101
|
Chen Y, Shan T, Qu H, Chen Y, Wang N, Xia J. Inhibition of miR-16 Ameliorates Inflammatory Bowel Disease by Modulating Bcl-2 in Mouse Models. J Surg Res 2020; 253:185-192. [PMID: 32361613 DOI: 10.1016/j.jss.2020.03.037] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2019] [Revised: 02/19/2020] [Accepted: 03/08/2020] [Indexed: 12/22/2022]
Abstract
BACKGROUND In recent years, microRNA (miRNA) is considered as a potential therapy target. To study the regulatory mechanism and therapeutic effect of miRNAs on inflammatory bowel disease (IBD), we investigated microRNAs that regulate apoptosis-related protein B cell lymphoma-2 (Bcl-2). We examined the role of miR-16 in IBD and the effect of inhibiting the expression of miR-16 on disease progression. MATERIALS AND METHODS Dextran sulfate sodium was used to induce ulcerative colitis in mice. RNA and protein were extracted from the rectal mucosa of mice. Real-time quantitative polymerase chain reaction and Western blotting were used to detect the expression of miR-16 and Bcl-2. The effects of miR-16 on intestinal mucosal immunity were studied by real-time quantitative polymerase chain reaction, and inflammatory factors such as interleukin-1β, interleukin-6, and tumor necrosis factor-α were detected. The weight changes, disease activity index, length of the rectal colon, and pathological score of the mice were used to evaluate the effect of inhibiting miR-16 on disease progression. Through the establishment of overexpression and low expression cell lines of miR-16, the regulation of miR-16 on Bcl-2 was studied. RESULTS MiR-16 was overexpressed in the IBD model, whereas Bcl-2 had lower expression in the mucosa. Inhibiting expression of miR-16 significantly decreased the expression of interleukin-1β, interleukin-6, and tumor necrosis factor-α. In mice, the weight change, disease activity index, and pathological score decreased in the experimental group, in which miR-16 was inhibited. High expression of miR-16 can inhibit Bcl-2 expression. CONCLUSIONS MiR-16 plays a critical role in IBD via Bcl-2 and is a promising target in IBD therapy.
Collapse
Affiliation(s)
- Ye Chen
- Department of General Surgery and Center of Translational Medicine, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, China
| | - Ting Shan
- Department of General Surgery and Center of Translational Medicine, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, China
| | - Huiheng Qu
- Department of General Surgery and Center of Translational Medicine, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, China
| | - Yigang Chen
- Department of General Surgery and Center of Translational Medicine, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, China
| | - Ning Wang
- Department of General Surgery and Center of Translational Medicine, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, China
| | - Jiazeng Xia
- Department of General Surgery and Center of Translational Medicine, The Affiliated Wuxi No.2 People's Hospital of Nanjing Medical University, China.
| |
Collapse
|
102
|
Nutrition, IBD and Gut Microbiota: A Review. Nutrients 2020; 12:nu12040944. [PMID: 32235316 PMCID: PMC7230231 DOI: 10.3390/nu12040944] [Citation(s) in RCA: 198] [Impact Index Per Article: 39.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2020] [Revised: 03/11/2020] [Accepted: 03/25/2020] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic relapsing–remitting systemic disease of the gastrointestinal tract, characterized by an inflammatory process that requires lifelong treatment. The underlying causes of IBD are still unclear, as this heterogeneous disorder results from a complex interplay between genetic variability, the host immune system and environmental factors. The current knowledge recognizes diet as a risk factor for the development of IBD and attributes a substantial pathogenic role to the intestinal dysbiosis inducing an aberrant mucosal immune response in genetically predisposed individuals. This review focused on the clinical evidence available that considers the impact of some nutrients on IBD onset and the role of different diets in the management of IBD and their effects on the gut microbiota composition. The effects of the Specific Carbohydrate Diet, low fermentable oligosaccharides, disaccharides, monosaccharides and polyols (FODMAP) diet, gluten free diet, anti-inflammatory diet and Mediterranean diet are investigated with regard to their impact on microbiota and on the evolution of the disease. At present, no clear indications toward a specific diet are available but the assessment of dysbiosis prior to the recommendation of a specific diet should become a standard clinical approach in order to achieve a personalized therapy.
Collapse
|
103
|
Meng Q, Wu W, Pei T, Xue J, Xiao P, Sun L, Li L, Liang D. miRNA-129/FBW7/NF-κB, a Novel Regulatory Pathway in Inflammatory Bowel Disease. MOLECULAR THERAPY. NUCLEIC ACIDS 2020; 19:731-740. [PMID: 31945730 PMCID: PMC6965515 DOI: 10.1016/j.omtn.2019.10.048] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/03/2019] [Revised: 10/14/2019] [Accepted: 10/27/2019] [Indexed: 01/01/2023]
Abstract
F-box and WD repeat domain-containing protein 7 (FBW7) has been documented to be implicated in nuclear factor κB (NF-κB) signaling and inflammation, but its role in the pathogenesis of inflammatory bowel disease (IBD) remains unknown. FBW7 was increased both in colon tissues from IBD patients and trinitrobenzene sulphonic acid (TNBS)-induced colitis mice. Immunoprecipitation assay identified that FBW7 as a novel inhibitor of κBα (IκBα)-binding partner. FBW7 upregulation promoted IκBα ubiquitin-dependent degradation, NF-κB activation, and subsequent intestinal inflammation in intestinal epithelial cells, whereas inhibition of FBW7 produced the opposite effects. Computational analysis revealed that microRNA-129 (miR-129) directly targets at 3' UTR of FBW7. The miR-129-suppressed proteasome pathway mediated the degradation of IκBα by negatively regulating FBW7. The in vivo study demonstrated that upregulation of miR-129 ameliorated intestinal inflammation in TNBS-induced colitis mice through inhibition of the NF-κB signaling pathway. In conclusion, FBW7 is a novel E3 ubiquitin ligase for IκBα and thereby leads to NF-κB activation and inflammation. miR-129 negatively regulates FBW7 expression, resulting in secondary inhibition of the NF-κB pathway and amelioration of intestinal inflammation. Our findings provide new insight into the development of therapeutic strategies for the treatment of IBD.
Collapse
Affiliation(s)
- Qinghui Meng
- Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China.
| | - Weihua Wu
- Department of Endocrinology, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Tiemin Pei
- Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China.
| | - Junlin Xue
- Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Peng Xiao
- Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Liang Sun
- Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Long Li
- Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| | - Desen Liang
- Department of General Surgery, The First Clinical Medical School of Harbin Medical University, Harbin 150001, Heilongjiang Province, People's Republic of China
| |
Collapse
|
104
|
Wohnhaas CT, Schmid R, Rolser M, Kaaru E, Langgartner D, Rieber K, Strobel B, Eisele C, Wiech F, Jakob I, Gantner F, Herichova I, Vinisko R, Böcher WO, Visvanathan S, Shen F, Panzenbeck M, Raymond E, Reber SO, Delić D, Baum P. Fecal MicroRNAs Show Promise as Noninvasive Crohn's Disease Biomarkers. CROHNS & COLITIS 360 2020; 2:otaa003. [PMID: 32551441 PMCID: PMC7291945 DOI: 10.1093/crocol/otaa003] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Indexed: 12/13/2022]
Abstract
Background Short non-coding microRNAs (miRNAs) are involved in various cellular processes during disease progression of Crohn’s disease (CD) and remarkably stable in feces, which make them attractive biomarker candidates for reflecting intestinal inflammatory processes. Here we investigated the potential of fecal miRNAs as noninvasive and translational CD biomarkers. Methods MiRNAs were screened in feces of 52 patients with CD and 15 healthy controls using RNA sequencing and the results were confirmed by PCR. The relationship between fecal miRNA levels and the clinical CD activity index (CDAI) or CD endoscopic index of severity (CDEIS) was explored, respectively. Additionally, fecal miRNAs were investigated in dextran sodium sulfate, adoptive T-cell transfer, and Helicobacter typhlonius/stress-induced murine colitis models using the NanoString platform. Results Nine miRNAs (miR-15a-5p, miR-16-5p, miR-128-3p, miR-142-5p, miR-24-3p, miR-27a-3p, miR-223-3p, miR-223-5p, and miR-3074-5p) were significantly (adj. P < 0.05, >3-fold) increased whereas 8 miRNAs (miR-10a-5p, miR-10b-5p, miR-141-3p, miR-192-5p, miR-200a-3p, miR-375, miR-378a-3p, and let-7g-5p) were significantly decreased in CD. MiR-192-5p, miR-375, and miR-141-3p correlated (P < 0.05) with both CDAI and CDEIS whereas miR-15a-5p correlated only with CDEIS. Deregulated expression of miR-223-3p, miR-16-5p, miR-15a-5p, miR-24-3p, and miR-200a-3p was also observed in murine models. The identified altered fecal miRNA levels reflect pathophysiological mechanisms in CD, such as Th1 and Th17 inflammation, autophagy, and fibrotic processes. Conclusions Our translational study assessed global fecal miRNA changes of patients with CD and relevant preclinical models. These fecal miRNAs show promise as translational and clinically useful noninvasive biomarkers for mechanistic investigation of intestinal pathophysiology, including monitoring of disease progression. MicroRNAs are involved in disease progression of Crohn’s disease (CD). This study identified significantly altered fecal levels of 17 microRNAs in CD compared to healthy subjects. These microRNAs reflect pathophysiological mechanisms and show promise as clinically useful, noninvasive CD biomarkers.
