101
|
Dzhambov AM, Dikova K, Georgieva T, Panev TI, Mukhtarov P, Dimitrova R. Short-term effects of air pollution on hospital admissions for cardiovascular diseases and diabetes mellitus in Sofia, Bulgaria (2009-2018). Arh Hig Rada Toksikol 2023; 74:48-60. [PMID: 37014682 DOI: 10.2478/aiht-2023-74-3704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Accepted: 03/01/2023] [Indexed: 04/05/2023] Open
Abstract
Bulgaria has a very high incidence of cardiometabolic diseases and air pollution-related mortality rate. This study investigated the relationship between daily air pollution levels and hospital admissions for ischaemic heart diseases (IHD), cerebral infarction (CI), and type 2 diabetes mellitus (T2DM) in Sofia, Bulgaria. We obtained daily data on hospitals admissions and daily average air pollution levels from 2009 to 2018. Pollutants of interest were particulate matter (PM2.5 and PM10), nitrogen dioxide (NO2), sulphur dioxide (SO2), ozone (O3), and carbon monoxide (CO). Negative binomial regressions were fitted to study the effects of air pollution on hospital admission over the course of seven days prior to that event, accounting for autocorrelations and time trend in the data, day of the week, temperature, and relative humidity. Our findings confirm that higher air pollution levels generally increase the risk of hospital admissions for IHD and CI. For T2DM the association is less clear. Admissions often lagged several days behind and were more common in specific demographic subgroups or when pollution crossed a particular threshold. However, we did not expect to find the risk of hospital admissions increased in warmer rather than colder months of the year. Our findings are to be taken with reservation but do provide an idea about how air pollution could trigger acute episodes of related cardiovascular diseases, and our model may serve to investigate similar associations across the country.
Collapse
Affiliation(s)
- Angel M Dzhambov
- 1Medical University of Plovdiv Faculty of Public Health, Department of Hygiene, Plovdiv, Bulgaria
- 2Graz University of Technology, Institute of Highway Engineering and Transport Planning, Graz, Austria
| | - Krasimira Dikova
- 3Ministry of Health, National Centre of Public Health and Analyses, Sofia, Bulgaria
| | - Tzveta Georgieva
- 3Ministry of Health, National Centre of Public Health and Analyses, Sofia, Bulgaria
| | - Teodor I Panev
- 3Ministry of Health, National Centre of Public Health and Analyses, Sofia, Bulgaria
| | - Plamen Mukhtarov
- 4Bulgarian Academy of Sciences, National Institute of Geophysics, Geodesy and Geography, Sofia, Bulgaria
| | - Reneta Dimitrova
- 4Bulgarian Academy of Sciences, National Institute of Geophysics, Geodesy and Geography, Sofia, Bulgaria
- 5Sofia University "St. K. Ohridski" Faculty of Physics, Department of Meteorology and Geophysics, Sofia, Bulgaria
| |
Collapse
|
102
|
Liu T, Jiang Y, Hu J, Li Z, Li X, Xiao J, Yuan L, He G, Zeng W, Rong Z, Zhu S, Ma W, Wang Y. Joint Associations of Short-Term Exposure to Ambient Air Pollutants with Hospital Admission of Ischemic Stroke. Epidemiology 2023; 34:282-292. [PMID: 36722811 DOI: 10.1097/ede.0000000000001581] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023]
Abstract
BACKGROUND Studies have estimated the associations of short-term exposure to ambient air pollution with ischemic stroke. However, the joint associations of ischemic stroke with air pollution as a mixture remain unknown. METHODS We employed a time-stratified case-crossover study to investigate 824,808 ischemic stroke patients across China. We calculated daily mean concentrations of particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5), maximum 8-h average for O3 (MDA8 O3), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO) across all monitoring stations in the city where the IS patients resided. We conducted conditional logistic regression models to estimate the exposure-response associations. RESULTS Results from single-pollutant models showed positive associations of hospital admission for ischemic stroke with PM2.5 (excess risk [ER] = 0.38%, 95% confidence interval [CI]: 0.29% to 0.47%, for 10 μg/m3), MDA8 O3 (ER = 0.29%, 95% CI: 0.18% to 0.40%, for 10 μg/m3), NO2 (ER = 1.15%, 95% CI: 0.92% to 1.39%, for 10 μg/m3), SO2 (ER = 0.82%, 95% CI: 0.53% to 1.11%, for 10 μg/m3) and CO (ER = 3.47%, 95% CI: 2.70% to 4.26%, for 1 mg/m3). The joint associations (ER) with all air pollutants (for interquartile range width increases in each pollutant) estimated by the single-pollutant model was 8.73% and was 4.27% by the multipollutant model. The joint attributable fraction of ischemic stroke attributable to air pollutants based on the multipollutant model was 7%. CONCLUSIONS Short-term exposures to PM2.5, MDA8 O3, NO2, SO2, and CO were positively associated with increased risks of hospital admission for ischemic stroke. The joint associations of air pollutants with ischemic stroke might be overestimated using single-pollutant models. See video abstract at, http://links.lww.com/EDE/C8.
Collapse
Affiliation(s)
- Tao Liu
- From the Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou 510632, China
| | - Yong Jiang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, 100070, China
| | - Jianxiong Hu
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430; China
| | - Zixiao Li
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, 100070, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070, China
| | - Xing Li
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430; China
| | - Jianpeng Xiao
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430; China
| | - Lixia Yuan
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430; China
| | - Guanhao He
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430; China
| | - Weilin Zeng
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430; China
| | - Zuhua Rong
- Guangdong Provincial Institute of Public Health, Guangdong Provincial Center for Disease Control and Prevention, Guangzhou 511430; China
| | - Sui Zhu
- From the Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou 510632, China
| | - Wenjun Ma
- From the Department of Public Health and Preventive Medicine, School of Medicine, Jinan University, Guangzhou 510632, China
- Disease Control and Prevention Institute of Jinan University, Jinan University, Guangzhou 510632, China
| | - Yongjun Wang
- China National Clinical Research Center for Neurological Diseases, Beijing Tiantan Hospital, Capital Medical University, 100070, China
- Department of Neurology, Beijing Tiantan Hospital, Capital Medical University, 100070, China
| |
Collapse
|
103
|
Abstract
Despite recent advances in treatment and prevention, stroke remains a leading cause of morbidity and mortality. There is a critical need to identify novel modifiable risk factors for disease, including environmental agents. A body of evidence has accumulated suggesting that elevated levels of ambient air pollutants may not only trigger cerebrovascular events in susceptible people (short-term exposures) but also increase the risk of future events (long-term average exposures). This review assesses the updated evidence for both short and long-term exposure to ambient air pollution as a risk factor for stroke incidence and outcomes. It discusses the potential pathophysiologic mechanisms and makes recommendations to mitigate exposure on a personal and community level. The evidence indicates that reduction in air pollutant concentrations represent a significant population-level opportunity to reduce risk of cerebrovascular disease.
Collapse
Affiliation(s)
- Erin R Kulick
- Department of Epidemiology and Biostatistics, Temple University College of Public Health, Philadelphia, PA (E.R.K.)
| | - Joel D Kaufman
- Department of Medicine, University of Washington, Seattle (J.D.K., C.S.)
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle (J.D.K., C.S.)
- Department of Epidemiology, University of Washington, Seattle (J.D.K.)
| | - Coralynn Sack
- Department of Medicine, University of Washington, Seattle (J.D.K., C.S.)
- Department of Environmental and Occupational Health Sciences, University of Washington, Seattle (J.D.K., C.S.)
| |
Collapse
|
104
|
Arregocés HA, Rojano R, Restrepo G. Health risk assessment for particulate matter: application of AirQ+ model in the northern Caribbean region of Colombia. AIR QUALITY, ATMOSPHERE, & HEALTH 2023; 16:897-912. [PMID: 36819789 PMCID: PMC9930048 DOI: 10.1007/s11869-023-01304-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2022] [Accepted: 01/06/2023] [Indexed: 05/23/2023]
Abstract
Air pollution is considered the world's most important environmental and public health risk. The annual exposure for particulate matter (PM) in the northern Caribbean region of Colombia between 2011 and 2019 was determined using PM records from 25 monitoring stations located within the area. The impact of exposure to particulate matter was assessed through the updated Global Burden of Disease health risk functions using the AirQ+ model for mortality attributable to acute lower respiratory disease (in children ≤ 4 years); mortality in adults aged > 18 years old attributable to chronic obstructive pulmonary disease, ischaemic heart disease, lung cancer, and stroke; and all-cause post-neonatal infant mortality. The proportions of the prevalence of bronchitis in children and the incidence of chronic bronchitis in adults attributable to PM exposure were also estimated for the population at risk. Weather Research and Forecasting-California PUFF (WRF-CALPUFF) modeling systems were used to estimate the spatiotemporal trends and calculate mortality relative risk due to prolonged PM2.5 exposure. Proportions of mortality attributable to long-term exposure to PM2.5 were estimated to be around 11.6% of ALRI deaths in children ≤ 4 years of age, 16.1% for COPD, and 26.6% for IHD in adults. For LC and stroke, annual proportions attributable to PM exposure were estimated to be 9.1% and 18.9%, respectively. An estimated 738 deaths per year are directly attributed to particulate matter pollution. The highest number of deaths per year is recorded in the adult population over 18 years old with a mean of 401 events. The mean risk in terms of the prevalence of bronchitis attributable to air pollution in children was determined to be 109 per 100,000 inhabitants per year. The maximum RR values for mortality (up 1.95%) from long-term PM2.5 exposure were predicted to correspond to regions downwind to the industrial zone. Supplementary information The online version contains supplementary material available at 10.1007/s11869-023-01304-5.
Collapse
Affiliation(s)
- Heli A. Arregocés
- Grupo de Investigación GISA, Facultad de Ingeniería, Universidad de La Guajira, Riohacha, Colombia
- Grupo Procesos Fisicoquímicos Aplicados, Facultad de Ingeniería, Universidad de Antioquia SIU/UdeA, Calle 70 No. 52–21, Medellín, Colombia
| | - Roberto Rojano
- Grupo de Investigación GISA, Facultad de Ingeniería, Universidad de La Guajira, Riohacha, Colombia
| | - Gloria Restrepo
- Grupo Procesos Fisicoquímicos Aplicados, Facultad de Ingeniería, Universidad de Antioquia SIU/UdeA, Calle 70 No. 52–21, Medellín, Colombia
| |
Collapse
|
105
|
Zong ZQ, Chen SW, Wu Y, Gui SY, Zhang XJ, Hu CY. Ambient air pollution exposure and telomere length: a systematic review and meta-analysis. Public Health 2023; 215:42-55. [PMID: 36642039 DOI: 10.1016/j.puhe.2022.11.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 09/20/2022] [Accepted: 11/28/2022] [Indexed: 01/15/2023]
Abstract
OBJECTIVE This study aimed to provide evidence of the associations between pre- and post-birth and adulthood air pollution exposure with telomere length. STUDY DESIGN The databases of PubMed, Embase, and Web of Science were searched up to June 1st, 2022 in order to include relevant observational studies and perform a systematic review and meta-analysis. METHODS The random-effects meta-analysis was grouped by air pollutant and exposure window (pre- and post-birth and adulthood) to evaluate the summary effect estimate. Cochran's Q and I2 statistics were used to evaluate the heterogeneity among the included studies. The quality of individual studies was evaluated using the national toxicology program/office of health assessment and translation risk of bias rating tool. RESULTS We identified 18 studies, covering 8506 children and 2263 adults from multiple countries. We found moderate evidence that particulate matter less than 2.5 μm (PM2.5) exposure during the entire pregnancy (-0.043, 95% CI: -0.067, -0.018), nitrogen dioxide (NO2) exposure during the first trimester (-0.016, 95% confidence interval [CI]: -0.027, -0.005), long-term adulthood PM2.5 exposure were associated with shortening telomere length. Mild to high between-study heterogeneity was observed for the most tested air pollutant-telomere length combinations in different exposure windows. CONCLUSIONS This systematic review and meta-analysis provides the evidence which strongly supports that prenatal PM2.5 and NO2 exposures were related to reduced telomere length, while prenatal sulfur dioxide (SO2) and carbon monoxide (CO) exposures, childhood PM2.5, particulate matter less than 10 μm (PM10), NO2 exposures and short-term adulthood PM2.5 and PM10 exposures were not associated with telomere length. Further high-quality studies are needed to elaborate our suggestive associations.
Collapse
Affiliation(s)
- Z-Q Zong
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - S-W Chen
- Department of General Surgery, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, China
| | - Y Wu
- Oncology Department of Integrated Traditional and Western Medicine, The First Affiliated Hospital of Anhui Medical University, 218 Jixi Road, Hefei 230022, China; The Integrated Traditional and Western Medicine Cancer Center of Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - S-Y Gui
- Department of Clinical Medicine, The Second School of Clinical Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China
| | - X-J Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
| | - C-Y Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei 230032, China; Department of Humanistic Medicine, School of Humanistic Medicine, Anhui Medical University, 81 Meishan Road, Hefei 230032, China.
| |
Collapse
|
106
|
Liu J, Wang M, Zhao Y, Chen H, Liu H, Yang B, Shan H, Li H, Shi Y, Wang L, Wang G, Han C. Associations between short-term exposure to ambient PM 2.5 and incident cases of cerebrovascular disease in Yantai, China. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:21970-21977. [PMID: 36282388 DOI: 10.1007/s11356-022-23626-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 10/10/2022] [Indexed: 06/16/2023]
Abstract
There are limited studies examining the association between PM2.5 exposure and incident cerebrovascular disease (CD) cases in China. In this study, daily counts of incident CD cases and daily PM2.5 concentrations were obtained in Yantai, Shandong Province, China from 2014 to 2019. We used a combination of the Poisson-distribution generalized linear model (GLM) and a distributed lag nonlinear model (DLNM) to examine the association of short-term exposure to ambient PM2.5 and incident cases of CD. The results revealed that for every 10 μg/m3 increment of PM2.5 would increase the incident CD cases by 0.216% (RR:1.00216, 95%CI:1.0016-1.0028) at lag4. The stratified analysis demonstrated that the females and residents aged 65 years or above presented higher short-term PM2.5-associated CD risks than the males and aged below 65 years. Targeted prevention strategies should be adopted to reduce the PM2.5-related CD burden, especially for the susceptible population in China.
Collapse
Affiliation(s)
- Junyan Liu
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Maobo Wang
- Yantai Center for Disease Control and Prevention, Yantai, 264003, Shandong, China
| | - Yang Zhao
- The George Institute for Global Health, University of New South Wales, Sydney, NSW, Australia
- The George Institute for Global Health, Peking University Health Science Center, Beijing, China
| | - Haotian Chen
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Haiyun Liu
- Department of Public Health, Shandong College of Traditional Chinese Medicine, 264199, Yantai, China
| | - Baoshun Yang
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Haifeng Shan
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Hongyu Li
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Yukun Shi
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Luyang Wang
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Guangcheng Wang
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, Shandong, China
| | - Chunlei Han
- School of Public Health and Management, Binzhou Medical University, Yantai, 264003, Shandong, China.
| |
Collapse
|
107
|
Canto MV, Guxens M, García-Altés A, López MJ, Marí-Dell’Olmo M, García-Pérez J, Ramis R. Air Pollution and Birth Outcomes: Health Impact and Economic Value Assessment in Spain. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:2290. [PMID: 36767658 PMCID: PMC9916075 DOI: 10.3390/ijerph20032290] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/24/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Air pollution is considered an ongoing major public health and environmental issue around the globe, affecting the most vulnerable, such as pregnant women and fetuses. The aim of this study is to estimate the health impact and economic value on birth outcomes, such as low birthweight (LBW), preterm birth (PTB), small for gestational age (SGA), attributable to a reduction of PM10 levels in Spain. Reduction based on four scenarios was implemented: fulfillment of WHO guidelines and EU limits, and an attributable reduction of 15% and 50% in annual PM10 levels. Retrospective study on 288,229 live-born singleton children born between 2009-2010, using data from Spain Birth Registry Statistics database, as well as mean PM10 mass concentrations. Our finding showed that a decrease in annual exposure to PM10 appears to be associated with a decrease in the annual cases of LBW, SGA and PTB, as well as a reduction in hospital cost attributed to been born with LBW. Improving pregnancy outcomes by reducing the number of LBW up to 5% per year, will result in an estimate associated monetary saving of 50,000 to 7,000,000 euros annually. This study agrees with previous literature and highlights the need to implement, and ensure compliance with, stricter policies that regulate the maximum exposure to outdoor PM permitted in Spain, contributing to decreased environmental health risk, especially negative birth outcomes.
