCIENCE & TECHNOLOGY LETTERS 2018; 5:110-116. [PMID: 31338378 PMCID: PMC6650159 DOI: 10.1021/acs.estlett.7b00577] [Citation(s) in RCA: 83] [Impact Index Per Article: 11.9] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/04/2023]
Abstract
Complete ammonia oxidation (comammox) to nitrate by certain Nitrospira-lineage bacteria (CMX) could contribute to overall nitrogen cycling in engineered biological nitrogen removal (BNR) processes in addition to the more well-documented nitrogen transformations by ammonia-oxidizing bacteria (AOB), nitrite-oxidizing bacteria (NOB), and anaerobic ammonia-oxidizing (anammox) bacteria (AMX). A metagenomic survey was conducted to quantify the presence and elucidate the potential functionality of CMX in 16 full-scale BNR configurations treating mainstream or sidestream wastewater. CMX proposed to date were combined with previously published AOB, NOB, and AMX genomes to create an expanded database for alignment of metagenomic reads. CMX-assigned metagenomic reads accounted for between 0.28 and 0.64% of total coding DNA sequences in all BNR configurations. Phylogenetic analysis of key nitrification functional genes amoA, encoding the α-subunit of ammonia monooxygenase, haoB, encoding the β-subunit of hydroxylamine oxidoreductase, and nxrB, encoding the β-subunit of nitrite oxidoreductase, confirmed that each BNR system contained coding regions for production of these enzymes by CMX specifically. Ultimately, the ubiquitous presence of CMX bacteria and metabolic functionality in such diverse system configurations emphasizes the need to translate novel bacterial transformations to engineered biological process interrogation, operation, and design.
Collapse
Affiliation(s)
- Medini K. Annavajhala
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States
| | - Vikram Kapoor
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Jorge Santo-Domingo
- Office of Research and Development, U.S. Environmental Protection Agency, Cincinnati, Ohio 45268, United States
| | - Kartik Chandran
- Department of Earth and Environmental Engineering, Columbia University, New York, New York 10027, United States
| |
Collapse
|
130
|
Ciesielski S, Czerwionka K, Sobotka D, Dulski T, Makinia J. The metagenomic approach to characterization of the microbial community shift during the long-term cultivation of anammox-enriched granular sludge. J Appl Genet 2017; 59:109-117. [PMID: 29230681 PMCID: PMC5799322 DOI: 10.1007/s13353-017-0418-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2017] [Revised: 11/02/2017] [Accepted: 11/21/2017] [Indexed: 11/17/2022]
Abstract
A metagenomic approach was used to investigate how the microbial community composition changes when an anammox-based granular sludge reactor is seeded with nitritation-anammox biomass from a wastewater treatment plant. In the seed sample, the abundance of Candidatus Kuenenia stuttgartiensis was similar to Candidatus Jettenia caeni (12.63 vs. 11.68%). This biomass was typical in terms of microbial nitrogen conversion; both ammonia (Nitrosomonas sp.) and nitrite (Nitrospira sp.) oxidizing bacteria were detected. In the lab-scale reactor, Candidatus Kuenenia stuttgartiensis and Candidatus Jettenia caeni bacteria were also present in equal proportions (18.57 vs. 20.89%). On the contrary, Candidatus Nitrospira defluvii bacteria were highly abundant in this reactor, but no known ammonia-oxidizing bacteria were detected. In light of recent studies showing that Nitrospira sp. are capable of complete nitrification, the results presented here may well indicate that both stages of nitrification in the anammox-based granular sludge reactor were performed by this bacteria.
Collapse
Affiliation(s)
- Slawomir Ciesielski
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Sloneczna 45G, 10-917, Olsztyn, Poland.
| | - Krzysztof Czerwionka
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Dominika Sobotka
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
| | - Tomasz Dulski
- Department of Environmental Biotechnology, University of Warmia and Mazury in Olsztyn, Sloneczna 45G, 10-917, Olsztyn, Poland
| | - Jacek Makinia
- Faculty of Civil and Environmental Engineering, Gdansk University of Technology, Narutowicza 11/12, 80-233, Gdansk, Poland
| |
Collapse
|
131
|
Genome-Enabled Insights into the Ecophysiology of the Comammox Bacterium " Candidatus Nitrospira nitrosa". mSystems 2017; 2:mSystems00059-17. [PMID: 28905001 PMCID: PMC5596200 DOI: 10.1128/msystems.00059-17] [Citation(s) in RCA: 85] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2017] [Accepted: 08/15/2017] [Indexed: 02/03/2023] Open
Abstract
Nitrospira-like bacteria are among the most diverse and widespread nitrifiers in natural ecosystems and the dominant nitrite oxidizers in wastewater treatment plants (WWTPs). The recent discovery of comammox-like Nitrospira strains, capable of complete oxidation of ammonia to nitrate, raises new questions about specific traits responsible for the functional versatility and adaptation of this genus to a variety of environments. The availability of new Nitrospira genome sequences from both nitrite-oxidizing and comammox bacteria offers a way to analyze traits in different Nitrospira functional groups. Our comparative genomics analysis provided new insights into the adaptation of Nitrospira strains to specific lifestyles and environmental niches. The recently discovered comammox bacteria have the potential to completely oxidize ammonia to nitrate. These microorganisms are part of the Nitrospira genus and are present in a variety of environments, including biological nutrient removal (BNR) systems. However, the physiological traits within and between comammox and nitrite-oxidizing bacterium (NOB)-like Nitrospira species have not been analyzed in these ecosystems. In this study, we identified Nitrospira strains dominating the nitrifying community of a sequencing batch reactor (SBR) performing BNR under microaerobic conditions. We recovered metagenome-derived draft genomes from two Nitrospira strains: (i) Nitrospira sp. strain UW-LDO-01, a comammox-like organism classified as “Candidatus Nitrospira nitrosa,” and (ii) Nitrospira sp. strain UW-LDO-02, a nitrite-oxidizing strain belonging to the Nitrospira defluvii species. A comparative genomic analysis of these strains with other Nitrospira-like genomes identified genomic differences in “Ca. Nitrospira nitrosa” mainly attributed to each strain’s niche adaptation. Traits associated with energy metabolism also differentiate comammox from NOB-like genomes. We also identified several transcriptionally regulated adaptive traits, including stress tolerance, biofilm formation, and microaerobic metabolism, which might explain survival of Nitrospira under multiple environmental conditions. Overall, our analysis expanded our understanding of the genetic functional features of “Ca. Nitrospira nitrosa” and identified genomic traits that further illuminate the phylogenetic diversity and metabolic plasticity of the Nitrospira genus. IMPORTANCENitrospira-like bacteria are among the most diverse and widespread nitrifiers in natural ecosystems and the dominant nitrite oxidizers in wastewater treatment plants (WWTPs). The recent discovery of comammox-like Nitrospira strains, capable of complete oxidation of ammonia to nitrate, raises new questions about specific traits responsible for the functional versatility and adaptation of this genus to a variety of environments. The availability of new Nitrospira genome sequences from both nitrite-oxidizing and comammox bacteria offers a way to analyze traits in different Nitrospira functional groups. Our comparative genomics analysis provided new insights into the adaptation of Nitrospira strains to specific lifestyles and environmental niches. Author Video: An author video summary of this article is available.