Collapse
Affiliation(s)
| | - Ramona Schmid
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Marcel Rolser
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Eric Kaaru
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Dominik Langgartner
- Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, Ulm, Germany
| | - Kathrin Rieber
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | - Claudia Eisele
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Franziska Wiech
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Ines Jakob
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | | | | | - Richard Vinisko
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Wulf O Böcher
- Boehringer Ingelheim Pharma GmbH & Co. KG, Ingelheim, Germany
| | | | - Fei Shen
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Mark Panzenbeck
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Ernest Raymond
- Boehringer Ingelheim Pharmaceuticals, Ridgefield, Connecticut, USA
| | - Stefan O Reber
- Department of Psychosomatic Medicine and Psychotherapy, University of Ulm, Ulm, Germany
| | - Denis Delić
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| | - Patrick Baum
- Boehringer Ingelheim Pharma GmbH & Co. KG, Biberach, Germany
| |
Collapse
|
105
|
Din AU, Hassan A, Zhu Y, Zhang K, Wang Y, Li T, Wang Y, Wang G. Inhibitory effect of Bifidobacterium bifidum ATCC 29521 on colitis and its mechanism. J Nutr Biochem 2020; 79:108353. [PMID: 32145470 DOI: 10.1016/j.jnutbio.2020.108353] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Revised: 01/12/2020] [Accepted: 01/30/2020] [Indexed: 12/14/2022]
Abstract
Probiotics are known to be beneficial in preventing different diseases in model animals, including inflammatory bowel disease. However, there are few studies on probiotics related to miRNA regulation and disease status. In this article, the beneficial role and mechanisms of the probiotic strain Bifidobacterium bifidum ATCC 29521 have been studied in ulcerative colitis using dextran sodium sulphate (DSS) model. Male C57JBL/6 mice were randomly divided into three groups (n=7): Normal group, dextran sulphate sodium (DSS) group, and Bifido group gavage with Bifidobacterium bifidum ATCC 29521 (2×108 CFU/day). Our strain restored the DSS-caused damage by regulating the expression of immune markers and tight junction proteins (TJP) in the colon; briefly by up-regulating ROS-scavenging enzymes (SOD1, SOD2, CAT, and GPX2), anti-inflammatory cytokines (IL-10, PPARγ, IL-6), TJP's (ZO-1, MUC-2, Claudin-3, and E Cadherin-1) and downregulating inflammatory genes (TNF-α, IL-1β) in Bifido group mice. Inflammatory markers appeared to be regulated by NF-κB nuclear P65 subunit, and its translocation was inhibited in Bifido group mice colon. In addition, the expression of inflammatory genes and colonic TJP were also associated with the restoration of miRNAs (miR-150, miR-155, miR-223) in B. bifidum ATCC 29521 treated Bifido group. The dysbiosis executed by DSS was restored in the Bifido group, demonstrating that B. bifidum ATCC 29521 possessed a probiotic role in our DSS colitis mouse model. B. bifidum ATCC 29521 exhibited its probiotic role through its anti-inflammatory role by modulating miRNA-associated TJP and NF-κB regulation and by partially restoring dysbiosis.
Collapse
Affiliation(s)
- Ahmad Ud Din
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China; Drug Discovery Research Center, Southwest Medical University Luzhou, China
| | - Adil Hassan
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yuan Zhu
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Kun Zhang
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yi Wang
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Tianhan Li
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Yang Wang
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China
| | - Guixue Wang
- Key Laboratory for Bio-rheological Science and Technology of Ministry of Education, State and Local Joint Engineering Laboratory for Vascular Implants Bioengineering College of Chongqing University, Chongqing 400030, China.
| |
Collapse
|
106
|
Chandan K, Gupta M, Sarwat M. Role of Host and Pathogen-Derived MicroRNAs in Immune Regulation During Infectious and Inflammatory Diseases. Front Immunol 2020; 10:3081. [PMID: 32038627 PMCID: PMC6992578 DOI: 10.3389/fimmu.2019.03081] [Citation(s) in RCA: 127] [Impact Index Per Article: 25.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Accepted: 12/17/2019] [Indexed: 12/11/2022] Open
Abstract
MicroRNAs (miRNAs, miRs) are short, endogenously initiated, non-coding RNAs that bind to target mRNAs, leading to the degradation or translational suppression of respective mRNAs. They have been reported as key players in physiological processes like differentiation, cellular proliferation, development, and apoptosis. They have gained importance as gene expression regulators in the immune system. They control antibody production and release various inflammatory mediators. Abnormal expression and functioning of miRNA in the immune system is linked to various diseases like inflammatory disorders, allergic diseases, cancers etc. As compared to the average human genome, miRNA targets the genes of immune system quite differently. miRNA appeared to regulate the responses related to both acquired and innate immunity of the humans. Several miRNAs importantly regulate the transcription and even, dysregulation of inflammation-related mediators. Many miRNAs are either upregulated or downregulated in various inflammatory and infectious diseases. Hence, modifying or targeting the expression of miRNAs might serve as a novel strategy for the diagnosis, prevention, and treatment of various inflammatory and infectious conditions.
Collapse
Affiliation(s)
| | | | - Maryam Sarwat
- Amity Institute of Pharmacy, Amity University, Noida, India
| |
Collapse
|
107
|
Correia de Sousa M, Gjorgjieva M, Dolicka D, Sobolewski C, Foti M. Deciphering miRNAs' Action through miRNA Editing. Int J Mol Sci 2019; 20:E6249. [PMID: 31835747 PMCID: PMC6941098 DOI: 10.3390/ijms20246249] [Citation(s) in RCA: 574] [Impact Index Per Article: 95.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Revised: 12/04/2019] [Accepted: 12/06/2019] [Indexed: 12/13/2022] Open
Abstract
MicroRNAs (miRNAs) are small non-coding RNAs with the capability of modulating gene expression at the post-transcriptional level either by inhibiting messenger RNA (mRNA) translation or by promoting mRNA degradation. The outcome of a myriad of physiological processes and pathologies, including cancer, cardiovascular and metabolic diseases, relies highly on miRNAs. However, deciphering the precise roles of specific miRNAs in these pathophysiological contexts is challenging due to the high levels of complexity of their actions. Indeed, regulation of mRNA expression by miRNAs is frequently cell/organ specific; highly dependent on the stress and metabolic status of the organism; and often poorly correlated with miRNA expression levels. Such biological features of miRNAs suggest that various regulatory mechanisms control not only their expression, but also their activity and/or bioavailability. Several mechanisms have been described to modulate miRNA action, including genetic polymorphisms, methylation of miRNA promoters, asymmetric miRNA strand selection, interactions with RNA-binding proteins (RBPs) or other coding/non-coding RNAs. Moreover, nucleotide modifications (A-to-I or C-to-U) within the miRNA sequences at different stages of their maturation are also critical for their functionality. This regulatory mechanism called "RNA editing" involves specific enzymes of the adenosine/cytidine deaminase family, which trigger single nucleotide changes in primary miRNAs. These nucleotide modifications greatly influence a miRNA's stability, maturation and activity by changing its specificity towards target mRNAs. Understanding how editing events impact miRNA's ability to regulate stress responses in cells and organs, or the development of specific pathologies, e.g., metabolic diseases or cancer, should not only deepen our knowledge of molecular mechanisms underlying complex diseases, but can also facilitate the design of new therapeutic approaches based on miRNA targeting. Herein, we will discuss the current knowledge on miRNA editing and how this mechanism regulates miRNA biogenesis and activity.
Collapse
Affiliation(s)
| | | | | | | | - Michelangelo Foti
- Department of Cell Physiology and Metabolism, Faculty of Medicine, University of Geneva, CH-1211 Geneva, Switzerland; (M.C.d.S.); (M.G.); (D.D.); (C.S.)
| |
Collapse
|
108
|
Identification of Potential Biomarkers and Biological Pathways in Juvenile Dermatomyositis Based on miRNA-mRNA Network. BIOMED RESEARCH INTERNATIONAL 2019; 2019:7814287. [PMID: 31886250 PMCID: PMC6925816 DOI: 10.1155/2019/7814287] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 09/14/2019] [Accepted: 11/08/2019] [Indexed: 01/09/2023]
Abstract
Objective The aim of this study is to explore the potential pathogenesis of juvenile dermatomyositis by bioinformatics analysis of gene chips, which would screen the hub genes, identify potential biomarkers, and reveal the development mechanism of juvenile dermatomyositis. Material and Methods We retrieved juvenile dermatomyositis's original expression microarray data of message RNAs (mRNAs) and microRNAs (miRNAs) from NCBI's Gene Expression Omnibus database (GEO, http://www.ncbi.nlm.nih.gov/geo/); through the R package of limma in Bioconductor, we can screen the differentially expressed miRNAs and mRNAs, and then we further analyzed the predicted target genes by the methods such as Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and miRNA-mRNA regulatory network construction and protein-protein interaction (PPI) network using Cytoscape 3.6.1. Results Compared with normal juvenile skin tissues, 6 upregulated microRNAs and 5 downregulated microRNAs were identified from 166 downregulated microRNAs and 58 upregulated microRNAs in juvenile dermatomyositis tissues. The enrichment pathways of differentially expressed microRNAs include cell adhesion molecules (CAMs), autoimmune thyroid disease, Type I diabetes mellitus, antigen and presentation, viral myocardium, graft-versus-host disease, and Kaposi sarcoma-associated herpes virus infection. By screening of microRNA-messenger RNA regulatory network and construction of PPI network map, three target miRNAs were identified, namely, miR-193b, miR-199b-5p, and miR-665. Conclusion We identified mir-193b, mir-199b-5p, and mir-6653 target miRNAs by exploring the miRNA-mRNA regulation network mechanism related to the pathogenesis of juvenile dermatomyositis, which will be of great significance for further study on the pathogenesis and targeted therapy of juvenile dermatomyositis.