Collapse
Affiliation(s)
- Marcelle Virginia Canto
- Department of Preventive Medicine, Hospital Central de la Cruz Roja, 28003 Madrid, Spain
- Doctoral Program in Biomedical Sciences and Public Health, International Doctorate Program, National University of Distance Education (UNED), 28015 Madrid, Spain
| | - Mònica Guxens
- Barcelona Institute of Global Health (ISGlobal), 08003 Barcelona, Spain
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Department of Medicine and Live Sciences, Universitat Pompeu Fabra, 08002 Barcelona, Spain
- Department of Child and Adolescent Psychiatry/Psychology, Erasmus MC, University Medical Centre, 3015 GE Rotterdam, The Netherlands
| | - Anna García-Altés
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Departament de Salut, Direcció General de Planificació i Recerca en Salut, 08028 Barcelona, Spain
- Institut d’Investigació Biomèdica (IIB Sant Pau), 08003 Barcelona, Spain
| | - Maria José López
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Institut d’Investigació Biomèdica (IIB Sant Pau), 08003 Barcelona, Spain
- Public Health Agency of Barcelona, 08023 Barcelona, Spain
| | - Marc Marí-Dell’Olmo
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Institut d’Investigació Biomèdica (IIB Sant Pau), 08003 Barcelona, Spain
- Public Health Agency of Barcelona, 08023 Barcelona, Spain
| | - Javier García-Pérez
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Cancer and Environmental Epidemiology Unit, Chronic Diseases Department, National Centre for Epidemiology, Carlos III Institute of Health, 28029 Madrid, Spain
| | - Rebeca Ramis
- Spanish Consortium for Research on Epidemiology and Public Health (CIBERESP), 28029 Madrid, Spain
- Cancer and Environmental Epidemiology Unit, Chronic Diseases Department, National Centre for Epidemiology, Carlos III Institute of Health, 28029 Madrid, Spain
| |
Collapse
|
108
|
Xiong Z, Li D, Yu H. Does PM2.5 (Pollutant) Reduce Firms' Innovation Output? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:1112. [PMID: 36673867 PMCID: PMC9859489 DOI: 10.3390/ijerph20021112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/09/2022] [Revised: 01/05/2023] [Accepted: 01/06/2023] [Indexed: 06/17/2023]
Abstract
The potentially serious economic consequences of China's severe air pollution problem cannot be overlooked, especially the impact on corporate innovation, which is a core driver guiding firms towards efficient and high-quality development. This paper explores the direct effect and mechanism of PM2.5 on firms' innovation output through the identification strategy of instrument variable. Based on the data of Listed Companies in China from 2003 to 2016, we used thermal inversion as the instrument variable for PM2.5 for estimation. The results show that each 1 ug/m3 increase in PM2.5 concentration causes an average reduction in innovation output of listed companies by about 7.0%. The test of "Porter hypothesis" shows that environmental regulation has not encouraged firms to innovate more. We further used the 2013 China Social Survey (CSS) data to verify the human capital mechanism of PM2.5 affecting firm innovation at micro level. The results show that PM 2.5 deteriorates the healthy human capital in a firm, which reduces the innovation output. This article helps to understand the relationship between air pollution and firms' innovation and to develop appropriate policies.
Collapse
Affiliation(s)
- Zhiqiao Xiong
- School of Economics and Management, Changsha University of Science and Technology, Changsha 410076, China
| | - Dandan Li
- School of Low Carbon Economics, Hubei University of Economics, Wuhan 430205, China
- Collaborative Innovation Center for Emissions Trading System Co-Constructed by the Province and Ministry, Hubei University of Economics, Wuhan 430205, China
| | - Hongwei Yu
- Institute of Quality Development Strategy, Wuhan University, Wuhan 430072, China
| |
Collapse
|
109
|
Hu W, Fang L, Zhang H, Ni R, Pan G. Changing trends in the air pollution-related disease burden from 1990 to 2019 and its predicted level in 25 years. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:1761-1773. [PMID: 35922595 PMCID: PMC9362347 DOI: 10.1007/s11356-022-22318-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/06/2022] [Accepted: 07/27/2022] [Indexed: 06/15/2023]
Abstract
In the twenty-first century, exposure to air pollution has become a threat to human health worldwide due to industrial development. Timely, comprehensive, and reliable assessment and prediction of disease burden can help mitigate the health hazards of air pollution. This study conducted a two-stage analysis. First, we reported the air pollution-related disease burden globally and for different subgroups like socio-demographic index (SDI), sex, and age. We analyzed the trend of the disease burden from 1990 to 2019. In addition, we explored whether and how some national indicators modified the disease burden. Second, we predicted the number and the age-standardized rates of death and disability-adjusted life years (DALYs) attributable to air pollution from 2020 to 2044 by the autoregressive integrated moving average (ARIMA) model and exponential smoothing model. The age-period-cohort (APC) model in the maximum likelihood framework and the Bayesian APC model integrated nested Laplace approximations (INLAs) were further applied to perform sensitivity analysis. In 2019, air pollution accounted for 11.62% of death and 0.84% of DALY worldwide. The corresponding age-standardized rate was 85.62 (95% uncertainty interval (UI): 75.71, 96.07) and 2791.08 (95% UI: 2468.81, 3141.39) per 100,000 population. From 1990 to 2019, the number of death attributable to air pollution remained stable, and the number of DALY exhibited a downward trend. The corresponding age-standardized rates both declined. In some countries with larger population densities, higher proportions of elders, and lower proportions of females, the disease burden attributable to air pollution was lower. The predicted results showed that the number of air pollution-related death and DALY would increase. This study comprehensively assessed and predicted the air pollution-related disease burden worldwide. The results indicated that the disease burden would remain very serious in the future. Hence, some relevant policies should be developed to prevent and manage air pollution.
Collapse
Affiliation(s)
- Wan Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Lanlan Fang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Hengchuan Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Ruyu Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China
| | - Guixia Pan
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, 81 Meishan Road, Hefei, 230032, Anhui, China.
| |
Collapse
|
110
|
Lu J, Wu K, Ma X, Wei J, Yuan Z, Huang Z, Fan W, Zhong Q, Huang Y, Wu X. Short-term effects of ambient particulate matter (PM 1, PM 2.5 and PM 10) on influenza-like illness in Guangzhou, China. Int J Hyg Environ Health 2023; 247:114074. [PMID: 36436470 DOI: 10.1016/j.ijheh.2022.114074] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/09/2022] [Accepted: 11/11/2022] [Indexed: 11/27/2022]
Abstract
BACKGROUND Particulate matter (PM) has been linked to respiratory infections in a growing body of evidence. Studies on the relationship between ILI (influenza-like illness) and PM1 (particulate matter with aerodynamic diameter ≤1 μm) are, however, scarce. The purpose of this study was to investigate the effects of PM on ILI in Guangzhou, China. METHODS Daily ILI cases, air pollution records (PM1, PM2.5, PM10 and gaseous pollutants), and metrological data between 2014 and 2019 were gathered from Guangzhou, China. To estimate the risk of ILI linked with exposure to PM pollutants, a quasi-Poisson regression was used. Additionally, subgroup analyses stratified by gender, age and season were carried out. RESULTS For each 10 μg/m3 increase of PM1 and PM2.5 over the past two days (lag01), and PM10 over the past three days (lag02), the relative risks (RR) of ILI were 1.079 (95% confidence interval [CI]: 1.050, 1.109), 1.044 (95% CI: 1.027, 1.062) and 1.046 (95% CI: 1.032, 1.059), respectively. The estimated risks for men and women were substantially similar. The effects of PM pollutants between male and female were basically equivalent. People aged 15-24 years old were more susceptive to PM pollutants. CONCLUSIONS It implies that PM1, PM2.5 and PM10 are all risk factors for ILI, the health impacts of PM pollutants vary by particle size. Reducing the concentration of PM1 needs to be considered when generating a strategy to prevent ILI.
Collapse
Affiliation(s)
- Jianyun Lu
- Guangzhou Baiyun Center for Disease Control and Prevention, China
| | - Keyi Wu
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Nos.1023-1063, Shatai South Road, Baiyun District, 510515, Guangzhou, China
| | - Xiaowei Ma
- Guangzhou Center for Disease Control and Prevention, Guangzhou City, 510440, Guangdong, China
| | - Jing Wei
- Department of Atmospheric and Oceanic Science, Earth System Science Interdisciplinary Center, University of Maryland, College Park, MD, 20740, USA
| | - Zelin Yuan
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Nos.1023-1063, Shatai South Road, Baiyun District, 510515, Guangzhou, China
| | - Zhiwei Huang
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Nos.1023-1063, Shatai South Road, Baiyun District, 510515, Guangzhou, China
| | - Weidong Fan
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Nos.1023-1063, Shatai South Road, Baiyun District, 510515, Guangzhou, China
| | - Qi Zhong
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Nos.1023-1063, Shatai South Road, Baiyun District, 510515, Guangzhou, China
| | - Yining Huang
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Nos.1023-1063, Shatai South Road, Baiyun District, 510515, Guangzhou, China
| | - Xianbo Wu
- Department of Epidemiology, School of Public Health, Southern Medical University (Guangdong Provincial Key Laboratory of Tropical Disease Research), Nos.1023-1063, Shatai South Road, Baiyun District, 510515, Guangzhou, China.
| |
Collapse
|
111
|
Luo H, Liu C, Chen X, Lei J, Zhu Y, Zhou L, Gao Y, Meng X, Kan H, Xuan J, Chen R. Ambient air pollution and hospitalization for type 2 diabetes in China: A nationwide, individual-level case-crossover study. ENVIRONMENTAL RESEARCH 2023; 216:114596. [PMID: 36272593 DOI: 10.1016/j.envres.2022.114596] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/09/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
Scarce evidence is available on the short-term association between air pollution and type 2 diabetes (T2D). We aimed to evaluate the associations between short-term exposure to six criteria air pollutants and hospitalization for T2D based on a national registry. We conducted an individual-level, time-stratified case-crossover study among inpatients with a primary diagnosis of T2D from 153 hospitals across 20 provincial regions in China (2013-2021). Daily concentrations of fine particulate matter (PM2.5), inhalable particle (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2) and carbon monoxide (CO), and ozone were collected from the nearest monitoring stations. T2D patients were separated into those admission for T2D with and without complications. Distributed lag non-linear models combined with conditional logistic regressions were used to estimate the associations. A total of 88,904 patients were hospitalized for T2D. Short-term exposures to all six air pollutants above except for ozone were significantly associated with the risk of hospitalization for T2D and both subclasses. An interquartile range increase in the concentrations of PM2.5, PM10, NO2, SO2, and CO at lag 0-2 d was associated with higher hospitalization risk of T2D by 1.71% (95%CI: 0.56%, 2.87%), 2.08% (0.88%, 3.29%), 4.85% (3.29%, 6.44%), 2.44% (1.22%, 3.67%) and 2.55% (1.24%, 3.88%), respectively. The associations of T2D hospitalizations were stronger in cold season than in warm season. Air pollutants had more acute and stronger associations with T2D with complications. The exposure-response relationship curves showed no thresholds, and the slopes were larger for T2D with complications. This nationwide individual-level, case-crossover study provides the first comprehensive evidence that short-term exposure to multiple criteria air pollutants may increase the risk of hospitalizations for T2D, especially for T2D with complications.
Collapse
Affiliation(s)
- Huihuan Luo
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Cong Liu
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Xiyin Chen
- Department of International Health, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, USA
| | - Jian Lei
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Yixiang Zhu
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Lu Zhou
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Ya Gao
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Xia Meng
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Haidong Kan
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China
| | - Jianwei Xuan
- Health Economic Research Institute, School of Pharmacy, Sun Yat-Shen University, GuangZhou, 510275, China.
| | - Renjie Chen
- School of Public Health, Shanghai Institute of Infectious Disease and Biosecurity, Key Lab of Public Health Safety of the Ministry of Education and NHC Key Lab of Health Technology Assessment, Fudan University, Shanghai, 200032, China.
| |
Collapse
|
112
|
Elser H, Rowland ST, Marek MS, Kiang MV, Shea B, Do V, Benmarhnia T, Schneider ALC, Casey JA. Wildfire smoke exposure and emergency department visits for headache: A case-crossover analysis in California, 2006-2020. Headache 2023; 63:94-103. [PMID: 36651537 PMCID: PMC10066880 DOI: 10.1111/head.14442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/26/2022] [Accepted: 11/02/2022] [Indexed: 01/19/2023]
Abstract
OBJECTIVE To evaluate the association of short-term exposure to overall fine particulate matter of <2.5 μm (PM2.5 ) and wildfire-specific PM2.5 with emergency department (ED) visits for headache. BACKGROUND Studies have reported associations between PM2.5 exposure and headache risk. As climate change drives longer and more intense wildfire seasons, wildfire PM2.5 may contribute to more frequent headaches. METHODS Our study included adult Californian members (aged ≥18 years) of a large de-identified commercial and Medicare Advantage claims database from 2006 to 2020. We identified ED visits for primary headache disorders (subtypes: tension-type headache, migraine headache, cluster headache, and "other" primary headache). Claims included member age, sex, and residential zip code. We linked daily overall and wildfire-specific PM2.5 to residential zip code and conducted a time-stratified case-crossover analysis considering 7-day average PM2.5 concentrations, first for primary headache disorders combined, and then by headache subtype. RESULTS Among 9898 unique individuals we identified 13,623 ED encounters for primary headache disorders. Migraine was the most frequently diagnosed headache (N = 5534/13,623 [47.6%]) followed by "other" primary headache (N = 6489/13,623 [40.6%]). For all primary headache ED diagnoses, we observed an association of 7-day average wildfire PM2.5 (odds ratio [OR] 1.17, 95% confidence interval [CI] 0.95-1.44 per 10 μg/m3 increase) and by subtype we observed increased odds of ED visits associated with 7-day average wildfire PM2.5 for tension-type headache (OR 1.42, 95% CI 0.91-2.22), "other" primary headache (OR 1.40, 95% CI 0.96-2.05), and cluster headache (OR 1.29, 95% CI 0.71-2.35), although these findings were not statistically significant under traditional null hypothesis testing. Overall PM2.5 was associated with tension-type headache (OR 1.29, 95% CI 1.03-1.62), but not migraine, cluster, or "other" primary headaches. CONCLUSIONS Although imprecise, these results suggest short-term wildfire PM2.5 exposure may be associated with ED visits for headache. Patients, healthcare providers, and systems may need to respond to increased headache-related healthcare needs in the wake of wildfires and on poor air quality days.