Collapse
|
132
|
Ghashghavi M, Jetten MSM, Lüke C. Survey of methanotrophic diversity in various ecosystems by degenerate methane monooxygenase gene primers. AMB Express 2017; 7:162. [PMID: 28831762 PMCID: PMC5567572 DOI: 10.1186/s13568-017-0466-2] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2017] [Accepted: 08/17/2017] [Indexed: 01/07/2023] Open
Abstract
Methane is the second most important greenhouse gas contributing to about 20% of global warming. Its mitigation is conducted by methane oxidizing bacteria that act as a biofilter using methane as their energy and carbon source. Since their first discovery in 1906, methanotrophs have been studied using a complementary array of methods. One of the most used molecular methods involves PCR amplification of the functional gene marker for the diagnostic of copper and iron containing particulate methane monooxygenase. To investigate the diversity of methanotrophs and to extend their possible molecular detection, we designed a new set of degenerate methane monooxygenase primers to target an 850 nucleotide long sequence stretch from pmoC to pmoA. The primers were based on all available full genomic pmoCAB operons. The newly designed primers were tested on various pure cultures, enrichment cultures and environmental samples using PCR. The results demonstrated that this primer set has the ability to correctly amplify the about 850 nucleotide long pmoCA product from Alphaproteobacteria, Gammaproteobacteria, Verrucomicrobia and the NC10 phyla methanotrophs. The new primer set will thus be a valuable tool to screen ecosystems and can be applied in conjunction with previously used pmoA primers to extend the diversity of currently known methane-oxidizing bacteria.
Collapse
|
133
|
Kinetic analysis of a complete nitrifier reveals an oligotrophic lifestyle. Nature 2017; 549:269-272. [PMID: 28847001 PMCID: PMC5600814 DOI: 10.1038/nature23679] [Citation(s) in RCA: 399] [Impact Index Per Article: 49.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2017] [Accepted: 07/28/2017] [Indexed: 01/31/2023]
Abstract
Nitrification, the oxidation of ammonia (NH3) via nitrite
(NO2-) to nitrate (NO3-), is a
key process of the biogeochemical nitrogen cycle. For decades, ammonia and
nitrite oxidation were thought to be separately catalyzed by ammonia-oxidizing
bacteria (AOB) and archaea (AOA), and by nitrite-oxidizing bacteria (NOB). The
recent discovery of complete ammonia oxidizers (comammox) in the NOB genus
Nitrospira1,2, which alone convert ammonia to nitrate,
raised questions about the ecological niches where comammox
Nitrospira successfully compete with canonical nitrifiers.
Here we isolated the first pure culture of a comammox bacterium,
Nitrospira inopinata, and show that it is adapted to slow
growth in oligotrophic and dynamic habitats based on a high affinity for
ammonia, low maximum rate of ammonia oxidation, high growth yield compared to
canonical nitrifiers, and genomic potential for alternative metabolisms. The
nitrification kinetics of four AOA from soil and hot springs were determined for
comparison. Their surprisingly poor substrate affinities and lower growth yields
reveal that, in contrast to earlier assumptions, not all AOA are most
competitive in strongly oligotrophic environments and that N.
inopinata has the highest substrate affinity of all analyzed
ammonia oxidizer isolates except the marine AOA Nitrosopumilus
maritimus SCM13. These
results suggest a role of comammox organisms for nitrification under
oligotrophic and dynamic conditions.
Collapse
|
134
|
Pjevac P, Schauberger C, Poghosyan L, Herbold CW, van Kessel MAHJ, Daebeler A, Steinberger M, Jetten MSM, Lücker S, Wagner M, Daims H. AmoA-Targeted Polymerase Chain Reaction Primers for the Specific Detection and Quantification of Comammox Nitrospira in the Environment. Front Microbiol 2017; 8:1508. [PMID: 28824606 PMCID: PMC5543084 DOI: 10.3389/fmicb.2017.01508] [Citation(s) in RCA: 200] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2017] [Accepted: 07/27/2017] [Indexed: 12/03/2022] Open
Abstract
Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be catalyzed by the concerted activity of ammonia- and nitrite-oxidizing microorganisms. Only recently, complete ammonia oxidizers ("comammox"), which oxidize ammonia to nitrate on their own, were identified in the bacterial genus Nitrospira, previously assumed to contain only canonical nitrite oxidizers. Nitrospira are widespread in nature, but for assessments of the distribution and functional importance of comammox Nitrospira in ecosystems, cultivation-independent tools to distinguish comammox from strictly nitrite-oxidizing Nitrospira are required. Here we developed new PCR primer sets that specifically target the amoA genes coding for subunit A of the distinct ammonia monooxygenase of comammox Nitrospira. While existing primers capture only a fraction of the known comammox amoA diversity, the new primer sets cover as much as 95% of the comammox amoA clade A and 92% of the clade B sequences in a reference database containing 326 comammox amoA genes with sequence information at the primer binding sites. Application of the primers to 13 samples from engineered systems (a groundwater well, drinking water treatment and wastewater treatment plants) and other habitats (rice paddy and forest soils, rice rhizosphere, brackish lake sediment and freshwater biofilm) detected comammox Nitrospira in all samples and revealed a considerable diversity of comammox in most habitats. Excellent primer specificity for comammox amoA was achieved by avoiding the use of highly degenerate primer preparations and by using equimolar mixtures of oligonucleotides that match existing comammox amoA genes. Quantitative PCR with these equimolar primer mixtures was highly sensitive and specific, and enabled the efficient quantification of clade A and clade B comammox amoA gene copy numbers in environmental samples. The measured relative abundances of comammox Nitrospira, compared to canonical ammonia oxidizers, were highly variable across environments. The new comammox amoA-targeted primers enable more encompassing future studies of nitrifying microorganisms in diverse habitats. For example, they may be used to monitor the population dynamics of uncultured comammox organisms under changing environmental conditions and in response to altered treatments in engineered and agricultural ecosystems.