Collapse
|
109
|
Zhu X, Wang K, Jin Y, Wang S, Liu X, Liu H, Zhou P, Yang C, Han Z. Multiplexed fluorometric determination for three microRNAs in acute myocardial infarction by using duplex-specific nuclease and MoS2 nanosheets. Mikrochim Acta 2019; 187:15. [DOI: 10.1007/s00604-019-3896-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 10/06/2019] [Indexed: 12/12/2022]
|
110
|
The Role of MicroRNAs upon Epithelial-to-Mesenchymal Transition in Inflammatory Bowel Disease. Cells 2019; 8:cells8111461. [PMID: 31752264 PMCID: PMC6912477 DOI: 10.3390/cells8111461] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 11/03/2019] [Accepted: 11/18/2019] [Indexed: 02/06/2023] Open
Abstract
Increasing evidence suggest the significance of inflammation in the progression of cancer, for example the development of colorectal cancer in Inflammatory Bowel Disease (IBD) patients. Long-lasting inflammation in the gastrointestinal tract causes serious systemic complications and breaks the homeostasis of the intestine, where the altered expression of regulatory genes and miRNAs trigger malignant transformations. Several steps lead from acute inflammation to malignancies: epithelial-to-mesenchymal transition (EMT) and inhibitory microRNAs (miRNAs) are known factors during multistage carcinogenesis and IBD pathogenesis. In this review, we outline the interactions between EMT components and miRNAs that may affect cancer development during IBD.
Collapse
|
111
|
Liu X, Zhang H, Zhang B, Zhang X. Expression and Role of MicroRNA-663b in Childhood Acute Lymphocytic Leukemia and its Mechanism. Open Med (Wars) 2019; 14:863-871. [PMID: 31844676 PMCID: PMC6884921 DOI: 10.1515/med-2019-0101] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2019] [Accepted: 06/29/2019] [Indexed: 01/01/2023] Open
Abstract
Recent studies have shown that microRNAs (miRNAs) play a key role in various malignant tumors. MiR-663b has been found to have important roles in several cancers, however, the role of miR-663b in T cell acute lymphocytic leukemia (T-ALL) remains unclear. Therefore, we speculated that miR-663b might also play a crucial role in the development and process of T-ALL. In the present study, we found that miR-663b was up-regulated in the blood of children with T-ALL and T-ALL cell lines. TargetScan and dual luciferase reporter assay results showed that CD99 was a direct target of miR-663b. In order to further study the biological function of miR-663b in the development of T-ALL and to clarify its potential molecular mechanism, we detected the changes in proliferation, apoptosis, migration, and invasion of T-ALL cell line Jurkat before and after miR-663b inhibitor transfection. We found that miR-663b inhibitor inhibited Jurkat cell proliferation and induced apoptosis. In addition, miR-663b inhibitor repressed Jurkat cell migration and invasion. All these effects of miR-663b inhibitor on Jurkat cells were eliminated by CD99-silencing. These results have provided a new theoretical basis and strategy for the diagnosis and treatment of T-ALL.
Collapse
Affiliation(s)
- Xuehua Liu
- Pediatric blood and endocrine metabolism nursing platform, The First Hospital of Jilin University, Changchun 130021, China
| | - Haixia Zhang
- Pediatric blood and endocrine metabolism nursing platform, The First Hospital of Jilin University, Changchun 130021, China
| | - Baorong Zhang
- PICU nursing platform, The First Hospital of Jilin University, Changchun 130021, China
| | - Xiaohong Zhang
- Department of neurotrauma surgery, The First Hospital of Jilin University, No. 71 Xinmin Street, Changchun 130021, China
| |
Collapse
|
112
|
Zeng Z, Mukherjee A, Zhang H. From Genetics to Epigenetics, Roles of Epigenetics in Inflammatory Bowel Disease. Front Genet 2019; 10:1017. [PMID: 31737035 PMCID: PMC6834788 DOI: 10.3389/fgene.2019.01017] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2019] [Accepted: 09/24/2019] [Indexed: 02/05/2023] Open
Abstract
Inflammatory bowel disease (IBD) is a destructive, recurrent, and heterogeneous disease. Its detailed pathogenesis is still unclear, although available evidence supports that IBD is caused by a complex interplay between genetic predispositions, environmental factors, and aberrant immune responses. Recent breakthroughs with regard to its genetics have offered valuable insights into the sophisticated genetic basis, but the identified genetic factors only explain a small part of overall disease variance. It is becoming increasingly apparent that epigenetic factors can mediate the interaction between genetics and environment, and play a fundamental role in the pathogenesis of IBD. This review outlines recent genetic and epigenetic discoveries in IBD, with a focus on the roles of epigenetics in disease susceptibility, activity, behavior and colorectal cancer (CRC), and their potential translational applications.
Collapse
Affiliation(s)
- Zhen Zeng
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Center for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| | | | - Hu Zhang
- Department of Gastroenterology, West China Hospital, Sichuan University, Chengdu, China
- Center for Inflammatory Bowel Disease, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
113
|
Mohammadi A, Kelly OB, Smith MI, Kabakchiev B, Silverberg MS. Differential miRNA Expression in Ileal and Colonic Tissues Reveals an Altered Immunoregulatory Molecular Profile in Individuals With Crohn's Disease versus Healthy Subjects. J Crohns Colitis 2019; 13:1459-1469. [PMID: 31001642 PMCID: PMC6821350 DOI: 10.1093/ecco-jcc/jjz076] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/26/2018] [Revised: 04/01/2019] [Accepted: 04/14/2019] [Indexed: 12/20/2022]
Abstract
BACKGROUND MicroRNAs [miRNAs] are key modulators of gene expression in Crohn's disease [CD] and may drive tissue-specific molecular alterations underlying CD susceptibility. In this study, we analysed differential miRNA expression between CD and healthy subjects across ileal and colonic tissues. METHODS A cohort of CD and healthy control [HC] subjects was recruited and clinical data collected. Endoscopically quiescent CD [CDq] was defined as inactive or mild by the Simple Endoscopic Score for CD. Total RNA was extracted from endoscopic biopsies taken from the terminal ileum and sigmoid colon. miRNA expression was quantified using NanoString Technologies. Statistical significance was assessed across biopsy site and diagnosis per miRNA, and corrected for multiple testing. RESULTS In total, 23 CDq and 38 HC subjects were enrolled; 112 samples were included in the analysis, 51 from the ileum and 61 from the colon. We found 47 miRNAs differentially expressed by biopsy site in healthy tissue. Nine miRNAs were differentially expressed across HC and CDq, accounting for biopsy location. One of these, miR-223-3p, showed age and sex effects. We identified miRNA expression driven by diagnosis targeting genes involved in chemokine and cytokine signalling. miR-31-5p expression was driven by location and may be a biomarker for location subtypes in CD. CONCLUSIONS We identified differentially expressed miRNAs in healthy ileal and colonic tissues. We discovered spatial miRNA expression patterns in CD and HC, suggesting site-specific regulation in subjects with no or minimal intestinal inflammation. These miRNAs target genes involved in immunoregulatory processes, suggesting a functional, tissue-specific role in CD.
Collapse
Affiliation(s)
- Aylia Mohammadi
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada
| | - Orlaith B Kelly
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada
- Division of Gastroenterology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Michelle I Smith
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada
| | - Boyko Kabakchiev
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada
| | - Mark S Silverberg
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada
- Division of Gastroenterology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
114
|
Liu S, Zhang S, Lv X, Lu J, Ren C, Zeng Z, Zheng L, Zhou X, Fu H, Zhou D, Chen Y. Limonin ameliorates ulcerative colitis by regulating STAT3/miR-214 signaling pathway. Int Immunopharmacol 2019; 75:105768. [PMID: 31382166 DOI: 10.1016/j.intimp.2019.105768] [Citation(s) in RCA: 39] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2019] [Revised: 07/08/2019] [Accepted: 07/17/2019] [Indexed: 12/14/2022]
Abstract
Ulcerative colitis (UC) is a major inflammatory bowel disease (IBD) which has become a global public health problem. Limonin is a triterpenoid extracted from citrus which possesses the capacities to against inflammations and cell apoptosis. However, the efficacy and the underlying mechanisms of limonin in the treatment of UC remain unclear. In this study, we first investigated the therapeutic effects of limonin on dextran sodiumsulfate (DSS)-induced UC in vivo by examining the changes of disease activity index (DAI), the colon length, the colon histology, and cyto/chemokine levels. We found that limonin markedly reduced DAI, intestinal damages, and the levels of pro-inflammatory cytokines, such as TNF-α and IL-6. In vitro, limonin significantly repressed the productions of pro-inflammatory cytokines in cultured normal colonic epithelial cells. Mechanistically, we demonstrated that limonin improved the prognosis of UC mainly through downregulating p-STAT3/miR-214 levels. Collectively, our results suggested that limonin was a novel therapeutic agent and it was expected to be translated into the clinic to improve the prognosis of UC.