Collapse
Affiliation(s)
- Holly Elser
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Center for Population Health Sciences, Stanford University, Stanford, California, USA
| | - Sebastian T. Rowland
- Environmental Health Sciences, Columbia Mailman School of Public Health, New York, New York, USA
- PSE Healthy Energy, Oakland, New York, USA
| | - Maksym S. Marek
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Mathew V. Kiang
- Epidemiology and Population Health, Stanford University School of Medicine, Stanford, California, USA
| | - Brittany Shea
- Environmental Health Sciences, Columbia Mailman School of Public Health, New York, New York, USA
| | - Vivian Do
- Environmental Health Sciences, Columbia Mailman School of Public Health, New York, New York, USA
| | - Tarik Benmarhnia
- Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA
| | - Andrea L. C. Schneider
- Department of Neurology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
- Department of Biostatistics, Epidemiology and Informatics, University of Pennsylvania Perelman School of Medicine, Philadelphia, Pennsylvania, USA
| | - Joan A. Casey
- Environmental Health Sciences, Columbia Mailman School of Public Health, New York, New York, USA
| |
Collapse
|
113
|
Aswin Giri J, Schäfer B, Verma R, He H, Shiva Nagendra SM, Khare M, Beck C. Lockdown Effects on Air Quality in Megacities During the First and Second Waves of COVID-19 Pandemic. JOURNAL OF THE INSTITUTION OF ENGINEERS (INDIA): SERIES A 2023; 104:155-165. [PMCID: PMC9702681 DOI: 10.1007/s40030-022-00702-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Accepted: 10/18/2022] [Indexed: 11/25/2023]
Abstract
Air pollution is among the highest contributors to mortality worldwide, especially in urban areas. During spring 2020, many countries enacted social distancing measures in order to slow down the ongoing COVID-19 pandemic. A particularly drastic measure, the “lockdown”, urged people to stay at home and thereby prevent new COVID-19 infections during the first (2020) and second wave (2021) of the pandemic. In turn, it also reduced traffic and industrial activities. But how much did these lockdown measures improve air quality in large cities, and are there differences in how air quality was affected? Here, we analyse data from two megacities: London as an example for Europe and Delhi as an example for Asia. We consider data during first and second-wave lockdowns and compare them to 2019 values. Overall, we find a reduction in almost all air pollutants with intriguing differences between the two cities except Delhi in 2021. In London, despite smaller average concentrations, we still observe high-pollutant states and an increased tendency towards extreme events (a higher kurtosis of the probability density during lockdown) during 2020 and low pollution levels during 2021. For Delhi, we observe a much stronger decrease in pollution concentrations, including high pollution states during 2020 and higher pollution levels in 2021. These results could help to design policies to improve long-term air quality in megacities.
Collapse
Affiliation(s)
- J. Aswin Giri
- Indian Institute of Technology Madras, Chennai, India
| | - Benjamin Schäfer
- School of Mathematical Sciences, Queen Mary University of London, London, UK
| | - Rulan Verma
- Indian Institute of Technology Delhi, New Delhi, India
| | - Hankun He
- School of Mathematical Sciences, Queen Mary University of London, London, UK
| | | | - Mukesh Khare
- Indian Institute of Technology Delhi, New Delhi, India
| | - Christian Beck
- School of Mathematical Sciences, Queen Mary University of London, London, UK
| |
Collapse
|
114
|
Jiang M, Ren X, Han L, Ma T, Zheng X. Association between Household Solid Fuel Use and Sarcopenia Risk among Middle-Aged and Older Adults in China: A Nationwide Population-Based Cohort Study. J Nutr Health Aging 2023; 27:472-478. [PMID: 37357332 DOI: 10.1007/s12603-023-1933-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2023] [Accepted: 05/29/2023] [Indexed: 06/27/2023]
Abstract
BACKGROUNDS Household solid fuel have been associated with changes of handgrip strength, and exposure to ambient air pollution might be one risk factor of sarcopenia. However, the prospective association between household solid fuel use and sarcopenia remains limited. METHODS A total of 11,924 participants (5,723 men (48%) and 6,201 women (52%) with the average age was 59.17 ± 9.57 years) from the China Health and Retirement Longitudinal Study 2011 were included in cross-sectional analyses. 7,507 participants at baseline were included in longitudinal analyses and were followed up in 2015. Sarcopenia status was defined according to the Asian Working Group for Sarcopenia 2019 (AWGS 2019) criteria. RESULTS In cross-sectional analyses, the participants who used solid fuel for cooking and heating had higher prevalence of sarcopenia than those who used clean fuel. During the follow-up, 302 (4.02%) participants experienced sarcopenia. In the longitudinal analysis, after multivariable adjustment of age, sex and other risk factors, individuals who used solid fuel for cooking had an elevated risk of new-onset sarcopenia, with corresponding odds ratio of 1.32 (95% confidence interval, 1.03-1.71). Consistently, individuals reported solid fuels use for heating were associated with 20% (odds ratio=1.20, 95% confidence interval: 1.01-1.56) increased risk of sarcopenia. In addition, a self-reported switch from clean to solid fuel for cooking appeared to have an increased sarcopenia risk (odds ratio=1.20, 95% confidence interval: 1.02-1.43). CONCLUSION Using household solid fuel for cooking and heating was associated with increased risk of sarcopenia prevalence and incidence.
Collapse
Affiliation(s)
- M Jiang
- Xiaowei Zheng, PhD, Department of Public Health and Preventive Medicine, Wuxi School of Medicine, Jiangnan University, 1800 Lihu Road, Binhu District, Wuxi, Jiangsu Province, 214122, China. E-mail: ; or Tao Ma, PhD, Department of Neurology, Wuxi No.2 People's Hospital, Jiangnan University Medical Center, Wuxi, 214002, China. E-mail:
| | | | | | | | | |
Collapse
|
115
|
Short-term associations between ambient air pollution and emergency department visits for Alzheimer's disease and related dementias. ENVIRONMENTAL EPIDEMIOLOGY (PHILADELPHIA, PA.) 2022; 7:e237. [PMID: 36777523 PMCID: PMC9915954 DOI: 10.1097/ee9.0000000000000237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/18/2022] [Accepted: 11/17/2022] [Indexed: 12/24/2022]
Abstract
Dementia is a seriously disabling illness with substantial economic and social burdens. Alzheimer's disease and its related dementias (AD/ADRD) constitute about two-thirds of dementias. AD/ADRD patients have a high prevalence of comorbid conditions that are known to be exacerbated by exposure to ambient air pollution. Existing studies mostly focused on the long-term association between air pollution and AD/ADRD morbidity, while very few have investigated short-term associations. This study aims to estimate short-term associations between AD/ADRD emergency department (ED) visits and three common air pollutants: fine particulate matter (PM2.5), nitrogen dioxide (NO2), and warm-season ozone. Methods For the period 2005 to 2015, we analyzed over 7.5 million AD/ADRD ED visits in five US states (California, Missouri, North Carolina, New Jersey, and New York) using a time-stratified case-crossover design with conditional logistic regression. Daily estimated PM2.5, NO2, and warm-season ozone concentrations at 1 km spatial resolution were aggregated to the ZIP code level as exposure. Results The most consistent positive association was found for NO2. Across five states, a 17.1 ppb increase in NO2 concentration over a 4-day period was associated with a 0.61% (95% confidence interval = 0.27%, 0.95%) increase in AD/ADRD ED visits. For PM2.5, a positive association with AD/ADRD ED visits was found only in New York (0.64%, 95% confidence interval = 0.26%, 1.01% per 6.3 µg/m3). Associations with warm-season ozone levels were null. Conclusions Our results suggest AD/ADRD patients are vulnerable to short-term health effects of ambient air pollution and strategies to lower exposure may reduce morbidity.
Collapse
|
116
|
Li X, Li Y, Yu B, Zhu H, Zhou Z, Yang Y, Liu S, Tian Y, Xiao J, Xing X, Yin L. Health and economic impacts of ambient air pollution on hospital admissions for overall and specific cardiovascular diseases in Panzhihua, Southwestern China. J Glob Health 2022; 12:11012. [PMID: 36538381 PMCID: PMC9805700 DOI: 10.7189/jogh.12.11012] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Background The associations of ambient air pollution with hospital admissions (HAs) for overall and specific causes of cardiovascular diseases (CVDs), as well as related morbidity and economic burdens remain understudied, especially in low-pollution areas of low- and middle-income countries (LMICs). We evaluated the short-term effects of exposure to PM2.5 (particles with an aerodynamic diameter ≤2.5 μm), PM10 (particles with an aerodynamic diameter ≤10 μm), and SO2 (sulfur dioxide) on HAs for CVDs in Panzhihua, China, during 2016-2020, and calculated corresponding attributable risks and economic burden. Methods We used a generalized additive model (GAM) while controlling for time trends, meteorological conditions, holidays, and days of the week to estimate the associations. The cost of illness (COI) method was adopted to further assess corresponding hospitalization costs and productivity losses. Results A total of 27 660 HAs for CVDs were included in this study. PM10 and SO2 were significantly associated with elevated risks of CVDs hospitalizations. Each 10 μg/m3 increase in PM10 and SO2 at lag06 corresponded to an increase of 2.48% (95% confidence interval (CI) = 0.92%-4.06%), and 5.50% (95% CI = 3.09%-7.97%) in risk of HAs for CVDs, respectively. The risk estimates of PM10 and SO2 on CVD hospitalizations were generally robust after adjustment for other pollutants in two-pollutant models. We found stronger associations between air pollution (PM10 and SO2) and CVDs in cool seasons than in warm seasons. For specific causes of CVDs, significant associations of PM10 and SO2 exposure with cerebrovascular disease and ischaemic heart disease were observed. Using 0 μg/m3 as the reference concentrations, 11.91% (95%CI = 4.64%-18.56%) and 15.71% (95%CI = 9.30%-21.60%) of HAs for CVDs could be attributable to PM10 and SO2, respectively. During the study period, PM10 and SO2 brought 144.34 million Yuan economic losses for overall CVDs, accounting for 0.028% of local GDP. Conclusions Our results suggest that PM10 and SO2 exposure might be an important trigger of HAs for CVDs and accounted for substantial morbidity and economic burden.
Collapse
Affiliation(s)
- Xianzhi Li
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
| | - Yajie Li
- Tibet Center for Disease Control and Prevention, Lhasa, China
| | - Bin Yu
- Institute for Disaster Management and Reconstruction, Sichuan University – Hong Kong Polytechnic University, Chengdu, China
| | - Hongwei Zhu
- Department of dermatology, Panzhihua Central Hospital, Panzhihua, China
| | - Zonglei Zhou
- Department of Epidemiology, School of Public Health, Fudan University, Shanghai, China
| | - Yan Yang
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China,Department of Respiratory and Critical Care Medicine, Panzhihua Central Hospital, Panzhihua, China
| | - Shunjin Liu
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
| | - Yunyun Tian
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
| | - Junjie Xiao
- Department of Medical Records and Statistics, Panzhihua Central Hospital, Panzhihua, China
| | - Xiangyi Xing
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China,Department of Pharmacy, Panzhihua Central Hospital, Panzhihua, China
| | - Li Yin
- Meteorological Medical Research Center, Panzhihua Central Hospital, Panzhihua, China
| |
Collapse
|
117
|
Wang K, Wang W, Lei L, Lan Y, Liu Q, Ren L, Wu S. Association between short-term exposure to ambient air pollution and biomarkers of coagulation: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 215:114210. [PMID: 36030918 DOI: 10.1016/j.envres.2022.114210] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2022] [Revised: 08/17/2022] [Accepted: 08/22/2022] [Indexed: 06/15/2023]
Abstract
Ambient air pollution is one of the major global risk factors for cardiovascular health, and coagulation changes have been proposed to mediate this risk. Plasminogen activator inhibitor-1 (PAI-1), von Willebrand factor (vWF), soluble P-selectin (sP-selectin) and tissue plasminogen activator (t-PA) are major coagulation biomarkers. However, there has been no systematic meta-analysis to summarize associations of ambient air pollution with these coagulation biomarkers. To assess the overall associations between ambient particulate matter (PM2.5, PM10), ozone (O3), nitrogen dioxide (NO2), carbon monoxide (CO) and major coagulation biomarkers including PAI-1, vWF, sP-selectin and t-PA based on the existing epidemiological research. We performed a systematic literature search of publications reporting the associations of ambient air pollutants (PM2.5, PM10, O3, NO2, and CO) with coagulation biomarkers (PAI-1, vWF, sP-selectin and t-PA) in PubMed, Web of Science, EMBASE, and Scopus databases as of April 5, 2022. Then, we performed a random-effect meta-analysis, which included 27 articles, and then identified the potential sources of heterogeneity. The pooled percent changes of coagulation biomarkers per 10 μg/m3 increase in short-term exposure to ambient PM2.5 were 2.43% (95% CI: 0.59%, 4.29%) in PAI-1, 1.08% (95% CI: 0.21%, 1.96%) in vWF and 1.14% (95% CI: 0.59%, 1.68%) in sP-selectin, respectively. We also found significant associations of short-term exposure to ambient O3 with PAI-1 (1.62%, 95% CI: 0.01%, 3.25%), sP-selectin (9.59%, 95% CI:2.78%, 16.86%) and t-PA (0.45%, 95% CI: 0.02%, 0.88%), respectively. Short-term exposures to ambient PM10, NO2 and CO were not significantly associated with changes in coagulation biomarkers. In conclusion, short-term exposures to PM2.5 and O3 are associated with significant increases in coagulation biomarkers, suggesting an activated coagulation state upon air pollution exposure.
Collapse
Affiliation(s)
- Kai Wang
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Wanzhou Wang
- Department of Occupational and Environmental Health Sciences, School of Public Health, Peking University, Beijing, China
| | - Lei Lei
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Yang Lan
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China
| | - Qisijing Liu
- Research Institute of Public Health, School of Medicine, Nankai University, Tianjin, China
| | - Lihua Ren
- School of Nursing, Peking University, Beijing, China
| | - Shaowei Wu
- Department of Occupational and Environmental Health, School of Public Health, Xi'an Jiaotong University Health Science Center, Xi'an, Shaanxi, China; Key Laboratory for Disease Prevention and Control and Health Promotion of Shaanxi Province, Xi'an, Shaanxi, China; Key Laboratory of Trace Elements and Endemic Diseases in Ministry of Health, Xi'an, Shaanxi, China.
| |
Collapse
|
118
|
Dwivedi AK, Vishwakarma D, Dubey P, Reddy SY. Air Pollution and the Heart: Updated Evidence from Meta-analysis Studies. Curr Cardiol Rep 2022; 24:1811-1835. [PMID: 36434404 DOI: 10.1007/s11886-022-01819-w] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/18/2022] [Indexed: 11/27/2022]
Abstract
PURPOSE OF REVIEW Although environmental exposure such as air pollution is detrimental to cardiovascular disease (CVD), the effects of different air pollutants on different CVD endpoints produced variable findings. We provide updated evidence between air pollutants and CVD outcomes including mitigation strategies with meta-analytic evidence. RECENT FINDINGS An increased exposure to any class of air pollutants including particulate matter (PM), gas, toxic metals, and disruptive chemicals has been associated with CVD events. Exposure to PM < 2.5 μm has been consistently associated with most heart diseases and stroke as well as CVDs among at-risk individuals. Despite this, there is no clinical approach available for systemic evaluation of air pollution exposure and management. A large number of epidemiological evidence clearly suggests the importance of air pollution prevention and control for reducing the risk of CVDs and mortality. Cost-effective and feasible strategies for air pollution monitoring, screening, and necessary interventions are urgently required among at-risk populations and those living or working, or frequently commuting in polluted areas.