Collapse
Affiliation(s)
- Petra Pjevac
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry meets Microbiology’, University of ViennaVienna, Austria
| | - Clemens Schauberger
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry meets Microbiology’, University of ViennaVienna, Austria
| | - Lianna Poghosyan
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud UniversityNijmegen, Netherlands
| | - Craig W. Herbold
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry meets Microbiology’, University of ViennaVienna, Austria
| | - Maartje A. H. J. van Kessel
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud UniversityNijmegen, Netherlands
| | - Anne Daebeler
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry meets Microbiology’, University of ViennaVienna, Austria
| | - Michaela Steinberger
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry meets Microbiology’, University of ViennaVienna, Austria
| | - Mike S. M. Jetten
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud UniversityNijmegen, Netherlands
| | - Sebastian Lücker
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud UniversityNijmegen, Netherlands
| | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry meets Microbiology’, University of ViennaVienna, Austria
| | - Holger Daims
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network ‘Chemistry meets Microbiology’, University of ViennaVienna, Austria
| |
Collapse
|
135
|
Black EM, Chimenti MS, Just CL. Effect of freshwater mussels on the vertical distribution of anaerobic ammonia oxidizers and other nitrogen-transforming microorganisms in upper Mississippi river sediment. PeerJ 2017; 5:e3536. [PMID: 28717594 PMCID: PMC5510576 DOI: 10.7717/peerj.3536] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2017] [Accepted: 06/13/2017] [Indexed: 01/03/2023] Open
Abstract
Targeted qPCR and non-targeted amplicon sequencing of 16S rRNA genes within sediment layers identified the anaerobic ammonium oxidation (anammox) niche and characterized microbial community changes attributable to freshwater mussels. Anammox bacteria were normally distributed (Shapiro-Wilk normality test, W-statistic =0.954, p = 0.773) between 1 and 15 cm depth and were increased by a factor of 2.2 (p < 0.001) at 3 cm below the water-sediment interface when mussels were present. Amplicon sequencing of sediment at depths relevant to mussel burrowing (3 and 5 cm) showed that mussel presence reduced observed species richness (p = 0.005), Chao1 diversity (p = 0.005), and Shannon diversity (p < 0.001), with more pronounced decreases at 5 cm depth. A non-metric, multidimensional scaling model showed that intersample microbial species diversity varied as a function of mussel presence, indicating that sediment below mussels harbored distinct microbial communities. Mussel presence corresponded with a 4-fold decrease in a majority of operational taxonomic units (OTUs) classified in the phyla Gemmatimonadetes, Actinobacteria, Acidobacteria, Plantomycetes, Chloroflexi, Firmicutes, Crenarcheota, and Verrucomicrobia. 38 OTUs in the phylum Nitrospirae were differentially abundant (p < 0.001) with mussels, resulting in an overall increase from 25% to 35%. Nitrogen (N)-cycle OTUs significantly impacted by mussels belonged to anammmox genus Candidatus Brocadia, ammonium oxidizing bacteria family Nitrosomonadaceae, ammonium oxidizing archaea genus Candidatus Nitrososphaera, nitrite oxidizing bacteria in genus Nitrospira, and nitrate- and nitrite-dependent anaerobic methane oxidizing organisms in the archaeal family “ANME-2d” and bacterial phylum “NC10”, respectively. Nitrosomonadaceae (0.9-fold (p < 0.001)) increased with mussels, while NC10 (2.1-fold (p < 0.001)), ANME-2d (1.8-fold (p < 0.001)), and Candidatus Nitrososphaera (1.5-fold (p < 0.001)) decreased with mussels. Co-occurrence of 2-fold increases in Candidatus Brocadia and Nitrospira in shallow sediments suggests that mussels may enhance microbial niches at the interface of oxic–anoxic conditions, presumably through biodeposition and burrowing. Furthermore, it is likely that the niches of Candidatus Nitrososphaera and nitrite- and nitrate-dependent anaerobic methane oxidizers were suppressed by mussel biodeposition and sediment aeration, as these phylotypes require low ammonium concentrations and anoxic conditions, respectively. As far as we know, this is the first study to characterize freshwater mussel impacts on microbial diversity and the vertical distribution of N-cycle microorganisms in upper Mississippi river sediment. These findings advance our understanding of ecosystem services provided by mussels and their impact on aquatic biogeochemical N-cycling.
Collapse
Affiliation(s)
- Ellen M Black
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA, United States of America
| | - Michael S Chimenti
- Iowa Institute of Human Genetics, University of Iowa, Iowa City, IA, United States of America
| | - Craig L Just
- Department of Civil and Environmental Engineering, University of Iowa, Iowa City, IA, United States of America
| |
Collapse
|
136
|
Yang C, Wang Q, Simon PN, Liu J, Liu L, Dai X, Zhang X, Kuang J, Igarashi Y, Pan X, Luo F. Distinct Network Interactions in Particle-Associated and Free-Living Bacterial Communities during a Microcystis aeruginosa Bloom in a Plateau Lake. Front Microbiol 2017; 8:1202. [PMID: 28713340 PMCID: PMC5492469 DOI: 10.3389/fmicb.2017.01202] [Citation(s) in RCA: 73] [Impact Index Per Article: 9.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2017] [Accepted: 06/13/2017] [Indexed: 12/23/2022] Open
Abstract
Particle-associated bacteria (PAB) and free-living bacteria (FLB) from aquatic environments during phytoplankton blooms differ in their physical distance from algae. Both the interactions within PAB and FLB community fractions and their relationship with the surrounding environmental properties are largely unknown. Here, by using high-throughput sequencing and network-based analyses, we compared the community and network characteristics of PAB and FLB from a plateau lake during a Microcystis aeruginosa bloom. Results showed that PAB and FLB differed significantly in diversity, structure and microbial connecting network. PAB communities were characterized by highly similar bacterial community structure in different sites, tighter network connections, important topological roles for the bloom-causing M. aeruginosa and Alphaproteobacteria, especially for the potentially nitrogen-fixing (Pleomorphomonas) and algicidal bacteria (Brevundimonas sp.). FLB communities were sensitive to the detected environmental factors and were characterized by significantly higher bacterial diversity, less connectivity, larger network size and marginal role of M. aeruginosa. In both networks, covariation among bacterial taxa was extensive (>88% positive connections), and bacteria potentially affiliated with biogeochemical cycling of nitrogen (i.e., denitrification, nitrogen-fixation and nitrite-oxidization) were important in occupying module hubs, such as Meganema, Pleomorphomonas, and Nitrospira. These findings highlight the importance of considering microbial network interactions for the understanding of blooms.