Collapse
Affiliation(s)
- Shijia Liu
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China
| | - Shufang Zhang
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Xiangyu Lv
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Jiawei Lu
- State Key Laboratory of Natural Medicines, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Cong Ren
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Zhiqin Zeng
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Lufeng Zheng
- Jiangsu Key Laboratory of Carcinogenesis and Intervention, China Pharmaceutical University, Nanjing, Jiangsu 210009, China
| | - Xianke Zhou
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China
| | - Haiyan Fu
- State Key Laboratory of Organ Failure Research, National Clinical Research Center of Kidney Disease, Renal Division, Nanfang Hospital, Southern Medical University, Guangzhou, Guangdong 510515, China.
| | - Dong Zhou
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA 15261, United States.
| | - Yugen Chen
- The Affiliated Hospital of Nanjing University of Chinese Medicine, Nanjing, Jiangsu 210029, China.
| |
Collapse
|
115
|
Chen G, Han Y, Feng Y, Wang A, Li X, Deng S, Zhang L, Xiao J, Li Y, Li N. Extract of Ilex rotunda Thunb alleviates experimental colitis-associated cancer via suppressing inflammation-induced miR-31-5p/YAP overexpression. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2019; 62:152941. [PMID: 31100679 DOI: 10.1016/j.phymed.2019.152941] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2018] [Revised: 04/26/2019] [Accepted: 04/28/2019] [Indexed: 06/09/2023]
Abstract
BACKGROUND Ilex rotunda Thunb is a traditional medicine used in China treating colitis clinically. Triterpenoids is one of its main components. However, the detailed pharmacological activity and the component responsible for its clinical effects are still elusive. PURPOSE To test the in vivo colitis-associated cancer (CAC) preventive effect of the water fraction extracted from the roots of I. rotunda, and to evaluate its microRNA (miRNA)-related mechanism. STUDY DESIGN AND METHODS Male or female C57BL/6 mice (12 weeks of age) were used to construct the azoxymethane (AOM)/dextran sulfate sodium (DSS)-induced CAC. 12.5 mg/kg and 25.0 mg/kg of the standardized water extract of I. rotunda (WIR), being equal to 4.29 and 8.58 g of the raw medicine respectively, were adopted to treat the AOM/DSS-induced CAC from the fourth week and continued for 5 weeks. Mice were killed two weeks after the end of the last round of DSS by cervical dislocation. RESULTS The chemical analysis of WIR revealed the presence of 21 compounds. The syringing and caffeic acid (1-hydroxyl-4-O-β-D-glucopyranosylprenyl)-ester are the main components of WIR, counting for 8.27% and 5.71% of the water extract respectively. The levels of miR-31-5p were up-regulated in both thp1 and Caco2 cells (p < 0.05) stimulated by either IL-6 or TNF-α, and WIR could restore miR-31-5p levels in the IL-6/TNF-α-stimulated thp-1 and Caco2 cells. Furthermore, WIR decreased TNF-α and IL-6 levels in PMA-differentiated thp-1 cells stimulated by LPS via NF-κB pathway (p < 0.05), suggesting that WIR could restore miR-31-5p expression via down-regulating IL-6 and TNF-α levels. In vivo study showed that oral administration of WIR (25 mg/kg) produced a significant inhibition on the atypical hyperplasia, as well as the release and the expression of IL-6 and TNF-α in the colon tissue. The in vivo transcription of other pro-inflammatory mediators such as iNOS, IL-11, and IL-17A were also attenuated by WIR administration (25 mg/kg, p < 0.05). Meanwhile, WIR (25 mg/kg) restored the miR-31-5p level which was up-regulated in the CAC model group, and ectopic expressions of the miR-31-5p down-stream LATS2 and YAP genes in the hippo pathway were also modulated by the WIR (25 mg/kg) treatment. CONCLUSION The present study suggests that WIR exerts intestinal anti-inflammatory and CAC preventive effects in an experimental CAC mouse model. The CAC preventive effect can be attributed to the suppression of hippo pathway activated by the inflammatory cytokines, indicating that WIR can be potentially used as an herbal product for CAC prevention. Therefore, there is an emergent need for further evaluation of the main components in WIR to determine the definite bioactive component responsible for the CAC preventive activity.
Collapse
Affiliation(s)
- Gang Chen
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yueqing Han
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yuan Feng
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Aiping Wang
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Xuezheng Li
- Department of Pharmacy, Yanbian University Hospital, Yanji 133000, China
| | - Song Deng
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou 510405, China
| | - Lin Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Jiao Xiao
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Yanwu Li
- Pi-Wei Institute, Guangzhou University of Chinese Medicine, Guangzhou 510405, China.
| | - Ning Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
116
|
Soroosh A, Rankin CR, Polytarchou C, Lokhandwala ZA, Patel A, Chang L, Pothoulakis C, Iliopoulos D, Padua DM. miR-24 Is Elevated in Ulcerative Colitis Patients and Regulates Intestinal Epithelial Barrier Function. THE AMERICAN JOURNAL OF PATHOLOGY 2019; 189:1763-1774. [PMID: 31220450 PMCID: PMC6723227 DOI: 10.1016/j.ajpath.2019.05.018] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2019] [Revised: 05/01/2019] [Accepted: 05/28/2019] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease is characterized by high levels of inflammation and loss of barrier integrity in the colon. The intestinal barrier is a dynamic network of proteins that encircle intestinal epithelial cells. miRNAs regulate protein-coding genes. In this study, miR-24 was found to be elevated in colonic biopsies and blood samples from ulcerative colitis (UC) patients compared with healthy controls. In the colon of UC patients, miR-24 is localized to intestinal epithelial cells, which prompted an investigation of intestinal epithelial barrier function. Two intestinal epithelial cell lines were used to study the effect of miR-24 overexpression on barrier integrity. Overexpression of miR-24 in both cell lines led to diminished transepithelial electrical resistance and increased dextran flux, suggesting an effect on barrier integrity. Overexpression of miR-24 did not induce apoptosis or affect cell proliferation, suggesting that the effect of miR-24 on barrier function was due to an effect on cell-cell junctions. Although the tight junctions in cells overexpressing miR-24 appeared normal, miR-24 overexpression led to a decrease in the tight junction-associated protein cingulin. Loss of cingulin compromised barrier formation; cingulin levels negatively correlated with disease severity in UC patients. Together, these data suggest that miR-24 is a significant regulator of intestinal barrier that may be important in the pathogenesis of UC.
Collapse
Affiliation(s)
- Artin Soroosh
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Carl R Rankin
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Christos Polytarchou
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Zulfiqar A Lokhandwala
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Ami Patel
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Lin Chang
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Charalabos Pothoulakis
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - Dimitrios Iliopoulos
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California
| | - David M Padua
- Vatche and Tamar Manoukian Division of Digestive Diseases, Department of Medicine, University of California, Los Angeles, Los Angeles, California; Division of Gastroenterology, Hepatology, and Parenteral Nutrition, Veterans Affairs Greater Los Angeles Healthcare System, Los Angeles, California.
| |
Collapse
|
117
|
Jian Y, Xu CH, Li YP, Tang B, Xie SH, Zeng EM. Down-regulated microRNA-30b-3p inhibits proliferation, invasion and migration of glioma cells via inactivation of the AKT signaling pathway by up-regulating RECK. Biosci Rep 2019; 39:BSR20182226. [PMID: 31270250 PMCID: PMC6692569 DOI: 10.1042/bsr20182226] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 06/18/2019] [Accepted: 06/24/2019] [Indexed: 12/23/2022] Open
Abstract
microRNAs (miRNAs) have been found to affect various cancers, and expression of numerous miRNAs is revealed in glioma. However, the role of microRNA-30b-3p (miR-30b-3p) in glioma remains elusive. Therefore, the present study aims to explore the specific mechanism by which miR-30b-3p influence the development of glioma in relation to the AKT signaling pathway. First, glioma cell lines were collected with miR-30b-3p and reversion-inducing cysteine-rich protein with kazal motifs (RECK) expression measured. The functional role of miR-30b-3p and RECK in glioma was determined via gain- and loss-of-function approaches. Subsequently, the expression of invasion- and migration-related factors (MMP-2 and MMP-9) and the AKT signaling pathway-related factors (AKT, p-AKT and PI3K-p85) was detected. Moreover, in vivo experiments were also conducted to investigate how miR-30b-3p influences in vivo tumorigenesis. The results showed that miR-30b-3p was up-regulated and RECK was down-regulated in glioma. RECK was a target gene of miR-30b-3p. Decreased miR-30b-3p and overexpressed RECK led to decreased expression of MMP-2, MMP-9 and p-AKT. Overexpressed RECK and LY294002 could decrease p-AKT and PI3K-p85 expression accompanied with unchanged expression of total protein of AKT. Additionally, proliferation, migration and invasion of glioma cells and tumor formation in nude mice were repressed owing to reduced expression of miR-30b-3p or elevated expression of RECK. In summary, miR-30b-3p inhibition suppresses metastasis of glioma cells by inactivating the AKT signaling pathway via RECK up-regulation, providing a new target for glioma treatment.
Collapse
Affiliation(s)
- Yan Jian
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - Chun-Hua Xu
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - You-Ping Li
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - Bin Tang
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - She-Hao Xie
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| | - Er-Ming Zeng
- Department of Neurosurgery, The First Affiliated Hospital of Nanchang University, Nanchang 330006, P.R China
| |
Collapse
|
118
|
Hasan N, Yang H. Factors affecting the composition of the gut microbiota, and its modulation. PeerJ 2019; 7:e7502. [PMID: 31440436 PMCID: PMC6699480 DOI: 10.7717/peerj.7502] [Citation(s) in RCA: 415] [Impact Index Per Article: 69.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2019] [Accepted: 07/17/2019] [Indexed: 12/13/2022] Open
Abstract
Gut microbiota have important functions in the body, and imbalances in the composition and diversity of those microbiota can cause several diseases. The host fosters favorable microbiota by releasing specific factors, such as microRNAs, and nonspecific factors, such as antimicrobial peptides, mucus and immunoglobulin A that encourage the growth of specific types of bacteria and inhibit the growth of others. Diet, antibiotics, and age can change gut microbiota, and many studies have shown the relationship between disorders of the microbiota and several diseases and reported some ways to modulate that balance. In this review, we highlight how the host shapes its gut microbiota via specific and nonspecific factors, how environmental and nutritional factors affect it, and how to modulate it using prebiotics, probiotics, and fecal microbiota transplantation.