Collapse
Affiliation(s)
- Alok Kumar Dwivedi
- Division of Biostatistics & Epidemiology, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, 5001, El Paso Drive, El Paso, TX, 79905, USA. .,Biostatistics and Epidemiology Consulting Lab, Office of Research, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA.
| | - Deepanjali Vishwakarma
- Division of Biostatistics & Epidemiology, Department of Molecular and Translational Medicine, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, 5001, El Paso Drive, El Paso, TX, 79905, USA
| | - Pallavi Dubey
- Department of Obstetrics and Gynecology, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| | - Sireesha Y Reddy
- Department of Obstetrics and Gynecology, Paul L. Foster School of Medicine, Texas Tech University Health Sciences Center El Paso, El Paso, TX, USA
| |
Collapse
|
119
|
Shearston JA, Cerna-Turoff I, Hilpert M, Kioumourtzoglou MA. Quantifying diurnal changes in NO 2 due to COVID-19 stay-at-home orders in New York City. HYGIENE AND ENVIRONMENTAL HEALTH ADVANCES 2022; 4:100032. [PMID: 36926117 PMCID: PMC9580220 DOI: 10.1016/j.heha.2022.100032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/21/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 11/16/2022]
Abstract
Introduction Policy responses to the COVID-19 pandemic, such as the NY on Pause stay-at-home order (March 22 - June 8, 2020), substantially reduced traffic and traffic-related air pollution (TRAP) in New York City (NYC). We evaluated the magnitude of TRAP decreases and examined the role of modifying factors such as weekend/weekday, road proximity, location, and time-of-day. Methods Hourly nitrogen dioxide (NO2) concentrations from January 1, 2018 through June 8, 2020 were obtained from the Environmental Protection Agency's Air Quality System for all six hourly monitors in the NYC area. We used an interrupted time series design to determine the impact of NY on Pause on NO2 concentrations, using a mixed effects model with random intercepts for monitor location, adjusted for meteorology and long-term trends. We evaluated effect modification through stratification. Results NO2 concentrations decreased during NY on Pause by 19% (-3.2 ppb, 95% confidence interval [CI]: -3.5, -3.0), on average, compared to pre-Pause time trends. We found no evidence for modification by weekend/weekday, but greater decreases in NO2 at non-roadside monitors and weak evidence for modification by location. For time-of-day, we found the largest decreases for 5 am (27%, -4.5 ppb, 95% CI: -5.7, -3.3) through 7 am (24%, -4.0 ppb, 95% CI: -5.2, -2.8), followed by 6 pm and 7 pm (22%, -3.7 ppb, 95% CI: -4.8, -2.6 and 22%, -4.8, -2.5, respectively), while the smallest decreases occurred at 11 pm and 1 am (both: 11%, -1.9 ppb, 95% CI: -3.1, -0.7). Conclusion NY on Pause's impact on TRAP varied greatly diurnally. Decreases during early morning and evening time periods are likely due to decreases in traffic. Our results may be useful for planning traffic policies that vary by time of day, such as congestion tolling policies.
Collapse
Affiliation(s)
- Jenni A Shearston
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St., 11th Floor, New York, NY, 10032, USA
| | - Ilan Cerna-Turoff
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St., 11th Floor, New York, NY, 10032, USA
| | - Markus Hilpert
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St., 11th Floor, New York, NY, 10032, USA
| | - Marianthi-Anna Kioumourtzoglou
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, 722 W 168th St., 11th Floor, New York, NY, 10032, USA
| |
Collapse
|
120
|
Jacobsen AP, Khiew YC, Duffy E, O'Connell J, Brown E, Auwaerter PG, Blumenthal RS, Schwartz BS, McEvoy JW. Climate change and the prevention of cardiovascular disease. Am J Prev Cardiol 2022; 12:100391. [PMID: 36164332 PMCID: PMC9508346 DOI: 10.1016/j.ajpc.2022.100391] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 08/27/2022] [Accepted: 09/10/2022] [Indexed: 11/26/2022] Open
Abstract
Climate change is a worsening global crisis that will continue negatively impacting population health and well-being unless adaptation and mitigation interventions are rapidly implemented. Climate change-related cardiovascular disease is mediated by air pollution, increased ambient temperatures, vector-borne disease and mental health disorders. Climate change-related cardiovascular disease can be modulated by climate change adaptation; however, this process could result in significant health inequity because persons and populations of lower socioeconomic status have fewer adaptation options. Clear scientific evidence for climate change and its impact on human health have not yet resulted in the national and international impetus and policies necessary to slow climate change. As respected members of society who regularly communicate scientific evidence to patients, clinicians are well-positioned to advocate on the importance of addressing climate change. This narrative review summarizes the links between climate change and cardiovascular health, proposes actionable items clinicians and other healthcare providers can execute both in their personal life and as an advocate of climate policies, and encourages communication of the health impacts of climate change when counseling patients. Our aim is to inspire the reader to invest more time in communicating the most crucial public health issue of the 21st century to their patients.
Collapse
Affiliation(s)
- Alan P. Jacobsen
- Ciccarone Center for the Prevention of Cardiovascular Disease, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Yii Chun Khiew
- Division of Gastroenterology, Department of Gastroenterology, MedStar Georgetown University Hospital, Washington, DC, United States
| | - Eamon Duffy
- Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, New York, NY, United States
| | - James O'Connell
- Department of Public Health, Health Service Executive West, Galway, Ireland
| | - Evans Brown
- Department of Medicine, Division of Hospital Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Paul G. Auwaerter
- Sherrilyn and Ken Fisher Center for Environmental Infectious Diseases, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Roger S. Blumenthal
- Ciccarone Center for the Prevention of Cardiovascular Disease, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
| | - Brian S. Schwartz
- Department of Environmental Health and Engineering, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD, United States
| | - John William McEvoy
- Ciccarone Center for the Prevention of Cardiovascular Disease, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD, United States
- National Institute for Prevention and Cardiovascular Health, National University of Ireland Galway, Galway, Ireland
| |
Collapse
|
121
|
Floss M, Zandavalli RB, Leão JRB, Lima CV, Vianna N, Barros EF, Saldiva PHN. Poluição do ar. REVISTA BRASILEIRA DE MEDICINA DE FAMÍLIA E COMUNIDADE 2022. [DOI: 10.5712/rbmfc17(44)3038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Introdução: As mortes atribuíveis à poluição do ar em longo prazo chegam a 9 milhões ao ano, concentrando-se principalmente em países de baixa e média renda como o Brasil. Classifica-se a poluição do ar em: domiciliar (indoor) ou ambiente (outdoor). A inalação de poluentes está relacionada com o aumento da incidência e desenvolvimento de condições clínicas, como doenças cardiovasculares, respiratórias e outras, que fazem parte da prática da medicina de família e comunidade. Objetivo: Verificar as evidências clínicas para a abordagem da poluição do ar relacionada à saúde humana no contexto da prática na Atenção Primária à Saúde. Métodos: Revisão de escopo do papel clínico da medicina de família e comunidade em relação à poluição do ar e saúde, voltada para questões clínicas associadas com a poluição do ar. Incluíram-se 35 artigos nesta revisão. Recomendações clínicas: Em nível individual, destacam-se a redução do uso de fogões a lenha, o uso de estratégias de proteção de fontes poluidoras (como queimadas, vias de trânsito e indústria), a filtragem do ar, o estímulo ao transporte ativo, a cessação do tabagismo. Essas recomendações devem ser complementares às políticas governamentais relacionadas à poluição do ar. Propõem-se perguntas para a entrevista clínica. Exploram-se recomendações específicas sobre uso de máscaras, atividade física e COVID-19. Sugerem-se temas de pesquisa que podem ser realizadas na Atenção Primária à Saúde e o papel da medicina de família e comunidade nesse contexto. Considerações: A inclusão na classificação internacional de atenção primária e no Código internacional de Doenças poderia melhorar a notificação e os estudos epidemiológicos sobre o assunto.
Collapse
|
122
|
Jeong HY, Kim HJ, Nam KW, Jeong SM, Kwon H, Park JH, Kwon HM. Annual exposure to PM 10 is related to cerebral small vessel disease in general adult population. Sci Rep 2022; 12:19693. [PMID: 36385313 PMCID: PMC9668965 DOI: 10.1038/s41598-022-24326-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Accepted: 11/14/2022] [Indexed: 11/17/2022] Open
Abstract
Ambient air pollution is one of the most important global health issues. Although several studies have been reported the associations between air pollution and brain function or structure, impact of the air pollution on cerebral small vessel disease (cSVD) have rarely been explored in Asian adult population. We evaluated the association between exposure to air pollutants and cSVD in Korean asymptomatic adults. This cross-sectional study included 3257 participants of a health screening program from January 2006 to December 2013. All participants performed brain magnetic resonance imaging. To assess the cSVD, we considered three features such as white matter hyperintensities (WMH), silent lacunar infarction (SLI), and cerebral microbleeds (CMBs). The annual average exposure to air pollutants [particulate matter ≤ 10 μm in aerodynamic diameter (PM10), nitrogen dioxide (NO2), sulfur dioxide (SO2), and carbon monoxide (CO)] was generated. The mean [standard deviation (SD)] age of the total 3257 participants was 56.5 (9.5) years, and 54.0% of them were male. Among all the included participants, 273 (8.4%) had SLI and 135 (4.1%) had CMBs. The mean volume (± SD) of WMH was 2.72 ± 6.57 mL. In result of linear regression analysis, the volume of WMH was associated with various potential factors including age, height, weight, smoking and alcohol consumption status, blood pressure (BP), hypertension, and diabetes mellitus. SLI-positive group, compared to the SLI-negative group, was older, shorter, and had higher BP as well as higher frequency of hypertension and diabetes mellitus. After adjusting for covariates, the annual average concentration of PM10 was significantly associated with the volume of WMH [β (95% CI) for Model 1 = 0.082 (0.038- 0.125), p < 0.001; β (95% CI) for Model 2 = 0.060 (0.013, 0.107), p = 0.013]. CMBs were not associated with the annual average concentration of PM10. No significant associations of NO2, SO2, and CO with cSVD were observed. In conclusion, PM10 exposure is associated with significant increases in brain WMH' volume and silent lacunar infarcts in asymptomatic adults.
Collapse
Affiliation(s)
- Han-Yeong Jeong
- grid.412484.f0000 0001 0302 820XDepartment of Neurology, Emergency Medical Center, Seoul National University Hospital, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Seoul National University College of Medicine, Seoul, Republic of Korea
| | - Hyun-Jin Kim
- grid.410914.90000 0004 0628 9810National Cancer Control Institute, National Cancer Center, Goyang, Republic of Korea
| | - Ki-Woong Nam
- grid.31501.360000 0004 0470 5905Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-Ro 5-Gil, Dongjak-Gu, Seoul, 07061 Republic of Korea
| | - Su-Min Jeong
- grid.31501.360000 0004 0470 5905Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongro-Gu, Seoul, 03080 Republic of Korea
| | - Hyuktae Kwon
- grid.31501.360000 0004 0470 5905Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongro-Gu, Seoul, 03080 Republic of Korea
| | - Jin-Ho Park
- grid.31501.360000 0004 0470 5905Seoul National University College of Medicine, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Department of Family Medicine, Seoul National University Hospital, Seoul National University College of Medicine, 101 Daehak-Ro, Jongro-Gu, Seoul, 03080 Republic of Korea
| | - Hyung-Min Kwon
- grid.31501.360000 0004 0470 5905Seoul National University College of Medicine, Seoul, Republic of Korea ,grid.31501.360000 0004 0470 5905Department of Neurology, Seoul Metropolitan Government-Seoul National University Boramae Medical Center, Seoul National University College of Medicine, 20 Boramae-Ro 5-Gil, Dongjak-Gu, Seoul, 07061 Republic of Korea
| |
Collapse
|
123
|
Ding E, Wang Y, Liu J, Tang S, Shi X. A review on the application of the exposome paradigm to unveil the environmental determinants of age-related diseases. Hum Genomics 2022; 16:54. [DOI: 10.1186/s40246-022-00428-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2022] [Accepted: 10/29/2022] [Indexed: 11/11/2022] Open
Abstract
AbstractAge-related diseases account for almost half of all diseases among adults worldwide, and their incidence is substantially affected by the exposome, which is the sum of all exogenous and endogenous environmental exposures and the human body’s response to these exposures throughout the entire lifespan. Herein, we perform a comprehensive review of the epidemiological literature to determine the key elements of the exposome that affect the development of age-related diseases and the roles of aging hallmarks in this process. We find that most exposure assessments in previous aging studies have used a reductionist approach, whereby the effect of only a single environmental factor or a specific class of environmental factors on the development of age-related diseases has been examined. As such, there is a lack of a holistic and unbiased understanding of the effect of multiple environmental factors on the development of age-related diseases. To address this, we propose several research strategies based on an exposomic framework that could advance our understanding—in particular, from a mechanistic perspective—of how environmental factors affect the development of age-related diseases. We discuss the statistical methods and other methods that have been used in exposome-wide association studies, with a particular focus on multiomics technologies. We also address future challenges and opportunities in the realm of multidisciplinary approaches and genome–exposome epidemiology. Furthermore, we provide perspectives on precise public health services for vulnerable populations, public communications, the integration of risk exposure information, and the bench-to-bedside translation of research on age-related diseases.
Collapse
|
124
|
Hasegawa K, Tsukahara T, Nomiyama T. Short-term associations of ambient air pollution with hospital admissions for ischemic stroke in 97 Japanese cities. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:78821-78831. [PMID: 35701697 DOI: 10.1007/s11356-022-21206-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2022] [Accepted: 05/27/2022] [Indexed: 06/15/2023]
Abstract
The short-term association between ambient air pollution and hospital admissions for ischemic stroke is not fully understood. We examined the association between four regularly measured major ambient air pollutants, i.e., sulfur dioxide (SO2), nitrogen dioxide (NO2), photochemical oxidants (Ox), and particulate matter with aerodynamic diameters ≤ 2.5 μm (PM2.5), and hospital admissions for ischemic stroke by analyzing 3 years of nationwide claims data from 97 cities in Japan. We first estimated city-specific results by using generalized additive models with a quasi-Poisson regression, and we obtained the national average by combining city-specific results with the use of random-effect models. We identified a total of 335,248 hospital admissions for ischemic stroke during the 3-year period. Our analysis results demonstrated that interquartile range increases in the following four ambient air pollutants were significantly associated with hospital admissions for ischemic stroke on the same day: SO2 (1.05 ppb), 1.05% (95% CI: 0.59-1.50%); NO2 (6.40 ppb), 1.10% (95% CI: 0.61-1.59%); Ox (18.32 ppb), 1.43% (95% CI: 0.81-2.06%); and PM2.5 (7.86 μg/m3), 0.90% (95% CI: 0.35-1.45%). When the data were stratified by the hospital admittees' medication use, we observed stronger associations with SO2, NO2, and PM2.5 among the patients who were taking antihypertensive drugs and weaker associations with SO2, NO2, and Ox among those taking antiplatelet drugs. Short-term exposure to ambient air pollution was associated with increased hospital admissions for ischemic stroke, and medication use and season may modify the association.