Collapse
Affiliation(s)
- Caiyun Yang
- Research Center of Bioenergy and Bioremediation, Southwest UniversityChongqing, China
| | - Qi Wang
- Research Center of Bioenergy and Bioremediation, Southwest UniversityChongqing, China
| | - Paulina N Simon
- Research Center of Bioenergy and Bioremediation, Southwest UniversityChongqing, China
| | - Jinyu Liu
- Research Center of Bioenergy and Bioremediation, Southwest UniversityChongqing, China
| | - Lincong Liu
- Research Center of Bioenergy and Bioremediation, Southwest UniversityChongqing, China
| | - Xianzhu Dai
- Research Center of Bioenergy and Bioremediation, Southwest UniversityChongqing, China
| | - Xiaohui Zhang
- Research Center of Bioenergy and Bioremediation, Southwest UniversityChongqing, China
| | - Jialiang Kuang
- State Key Laboratory of Biocontrol, Guangdong Key Laboratory of Plant Resources and Conservation of Guangdong Higher Education Institutes, College of Ecology and Evolution, Sun Yat-sen UniversityGuangzhou, China
| | - Yasuo Igarashi
- Research Center of Bioenergy and Bioremediation, Southwest UniversityChongqing, China
| | - Xuejun Pan
- Faculty of Environmental Science and Engineering, Kunming University of Science and TechnologyKunming, China
| | - Feng Luo
- Research Center of Bioenergy and Bioremediation, Southwest UniversityChongqing, China
| |
Collapse
|
137
|
Crenothrix are major methane consumers in stratified lakes. ISME JOURNAL 2017; 11:2124-2140. [PMID: 28585934 PMCID: PMC5563964 DOI: 10.1038/ismej.2017.77] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Revised: 04/13/2017] [Accepted: 04/21/2017] [Indexed: 01/29/2023]
Abstract
Methane-oxidizing bacteria represent a major biological sink for methane and are thus Earth’s natural protection against this potent greenhouse gas. Here we show that in two stratified freshwater lakes a substantial part of upward-diffusing methane was oxidized by filamentous gamma-proteobacteria related to Crenothrix polyspora. These filamentous bacteria have been known as contaminants of drinking water supplies since 1870, but their role in the environmental methane removal has remained unclear. While oxidizing methane, these organisms were assigned an ‘unusual’ methane monooxygenase (MMO), which was only distantly related to ‘classical’ MMO of gamma-proteobacterial methanotrophs. We now correct this assignment and show that Crenothrix encode a typical gamma-proteobacterial PmoA. Stable isotope labeling in combination swith single-cell imaging mass spectrometry revealed methane-dependent growth of the lacustrine Crenothrix with oxygen as well as under oxygen-deficient conditions. Crenothrix genomes encoded pathways for the respiration of oxygen as well as for the reduction of nitrate to N2O. The observed abundance and planktonic growth of Crenothrix suggest that these methanotrophs can act as a relevant biological sink for methane in stratified lakes and should be considered in the context of environmental removal of methane.
Collapse
|
138
|
Wang Y, Ma L, Mao Y, Jiang X, Xia Y, Yu K, Li B, Zhang T. Comammox in drinking water systems. WATER RESEARCH 2017; 116:332-341. [PMID: 28390307 DOI: 10.1016/j.watres.2017.03.042] [Citation(s) in RCA: 122] [Impact Index Per Article: 15.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2016] [Revised: 03/18/2017] [Accepted: 03/18/2017] [Indexed: 05/04/2023]
Abstract
The discovery of complete ammonia oxidizer (comammox) has fundamentally upended our perception of the global nitrogen cycle. Here, we reported four metagenome assembled genomes (MAGs) of comammox Nitrospira that were retrieved from metagenome datasets of tap water in Singapore (SG-bin1 and SG-bin2), Hainan province, China (HN-bin3) and Stanford, CA, USA (ST-bin4). Genes of phylogenetically distinct ammonia monooxygenase subunit A (amoA) and hydroxylamine dehydrogenase (hao) were identified in these four MAGs. Phylogenetic analysis based on ribosomal proteins, AmoA, hao and nitrite oxidoreductase (subunits nxrA and nxrB) sequences indicated their close relationships with published comammox Nitrospira. Canonical ammonia-oxidizing microbes (AOM) were also identified in the three tap water samples, ammonia-oxidizing bacteria (AOB) in Singapore's and Stanford's samples and ammonia-oxidizing archaea (AOA) in Hainan's sample. The comammox amoA-like sequences were also detected from some other drinking water systems, and even outnumbered the AOA and AOB amoA-like sequences. The findings of MAGs and the occurrences of AOM in different drinking water systems provided a significant clue that comammox are widely distributed in drinking water systems.