Collapse
Affiliation(s)
- Nihal Hasan
- Department of Microbiology, Northeast Forestry University, Harbin, Heilongjiang, China.,Faculty of Health Science, Al-Baath University, Homs, Syria
| | - Hongyi Yang
- Department of Microbiology, Northeast Forestry University, Harbin, Heilongjiang, China
| |
Collapse
|
119
|
MicroRNA-125a suppresses intestinal mucosal inflammation through targeting ETS-1 in patients with inflammatory bowel diseases. J Autoimmun 2019; 101:109-120. [DOI: 10.1016/j.jaut.2019.04.014] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2019] [Revised: 04/10/2019] [Accepted: 04/12/2019] [Indexed: 12/15/2022]
|
120
|
Zhao M, Burisch J. Impact of Genes and the Environment on the Pathogenesis and Disease Course of Inflammatory Bowel Disease. Dig Dis Sci 2019; 64:1759-1769. [PMID: 31073736 DOI: 10.1007/s10620-019-05648-w] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Crohn's disease and ulcerative colitis constitute two major subgroups of inflammatory bowel diseases (IBD), a group of complex polygenic diseases characterized by chronic and progressive inflammation in the gastrointestinal tract. In recent years, methodological advances in genetic analysis have greatly expanded our understanding of the genetic background of IBD. So far, more than 240 genetic risk loci have been identified for IBD. However, these risk alleles explain less than 30% of the susceptibility to disease development, suggesting that environmental factors contribute considerably. The increasing occurrence of IBD in Eastern countries following their 'westernization', as well as the increased risk of disease among those who migrate to high-incidence regions, also suggest that the environment is key in the pathogenesis of IBD. In this review, we summarize the current evidence on the role of genetic and environmental factors in the susceptibility to, and disease course of, IBD, and we suggest how these findings might be applied to clinical practice.
Collapse
Affiliation(s)
- Mirabella Zhao
- Gastro Unit, Hvidovre University Hospital, Kettegaard Alle 30, 2650, Hvidovre, Denmark
| | - Johan Burisch
- Gastro Unit, Hvidovre University Hospital, Kettegaard Alle 30, 2650, Hvidovre, Denmark.
| |
Collapse
|
121
|
Dalrymple RA, Joss S. Transcriptome: from laboratory to clinic room. Arch Dis Child Educ Pract Ed 2019; 104:163-165. [PMID: 30709938 DOI: 10.1136/archdischild-2017-313890] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 12/10/2018] [Accepted: 12/30/2018] [Indexed: 11/04/2022]
Affiliation(s)
- Rebecca Amy Dalrymple
- Department of Community Child Health, Acorn Centre, Vale of Leven Hospital, Alexandria, Scotland, UK
| | - Shelagh Joss
- Department of Clinical Genetics, Royal Hospital for Children, Glasgow, UK
| |
Collapse
|
122
|
Saliminejad K, Khorram Khorshid HR, Soleymani Fard S, Ghaffari SH. An overview of microRNAs: Biology, functions, therapeutics, and analysis methods. J Cell Physiol 2019; 234:5451-5465. [PMID: 30471116 DOI: 10.1002/jcp.27486] [Citation(s) in RCA: 1269] [Impact Index Per Article: 211.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2018] [Accepted: 09/06/2018] [Indexed: 12/11/2022]
Abstract
MicroRNAs (miRNAs) are a class of small noncoding RNAs, which function in posttranscriptional regulation of gene expression. They are powerful regulators of various cellular activities including cell growth, differentiation, development, and apoptosis. They have been linked to many diseases, and currently miRNA-mediated clinical trial has shown promising results for treatment of cancer and viral infection. This review provides an overview and update on miRNAs biogenesis, regulation of miRNAs expression, their biological functions, and role of miRNAs in epigenetics and cell-cell communication. In addition, alteration of miRNAs following exercise, their association with diseases, and therapeutic potential will be explained. Finally, miRNA bioinformatics tools and conventional methods for miRNA detection and quantification will be discussed.
Collapse
Affiliation(s)
- Kioomars Saliminejad
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | | | - Shahrzad Soleymani Fard
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| | - Seyed Hamidollah Ghaffari
- Hematology, Oncology and Stem Cell Transplantation Research Center, Shariati Hospital, Tehran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
123
|
Colonic MicroRNA Profiles, Identified by a Deep Learning Algorithm, That Predict Responses to Therapy of Patients With Acute Severe Ulcerative Colitis. Clin Gastroenterol Hepatol 2019; 17:905-913. [PMID: 30223112 DOI: 10.1016/j.cgh.2018.08.068] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 06/27/2018] [Accepted: 08/16/2018] [Indexed: 02/07/2023]
Abstract
BACKGROUND & AIMS Acute severe ulcerative colitis (ASUC) is a life-threatening condition managed with intravenous steroids followed by infliximab, cyclosporine, or colectomy (for patients with steroid resistance). There are no biomarkers to identify patients most likely to respond to therapy; ineffective medical treatment can delay colectomy and increase morbidity and mortality. We aimed to identify biomarkers of response to medical therapy for patients with ASUC. METHODS We performed a retrospective analysis of 47 patients with ASUC, well characterized for their responses to steroids, cyclosporine, or infliximab, therapy at 2 centers in France. Fixed colonic biopsies, collected before or within the first 3 days of treatment, were used for microarray analysis of microRNA expression profiles. Deep neural network-based classifiers were used to derive candidate biomarkers for discriminating responders from non-responders to each treatment and to predict which patients would require colectomy. Levels of identified microRNAs were then measured by quantitative PCR analysis in a validation cohort of 29 independent patients-the effectiveness of the classification algorithm was tested on this cohort. RESULTS A deep neural network-based classifier identified 9 microRNAs plus 5 clinical factors, routinely recorded at time of hospital admission, that associated with responses of patients to treatment. This panel discriminated responders to steroids from non-responders with 93% accuracy (area under the curve, 0.91). We identified 3 algorithms, based on microRNA levels, that identified responders to infliximab vs non-responders (84% accuracy, AUC = 0.82) and responders to cyclosporine vs non-responders (80% accuracy, AUC = 0.79). CONCLUSION We developed an algorithm that identifies patients with ASUC who respond vs do not respond to first- and second-line treatments, based on microRNA expression profiles in colon tissues.
Collapse
|
124
|
Qiao YQ, Cai CW, Shen J, Zheng Q, Ran ZH. Circular RNA expression alterations in colon tissues of Crohn's disease patients. Mol Med Rep 2019; 19:4500-4506. [PMID: 30896837 DOI: 10.3892/mmr.2019.10070] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2018] [Accepted: 02/18/2019] [Indexed: 12/26/2022] Open
Abstract
Genetic factors are crucial in the development of Crohn's disease (CD). Circular RNAs (circRNAs) are known to function as microRNA (miRNA) sponges and regulate a number of signalling pathways via circRNA‑miRNA interactions. As competing endogenous RNAs, the functions of circRNAs in CD should be investigated. In the present study, colon biopsy tissues were collected from ileocolon (L3)‑active CD patients and healthy controls. circRNA microarrays were performed with colon tissues from 3 CD patients and 3 controls. Subsequently, the candidate circRNAs were verified via reverse transcription‑quantitative polymerase chain reaction using colon tissues from a further 10 CD patients and 10 controls. Targeted miRNAs, genes and pathways of candidate circRNAs were predicted and analysed. Arraystar circRNA microarrays demonstrated that there were 163 upregulated circRNAs targeting 435 miRNAs and 55 downregulated circRNAs targeting 207 miRNAs (fold‑change >2 and P<0.01) in CD patients. As a candidate circRNA, hsa‑circRNA‑102685 was observed to putatively target hsa‑miR‑146b‑5p, hsa‑miR‑182‑5p and hsa‑miR‑146a‑5p. Furthermore, Kyoto Encyclopaedia of Genes and Genomes pathway analysis predicted that hsa‑circRNA‑102685 potentially participated in apoptosis, and in the Toll‑like receptor and p53 signalling pathways. Overall, the current study suggested that circRNA alterations serve an important role in the pathogenesis of CD. circRNAs, such as hsa‑circRNA‑102685, are involved in certain important signalling pathways of CD, and may be novel targets for diagnosis or treatment in this disease.
Collapse
Affiliation(s)
- Yu Qi Qiao
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Centre, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, P.R. China
| | - Chen Wen Cai
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Centre, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, P.R. China
| | - Jun Shen
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Centre, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, P.R. China
| | - Qing Zheng
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Centre, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, P.R. China
| | - Zhi Hua Ran
- Division of Gastroenterology and Hepatology, Key Laboratory of Gastroenterology and Hepatology, Ministry of Health, Inflammatory Bowel Disease Research Centre, Shanghai Institute of Digestive Disease, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai 200001, P.R. China
| |
Collapse
|
125
|
Hooper KM, Barlow PG, Henderson P, Stevens C. Interactions Between Autophagy and the Unfolded Protein Response: Implications for Inflammatory Bowel Disease. Inflamm Bowel Dis 2019; 25:661-671. [PMID: 30590697 DOI: 10.1093/ibd/izy380] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2018] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis, is characterized by chronic inflammation of the gastrointestinal tract. The etiology involves a combination of genetic and environmental factors resulting in abnormal immune responses to intestinal microbiota. Genetic studies have strongly linked genes involved in autophagy to CD, and genes involved in the unfolded protein response (UPR) to IBD. The UPR is triggered in response to accumulation of misfolded proteins in the endoplasmic reticulum (ER), and autophagy plays a key role in relieving ER stress and restoring homeostasis. This review summarizes the known interactions between autophagy and the UPR and discusses the impact of these converging pathways on IBD pathogenesis. With a paucity of effective long-term treatments for IBD, targeting of synergistic pathways may provide novel and more effective therapeutic options.