Collapse
Affiliation(s)
- Kohei Hasegawa
- Department of Preventive Medicine and Public Health, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan.
| | - Teruomi Tsukahara
- Department of Preventive Medicine and Public Health, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
- Department of Occupational Medicine, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| | - Tetsuo Nomiyama
- Department of Preventive Medicine and Public Health, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
- Department of Occupational Medicine, School of Medicine, Shinshu University, 3-1-1 Asahi, Matsumoto, Nagano, 390-8621, Japan
| |
Collapse
|
125
|
Wang Y, Xin Y, Wang XX, Zhang YL, Zhang Y, Wang Y, Peng L, Wu YC. Ambient fine particulate pollution hysteresis triggers wake-up stroke and rapidly triggers non-wake-up stroke: a case-crossover study. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:82243-82255. [PMID: 35748992 DOI: 10.1007/s11356-022-21458-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2022] [Accepted: 06/10/2022] [Indexed: 06/15/2023]
Abstract
Atmospheric pollutants increase the risk of acute ischemic stroke (AIS) which has been widely reported. However, little is known about the relationships between air pollution and specific subsets of AIS, such as wake-up stroke (WUS) and non-wake-up stroke (non-WUS). This study aimed to explore the relationship between WUS and non-WUS and atmospheric pollutants. A total of 1432 patients (331 WUS patients and 1101 non-WUS patients) were admitted to a tertiary hospital from 2016 to 2019. A time-stratified case-crossover design and a conditional logistic regression model to study the associations of change in pollutant concentration with WUS and non-WUS events were constructed. Data analysis revealed that WUS-related risks increased 48 to 72 h after the increase in the PM2.5 concentration (each 10 μg/m3 increase, lag 0-72 h) [threshold OR (95% CI):18 μg/m3 1.03 (0.94-1.11), 35 μg/m3 1.01 (0.92-1.12), 50 μg/m3 1.04 (0.91-1.19)]; the non-WUS-related risk increased 1 to 6 h after the increase in the PM2.5 concentration (each 10 μg/m3 increase, lag 0-1 h) [threshold OR (95% CI):18 μg/m3 1.01 (0.98-1.03), 35 μg/m3 1.00 (0.97-1.04), 50 μg/m3 1.01 (0.96-1.05)] (lag 0-6 h) [threshold OR (95% CI): 18 μg/m3 1.00 (0.97-1.03), 35 μg/m3 1.00 (0.97-1.04), 50 μg/m3 1.01 (0.97-1.06)]; O3 exposure was related to WUS events, and its impact on WUS events was stronger and longer-lasting (1-96 h) than its impact on non-WUS events (1-6 h). Greater than or equal to 65 years of age, overweight (BMI ≥ 25), and diabetes had a significantly greater risk of WUS associated with increased PM2.5 concentration in the previous 12-96 h than patients without these conditions. Patients with hypertension and smoking had a significant risk of non-WUS associated with increased PM2.5 concentration in the previous 1-6 h. The increase in PM2.5 concentration in the cold season increased the risk of both WUS and non-WUS events. Ambient air pollution hysteresis triggers WUS and rapidly triggers non-WUS, even if the degree of pollutant is relatively low. Patients with elderly, overweight, and diabetes appeared particularly susceptible to WUS, and patients with hypertension and smoking history were susceptible to non-WUS. We need to expand the sample for further investigation into mechanisms by which environmental pollutants trigger WUS or non-WUS.
Collapse
Affiliation(s)
- Yan Wang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 86 Wujin Road, Shanghai, 200080, People's Republic of China
| | - Yuan Xin
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Xi-Xi Wang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 86 Wujin Road, Shanghai, 200080, People's Republic of China
| | - Yu-Lei Zhang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 86 Wujin Road, Shanghai, 200080, People's Republic of China
- The Second Affiliated Hospital of Soochow University, Suzhou, 215004, People's Republic of China
| | - Yue Zhang
- Department of Bioinformatics and Biostatistics, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, 200240, People's Republic of China
| | - Yu Wang
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 86 Wujin Road, Shanghai, 200080, People's Republic of China
| | - Li Peng
- Shanghai Key Laboratory of Meteorology and Health, Shanghai Meteorological Service, Shanghai, 200135, People's Republic of China
| | - Yun-Cheng Wu
- Department of Neurology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, No. 86 Wujin Road, Shanghai, 200080, People's Republic of China.
| |
Collapse
|
126
|
Zheng J, Yang X, Hu S, Wang Y, Liu J. Association between short-term exposure to air pollution and respiratory diseases among children in China: a systematic review and meta-analysis. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2022; 32:2512-2532. [PMID: 34601975 DOI: 10.1080/09603123.2021.1974822] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Accepted: 08/26/2021] [Indexed: 06/13/2023]
Abstract
OBJECTIVE To assess the quantitative association between short-term exposure to air pollution and respiratory disease outpatient visits among children in China. METHODS We searched articles from 1 January 2000 to 31 December 2020 in six peer-reviewed literature databases following PRISMA guidelines. RESULTS Of 2668 records, 33 were included in meta-analysis. The pooled excess risks of respiratory disease outpatient visits among children in China per 10 μg/m3 increase were 0.75% (95% CI: 0.54%, 0.96%) for PM2.5, 0.70% (95% CI: 0.50%, 0.89%) for PM10, 0.82% (95% CI: 0.58%, 1.05%) for SO2, 1.61% (95% CI: 1.25%, 1.98%) for NO2 and 0.74% (95% CI: 0.01%, 1.46%) for O3. In subgroup analysis, air pollution had a greater impact in southern or central cities, cold seasons, and areas with high relative humidity. CONCLUSIONS Short-term exposure to air pollution was significantly associated with an increased excess risk of respiratory disease outpatient visits among children in China.
Collapse
Affiliation(s)
- Junyao Zheng
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, China
| | - Xiao Yang
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, China
| | - Siqi Hu
- School of Public Policy and Administration, Xi'an Jiaotong University, Xi'an, China
| | - Yikai Wang
- Department of Infectious Diseases, The Second Affiliated Hospital of Xi'an Jiaotong University, Xi'an, China
| | - Jinlin Liu
- School of Public Policy and Administration, Northwestern Polytechnical University, Xi'an, China
| |
Collapse
|
127
|
Cytotoxicity of Particulate Matter PM10 Samples from Ouagadougou, Burkina Faso. J Toxicol 2022; 2022:1786810. [PMID: 36310640 PMCID: PMC9616664 DOI: 10.1155/2022/1786810] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2022] [Revised: 09/28/2022] [Accepted: 10/06/2022] [Indexed: 11/18/2022] Open
Abstract
Particulate matter (PM) is one of the main air pollutants with 257,000 deaths per year in Africa. Studying their toxic mechanisms of action could provide a better understanding of their effects on the population health. The objective of this study was to describe the PM10 toxic mechanism of action collected in 3 districts of Ouagadougou. Once per month and per site between November 2015 and February 2016, PM10 was sampled for 24 hours using the MiniVol TAS (AirMetrics, Eugene, USA). The collected filters were then stored in Petri dishes at room temperature for in vitro toxicological studies using human pulmonary artery endothelial cells (HPAEC) at the Bordeaux INSERM-U1045 Cardio-thoracic Research Center. The three study districts were classified based on PM10 level (high, intermediate, and low, respectively, for districts 2, 3, and 4). PM10 induced a concentration-dependent decrease in cell viability. A significant decrease in cell viability was observed at 1 µg/cm2, 10 µg/cm2, and 25 µg/cm2 for, respectively, districts 2, 3, and 4. A significant increase in the production of reactive oxygen species (ROS) was observed at 10 µg/cm2 for district 2 versus 5 µg/cm2 and 1 µg/cm2 for districts 3 and 4, respectively. Finally, a significant production of IL-6 was recorded from 5 µg/cm2 for district 4 versus 10 µg/cm2 for districts 2 and 3. Consequently, Ouagadougou is subjected to PM10 pollution, which can induce a significant production of ROS and IL-6 to cause adverse effects on the health of the population.
Collapse
|
128
|
Cui M, Zhan C, Wu W, Guo D, Song Y. Acute Gaseous Air Pollution Exposure and Hospitalizations for Acute Ischemic Stroke: A Time-Series Analysis in Tianjin, China. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph192013344. [PMID: 36293925 PMCID: PMC9603069 DOI: 10.3390/ijerph192013344] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 05/13/2023]
Abstract
BACKGROUND Stroke has always been an important problem troubling human health. Short-term exposure to air pollutants is associated with increased hospital admissions. The rise of pollutants such as O3 has caused a huge social and economic burden. This study aims to explore the relationship between short-term exposure to ambient gaseous pollutants and daily hospitalizations for ischemic stroke, utilizing a four-year time-series study in Tianjin. METHODS Collecting the data of gaseous pollutants (NO2, SO2, CO, O3), meteorological data (including daily average temperature and relative humidity) and the number of hospitalizations due to ischemic stroke in Tianjin Medical University General Hospital from 2013 to 2016. Poisson regression generalized additive model with single-day and multi-day moving average lag structure was used to estimate adverse effects of gaseous pollutants on daily hospitalizations. Subgroup analysis was performed to detect modification effect by gender and age. RESULTS In total, there were 9081 ischemic stroke hospitalizations. After controlling for the meteorological factors in the same period, no significant findings were found with the increase of NO2, SO2, CO and O3 concentrations at most of the time in the single-pollutant model. Similarly, in the stratified analysis, no associations between gaseous pollutants and ischemic stroke were observed in this study. CONCLUSIONS Short-term exposure to NO2, SO2, CO and O3 was not distinctly associated with daily hospitalizations for ischemic stroke in Tianjin. Multicenter studies in the future are warranted to explore the associations between gaseous pollution exposure and ischemic stroke.
Collapse
Affiliation(s)
- Mingrui Cui
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Changqing Zhan
- Department of Neurology, Wuhu No.2 People’s Hospital, Wuhu 241001, China
| | - Wenjuan Wu
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Dandan Guo
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin 300052, China
| | - Yijun Song
- General Medicine Department, Tianjin Medical University General Hospital, Tianjin 300052, China
- Correspondence: ; Tel.: +86-13012270022
| |
Collapse
|
129
|
Nduka IC, Huang T, Li Z, Yang Y, Yim SHL. Long-term trends of atmospheric hot-and-polluted episodes (HPE) and the public health implications in the Pearl River Delta region of China. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 311:119782. [PMID: 35934153 DOI: 10.1016/j.envpol.2022.119782] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/08/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Air pollution and extreme heat have been responsible for more than a million deaths in China every year, especially in densely urbanized regions. While previous studies intensively evaluated air pollution episodes and extreme heat events, a limited number of studies comprehensively assessed atmospheric hot-and-polluted-episodes (HPE) - an episode with simultaneously high levels of air pollution and temperature - which have potential adverse synergic impacts on human health. This study focused on the Pearl River Delta (PRD) region of China due to its high temperature in summer and poor air quality throughout a year. We employed geostatistical downscaling to model meteorology at a spatial resolution of 1 km, and applied a machine learning algorithm (XGBoost) to estimate a high-resolution (1 km) daily concentration of particulate matter with an aerodynamic diameter ≤2.5 μm (PM2.5) and ozone (O3) for June to October over 20 years (2000-2019). Our results indicate an increasing trend (∼50%) in the frequency of HPE occurrence in the first decade (2000-2010). Conversely, the annual frequency of HPE occurrence reduced (16.7%), but its intensity increased during the second decade (2010-2019). The northern cities in the PRD region had higher levels of PM2.5 and O3 than their southern counterparts. During HPEs, regional daily PM2.5 exceeded the World Health Organization (WHO) and Chinese guideline levels by 75% and 25%, respectively, while the O3 exceeded the WHO O3 standard by up to 69%. Overall, 567,063 (95% confidence interval (CI): 510,357-623,770) and 52,231 (95%CI: 26,116-78,346) excessive deaths were respectively attributable to exposure to PM2.5 and O3 in the PRD region. Our findings imply the necessity and urgency to formulate co-benefit policies to mitigate the region's air pollution and heat problems.
Collapse
Affiliation(s)
- Ifeanyichukwu C Nduka
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong, China
| | - Tao Huang
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong, China
| | - Zhiyuan Li
- Department of Geography and Resource Management, The Chinese University of Hong Kong, Sha Tin, N.T., Hong Kong, China
| | - Yuanjian Yang
- School of Atmospheric Physics, Nanjing University of Information Science and Technology, Nanjing, China
| | - Steve H L Yim
- Asian School of the Environment, Nanyang Technological University, Singapore; Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore; Earth Observatory of Singapore, Nanyang Technological University, Singapore.
| |
Collapse
|
130
|
Choi Y, Byun G, Lee JT. Temporal Heterogeneity of Short-Term Effects of Particulate Matter on Stroke Outpatients in Seven Major Cities of the Republic of Korea. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:12316. [PMID: 36231621 PMCID: PMC9566257 DOI: 10.3390/ijerph191912316] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 09/23/2022] [Accepted: 09/24/2022] [Indexed: 06/16/2023]
Abstract
Although particulate matter (PM) is a major risk factor for stroke, its effects on hospital outpatients admitted for stroke have not been documented in Korea. In addition, recent studies have reported that the effects of PM10 on circulatory mortality changed over time. We aimed to estimate the effects of PM10 on stroke and their temporal heterogeneity in seven major cities of Korea during the period 2002-2015. The study period was divided into five years of moving time windows, and city-specific PM10 effects on ischemic and hemorrhagic stroke outpatients were calculated. We pooled the estimates using meta-analysis and plotted them into a sequence to identify their temporal trends. A 10 µg/m3 increase of PM10 was significantly associated with increments in hospital outpatients admitted for ischemic stroke (0.24%, 95% CI: 0.04%, 0.44%), but not for hemorrhagic stroke (0.33%, 95% CI: -0.06%, 0.73%). Effect estimates for strokes increased during the period 2003-2013 but decreased after. For the first time, we have estimated the effects of PM10 on hospital outpatients admitted for stroke in Korea. The observed temporal trend in PM10 effects was similar to patterns of circulatory mortality, suggesting that the temporal heterogeneity in PM10 effects might be due to systematic causes rather than random fluctuations.
Collapse
Affiliation(s)
- Yongsoo Choi
- School of Health Policy and Management, College of Health Science, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02481, Korea
| | - Garam Byun
- Interdisciplinary Program in Precision Public Health, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02481, Korea
| | - Jong-Tae Lee
- School of Health Policy and Management, College of Health Science, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02481, Korea
- Interdisciplinary Program in Precision Public Health, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02481, Korea
| |
Collapse
|
131
|
Ambient Air Pollution and Acute Ischemic Stroke—Effect Modification by Atrial Fibrillation. J Clin Med 2022; 11:jcm11185429. [PMID: 36143076 PMCID: PMC9503161 DOI: 10.3390/jcm11185429] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/03/2022] [Accepted: 09/12/2022] [Indexed: 11/17/2022] Open
Abstract
Acute ischemic strokes (AIS) are closely linked with air pollution, and there is some evidence that traditional cardiovascular risk factors may alter the relationship between air pollution and strokes. We investigated the effect of atrial fibrillation (AF) on the association of AIS with air pollutants. This was a nationwide, population-based, case-only study that included all AIS treated in public healthcare institutions in Singapore from 2009 to 2018. Using multivariable logistic regression, adjusted for time-varying meteorological effects, we examined how AF modified the association between AIS and air pollutant exposure. A total of 51,673 episodes of AIS were included, with 10,722 (20.7%) having AF. The odds of AIS in patients with AF is higher than those without AF for every 1 µg/m3 increase in O3 concentration (adjusted OR [aOR]: 1.005, 95% CI 1.003–1.007) and every 1 mg/m3 increase in CO concentration (aOR: 1.193, 95% CI 1.050–1.356). However, the odds of AIS in patients with AF is lower than those without AF for every 1 µg/m3 increase in SO2 concentration (aOR: 0.993, 95% CI 0.990–0.997). Higher odds of AIS among AF patients as O3− and CO concentrations increase are also observed in patients aged ≥65 years and non-smokers. The results suggest that AF plays an important role in exacerbating the risk of AIS as the levels of O3 and CO increase.