Collapse
Affiliation(s)
- Yulin Wang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Liping Ma
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Yanping Mao
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Xiaotao Jiang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Yu Xia
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Ke Yu
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Bing Li
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Tong Zhang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong.
| |
Collapse
|
139
|
Alfreider A, Baumer A, Bogensperger T, Posch T, Salcher MM, Summerer M. CO 2 assimilation strategies in stratified lakes: Diversity and distribution patterns of chemolithoautotrophs. Environ Microbiol 2017; 19:2754-2768. [PMID: 28474482 PMCID: PMC5619642 DOI: 10.1111/1462-2920.13786] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2017] [Revised: 04/18/2017] [Accepted: 04/21/2017] [Indexed: 11/23/2022]
Abstract
While mechanisms of different carbon dioxide (CO2) assimilation pathways in chemolithoautotrohic prokaryotes are well understood for many isolates under laboratory conditions, the ecological significance of diverse CO2 fixation strategies in the environment is mostly unexplored. Six stratified freshwater lakes were chosen to study the distribution and diversity of the Calvin-Benson-Bassham (CBB) cycle, the reductive tricarboxylic acid (rTCA) cycle, and the recently discovered archaeal 3-hydroxypropionate/4-hydroxybutyrate (HP/HB) pathway. Eleven primer sets were used to amplify and sequence genes coding for selected key enzymes in the three pathways. Whereas the CBB pathway with different forms of RubisCO (IA, IC and II) was ubiquitous and related to diverse bacterial taxa, encompassing a wide range of potential physiologies, the rTCA cycle in Epsilonproteobacteria and Chloribi was exclusively detected in anoxic water layers. Nitrifiying Nitrosospira and Thaumarchaeota, using the rTCA and HP/HB cycle respectively, are important residents in the aphotic and (micro-)oxic zone of deep lakes. Both taxa were of minor importance in surface waters and in smaller lakes characterized by an anoxic hypolimnion. Overall, this study provides a first insight on how different CO2 fixation strategies and chemical gradients in lakes are associated to the distribution of chemoautotrophic prokaryotes with different functional traits.
Collapse
Affiliation(s)
- Albin Alfreider
- Institute for Ecology, University of Innsbruck, Innsbruck, Austria
| | - Andreas Baumer
- Institute for Ecology, University of Innsbruck, Innsbruck, Austria
| | | | - Thomas Posch
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland
| | - Michaela M Salcher
- Limnological Station, Department of Plant and Microbial Biology, University of Zurich, Kilchberg, Switzerland.,Institute of Hydrobiology, Biology Centre CAS, České Budějovice, Czech Republic
| | - Monika Summerer
- Institute for Ecology, University of Innsbruck, Innsbruck, Austria
| |
Collapse
|
140
|
Comparison of microbial community shifts in two parallel multi-step drinking water treatment processes. Appl Microbiol Biotechnol 2017; 101:5531-5541. [DOI: 10.1007/s00253-017-8258-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2017] [Revised: 03/15/2017] [Accepted: 03/17/2017] [Indexed: 01/27/2023]
|
141
|
Rush D, Sinninghe Damsté JS. Lipids as paleomarkers to constrain the marine nitrogen cycle. Environ Microbiol 2017; 19:2119-2132. [PMID: 28142226 PMCID: PMC5516240 DOI: 10.1111/1462-2920.13682] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Revised: 01/24/2017] [Accepted: 01/25/2017] [Indexed: 11/30/2022]
Abstract
Global climate is, in part, regulated by the effect of microbial processes on biogeochemical cycling. The nitrogen cycle, in particular, is driven by microorganisms responsible for the fixation and loss of nitrogen, and the reduction‐oxidation transformations of bio‐available nitrogen. Within marine systems, nitrogen availability is often the limiting factor in the growth of autotrophic organisms, intrinsically linking the nitrogen and carbon cycles. In order to elucidate the state of these cycles in the past, and help envisage present and future variability, it is essential to understand the specific microbial processes responsible for transforming bio‐available nitrogen species. As most microorganisms are soft‐bodied and seldom leave behind physical fossils in the sedimentary record, recalcitrant lipid biomarkers are used to unravel microbial processes in the geological past. This review emphasises the recent advances in marine nitrogen cycle lipid biomarkers, underlines the missing links still needed to fully elucidate past shifts in this biogeochemically‐important cycle, and provides examples of biomarker applications in the geological past.
Collapse
Affiliation(s)
- Darci Rush
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg, P.O. Box 59 1790 AB, The Netherlands.,School of Civil Engineering and Geosciences, Newcastle University, Newcastle-upon-Tyne, NE1 7RU, United Kingdom
| | - Jaap S Sinninghe Damsté
- Department of Marine Microbiology and Biogeochemistry, NIOZ Royal Netherlands Institute for Sea Research, and Utrecht University, Den Burg, P.O. Box 59 1790 AB, The Netherlands.,Department of Earth Sciences, Faculty of Geosciences, Utrecht University, TA Utrecht, P.O. Box 80.121, 3508, The Netherlands
| |
Collapse
|
142
|
Bartelme RP, McLellan SL, Newton RJ. Freshwater Recirculating Aquaculture System Operations Drive Biofilter Bacterial Community Shifts around a Stable Nitrifying Consortium of Ammonia-Oxidizing Archaea and Comammox Nitrospira. Front Microbiol 2017; 8:101. [PMID: 28194147 PMCID: PMC5276851 DOI: 10.3389/fmicb.2017.00101] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2016] [Accepted: 01/13/2017] [Indexed: 01/04/2023] Open
Abstract
Recirculating aquaculture systems (RAS) are unique engineered ecosystems that minimize environmental perturbation by reducing nutrient pollution discharge. RAS typically employ a biofilter to control ammonia levels produced as a byproduct of fish protein catabolism. Nitrosomonas (ammonia-oxidizing), Nitrospira, and Nitrobacter (nitrite-oxidizing) species are thought to be the primary nitrifiers present in RAS biofilters. We explored this assertion by characterizing the biofilter bacterial and archaeal community of a commercial scale freshwater RAS that has been in operation for >15 years. We found the biofilter community harbored a diverse array of bacterial taxa (>1000 genus-level taxon assignments) dominated by Chitinophagaceae (~12%) and Acidobacteria (~9%). The bacterial community exhibited significant composition shifts with changes in biofilter depth and in conjunction with operational changes across a fish rearing cycle. Archaea also were abundant, and were comprised solely of a low diversity assemblage of Thaumarchaeota (>95%), thought to be ammonia-oxidizing archaea (AOA) from the presence of AOA ammonia monooxygenase genes. Nitrosomonas were present at all depths and time points. However, their abundance was >3 orders of magnitude less than AOA and exhibited significant depth-time variability not observed for AOA. Phylogenetic analysis of the nitrite oxidoreductase beta subunit (nxrB) gene indicated two distinct Nitrospira populations were present, while Nitrobacter were not detected. Subsequent identification of Nitrospira ammonia monooxygenase alpha subunit genes in conjunction with the phylogenetic placement and quantification of the nxrB genotypes suggests complete ammonia-oxidizing (comammox) and nitrite-oxidizing Nitrospira populations co-exist with relatively equivalent and stable abundances in this system. It appears RAS biofilters harbor complex microbial communities whose composition can be affected directly by typical system operations while supporting multiple ammonia oxidation lifestyles within the nitrifying consortium.