Collapse
Affiliation(s)
- Kirsty M Hooper
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Peter G Barlow
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| | - Paul Henderson
- Child Life and Health, University of Edinburgh, Edinburgh, United Kingdom
- Department of Paediatric Gastroenterology and Nutrition, Royal Hospital for Sick Children, Edinburgh, United Kingdom
| | - Craig Stevens
- School of Applied Sciences, Edinburgh Napier University, Edinburgh, United Kingdom
| |
Collapse
|
126
|
M'Koma AE. The Multifactorial Etiopathogeneses Interplay of Inflammatory Bowel Disease: An Overview. GASTROINTESTINAL DISORDERS 2019; 1:75-105. [PMID: 37577036 PMCID: PMC10416806 DOI: 10.3390/gidisord1010007] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
The gastrointestinal system where inflammatory bowel disease occurs is central to the immune system where the innate and the adaptive/acquired immune systems are balanced in interactions with gut microbes under homeostasis conditions. This article overviews the high-throughput research screening on multifactorial interplay between genetic risk factors, the intestinal microbiota, urbanization, modernization, Westernization, the environmental influences and immune responses in the etiopathogenesis of inflammatory bowel disease in humans. Inflammatory bowel disease is an expensive multifactorial debilitating disease that affects thousands new people annually worldwide with no known etiology or cure. The conservative therapeutics focus on the established pathology where the immune dysfunction and gut injury have already happened but do not preclude or delay the progression. Inflammatory bowel disease is evolving globally and has become a global emergence disease. It is largely known to be a disease in industrial-urbanized societies attributed to modernization and Westernized lifestyle associated with environmental factors to genetically susceptible individuals with determined failure to process certain commensal antigens. In the developing nations, increasing incidence and prevalence of inflammatory bowel disease (IBD) has been associated with rapid urbanization, modernization and Westernization of the population. In summary, there are identified multiple associations to host exposures potentiating the landscape risk hazards of inflammatory bowel disease trigger, that include: Western life-style and diet, host genetics, altered innate and/or acquired/adaptive host immune responses, early-life microbiota exposure, change in microbiome symbiotic relationship (dysbiosis/dysbacteriosis), pollution, changing hygiene status, socioeconomic status and several other environmental factors have long-standing effects/influence tolerance. The ongoing multipronged robotic studies on gut microbiota composition disparate patterns between the rural vs. urban locations may help elucidate and better understand the contribution of microbiome disciplines/ecology and evolutionary biology in potentially protecting against the development of inflammatory bowel disease.
Collapse
Affiliation(s)
- Amosy E M'Koma
- Meharry Medical College School of Medicine, Department of Biochemistry, Cancer Biology, Neuroscience and Pharmacology, Nashville, TN 37208, USA
- Vanderbilt University School of Medicine, Department of Surgery, Colon and Rectal Surgery, Nashville, TN 37232, USA
- The American Society of Colon and Rectal Surgeons (ASCRS), Arlington Heights, IL 60005, USA
- The American Gastroenterological Association (AGA), Bethesda, MD 20814, USA
- Vanderbilt-Ingram Cancer Center (VICC), Vanderbilt University Medical Center, Nashville, TN 37232, USA
| |
Collapse
|
127
|
Micro-RNAs in inflammatory arthritis: From physiopathology to diagnosis, prognosis and therapeutic opportunities. Biochem Pharmacol 2019; 165:134-144. [PMID: 30825433 DOI: 10.1016/j.bcp.2019.02.031] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2019] [Accepted: 02/26/2019] [Indexed: 12/12/2022]
Abstract
Micro-RNAs are an area of research exponentially expanding over the past years. These small sequences of 20-22 nucleotides have a strong role as post-transcriptional regulators of gene expression. Inflammatory arthritis pathophysiology involves various key players from innate to adaptive immunity, as well as various signalling pathways of inflammation. In this review, we discuss how micro-RNAs are involved in rheumatoid arthritis, psoriatic arthritis, ankylosing spondylitis and juvenile inflammatory arthritis, from pre-clinical phases to established diseases. We describe mi-RNAs key roles in fibroblast like synoviocytes migration, proliferation, apoptosis and cytokine production, in macrophages polarization, as well as in B cells and T cell proliferation and differentiation, with a special emphasis on Treg/Th17 imbalance. We finally discuss the application of these findings in pre-clinical models and highlight opportunities and limits of a therapeutic approach using mi-RNAs agonists or antagonists.
Collapse
|
128
|
Hu Q, Gong W, Gu J, Geng G, Li T, Tian R, Yang Z, Zhang H, Shao L, Liu T, Wan L, Jia J, Yang C, Shi Y, Shi H. Plasma microRNA Profiles as a Potential Biomarker in Differentiating Adult-Onset Still's Disease From Sepsis. Front Immunol 2019; 9:3099. [PMID: 30687316 PMCID: PMC6338094 DOI: 10.3389/fimmu.2018.03099] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2018] [Accepted: 12/14/2018] [Indexed: 12/14/2022] Open
Abstract
Adult-onset Still's disease (AOSD) is a systemic inflammatory disease characterized by cytokine storm. However, a diagnostic test for AOSD in clinical use is yet to be validated. The aim of our study was to identify non-invasive biomarkers with high specificity and sensitivity to diagnosis of AOSD. MicroRNA (miRNA) profiles in PBMC from new-onset AOSD patients without any treatment and healthy controls (HCs) were analyzed by miRNA deep sequencing. Plasma samples from 100 AOSD patients and 60 HCs were used to validated the expression levels of miRNA by qRT-PCR. The correlations between expression levels of miRNAs and clinical manifestations were analyzed using advanced statistical models. We found that plasma samples from AOSD patients showed a distinct miRNA expression profile. Five miRNAs (miR-142-5p, miR-101-3p, miR-29a-3p, miR-29c-3p, and miR-141-3p) were significantly upregulated in plasma of AOSD patients compared with HCs both in training and validation sets. We discovered a panel including 3 miRNAs (miR-142-5p, miR-101-3p, and miR-29a-3p) that can predict the probability of AOSD with an area under the receiver operating characteristic (ROC) curve of 0.8250 in training and validation sets. Moreover, the expression levels of 5 miRNAs were significantly higher in active AOSD patients compared with those in inactive patients. In addition, elevated level of miR-101-3p was found in AOSD patients with fever, sore throat and arthralgia symptoms; the miR-101-3p was also positively correlated with the levels of IL-6 and TNF-α in serum. Furthermore, five miRNAs (miR-142-5p, miR-101-3p, miR-29c-3p, miR-29a-3p, and miR-141-3p) expressed in plasma were significantly higher in AOSD patients than in sepsis patients (P < 0.05). The AUC value of 4-miRNA panel (miR-142-5p, miR-101-3p, miR-29c-3p, and miR-141-3p) for AOSD diagnosis from sepsis was 0.8448, revealing the potentially diagnostic value to distinguish AOSD patients from sepsis patients. Our results have identified a specific plasma miRNA signature that may serve as a potential non-invasive biomarker for diagnosis of AOSD and monitoring disease activity.
Collapse
Affiliation(s)
- Qiongyi Hu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Wen Gong
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,Department of Rheumatology and Immunology, The First People's Hospital of Yancheng Affiliated with Nantong University, Yancheng, China
| | - Jieyu Gu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Guannan Geng
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ting Li
- Department of Rheumatology, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Rui Tian
- Department of Critical Care Medicine, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhitao Yang
- Department of Emergency, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Haocheng Zhang
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Lingyun Shao
- Department of Infectious Diseases, Huashan Hospital, Fudan University, Shanghai, China
| | - Tingting Liu
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Liyan Wan
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Jinchao Jia
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Chengde Yang
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yi Shi
- Key Laboratory of Systems Biomedicine (Ministry of Education) and Collaborative Innovation Center of Systems Biomedicine, Shanghai Center for Systems Biomedicine, Shanghai Jiao Tong University, Shanghai, China
| | - Hui Shi
- Department of Rheumatology and Immunology, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
129
|
Wu YZ, Chan KYY, Leung KT, Lam HS, Tam YH, Lee KH, Li K, Ng PC. Dysregulation of miR-431 and target gene FOXA1 in intestinal tissues of infants with necrotizing enterocolitis. FASEB J 2019; 33:5143-5152. [PMID: 30624964 DOI: 10.1096/fj.201801470r] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The level of microRNA (miR)-431 was found to be markedly up-regulated in intestinal tissue of necrotizing enterocolitis (NEC). The objective of this study was to identify the target gene of miR-431 and to investigate the role of the miR-431-FOXA1 axis in the pathophysiology of NEC. The target gene of miR-431 was identified by in silico target prediction bioinformatics, luciferase assay, and Western blotting. Effects of miR-431 on downstream expression signals, cell proliferation, and apoptosis were investigated by overexpression in Caco-2 cells upon stimulation by LPS or lipoteichoic acid (LTA). FOXA1 was identified as the target gene of miR-431. Overexpression of miR-431 in Caco-2 cells significantly inhibited FOXA1, ESRRG, and HNF4A and activated IL-6, LGR5, NFKB2, PLA2G2A, PRKCZ, and TNF. IL-8 and - 10 were enhanced when costimulated with LPS or LTA. These potential downstream genes were also significantly dysregulated in primary NEC tissues compared with surgical-control tissues. Overexpression of miR-431 significantly decreased proliferation and increased apoptosis of Caco-2 cells. A proposed network of miR-431-FOXA1 interaction with LPS and LTA receptors demonstrates dysregulation of transcription factors, inflammatory mediators, epithelium tight junction regulators, and cell proliferation and apoptosis signals. The miR-431-FOXA1 axis could in part be responsible for the intensification of the inflammatory response in NEC tissues and contribute to the proinflammatory pathophysiology.-Wu, Y. Z., Chan, K. Y. Y., Leung, K. T., Lam, H. S., Tam, Y. H., Lee, K. H., Li, K., Ng, P. C. Dysregulation of miR-431 and target gene FOXA1 in intestinal tissues of infants with necrotizing enterocolitis.