Collapse
|
132
|
Liu RA, Wei Y, Qiu X, Kosheleva A, Schwartz JD. Short term exposure to air pollution and mortality in the US: a double negative control analysis. Environ Health 2022; 21:81. [PMID: 36068579 PMCID: PMC9446691 DOI: 10.1186/s12940-022-00886-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 07/29/2022] [Indexed: 05/21/2023]
Abstract
RATIONALE Studies examining the association of short-term air pollution exposure and daily deaths have typically been limited to cities and used citywide average exposures, with few using causal models. OBJECTIVES To estimate the associations between short-term exposures to fine particulate matter (PM2.5), ozone (O3), and nitrogen dioxide (NO2) and all-cause and cause-specific mortality in multiple US states using census tract or address exposure and including rural areas, using a double negative control analysis. METHODS We conducted a time-stratified case-crossover study examining the entire population of seven US states from 2000-2015, with over 3 million non-accidental deaths. Daily predictions of PM2.5, O3, and NO2 at 1x1 km grid cells were linked to mortality based on census track or residential address. For each pollutant, we used conditional logistic regression to quantify the association between exposure and the relative risk of mortality conditioning on meteorological variables, other pollutants, and using double negative controls. RESULTS A 10 μg/m3 increase in PM2.5 exposure at the moving average of lag 0-2 day was significantly associated with a 0.67% (95%CI: 0.34-1.01%) increase in all-cause mortality. 10 ppb increases in NO2 or O3 exposure at lag 0-2 day were marginally associated with and 0.19% (95%CI: -0.01-0.38%) and 0.20 (95% CI-0.01, 0.40), respectively. The adverse effects of PM2.5 persisted when pollution levels were restricted to below the current global air pollution standards. Negative control models indicated little likelihood of omitted confounders for PM2.5, and mixed results for the gases. PM2.5 was also significantly associated with respiratory mortality and cardiovascular mortality. CONCLUSIONS Short-term exposure to PM2.5 and possibly O3 and NO2 are associated with increased risks for all-cause mortality. Our findings delivered evidence that risks of death persisted at levels below currently permissible.
Collapse
Affiliation(s)
- Rongqi Abbie Liu
- Department of Environmental Health, Harvard T H Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA.
| | - Yaguang Wei
- Department of Environmental Health, Harvard T H Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA
| | - Xinye Qiu
- Department of Environmental Health, Harvard T H Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA
| | - Anna Kosheleva
- Department of Environmental Health, Harvard T H Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA
| | - Joel D Schwartz
- Department of Environmental Health, Harvard T H Chan School of Public Health, 677 Huntington Ave, Boston, MA, 02115, USA
| |
Collapse
|
133
|
Zauli-Sajani S, Marchesi S, Boselli G, Broglia E, Angella A, Maestri E, Marmiroli N, Colacci A. Effectiveness of a Protocol to Reduce Children's Exposure to Particulate Matter and NO 2 in Schools during Alert Days. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11019. [PMID: 36078735 PMCID: PMC9517784 DOI: 10.3390/ijerph191711019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/27/2022] [Revised: 08/31/2022] [Accepted: 08/31/2022] [Indexed: 06/15/2023]
Abstract
Reducing children's exposure to air pollutants should be considered a primary goal, especially for the most vulnerable subjects. The goal of this study was to test the effectiveness of applying a protocol in the event of alert days, i.e., days with forecasted PM10 levels above the EU limit value (50 µg/m3). The test was conducted, before the onset of SARS-CoV-2 restrictions, in a classroom of a primary school in Parma (Italy)-a highly polluted area in Northern Italy. The protocol included indications for the frequency of opening windows and doors, as well as the activation of an air purifier. Teachers and students were asked to apply the protocol only in the event of alert days, while no indications were provided for non-alert days. A monitoring system measuring PM1, PM2.5, PM10, CO2, and NO2 was deployed in the classroom. Measurements of the same parameters were also performed outdoors near the school. The application of the protocol reduced the indoor/outdoor (I/O) ratio for all toxic pollutants. The reduction was also remarkable for PM10-the most critical air quality parameter in the study area (1.5 and 1.1 for non-alert and alert days, respectively). Indoor concentrations of PM10-especially during non-alert days-were often higher than outdoors, showing a major contribution from resuspension due to the movement of people and personal cloud. The protocol did not cause any increase in indoor CO2 levels. Our findings showed that the application of a ventilation protocol together with the contribution of an air purifier may represent an effective way to reduce children's exposure to air pollution during severe air pollution episodes. Considering the onset of COVID-19 and the airborne transmission of pathogens, this protocol now has more meaningful implications for children's welfare, and can be integrated with protocols designed as measures against the spread of SARS-CoV-2.
Collapse
Affiliation(s)
- Stefano Zauli-Sajani
- Regional Agency for Prevention Environment and Energy of Emilia-Romagna (Arpae), 40139 Bologna, Italy
| | - Stefano Marchesi
- Regional Agency for Prevention Environment and Energy of Emilia-Romagna (Arpae), 40139 Bologna, Italy
| | - Giuseppe Boselli
- Regional Agency for Prevention Environment and Energy of Emilia-Romagna (Arpae), 40139 Bologna, Italy
| | | | | | - Elena Maestri
- Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Nelson Marmiroli
- Consorzio Interuniversitario Nazionale per le Scienze Ambientali (CINSA), Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, 43124 Parma, Italy
| | - Annamaria Colacci
- Regional Agency for Prevention Environment and Energy of Emilia-Romagna (Arpae), 40139 Bologna, Italy
| |
Collapse
|
134
|
Assessment of Factors Influencing Personal Exposure to Air Pollution on Main Roads in Bogota: A Mixed-Method Study. MEDICINA (KAUNAS, LITHUANIA) 2022; 58:medicina58081125. [PMID: 36013592 PMCID: PMC9416028 DOI: 10.3390/medicina58081125] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 07/29/2022] [Accepted: 08/03/2022] [Indexed: 11/17/2022]
Abstract
Background and Objectives: Particulate Matter (PM), particles of variable but small diameter can penetrate the respiratory system via inhalation, causing respiratory and/or cardiovascular diseases. This study aims to evaluate the association of environmental particulate matter (PM2.5) and black carbon (BC) with respiratory health in users of different transport modes in four roads in Bogotá. Materials and Methods: this was a mixed-method study (including a cross sectional study and a qualitative description of the air quality perception), in 300 healthy participants, based on an exploratory sequential design. The respiratory effect was measured comparing the changes between pre- and post-spirometry. The PM2.5 and black carbon (BC) concentrations were measured using portable devices. Inhaled doses were also calculated for each participant according to the mode and route. Perception was approached through semi-structured interviews. The analysis included multivariate models and concurrent triangulation. Results: The concentration of matter and black carbon were greater in bus users (median 50.67 µg m-3; interquartile range (-IR): 306.7). We found greater inhaled dosages of air pollutants among bike users (16.41 µg m-3). We did not find changes in the spirometry parameter associated with air pollutants or transport modes. The participants reported a major sensory influence at the visual and olfactory level as perception of bad air quality. Conclusions: We observed greater inhaled doses among active transport users. Nevertheless, no pathological changes were identified in the spirometry parameters. People's perceptions are a preponderant element in the assessment of air quality.
Collapse
|
135
|
Long-Term Exposure to Ozone Increases Neurological Disability after Stroke: Findings from a Nationwide Longitudinal Study in China. BIOLOGY 2022; 11:biology11081216. [PMID: 36009843 PMCID: PMC9404899 DOI: 10.3390/biology11081216] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/01/2022] [Revised: 08/05/2022] [Accepted: 08/10/2022] [Indexed: 11/17/2022]
Abstract
Simple Summary In China, ozone is a major air pollutant that has been linked to stroke incidence and mortality. However, how long-term exposure to ozone affects the life quality among stroke survivors is unknown. This study presents a longitudinal analysis of nationwide data of Chinese adults, and shows that exposure to ozone can increase the risk of post-stroke disability. Taking ambient O3 under control can delay the progression of neurological disability among stroke survivors. Abstract Exposure to ozone (O3) is associated with stroke incidence and mortality. However, whether long-term exposure to O3 is associated with post-stroke neurological disability remains unknown. This study investigated the relationship based on the longitudinal analysis of China National Stroke Screening Survey (CNSSS), which included 65,778 records of stroke patients. All of the analyzed patients were followed-up at least twice. Stroke disability was assessed using the modified Rankin scale (mRS). Long-term exposure was assessed by the peak-season or annual mean of maximum 8-h O3 concentrations for 365 days before the mRS measurement. We used fixed-effect models to evaluate the associations between O3 and mRS score, with adjustment for multiple confounders, and found a 10 µg/m3 increase in peak-season O3 concentration was associated with a 0.0186 (95% confidence interval [CI] 0.0115–0.0256) increment in the mRS score. The association was robust in various subpopulations. For secondary outcomes, for each 10 µg/m3 increment in peak-season O3, the odds ratio of an increased mRS score (vs. unchanged or decreased mRS score) increased by 23% (95% CI 9–37%). A nonlinear analysis showed a sublinear association between O3 exposure and risk for post-stroke disability. A saturation effect was observed at an O3 concentration of more than ~120 μg/m3. Our study adds to evidence that long-term exposure to O3 increases the risk of neurological disability after stroke.
Collapse
|
136
|
Verma S, Ghosh S, Boucher O, Wang R, Menut L. Black carbon health impacts in the Indo-Gangetic plain: Exposures, risks, and mitigation. SCIENCE ADVANCES 2022; 8:eabo4093. [PMID: 35930631 PMCID: PMC9355355 DOI: 10.1126/sciadv.abo4093] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 06/21/2022] [Indexed: 06/15/2023]
Abstract
A large discrepancy between simulated and observed black carbon (BC) surface concentrations over the densely populated Indo-Gangetic plain (IGP) has so far limited our ability to assess the magnitude of BC health impacts in terms of population exposure, morbidity, and mortality. We evaluate these impacts using an integrated modeling framework, including successfully predicted BC concentrations. Population exposure to BC is notable, with more than 60 million people identified as living in hotspots of BC concentration (wintertime mean, >20 μg m-3). The attributable fraction of the total cardiovascular disease mortality (CVM) burden to BC exposures is 62% for the megacity. The semiurban area comprised about 49% of the total BC-attributable CVM burden over the IGP. More than 400,000 lives can potentially be saved from CVM annually by implementing prioritized emission reduction from the combustion of domestic biofuel in the semiurban area, diesel oil in transportation, and coal in thermal power plant and brick kiln industries in megacities.
Collapse
Affiliation(s)
- Shubha Verma
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Sanhita Ghosh
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Olivier Boucher
- Institut Pierre-Simon Laplace, CNRS/Sorbonne Université, 75252 Paris Cedex 05, France
| | - Rong Wang
- Department of Environmental Science and Engineering, Fudan University, Shanghai 200433, China
| | - Laurent Menut
- Laboratoire de Météorologie Dynamique, IPSL, CNRS/Ecole Polytechnique/Sorbonne Université/Ecole Normale Supérieure, 91128 Palaiseau Cedex, France
| |
Collapse
|
137
|
Air Pollution from Global Health to Individual Risk Factor—Is It Time for Enviropathies in Everyday Clinical Practice? INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19159595. [PMID: 35954950 PMCID: PMC9367743 DOI: 10.3390/ijerph19159595] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 08/02/2022] [Accepted: 08/03/2022] [Indexed: 02/04/2023]
Abstract
While the link between cardiovascular and respiratory conditions and air pollution is well-known, recent studies provided a growing body of evidence that polluted air, particularly air with high levels of particulate matter with a diameter smaller than 2.5 micrometers (PM 2.5), can have a range of negative impacts on health, both in terms of mortality and morbidity. It is time to emphasize the role of environmental factors as contributory factors or determinants of both global and individual health levels, and to consider them together as a health priority, as enviropathies (meant as pathologies caused, triggered or worsened by environmental exposure). Bringing attention to harmful air pollution exposure has fostered population studies, which developed accurate quantification of environmental exposure in polluted regions, aiding our understanding of the dose-response relationship between pollutants and diseases. Those efforts have influenced local and global health policy strategies. Now we face the challenge of controlling environmental pollution and limiting individual exposure to prevent or avoid serious health risks. Is it time for enviropathies in everyday clinical practice?
Collapse
|
138
|
Markozannes G, Pantavou K, Rizos EC, Sindosi OΑ, Tagkas C, Seyfried M, Saldanha IJ, Hatzianastassiou N, Nikolopoulos GK, Ntzani E. Outdoor air quality and human health: An overview of reviews of observational studies. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119309. [PMID: 35469927 DOI: 10.1016/j.envpol.2022.119309] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/02/2021] [Revised: 03/15/2022] [Accepted: 04/12/2022] [Indexed: 06/14/2023]
Abstract
The epidemiological evidence supporting putative associations between air pollution and health-related outcomes continues to grow at an accelerated pace with a considerable heterogeneity and with varying consistency based on the outcomes assessed, the examined surveillance system, and the geographic region. We aimed to evaluate the strength of this evidence base, to identify robust associations as well as to evaluate effect variation. An overview of reviews (umbrella review) methodology was implemented. PubMed and Scopus were systematically screened (inception-3/2020) for systematic reviews and meta-analyses examining the association between air pollutants, including CO, NOX, NO2, O3, PM10, PM2.5, and SO2 and human health outcomes. The quality of systematic reviews was evaluated using AMSTAR. The strength of evidence was categorized as: strong, highly suggestive, suggestive, or weak. The criteria included statistical significance of the random-effects meta-analytical estimate and of the effect estimate of the largest study in a meta-analysis, heterogeneity between studies, 95% prediction intervals, and bias related to small study effects. Seventy-five systematic reviews of low to moderate methodological quality reported 548 meta-analyses on the associations between outdoor air quality and human health. Of these, 57% (N = 313) were not statistically significant. Strong evidence supported 13 associations (2%) between elevated PM2.5, PM10, NO2, and SO2 concentrations and increased risk of cardiorespiratory or pregnancy/birth-related outcomes. Twenty-three (4%) highly suggestive associations were identified on elevated PM2.5, PM10, O3, NO2, and SO2 concentrations and increased risk of cardiorespiratory, kidney, autoimmune, neurodegenerative, cancer or pregnancy/birth-related outcomes. Sixty-seven (12%), and 132 (24%) meta-analyses were graded as suggestive, and weak, respectively. Despite the abundance of research on the association between outdoor air quality and human health, the meta-analyses of epidemiological studies in the field provide evidence to support robust associations only for cardiorespiratory or pregnancy/birth-related outcomes.