Collapse
Affiliation(s)
- Ryan P Bartelme
- School of Freshwater Sciences, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| | - Sandra L McLellan
- School of Freshwater Sciences, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| | - Ryan J Newton
- School of Freshwater Sciences, University of Wisconsin-Milwaukee Milwaukee, WI, USA
| |
Collapse
|
143
|
Pjevac P, Schauberger C, Poghosyan L, Herbold CW, van Kessel MAHJ, Daebeler A, Steinberger M, Jetten MSM, Lücker S, Wagner M, Daims H. AmoA-Targeted Polymerase Chain Reaction Primers for the Specific Detection and Quantification of Comammox Nitrospira in the Environment. Front Microbiol 2017. [PMID: 28824606 DOI: 10.1101/096891] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/04/2023] Open
Abstract
Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be catalyzed by the concerted activity of ammonia- and nitrite-oxidizing microorganisms. Only recently, complete ammonia oxidizers ("comammox"), which oxidize ammonia to nitrate on their own, were identified in the bacterial genus Nitrospira, previously assumed to contain only canonical nitrite oxidizers. Nitrospira are widespread in nature, but for assessments of the distribution and functional importance of comammox Nitrospira in ecosystems, cultivation-independent tools to distinguish comammox from strictly nitrite-oxidizing Nitrospira are required. Here we developed new PCR primer sets that specifically target the amoA genes coding for subunit A of the distinct ammonia monooxygenase of comammox Nitrospira. While existing primers capture only a fraction of the known comammox amoA diversity, the new primer sets cover as much as 95% of the comammox amoA clade A and 92% of the clade B sequences in a reference database containing 326 comammox amoA genes with sequence information at the primer binding sites. Application of the primers to 13 samples from engineered systems (a groundwater well, drinking water treatment and wastewater treatment plants) and other habitats (rice paddy and forest soils, rice rhizosphere, brackish lake sediment and freshwater biofilm) detected comammox Nitrospira in all samples and revealed a considerable diversity of comammox in most habitats. Excellent primer specificity for comammox amoA was achieved by avoiding the use of highly degenerate primer preparations and by using equimolar mixtures of oligonucleotides that match existing comammox amoA genes. Quantitative PCR with these equimolar primer mixtures was highly sensitive and specific, and enabled the efficient quantification of clade A and clade B comammox amoA gene copy numbers in environmental samples. The measured relative abundances of comammox Nitrospira, compared to canonical ammonia oxidizers, were highly variable across environments. The new comammox amoA-targeted primers enable more encompassing future studies of nitrifying microorganisms in diverse habitats. For example, they may be used to monitor the population dynamics of uncultured comammox organisms under changing environmental conditions and in response to altered treatments in engineered and agricultural ecosystems.
Collapse
Affiliation(s)
- Petra Pjevac
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network 'Chemistry meets Microbiology', University of ViennaVienna, Austria
| | - Clemens Schauberger
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network 'Chemistry meets Microbiology', University of ViennaVienna, Austria
| | - Lianna Poghosyan
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud UniversityNijmegen, Netherlands
| | - Craig W Herbold
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network 'Chemistry meets Microbiology', University of ViennaVienna, Austria
| | - Maartje A H J van Kessel
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud UniversityNijmegen, Netherlands
| | - Anne Daebeler
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network 'Chemistry meets Microbiology', University of ViennaVienna, Austria
| | - Michaela Steinberger
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network 'Chemistry meets Microbiology', University of ViennaVienna, Austria
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud UniversityNijmegen, Netherlands
| | - Sebastian Lücker
- Department of Microbiology, Institute for Water and Wetland Research (IWWR), Radboud UniversityNijmegen, Netherlands
| | - Michael Wagner
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network 'Chemistry meets Microbiology', University of ViennaVienna, Austria
| | - Holger Daims
- Division of Microbial Ecology, Department of Microbiology and Ecosystem Science, Research Network 'Chemistry meets Microbiology', University of ViennaVienna, Austria
| |
Collapse
|
144
|
Welte CU, Rasigraf O, Vaksmaa A, Versantvoort W, Arshad A, Op den Camp HJM, Jetten MSM, Lüke C, Reimann J. Nitrate- and nitrite-dependent anaerobic oxidation of methane. ENVIRONMENTAL MICROBIOLOGY REPORTS 2016; 8:941-955. [PMID: 27753265 DOI: 10.1111/1758-2229.12487] [Citation(s) in RCA: 92] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
Microbial methane oxidation is an important process to reduce the emission of the greenhouse gas methane. Anaerobic microorganisms couple the oxidation of methane to the reduction of sulfate, nitrate and nitrite, and possibly oxidized iron and manganese minerals. In this article, we review the recent finding of the intriguing nitrate- and nitrite-dependent anaerobic oxidation of methane (AOM). Nitrate-dependent AOM is catalyzed by anaerobic archaea belonging to the ANME-2d clade closely related to Methanosarcina methanogens. They were named 'Candidatus Methanoperedens nitroreducens' and use reverse methanogenesis with the key enzyme methyl-coenzyme M (methyl-CoM) reductase for methane activation. Their major end product is nitrite which can be taken up by nitrite-dependent methanotrophs. Nitrite-dependent AOM is performed by the NC10 bacterium 'Candidatus Methylomirabilis oxyfera' that probably utilizes an intra-aerobic pathway through the dismutation of NO to N2 and O2 for aerobic methane activation by methane monooxygenase, yet being a strictly anaerobic microbe. Environmental distribution, physiological and biochemical aspects are discussed in this article as well as the cooperation of the microorganisms involved.