Collapse
Affiliation(s)
- Yu Zheng Wu
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong; and
| | - Kathy Yuen Yee Chan
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong; and
| | - Kam Tong Leung
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong; and
| | - Hugh Simon Lam
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong; and
| | - Yuk Him Tam
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Kim Hung Lee
- Department of Surgery, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong
| | - Karen Li
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong; and
| | - Pak Cheung Ng
- Department of Paediatrics, Prince of Wales Hospital, The Chinese University of Hong Kong, Shatin, Hong Kong; and
| |
Collapse
|
130
|
Reddavide R, Rotolo O, Caruso MG, Stasi E, Notarnicola M, Miraglia C, Nouvenne A, Meschi T, De' Angelis GL, Di Mario F, Leandro G. The role of diet in the prevention and treatment of Inflammatory Bowel Diseases. ACTA BIO-MEDICA : ATENEI PARMENSIS 2018; 89:60-75. [PMID: 30561397 PMCID: PMC6502201 DOI: 10.23750/abm.v89i9-s.7952] [Citation(s) in RCA: 43] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Indexed: 02/06/2023]
Abstract
Inflammatory bowel diseases (IBD) - Crohn's disease (CD) and ulcerative colitis (UC) - are chronic conditions characterised by relapsing inflammation of the gastrointestinal tract. They represent an increasing public health concern and an aetiological enigma due to unknown causal factors. The current knowledge on the pathogenesis of IBD is that genetically susceptible individuals develop intolerance to a dysregulated gut microflora (dysbiosis) and chronic inflammation develops as a result of environmental triggers. Among the environmental factors associated with IBD, diet plays an important role in modulating the gut microbiome, and, consequently, it could have a therapeutic impact on the disease course. An overabundance of calories and some macronutrients typical of the Western dietetic pattern increase gut inflammation, whereas several micronutrients characteristic of the Mediterranean Diet have the potential to modulate gut inflammation, according to recent evidence. Immunonutrition has emerged as a new concept putting forward the role of vitamins such as vitamins A, C, E, and D, folic acid, beta carotene and trace elements such as zinc, selenium, manganese and iron. However, when assessed in clinical trials, specific micronutrients showed a limited benefit. Further research is required to evaluate the role of individual food compounds and complex nutritional interventions with the potential to decrease inflammation as a means of prevention and management of IBD. The current dietary recommendations for disease prevention and management are scarce and non evidence-based. This review summarizes the current knowledge on the complex interaction between diet, microbiome and immune-modulation in IBD, with particular focus to the role of the Mediterranean Diet as a tool for prevention and treatment of the disease.
Collapse
Affiliation(s)
- Rosa Reddavide
- National Institute of Gastroenterology "S. De Bellis" Research Hospital, Castellana Grotte, Italy.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
131
|
The emerging role of lncRNAs in inflammatory bowel disease. Exp Mol Med 2018; 50:1-14. [PMID: 30523244 PMCID: PMC6283835 DOI: 10.1038/s12276-018-0188-9] [Citation(s) in RCA: 111] [Impact Index Per Article: 15.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2018] [Revised: 08/28/2018] [Accepted: 09/11/2018] [Indexed: 12/19/2022] Open
Abstract
Dysregulation of long noncoding RNA (lncRNA) expression is linked to the development of various diseases. Recently, an emerging body of evidence has indicated that lncRNAs play important roles in the pathogenesis of inflammatory bowel diseases (IBDs), including Crohn’s disease (CD) and ulcerative Colitis (UC). In IBD, lncRNAs have been shown to be involved in diverse processes, including the regulation of intestinal epithelial cell apoptosis, association with lipid metabolism, and cell–cell interactions, thereby enhancing inflammation and the functional regulation of regulatory T cells. In this review, we aim to summarize the current knowledge regarding the role of lncRNAs in IBD and highlight potential avenues for future investigation. We also collate potentially immune-relevant, IBD-associated lncRNAs identified through a built-by association analysis with respect to their neighboring protein-coding genes within IBD-susceptible loci. We further underscore their importance by highlighting their enrichment for various aspects of immune system regulation, including antigen processing/presentation, immune cell proliferation and differentiation, and chronic inflammatory responses. Finally, we summarize the potential of lncRNAs as diagnostic biomarkers in IBD. Studying long noncoding RNAs (lncRNAs) may improve diagnosis and treatment of inflammatory bowel disease (IBD). These RNAs are found between genes in DNA regions previously thought to be “junk,” and have recently been shown to be important in development of various diseases. IBD, which includes both Crohn’s disease and ulcerative colitis, damages the digestive tract lining, causing pain and chronic diarrhea. A better understanding of IBD’s complex causes is needed to identify more effective treatments. Flemming Pociot at the Steno Diabetes Center in Gentofte, Denmark, and co-workers reviewed recent research linking lncRNAs and IBD. They discuss how lncRNAs’ roles in immunity and inflammation influence IBD development, describing how particular lncRNAs are related to IBD. Promising avenues for further research are highlighted, including the use of lncRNAs as biomarkers of IBD, which can be difficult to diagnose.
Collapse
|
132
|
Yin Y, Qin Z, Xu X, Liu X, Zou H, Wu X, Cao J. Inhibition of miR‐124 improves neonatal necrotizing enterocolitis via an MYPT1 and TLR9 signal regulation mechanism. J Cell Physiol 2018; 234:10218-10224. [PMID: 30480807 DOI: 10.1002/jcp.27691] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Accepted: 10/09/2018] [Indexed: 01/24/2023]
Affiliation(s)
- Yiyu Yin
- Department of General Surgery Xuzhou Children's Hospital Xuzhou China
| | - Zhenfang Qin
- Department of General Surgery Xuzhou Children's Hospital Xuzhou China
| | - Xiaobing Xu
- Department of General Surgery Xuzhou Children's Hospital Xuzhou China
| | - Xu Liu
- Department of General Surgery Xuzhou Children's Hospital Xuzhou China
| | - Huaxin Zou
- Department of General Surgery Xuzhou Children's Hospital Xuzhou China
| | - Xiaole Wu
- Department of Anesthesiology Xuzhou Children's Hospital Xuzhou China
| | - Junhua Cao
- Department of Emergency Medicine Xuzhou Children's Hospital Xuzhou China
| |
Collapse
|
133
|
Han MK, Baker M, Zhang Y, Yang C, Zhang M, Garg P, Viennois E, Merlin D. Overexpression of CD98 in intestinal epithelium dysregulates miRNAs and their targeted proteins along the ileal villus-crypt axis. Sci Rep 2018; 8:16220. [PMID: 30385787 PMCID: PMC6212412 DOI: 10.1038/s41598-018-34474-9] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2018] [Accepted: 10/07/2018] [Indexed: 01/19/2023] Open
Abstract
CD98 has been implicated in the experimental model of inflammatory bowel disease. We have previously shown that IEC-specific overexpression of CD98 mediates intestinal inflammation and intestinal epithelial barrier dysfunction. Mice overexpressing CD98 exhibited severe colitis and a greater susceptibility to CAC. Here we demonstrated CD98 overexpression to dysregulate homeostatic gradient profile of miRNA and protein expression along the ileal villus-crypt axis. Using miRNA-target gene prediction module, we observed differentially expressed miRNAs to target proteins of villus and crypt profoundly affected by CD98 overexpression. We have utilized online bioinformatics as methods to further scrutinize the biological meanings of miRNA-target data. We identified significant interactions among the differentially regulated proteins targeted by altered miRNAs in Tg mice. The biological processes affected by the predicted targets of miRNAs deviate from the homeostatic functions of the miRNA-gene-protein axis of the wildtype mice. Our results emphasize a dynamic perturbation of miRNA and protein expression in villus-crypt axis contributing to potential biological consequences of altering CD98 expression. Our findings also suggest the need for a consideration of arrays of interacting biological entities (i.e. miRNAs-mRNAs, protein-protein interaction) or a combination comparison for a better understanding of the disease pathology which is necessary for an effective therapeutic target development.
Collapse
Affiliation(s)
- Moon K Han
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA.
| | - Mark Baker
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA
| | - Yuchen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA
| | - Chunhua Yang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA
| | - Mingzhen Zhang
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA
| | - Pallavi Garg
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA
| | - Emilie Viennois
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA
| | - Didier Merlin
- Institute for Biomedical Sciences, Center for Diagnostics and Therapeutics, Center for Inflammation, Immunity and Infection, Digestive Disease Research Group, Georgia State University, Atlanta, 30303, USA.,Atlanta Veterans Affairs Medical Center, Decatur, 30033, USA
| |
Collapse
|
134
|
Liu Z, Li C, Chen S, Lin H, Zhao H, Liu M, Weng J, Liu T, Li X, Lei C, Li C, Jiang Y, Moyer MP, Yin C, Zhou X. MicroRNA-21 increases the expression level of occludin through regulating ROCK1 in prevention of intestinal barrier dysfunction. J Cell Biochem 2018; 120:4545-4554. [PMID: 30302792 DOI: 10.1002/jcb.27742] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2017] [Accepted: 08/30/2018] [Indexed: 12/12/2022]
Abstract
OBJECTIVE The aim of this study is to investigate the role of molecular mechanism of microRNA (miR)-21 on tight junction (TJ)-proteins and its protective effects on the intestinal barrier. METHODS TJ proteins and target genes expression were analyzed in miR-21 inhibition and overexpression NCM460 cell lines. To further verify the role of miR-21, the mmu-miR-21 intestinal epithelial conditional knockout (IKO) mice model was established. MiR-21 expression was detected in clinical specimens of acute stercoral obstruction patients. RESULTS Rho-associated protein kinase 1 (ROCK1) were identified as target genes of miR-21. There is a negative correlation between miR-21 expression level and TJ proteins levels. TJ protein and ROCK1 were significantly decreased in miR-21 IKO mice, which presented intestinal inflammation response and intestinal barrier dysfunction (both P < 0.05). Determination of clinical samples showed consistent results with NCM460 cell line and miR-21 IKO mice. CONCLUSIONS MiR-21 could be a protective factor of intestinal barrier dysfunction, which promoting the expression of TJ protein by targeting ROCK1 in vivo and in vitro.