Collapse
Affiliation(s)
- Georgios Markozannes
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece; Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | | | - Evangelos C Rizos
- Department of Internal Medicine, University Hospital of Ioannina, Ioannina, Greece; School of Medicine, European University Cyprus, Nicosia, Cyprus; Hellenic Open University, Patra, Greece
| | - Ourania Α Sindosi
- Laboratory of Meteorology, Department of Physics, University of Ioannina, Ioannina, Greece
| | - Christos Tagkas
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece
| | - Maike Seyfried
- Faculty of Medicine, University of Tuebingen, Tuebingen, Germany
| | - Ian J Saldanha
- Center for Evidence Synthesis in Health, Department of Health Services, Policy, and Practice, and Department of Epidemiology, School of Public Health, Brown University, RI, USA
| | - Nikos Hatzianastassiou
- Laboratory of Meteorology, Department of Physics, University of Ioannina, Ioannina, Greece
| | | | - Evangelia Ntzani
- Department of Hygiene and Epidemiology, University of Ioannina School of Medicine, Ioannina, Greece; Center for Evidence Synthesis in Health, Department of Health Services, Policy, and Practice, and Department of Epidemiology, School of Public Health, Brown University, RI, USA.
| |
Collapse
|
139
|
Tian Y, Xiang M, Peng J, Duan Y, Wen Y, Huang S, Li L, Yu S, Cheng J, Zhang X, Wang P. Modification effects of seasonal and temperature variation on the association between exposure to nitrogen dioxide and ischemic stroke onset in Shenzhen, China. INTERNATIONAL JOURNAL OF BIOMETEOROLOGY 2022; 66:1747-1758. [PMID: 35750990 DOI: 10.1007/s00484-022-02315-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 05/16/2022] [Accepted: 06/14/2022] [Indexed: 06/15/2023]
Abstract
The independent associations of extreme temperature and ambient air pollutant with the admission to hospital and mortality of ischemic stroke have been widely investigated. However, knowledge about the modification effects of variation in season and temperature on the association between exposure to nitrogen dioxide (NO2) and ischemic stroke onset is still limited. This study purposed to explore the effect of NO2 on daily ischemic stroke onset modified by season and ambient temperature, and identify the potential population that susceptible to ischemic stroke onset connected with NO2 and ambient temperature. Data on daily ischemic stroke counts, weather conditions, and ambient air pollutant concentrations in Shenzhen were collected between January 1, 2008, and December 31, 2014. The seasonal effect on the NO2-associated onset was measured by a distributed-lag linear model. Furthermore, a generalized additive model that incorporated with stratification analyses was used to calculate the interactive effects between NO2 and ambient temperature. During the winter, the average percentage increase in daily ischemic stroke onset for each 10 μg/m3 increment in NO2 concentration on lagged 2 days was 3.05% (95% CI: 1.31-4.82%), while there was no statistically significant effect of NO2 during summer. And the low-temperature days ([Formula: see text] mean temperature), with a 2.23% increase in incidence (95% CI: 1.18-3.29%) for the same concentration increase in NO2, were significant higher than high temperature days ([Formula: see text] mean temperature). The modification effects of temperature on the study association were more pronounced in individuals aged 65 years or more and in males. The adverse health effects of NO2 on ischemic stroke are more pronounced during winter or low temperature periods. Elderly adults or males presented higher risks with these exposures.
Collapse
Affiliation(s)
- Yuchen Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ming Xiang
- Department of Hospital Infection Control, Wuhan No. 1 Hospital (Wuhan Hospital of Integrated Traditional Chinese and Western Medicine), Wuhan, Hubei, China
| | - Ji Peng
- Shenzhen Center for Chronic Disease Control, 2021 Buxin Road, Shenzhen, 518020, Guangdong, China
| | - Yanran Duan
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Ying Wen
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen, 518055, Guangdong, China
| | - Suli Huang
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen, 518055, Guangdong, China
| | - Lei Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China
| | - Shuyuan Yu
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen, 518055, Guangdong, China
| | - Jinquan Cheng
- Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen, 518055, Guangdong, China.
| | - Xia Zhang
- The First People's Hospital of Jingzhou, 40 Daqing Rd, Jingzhou, 434000, Hubei, China.
| | - Peng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, China.
| |
Collapse
|
140
|
Wu M, Yu L, Li T, Lu J, Yang Z, Shen P, Tang M, Jin M, Lin H, Chen K, Wang J. Association between short-term exposure to air pollution and ischemic stroke: A case-crossover study in China. ATMOSPHERIC ENVIRONMENT 2022; 283:119173. [DOI: 10.1016/j.atmosenv.2022.119173] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/01/2025]
|
141
|
Tavella RA, de Lima Brum R, Ramires PF, Santos JEK, Carvalho RB, Marmett B, Vargas VMF, Baisch PRM, da Silva Júnior FMR. Health impacts of PM 2.5-bound metals and PAHs in a medium-sized Brazilian city. ENVIRONMENTAL MONITORING AND ASSESSMENT 2022; 194:622. [PMID: 35907078 DOI: 10.1007/s10661-022-10285-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Accepted: 07/11/2022] [Indexed: 06/15/2023]
Abstract
Rio Grande is a medium-sized industrial city located in the extreme south of Brazil, and previous studies in this city have shown contamination by metal(loids) and polycyclic aromatic hydrocarbons (PAHs) in water, soil, and sediment and in the atmosphere. In Brazil, the incorporation of PM2.5 monitoring in environmental legislation is recent (2018) and, like other developing countries, the number of studies is still small. This study aimed to investigate the levels of PM2.5 in the industrial and urban area of Rio Grande, to determine the concentration of metal(loid)s As, Cd, Cu, and Pb and of 16 PAHs in the samples of PM2.5, to perform the health risk assessment for these contaminants and the health impact assessment for two possible scenarios of reduction of PM2.5 levels. Our main findings regarding the PM2.5 samples include the following: (1) The levels of this pollutant in the city of Rio Grande were higher than those allowed in current Brazilian legislation, in both the industrial and urban areas; (2) the existence of non-carcinogenic and carcinogenic risks for metals present in all samples; (3) the absence of carcinogenic risk for the assessed PAHs; and (4) the reduction scenarios proposed pointed to a reduction of up to 22 deaths annually in conjunction with reductions in health-related expenditures. Thus, these results may serve as a basis for the development of public health policies aimed at improving air quality, jointly assisting health surveillance and directing future studies towards a better intrinsic approach to the problem.
Collapse
Affiliation(s)
- Ronan Adler Tavella
- Universidade Federal Do Rio Grande (FURG), Avenida Itália, Km 8 Campus Carreiros, Rio Grande, Rio Grande do Sul, 96203-900, Brazil
| | - Rodrigo de Lima Brum
- Universidade Federal Do Rio Grande (FURG), Avenida Itália, Km 8 Campus Carreiros, Rio Grande, Rio Grande do Sul, 96203-900, Brazil
| | - Paula Florencio Ramires
- Universidade Federal Do Rio Grande (FURG), Avenida Itália, Km 8 Campus Carreiros, Rio Grande, Rio Grande do Sul, 96203-900, Brazil
| | - Jéssica El Koury Santos
- Programa de Pós Graduação Em Ciências Ambientais, Centro de Engenharias, Universidade Federal de Pelotas, Rua Benjamin Constant, 989, Porto, Pelotas, Rio Grande do Sol, 96010-020, Brazil
| | - Roseana Boek Carvalho
- Laboratório de Poluição Atmosférica, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Rio Grande do Sul, 90050-170, Porto Alegre, Brazil
| | - Bruna Marmett
- Laboratório de Poluição Atmosférica, Programa de Pós-Graduação Em Ciências da Saúde, Universidade Federal de Ciências da Saúde de Porto Alegre (UFCSPA), Rua Sarmento Leite, 245, Rio Grande do Sul, 90050-170, Porto Alegre, Brazil
| | - Vera Maria Ferrão Vargas
- Centro de Ecologia, Universidade Federal Do Rio Grande Do Sul (UFRGS), Av. Bento Gonçalves, 9500, Rio Grande do Sul, 91509-900, Porto Alegre, Brazil
| | - Paulo Roberto Martins Baisch
- Universidade Federal Do Rio Grande (FURG), Avenida Itália, Km 8 Campus Carreiros, Rio Grande, Rio Grande do Sul, 96203-900, Brazil
| | - Flavio Manoel Rodrigues da Silva Júnior
- Universidade Federal Do Rio Grande (FURG), Avenida Itália, Km 8 Campus Carreiros, Rio Grande, Rio Grande do Sul, 96203-900, Brazil.
- Programa de Pós Graduação Em Ciências Ambientais, Centro de Engenharias, Universidade Federal de Pelotas, Rua Benjamin Constant, 989, Porto, Pelotas, Rio Grande do Sol, 96010-020, Brazil.
| |
Collapse
|
142
|
Joshi SS, Miller MR, Newby DE. Air pollution and cardiovascular disease: the Paul Wood Lecture, British Cardiovascular Society 2021. Heart 2022; 108:1267-1273. [PMID: 35074847 DOI: 10.1136/heartjnl-2021-319844] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2021] [Accepted: 11/22/2021] [Indexed: 11/04/2022] Open
Abstract
Air pollution is associated with up to 8.8 million excess deaths worldwide each year and is a major contributor to the global burden of disease. Cardiovascular conditions are the predominant cause for air pollution-related deaths and there is an urgent need to address the silent pandemic of air pollution on cardiovascular health. Air pollution exposure is associated with acute events like acute coronary syndrome and stroke, and with chronic conditions, such as atherosclerosis and heart failure. Several potential mechanisms have been proposed that link particle inhalation to cardiovascular disease including oxidative stress and inflammation, changes in autonomic balance and neuroendocrine regulation and the particle translocation into the circulation itself. This, in turn, can cause endothelial, vasomotor and fibrinolytic dysfunction and increased thrombogenicity and blood pressure which are implicated in the mediation of adverse cardiovascular events. Certain interventions can help mitigate these adverse effects. At an individual level, this includes the use of a facemask and indoor air purification systems. At an environmental level, interventions reducing the generation or release of combustion-derived pollutants are key and include public health policies to facilitate active transport, cleaner sources of energy and reductions in vehicular and fossil fuel emissions. In this review, we summarise the key pathways and mechanisms that draw together how air pollution can lead to adverse cardiovascular effects, as well as explore potential interventions to reduce the burden of air pollution-induced cardiovascular morbidity and mortality.
Collapse
Affiliation(s)
- Shruti S Joshi
- BHF Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - Mark R Miller
- BHF Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| | - David E Newby
- BHF Centre for Cardiovascular Science, The University of Edinburgh, Edinburgh, UK
| |
Collapse
|
143
|
Posadas-Sánchez R, Vargas-Alarcón G, Cardenas A, Texcalac-Sangrador JL, Osorio-Yáñez C, Sanchez-Guerra M. Long-Term Exposure to Ozone and Fine Particulate Matter and Risk of Premature Coronary Artery Disease: Results from Genetics of Atherosclerotic Disease Mexican Study. BIOLOGY 2022; 11:1122. [PMID: 35892978 PMCID: PMC9332787 DOI: 10.3390/biology11081122] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/22/2022] [Accepted: 07/24/2022] [Indexed: 11/26/2022]
Abstract
(1) Background: Epidemiological studies have identified associations between fine particulate matter (PM2.5) and ozone exposure with cardiovascular disease; however, studies linking ambient air pollution and premature coronary artery disease (pCAD) in Latin America are non-existing. (2) Methods: Our study was a case−control analysis nested in the Genetics of Atherosclerotic Disease (GEA) Mexican study. We included 1615 participants (869 controls and 746 patients with pCAD), recruited at the Instituto Nacional de Cardiología Ignacio Chávez from June 2008 to January 2013. We defined pCAD as history of myocardial infarction, angioplasty, revascularization surgery or coronary stenosis > 50% diagnosed before age 55 in men and age 65 in women. Controls were healthy individuals without personal or family history of pCAD and with coronary artery calcification equal to zero. Hourly measurements of ozone and PM2.5 from the Atmospheric Monitoring System in Mexico City (SIMAT in Spanish; Sistema de Monitero Atmosférico de la Ciudad de México) were used to calculate annual exposure to ozone and PM2.5 in the study participants. (3) Results: Each ppb increase in ozone at 1-year, 2-year, 3-year and 5-year averages was significantly associated with increased odds (OR = 1.10; 95% CI: 1.03−1.18; OR = 1.17; 95% CI: 1.05−1.30; OR = 1.18; 95% CI: 1.05−1.33, and OR = 1.13; 95% CI: 1.04−1.23, respectively) of pCAD. We observed higher risk of pCAD for each 5 µg/m3 increase only for the 5-year average of PM2.5 exposure (OR = 2.75; 95% CI: 1.47−5.16), compared to controls. (4) Conclusions: Ozone exposure at different time points and PM2.5 exposure at 5 years were associated with increased odds of pCAD. Our results highlight the importance of reducing long-term exposure to ambient air pollution levels to reduce the burden of cardiovascular disease in Mexico City and other metropolitan areas.
Collapse
Affiliation(s)
| | - Gilberto Vargas-Alarcón
- Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico; (R.P.-S.); (G.V.-A.)
| | - Andres Cardenas
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley, CA 94720, USA;
| | | | - Citlalli Osorio-Yáñez
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad Universitaria, Mexico City 04510, Mexico
- Laboratorio de Fisiología Cardiovascular y Trasplante Renal, Unidad de Investigación en Medicina Traslacional, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México and Instituto Nacional de Cardiología Ignacio Chávez, Mexico City 14080, Mexico
| | | |
Collapse
|
144
|
He H, Schäfer B, Beck C. Spatial heterogeneity of air pollution statistics in Europe. Sci Rep 2022; 12:12215. [PMID: 35842439 PMCID: PMC9288230 DOI: 10.1038/s41598-022-16109-2] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Accepted: 07/05/2022] [Indexed: 11/09/2022] Open
Abstract
Air pollution is one of the leading causes of death globally, and continues to have a detrimental effect on our health. In light of these impacts, an extensive range of statistical modelling approaches has been devised in order to better understand air pollution statistics. However, the time-varying statistics of different types of air pollutants are far from being fully understood. The observed probability density functions (PDFs) of concentrations depend very much on the spatial location and on the pollutant substance. In this paper, we analyse a large variety of data from 3544 different European monitoring sites and show that the PDFs of nitric oxide (NO), nitrogen dioxide ([Formula: see text]) and particulate matter ([Formula: see text] and [Formula: see text]) concentrations generically exhibit heavy tails and are asymptotically well approximated by q-exponential distributions with a given width parameter [Formula: see text]. We observe that the power-law parameter q and the width parameter [Formula: see text] vary widely for the different spatial locations. For each substance, we find different patterns of parameter clouds in the [Formula: see text] plane. These depend on the type of pollutants and on the environmental characteristics (urban/suburban/rural/traffic/industrial/background). This means the effective statistical physics description of air pollution exhibits a strong degree of spatial heterogeneity.
Collapse
Affiliation(s)
- Hankun He
- School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, UK
| | - Benjamin Schäfer
- School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, UK. .,Institute for Automation and Applied Informatics, Karlsruhe Institute of Technology, 76344, Eggenstein-Leopoldshafen, Germany. .,Faculty of Science and Technology, Norwegian University of Life Sciences, 1432, Ås, Norway.
| | - Christian Beck
- School of Mathematical Sciences, Queen Mary University of London, London, E1 4NS, UK.,The Alan Turing Institute, London, NW1 2DB, UK
| |
Collapse
|
145
|
Li L, Huang S, Tian Y, Ji J, Zhang Y, Hu J, Lv Z, Liu N, Wang P, Yin P, Yu S. Short-term exposure to nitrogen dioxide and ischemic stroke incidence in Shenzhen, China: Modification effects by season and temperature. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 239:113644. [PMID: 35588618 DOI: 10.1016/j.ecoenv.2022.113644] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2021] [Revised: 05/09/2022] [Accepted: 05/11/2022] [Indexed: 06/15/2023]
Abstract
BACKGROUND AND OBJECTIVES China has experienced a serious public health burden because of the increased incidence of ischemic stroke. Evidence describing the association between short-term exposure to nitrogen dioxide (NO2) and ischemic stroke morbidity is limited, and few studies have focused on the effects of season and temperature. This study aimed to evaluate the acute effects of NO2 on ischemic stroke incidence in Shenzhen, a southeastern city of China, considering the modified effects of season and temperature. METHODS A time-stratified case-crossover study was conducted between 2003 and 2014 among 98,482 ischemic stroke hospitalizations. Conditional quasi-Poisson regression was used to estimate the percentage changes in ischemic stroke admissions in relation to each 10 μg/m3 increment in NO2. RESULTS NO2 was positively associated with ischemic stroke onset over the full year, as well as in the cold season (November through April) and on cold days (ambient temperature≤median temperature), with significant single-day effects within 3 days after the exposure, and significant cumulative effects within the delayed five days. The maximum percentage changes were obtained at lag0-5, with 1.81% (95% confidence interval (CI) was 0.86-2.76%) over the full year, 2.75% (1.48-4.03%) in the cold season, and 3.04% (1.74-4.35%) on cold days. Additionally, the effects of exposure were found to be greater in males and people with higher education, and were lasting longer in subgroups of older individuals. CONCLUSIONS Our findings provide evidence that reductions in NO2 levels might decrease ischemic stroke morbidity, and enhance the understanding of ischemic stroke occurrence associated with NO2 modified by season and temperature.