Collapse
Affiliation(s)
- Cornelia U Welte
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
- Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Olivia Rasigraf
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
- Netherlands Earth Systems Science Center, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Annika Vaksmaa
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Wouter Versantvoort
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Arslan Arshad
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Huub J M Op den Camp
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Mike S M Jetten
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
- Soehngen Institute of Anaerobic Microbiology, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
- Netherlands Earth Systems Science Center, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Claudia Lüke
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| | - Joachim Reimann
- Department of Microbiology, Institute for Water and Wetland Research, Radboud University, Heyendaalseweg 135, Nijmegen, AJ, 6525, The Netherlands
| |
Collapse
|
145
|
Gonzalez-Martinez A, Rodriguez-Sanchez A, van Loosdrecht MCM, Gonzalez-Lopez J, Vahala R. Detection of comammox bacteria in full-scale wastewater treatment bioreactors using tag-454-pyrosequencing. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2016; 23:25501-25511. [PMID: 27783252 DOI: 10.1007/s11356-016-7914-4] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2016] [Accepted: 10/14/2016] [Indexed: 05/20/2023]
Abstract
The nitrogen cycle has been expanded with the recent discovery of Nitrospira strains that can conduct complete ammonium oxidation (commamox). Their importance in the nitrogen cycle within engineered ecosystems has not yet been analyzed. In this research, the community structure of the Bacteria domain of six full-scale activated sludge systems and three autotrophic nitrogen removal systems in the Netherlands and China has been investigated through tag-454-pyrosequencing. The phylogenetic analyses conducted in the present study showed that just a few of the Nitrospira sequences found in the bioreactors were comammox. Multivariate redundancy analysis of nitrifying genera showed an outcompetition of Nitrosomonas and non-comammox Nitrospira. Operational data from the bioreactors suggested that comammox could be favored at low temperature, low nitrogen substrate, and high dissolved oxygen. The non-ubiquity and low relative abundance of comammox in full-scale bioreactors suggested that this phylotype is not very relevant in the nitrogen cycle in wastewater treatment plants.
Collapse
Affiliation(s)
- Alejandro Gonzalez-Martinez
- Department of Built Environment, School of engineering, Aalto University, P.O. Box 15200, Aalto, FI-00076, Espoo, Finland.
| | | | - M C M van Loosdrecht
- Department of Biotechnology, Technical University of Delft, Julianalaan 67, 2628 BC, Delft, The Netherlands
| | - Jesus Gonzalez-Lopez
- Institute of Water Research, University of Granada, C/Ramón y Cajal, 4, 18071, Granada, Spain
| | - Riku Vahala
- Department of Built Environment, School of engineering, Aalto University, P.O. Box 15200, Aalto, FI-00076, Espoo, Finland
| |
Collapse
|
146
|
Stanish LF, Hull NM, Robertson CE, Harris JK, Stevens MJ, Spear JR, Pace NR. Factors Influencing Bacterial Diversity and Community Composition in Municipal Drinking Waters in the Ohio River Basin, USA. PLoS One 2016; 11:e0157966. [PMID: 27362708 PMCID: PMC4928833 DOI: 10.1371/journal.pone.0157966] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2016] [Accepted: 06/08/2016] [Indexed: 12/29/2022] Open
Abstract
The composition and metabolic activities of microbes in drinking water distribution systems can affect water quality and distribution system integrity. In order to understand regional variations in drinking water microbiology in the upper Ohio River watershed, the chemical and microbiological constituents of 17 municipal distribution systems were assessed. While sporadic variations were observed, the microbial diversity was generally dominated by fewer than 10 taxa, and was driven by the amount of disinfectant residual in the water. Overall, Mycobacterium spp. (Actinobacteria), MLE1-12 (phylum Cyanobacteria), Methylobacterium spp., and sphingomonads were the dominant taxa. Shifts in community composition from Alphaproteobacteria and Betaproteobacteria to Firmicutes and Gammaproteobacteria were associated with higher residual chlorine. Alpha- and beta-diversity were higher in systems with higher chlorine loads, which may reflect changes in the ecological processes structuring the communities under different levels of oxidative stress. These results expand the assessment of microbial diversity in municipal distribution systems and demonstrate the value of considering ecological theory to understand the processes controlling microbial makeup. Such understanding may inform the management of municipal drinking water resources.
Collapse
Affiliation(s)
- Lee F. Stanish
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, United States of America
- * E-mail:
| | - Natalie M. Hull
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, United States of America
| | - Charles E. Robertson
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, United States of America
| | - J. Kirk Harris
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - Mark J. Stevens
- Department of Pediatrics, University of Colorado Anschutz Medical Campus, Aurora, CO, United States of America
| | - John R. Spear
- Department of Civil and Environmental Engineering, Colorado School of Mines, Golden, CO, United States of America
| | - Norman R. Pace
- Department of Molecular, Cellular, and Developmental Biology, University of Colorado, Boulder, CO, United States of America
| |
Collapse
|
147
|
Maestre JP, Wahman DG, Speitel GE. Monochloramine Cometabolism by Mixed-Culture Nitrifiers under Drinking Water Conditions. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2016; 50:6240-6248. [PMID: 27196729 DOI: 10.1021/acs.est.5b05641] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/05/2023]
Abstract
Chloramines are the second most used secondary disinfectant by United States water utilities. However, chloramination may promote nitrifying bacteria. Recently, monochloramine cometabolism by the pure culture ammonia-oxidizing bacteria, Nitrosomonas europaea, was shown to increase monochloramine demand. The current research investigated monochloramine cometabolism by nitrifying mixed cultures grown under more relevant drinking water conditions and harvested from sand-packed reactors before conducting suspended growth batch kinetic experiments. Four types of batch kinetic experiments were conducted: (1) positive controls to estimate ammonia kinetic parameters, (2) negative controls to account for biomass reactivity, (3) utilization associated product (UAP) controls to account for UAP reactivity, and (4) cometabolism experiments to estimate cometabolism kinetic parameters. Kinetic parameters were estimated in AQUASIM with a simultaneous fit to the experimental data. Cometabolism kinetics were best described by a first-order model. Monochloramine cometabolism kinetics were similar to those of ammonia metabolism, and monochloramine cometabolism accounted for 30% of the observed monochloramine loss. These results demonstrated that monochloramine cometabolism occurred in mixed cultures similar to those found in drinking water distribution systems; therefore, monochloramine cometabolism may be a significant contribution to monochloramine loss during nitrification episodes in drinking water distribution systems.