Collapse
Affiliation(s)
- Lei Li
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, Hubei, China
| | - Suli Huang
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen 518055, Guangdong, China
| | - Yuchen Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, Hubei, China
| | - Jiajia Ji
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen 518055, Guangdong, China
| | - Yu Zhang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, Hubei, China
| | - Jing Hu
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, Hubei, China
| | - Ziquan Lv
- Department of Molecular Epidemiology, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen 518055, Guangdong, China
| | - Ning Liu
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen 518055, Guangdong, China
| | - Peng Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, Hubei, China.
| | - Ping Yin
- Department of Epidemiology and Biostatistics, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, 13 Hangkong Rd, Wuhan 430030, Hubei, China.
| | - Shuyuan Yu
- Department of Environment and Health, Shenzhen Center for Disease Control and Prevention, 8 Longyuan Rd, Shenzhen 518055, Guangdong, China.
| |
Collapse
|
146
|
Ziou M, Tham R, Wheeler AJ, Zosky GR, Stephens N, Johnston FH. Outdoor particulate matter exposure and upper respiratory tract infections in children and adolescents: A systematic review and meta-analysis. ENVIRONMENTAL RESEARCH 2022; 210:112969. [PMID: 35183515 DOI: 10.1016/j.envres.2022.112969] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2021] [Revised: 01/09/2022] [Accepted: 02/14/2022] [Indexed: 06/14/2023]
Abstract
BACKGROUND While the relationship between outdoor particulate matter (PM) and lower respiratory tract infections in children and adolescents is accepted, we know little about the impacts of outdoor PM on the risk of developing or aggravating upper respiratory tract infections (URTIs). METHODS We aimed to review the literature examining the relationship between outdoor PM exposure and URTIs in children and adolescents. A systematic search of EMBASE, MEDLINE, PubMed, Scopus, CINAHL and Web of Science databases was undertaken on April 3, 2020 and October 27, 2021. Comparable short-term studies of time-series or case-crossover designs were pooled in meta-analyses using random-effects models, while the remainder of studies were combined in a narrative analysis. Quality, risk of bias and level of evidence for health effects were appraised using a combination of emerging frameworks in environmental health. RESULTS Out of 1366 articles identified, 34 were included in the systematic review and 16 of these were included in meta-analyses. Both PM2.5 and PM10 levels were associated with hospital presentations for URTIs (PM2.5: RR = 1.010, 95%CI = 1.007-1.014; PM10: RR = 1.016, 95%CI = 1.011-1.021) in the meta-analyses. Narrative analysis found unequivocally that total suspended particulates were associated with URTIs, but mixed results were found for PM2.5 and PM10 in both younger and older children. CONCLUSION This study found some evidence of associations between PM and URTIs in children and adolescents, the relationship strength increased with PM10. However, the number of studies was limited and heterogeneity was considerable, thus there is a need for further studies, especially studies assessing long-term exposure and comparing sources.
Collapse
Affiliation(s)
- Myriam Ziou
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia
| | - Rachel Tham
- Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Amanda J Wheeler
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; Mary MacKillop Institute for Health Research, Australian Catholic University, Melbourne, Victoria, Australia
| | - Graeme R Zosky
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia; Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Nicola Stephens
- Tasmanian School of Medicine, University of Tasmania, Hobart, Tasmania, Australia
| | - Fay H Johnston
- Menzies Institute for Medical Research, University of Tasmania, Hobart, Tasmania, Australia.
| |
Collapse
|
147
|
Ambient Air Pollution and Risk for Stroke Hospitalization: Impact on Susceptible Groups. TOXICS 2022; 10:toxics10070350. [PMID: 35878255 PMCID: PMC9324267 DOI: 10.3390/toxics10070350] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/26/2022] [Revised: 06/15/2022] [Accepted: 06/22/2022] [Indexed: 02/05/2023]
Abstract
Stroke is a leading cause of death, and air pollution is associated with stroke hospitalization. However, the susceptibility factors are unclear. Retrospective studies from 2014 to 2018 in Kaohsiung, Taiwan, were analyzed. Adult patients (>17 years) admitted to a medical center with stroke diagnosis were enrolled and patient characteristics and comorbidities were recorded. Air pollutant measurements, including those of particulate matter (PM) with aerodynamic diameters < 10 μm (PM10) and < 2.5 μm (PM2.5), nitrogen dioxide (NO2), and ozone (O3), were collected from air quality monitoring stations. During the study period, interquartile range (IQR) increments in PM2.5 on lag3 and lag4 were 12.3% (95% CI, 1.1−24.7%) and 11.5% (95% CI, 0.3−23.9%) concerning the risk of stroke hospitalization, respectively. Subgroup analysis revealed that the risk of stroke hospitalization after exposure to PM2.5 was greater for those with advanced age (≥80 years, interaction p = 0.045) and hypertension (interaction p = 0.034), after adjusting for temperature and humidity. A dose-dependent effect of PM2.5 on stroke hospitalization was evident. This is one of few studies focusing on the health effects of PM2.5 for patients with risk factors of stroke. We found that patients with risk factors, such as advanced age and hypertension, are more susceptible to PM2.5 impacts on stroke hospitalization.
Collapse
|
148
|
Recent Insights into Particulate Matter (PM 2.5)-Mediated Toxicity in Humans: An Overview. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:ijerph19127511. [PMID: 35742761 PMCID: PMC9223652 DOI: 10.3390/ijerph19127511] [Citation(s) in RCA: 211] [Impact Index Per Article: 70.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 06/16/2022] [Accepted: 06/16/2022] [Indexed: 12/10/2022]
Abstract
Several epidemiologic and toxicological studies have commonly viewed ambient fine particulate matter (PM2.5), defined as particles having an aerodynamic diameter of less than 2.5 µm, as a significant potential danger to human health. PM2.5 is mostly absorbed through the respiratory system, where it can infiltrate the lung alveoli and reach the bloodstream. In the respiratory system, reactive oxygen or nitrogen species (ROS, RNS) and oxidative stress stimulate the generation of mediators of pulmonary inflammation and begin or promote numerous illnesses. According to the most recent data, fine particulate matter, or PM2.5, is responsible for nearly 4 million deaths globally from cardiopulmonary illnesses such as heart disease, respiratory infections, chronic lung disease, cancers, preterm births, and other illnesses. There has been increased worry in recent years about the negative impacts of this worldwide danger. The causal associations between PM2.5 and human health, the toxic effects and potential mechanisms of PM2.5, and molecular pathways have been described in this review.
Collapse
|
149
|
Leira EC, Latorre JG. Ambient Pollution and Stroke: Time to Clear the Air on Causal Mechanisms. Neurology 2022; 98:1003-1004. [PMID: 35613932 DOI: 10.1212/wnl.0000000000200801] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 04/13/2022] [Indexed: 11/15/2022] Open
Affiliation(s)
- Enrique C Leira
- From the Departments of Neurology, Neurosurgery, and Epidemiology (E.C.L.), University of Iowa, Iowa City; and Departments of Neurology and Neurosurgery (J.G.L.), Upstate Medical University, Syracuse, NY.
| | - Julius G Latorre
- From the Departments of Neurology, Neurosurgery, and Epidemiology (E.C.L.), University of Iowa, Iowa City; and Departments of Neurology and Neurosurgery (J.G.L.), Upstate Medical University, Syracuse, NY
| |
Collapse
|
150
|
Cai M, Zhang S, Lin X, Qian Z, McMillin SE, Yang Y, Zhang Z, Pan J, Lin H. Association of Ambient Particulate Matter Pollution of Different Sizes With In-Hospital Case Fatality Among Stroke Patients in China. Neurology 2022; 98:e2474-e2486. [PMID: 35613931 DOI: 10.1212/wnl.0000000000200546] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2021] [Accepted: 03/02/2022] [Indexed: 11/15/2022] Open
Abstract
BACKGROUND AND OBJECTIVES To characterize the association of ambient particulate matter (PM) pollution of different sizes (PM ≤1 µm in aerodynamic diameter [PM1], PM2.5, and PM10) with in-hospital case fatality among patients with stroke in China. METHODS We collected hospitalizations due to stroke in 4 provinces in China from 2013 to 2019. Seven-day and annual averages of PM prior to hospitalization were estimated using bilinear interpolation and residential addresses. Associations with in-hospital case fatality were estimated using random-effects logistic regression models. Potential reducible fraction and the number of fatalities attributed to PM were estimated using a counterfactual approach. RESULTS Among 3,109,634 stroke hospitalizations (mean age 67.23 years [SD 12.22]; 1,765,644 [56.78%] male), we identified 32,140 in-hospital stroke fatalities (case fatality rate 1.03%). Each 10 µg/m3 increase in 7-day average (short-term) exposure to PM was associated with increased in-hospital case fatality: odds ratios (ORs) were 1.058 (95% CI 1.047-1.068) for PM1, 1.037 (95% CI 1.031-1.043) for PM2.5, and 1.025 (95% CI 1.021-1.029) for PM10. Similar but larger ORs were observed for annual averages (long-term): 1.240 (95% CI 1.217-1.265) for PM1, 1.105 (95% CI 1.094-1.116) for PM2.5, and 1.090 (95% CI 1.082-1.099) for PM10. In counterfactual analyses, PM10 was associated with the largest potential reducible fraction in in-hospital case fatality (10% [95% CI 8.3-11.7] for short-term exposure and 21.1% [19.1%-23%] for long-term exposure), followed by PM1 and PM2.5. DISCUSSION PM pollution is a risk factor for in-hospital stroke-related deaths. Strategies that target reducing PM pollution may improve the health outcomes of patients with stroke.
Collapse
Affiliation(s)
- Miao Cai
- From the Department of Epidemiology (M.C., S.Z., Y.Y., Z.Z., H.L.), School of Public Health, Sun Yat-sen University, Yuexiu District, Guangzhou, Guangdong; HEOA Group, West China School of Public Health and West China Fourth Hospital (X.L., J.P.), and Institute for Healthy Cities and West China Research Center for Rural Health Development (X.L., J.P.), Sichuan University, Chengdu, China; and Department of Epidemiology and Biostatistics (Z.Q.) and School of Social Work (S.E.M.), College for Public Health & Social Justice, Saint Louis University, MO
| | - Shiyu Zhang
- From the Department of Epidemiology (M.C., S.Z., Y.Y., Z.Z., H.L.), School of Public Health, Sun Yat-sen University, Yuexiu District, Guangzhou, Guangdong; HEOA Group, West China School of Public Health and West China Fourth Hospital (X.L., J.P.), and Institute for Healthy Cities and West China Research Center for Rural Health Development (X.L., J.P.), Sichuan University, Chengdu, China; and Department of Epidemiology and Biostatistics (Z.Q.) and School of Social Work (S.E.M.), College for Public Health & Social Justice, Saint Louis University, MO
| | - Xiaojun Lin
- From the Department of Epidemiology (M.C., S.Z., Y.Y., Z.Z., H.L.), School of Public Health, Sun Yat-sen University, Yuexiu District, Guangzhou, Guangdong; HEOA Group, West China School of Public Health and West China Fourth Hospital (X.L., J.P.), and Institute for Healthy Cities and West China Research Center for Rural Health Development (X.L., J.P.), Sichuan University, Chengdu, China; and Department of Epidemiology and Biostatistics (Z.Q.) and School of Social Work (S.E.M.), College for Public Health & Social Justice, Saint Louis University, MO.
| | - Zhengmin Qian
- From the Department of Epidemiology (M.C., S.Z., Y.Y., Z.Z., H.L.), School of Public Health, Sun Yat-sen University, Yuexiu District, Guangzhou, Guangdong; HEOA Group, West China School of Public Health and West China Fourth Hospital (X.L., J.P.), and Institute for Healthy Cities and West China Research Center for Rural Health Development (X.L., J.P.), Sichuan University, Chengdu, China; and Department of Epidemiology and Biostatistics (Z.Q.) and School of Social Work (S.E.M.), College for Public Health & Social Justice, Saint Louis University, MO
| | - Stephen Edward McMillin
- From the Department of Epidemiology (M.C., S.Z., Y.Y., Z.Z., H.L.), School of Public Health, Sun Yat-sen University, Yuexiu District, Guangzhou, Guangdong; HEOA Group, West China School of Public Health and West China Fourth Hospital (X.L., J.P.), and Institute for Healthy Cities and West China Research Center for Rural Health Development (X.L., J.P.), Sichuan University, Chengdu, China; and Department of Epidemiology and Biostatistics (Z.Q.) and School of Social Work (S.E.M.), College for Public Health & Social Justice, Saint Louis University, MO
| | - Yin Yang
- From the Department of Epidemiology (M.C., S.Z., Y.Y., Z.Z., H.L.), School of Public Health, Sun Yat-sen University, Yuexiu District, Guangzhou, Guangdong; HEOA Group, West China School of Public Health and West China Fourth Hospital (X.L., J.P.), and Institute for Healthy Cities and West China Research Center for Rural Health Development (X.L., J.P.), Sichuan University, Chengdu, China; and Department of Epidemiology and Biostatistics (Z.Q.) and School of Social Work (S.E.M.), College for Public Health & Social Justice, Saint Louis University, MO
| | - Zilong Zhang
- From the Department of Epidemiology (M.C., S.Z., Y.Y., Z.Z., H.L.), School of Public Health, Sun Yat-sen University, Yuexiu District, Guangzhou, Guangdong; HEOA Group, West China School of Public Health and West China Fourth Hospital (X.L., J.P.), and Institute for Healthy Cities and West China Research Center for Rural Health Development (X.L., J.P.), Sichuan University, Chengdu, China; and Department of Epidemiology and Biostatistics (Z.Q.) and School of Social Work (S.E.M.), College for Public Health & Social Justice, Saint Louis University, MO
| | - Jay Pan
- From the Department of Epidemiology (M.C., S.Z., Y.Y., Z.Z., H.L.), School of Public Health, Sun Yat-sen University, Yuexiu District, Guangzhou, Guangdong; HEOA Group, West China School of Public Health and West China Fourth Hospital (X.L., J.P.), and Institute for Healthy Cities and West China Research Center for Rural Health Development (X.L., J.P.), Sichuan University, Chengdu, China; and Department of Epidemiology and Biostatistics (Z.Q.) and School of Social Work (S.E.M.), College for Public Health & Social Justice, Saint Louis University, MO
| | - Hualiang Lin
- From the Department of Epidemiology (M.C., S.Z., Y.Y., Z.Z., H.L.), School of Public Health, Sun Yat-sen University, Yuexiu District, Guangzhou, Guangdong; HEOA Group, West China School of Public Health and West China Fourth Hospital (X.L., J.P.), and Institute for Healthy Cities and West China Research Center for Rural Health Development (X.L., J.P.), Sichuan University, Chengdu, China; and Department of Epidemiology and Biostatistics (Z.Q.) and School of Social Work (S.E.M.), College for Public Health & Social Justice, Saint Louis University, MO.
| |
Collapse
|