Collapse
Affiliation(s)
- Juan P Maestre
- University of Texas at Austin , Department of Civil, Architectural and Environmental Engineering, 301 East Dean Keeton Street, Stop C2100, Austin, Texas 78712, United States
| | - David G Wahman
- United States Environmental Protection Agency , Office of Research and Development, Cincinnati, Ohio 45268, United States
| | - Gerald E Speitel
- University of Texas at Austin , Department of Civil, Architectural and Environmental Engineering, 301 East Dean Keeton Street, Stop C2100, Austin, Texas 78712, United States
| |
Collapse
|
148
|
Chao Y, Mao Y, Yu K, Zhang T. Novel nitrifiers and comammox in a full-scale hybrid biofilm and activated sludge reactor revealed by metagenomic approach. Appl Microbiol Biotechnol 2016; 100:8225-37. [PMID: 27287850 DOI: 10.1007/s00253-016-7655-9] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2016] [Revised: 05/25/2016] [Accepted: 05/27/2016] [Indexed: 10/21/2022]
Abstract
Biofilms are widely used in wastewater treatment for their particular enhancement of nitrogen removal and other significant advantages. In this study, the diversity and potential functions of nitrogen removal bacteria in suspended activated sludge (AS) and biofilm of a full-scale hybrid reactor were uncovered by metagenomes (∼34 Gb), coupled with PCR-based 454 reads (>33 K reads). The results indicated that the diversity and abundance of nitrifiers and denitrifiers in biofilm did not surpass that in AS, while more nitrification and denitrification genes were indeed found in biofilm than AS, suggesting that the increased nitrogen removal ability by applying biofilm might be attributed to the enhancement of removal efficiency, rather than the biomass accumulation of nitrogen removal bacteria. The gene annotation and phylogenetic analysis results revealed that AS and biofilm samples consisted of 6.0 % and 9.4 % of novel functional genes for nitrogen removal and 18 % and 30 % of new Nitrospira species for nitrite-oxidizing bacteria, respectively. Moreover, the identification of Nitrospira-like amoA genes provided metagenomic evidence for the presence of complete ammonia oxidizer (comammox) with the functional potential to perform the complete oxidation of ammonia to nitrate. These findings have significant implications in expanding our knowledge of the biological nitrogen transformations in wastewater treatment.
Collapse
Affiliation(s)
- Yuanqing Chao
- School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China.,Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong.,College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yanping Mao
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong.,Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Guangzhou, 510275, China
| | - Ke Yu
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong
| | - Tong Zhang
- Environmental Biotechnology Laboratory, Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Pok Fu Lam, Hong Kong.
| |
Collapse
|
149
|
Daims H, Lücker S, Wagner M. A New Perspective on Microbes Formerly Known as Nitrite-Oxidizing Bacteria. Trends Microbiol 2016; 24:699-712. [PMID: 27283264 DOI: 10.1016/j.tim.2016.05.004] [Citation(s) in RCA: 407] [Impact Index Per Article: 45.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2016] [Revised: 05/10/2016] [Accepted: 05/17/2016] [Indexed: 10/21/2022]
Abstract
Nitrite-oxidizing bacteria (NOB) catalyze the second step of nitrification, nitrite oxidation to nitrate, which is an important process of the biogeochemical nitrogen cycle. NOB were traditionally perceived as physiologically restricted organisms and were less intensively studied than other nitrogen-cycling microorganisms. This picture is in contrast to new discoveries of an unexpected high diversity of mostly uncultured NOB and a great physiological versatility, which includes complex microbe-microbe interactions and lifestyles outside the nitrogen cycle. Most surprisingly, close relatives to NOB perform complete nitrification (ammonia oxidation to nitrate) and this finding will have far-reaching implications for nitrification research. We review recent work that has changed our perspective on NOB and provides a new basis for future studies on these enigmatic organisms.
Collapse
Affiliation(s)
- Holger Daims
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network Chemistry meets Microbiology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria.
| | - Sebastian Lücker
- Department of Microbiology, IWWR, Radboud University, Heyendaalseweg 135, 6525 AJ Nijmegen, The Netherlands
| | - Michael Wagner
- Department of Microbiology and Ecosystem Science, Division of Microbial Ecology, Research Network Chemistry meets Microbiology, University of Vienna, Althanstrasse 14, 1090 Vienna, Austria
| |
Collapse
|
150
|
Metagenomic analysis of rapid gravity sand filter microbial communities suggests novel physiology of Nitrospira spp. ISME JOURNAL 2016; 10:2569-2581. [PMID: 27128989 DOI: 10.1038/ismej.2016.63] [Citation(s) in RCA: 140] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/23/2015] [Revised: 02/29/2016] [Accepted: 03/19/2016] [Indexed: 01/30/2023]
Abstract
Rapid gravity sand filtration is a drinking water production technology widely used around the world. Microbially catalyzed processes dominate the oxidative transformation of ammonia, reduced manganese and iron, methane and hydrogen sulfide, which may all be present at millimolar concentrations when groundwater is the source water. In this study, six metagenomes from various locations within a groundwater-fed rapid sand filter (RSF) were analyzed. The community gene catalog contained most genes of the nitrogen cycle, with particular abundance in genes of the nitrification pathway. Genes involved in different carbon fixation pathways were also abundant, with the reverse tricarboxylic acid cycle pathway most abundant, consistent with an observed Nitrospira dominance. From the metagenomic data set, 14 near-complete genomes were reconstructed and functionally characterized. On the basis of their genetic content, a metabolic and geochemical model was proposed. The organisms represented by draft genomes had the capability to oxidize ammonium, nitrite, hydrogen sulfide, methane, potentially iron and manganese as well as to assimilate organic compounds. A composite Nitrospira genome was recovered, and amo-containing Nitrospira genome contigs were identified. This finding, together with the high Nitrospira abundance, and the abundance of atypical amo and hao genes, suggests the potential for complete ammonium oxidation by Nitrospira, and a major role of Nitrospira in the investigated RSFs and potentially other nitrifying environments.
Collapse
|