Collapse
Affiliation(s)
- Zhihua Liu
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Chao Li
- Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Shihua Chen
- Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Hongcheng Lin
- Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Huan Zhao
- Department of Shenzhen Ruikang Pharmaceutical Technology Co. Ltd, Shenzhen, Guangdong, China
| | - Min Liu
- Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Colorectal Surgery, The Sixth Affiliated Hospital of Sun Yat-Sen University, Guangzhou, China
| | - Jinsheng Weng
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Ting Liu
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Xiaomei Li
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chao Lei
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Chen Li
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China.,Department of Anorectal Surgery, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Yanqiong Jiang
- Department of Clinical Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| | - Mary Pat Moyer
- Department of Surgery, University of Texas Health Science Center at San Antonio, San Antonio, Texas
| | - Chunxia Yin
- Department of Gynaecology and Obstetrics, Changchun Obstetrics and Gynecology Hospital, Changchun, Jilin, China
| | - Xinke Zhou
- Department of Center Laboratory, The Fifth Affiliated Hospital of Guangzhou Medical University, Guangzhou, China
| |
Collapse
|
135
|
Hou Q, Huang Y, Zhang C, Zhu S, Li P, Chen X, Hou Z, Liu F. MicroRNA-200a Targets Cannabinoid Receptor 1 and Serotonin Transporter to Increase Visceral Hyperalgesia in Diarrhea-predominant Irritable Bowel Syndrome Rats. J Neurogastroenterol Motil 2018; 24:656-668. [PMID: 30347941 PMCID: PMC6175558 DOI: 10.5056/jnm18037] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/03/2018] [Revised: 07/01/2018] [Accepted: 07/12/2018] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND/AIMS MicroRNAs (miRNAs) were reported to be responsible for intestinal permeability in diarrhea-predominant irritable bowel syndrome (IBS-D) rats in our previous study. However, whether and how miRNAs regulate visceral hypersensitivity in IBS-D remains largely unknown. METHODS We established the IBS-D rat model and evaluated it using the nociceptive visceral hypersensitivity test, myeloperoxidase activity assay, restraint stress-induced defecation, and electromyographic (EMG) activity. The distal colon was subjected to miRNA microarray analysis followed by isolation and culture of colonic epithelial cells (CECs). Bioinformatic analysis and further experiments, including dual luciferase assays, quantitative real-time polymerase chain reaction, western blot, and enzyme-linked immunosorbent assay, were used to detect the expression of miRNAs and how it regulates visceral hypersensitivity in IBS-D rats. RESULTS The IBS-D rat model was successfully established. A total of 24 miRNAs were differentially expressed in the distal colon of IBS-D rats; 9 were upregulated and 15 were downregulated. Among them, the most significant upregulation was miR-200a, accompanied by downregulation of cannabinoid receptor 1 (CNR1) and serotonin transporter (SERT). MiR-200a mimic markedly inhibited the expression of CNR1/SERT. Bioinformatic analysis and luciferase assay confirmed that CNR1/SERT are direct targets of miR-200a. Rescue experiments that overexpressed CNR1/SERT significantly abolished the inhibitory effect of miR-200a on the IBS-D rats CECs. CONCLUSIONS This study suggests that miR-200a could induce visceral hyperalgesia by targeting the downregulation of CNR1 and SERT, aggravating or leading to the development and progression of IBS-D. MiR-200a may be a regulator of visceral hypersensitivity, which provides potential targets for the treatment of IBS-D.
Collapse
Affiliation(s)
- Qiuke Hou
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong,
China
| | - Yongquan Huang
- Department of Orthopedics, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong,
China
| | - Changrong Zhang
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong,
China
| | - Shuilian Zhu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong,
China
| | - Peiwu Li
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong,
China
| | - Xinlin Chen
- Department of Preventive Medicine and Health Statistics, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong,
China
| | - Zhengkun Hou
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong,
China
| | - Fengbin Liu
- Department of Gastroenterology, The First Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong,
China
| |
Collapse
|
136
|
Rodríguez-Nogales A, Algieri F, Garrido-Mesa J, Vezza T, Utrilla MP, Chueca N, García F, Rodríguez-Cabezas ME, Gálvez J. Intestinal anti-inflammatory effect of the probiotic Saccharomyces boulardii in DSS-induced colitis in mice: Impact on microRNAs expression and gut microbiota composition. J Nutr Biochem 2018; 61:129-139. [PMID: 30236870 DOI: 10.1016/j.jnutbio.2018.08.005] [Citation(s) in RCA: 101] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 07/19/2018] [Accepted: 08/24/2018] [Indexed: 02/07/2023]
Abstract
The beneficial effects exerted by probiotics in inflammatory bowel disease (IBD) are well known, although their exact mechanisms have not been fully elucidated, and only few studies have focused on their impact on selected miRNAs and the gut microbiota composition. Therefore, our aim was to correlate the intestinal anti-inflammatory activity of the probiotic Saccharomyces boulardii in the dextran sodium sulphate (DSS) model of mouse colitis and the changes induced in miRNA expression and gut microbiota populations. Probiotic was given orally (5×109 CFU) to C57BL/6 mice for 26 days. After 2 weeks, the colitis was induced adding DSS to the drinking water. Mice were scored daily using a Disease Activity Index (DAI). After sacrifice, the colonic specimens were evaluated by determining the expression of inflammatory markers and micro-RNAs by qRT-PCR. Moreover, changes in microbiota populations were evaluated by pyrosequencing. Probiotic ameliorated the colonic damage induced by DSS, as evidenced by lower DAI values and colonic weight/length compared with untreated mice. The treatment modified the colonic expression of different inflammatory markers and the epithelial integrity proteins, and induced changes in micro-RNAs expression. Moreover, microbiota characterization showed that probiotic treatment increased bacterial diversity, thus ameliorating the dysbiosis produced by DSS-colitis. Saccharomyces boulardii exerted intestinal anti-inflammatory effects in DSS-mouse colitis, through the modulation in the immune response, involving modification of altered miRNA expression, being associated to the improvement of the inflammation-associated dysbiosis in the intestinal lumen, which could be of great interest to control the complex pathogenesis of IBD.
Collapse
Affiliation(s)
- Alba Rodríguez-Nogales
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Francesca Algieri
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - José Garrido-Mesa
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain
| | - Teresa Vezza
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - M Pilar Utrilla
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Natalia Chueca
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Clinical Microbiology Service, Hospital Universitario San Cecilio, Red de Investigación en SIDA, Granada, Spain
| | - Federico García
- Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain; Clinical Microbiology Service, Hospital Universitario San Cecilio, Red de Investigación en SIDA, Granada, Spain
| | - M Elena Rodríguez-Cabezas
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain
| | - Julio Gálvez
- CIBER-EHD, Department of Pharmacology, Centre for Biomedical Research (CIBM), University of Granada, Granada, Spain; Instituto de Investigación Biosanitaria de Granada (ibs.GRANADA), Granada, Spain.
| |
Collapse
|
137
|
Alpinetin exerts anti-colitis efficacy by activating AhR, regulating miR-302/DNMT-1/CREB signals, and therefore promoting Treg differentiation. Cell Death Dis 2018; 9:890. [PMID: 30166541 PMCID: PMC6117360 DOI: 10.1038/s41419-018-0814-4] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2018] [Revised: 05/25/2018] [Accepted: 05/28/2018] [Indexed: 01/13/2023]
Abstract
Alpinetin, a flavonoid compound extracted from the seeds of Alpinia katsumadai Hayata, has been demonstrated to exert massive biological properties. This study aimed to evaluate the effect of alpinetin on dextran sulfate sodium (DSS)-induced colitis, and elucidate the potential mechanisms. Alpinetin significantly alleviated colitis in mice, accompanied with restored Th17/Treg balance in colons. In vitro, alpinetin directly promoted Treg differentiation but exerted little effect on Th17 differentiation, and the action was in an aryl hydrocarbon receptor (AhR)-dependent manner. It acted as a potential AhR activator, evidenced by increased expression of CYP1A1, dissociation of AhR/HSP90 complexes, AhR nuclear translocation, XRE-driven luciferase reporter gene and DNA-binding activity of AhR/ARNT/XRE in T cells. Furthermore, alpinetin significantly promoted expression of miR-302 but not others, and restrained expression of DNMT-1 and methylation level of Foxp3 promoter region in CD4+ T cells and colons of colitis mice. However, the association of CREB and Foxp3 promoter region but not expression, nuclear translocation and DNA-binding activity of CREB was up-regulated by alpinetin in CD4+ T cells. The relationship of alpinetin-adjusted AhR activation, expressions of miR-302 and DNMT-1, association of CREB and Foxp3 promoter region, and Treg differentiation was confirmed by using CH223191, siAhR, miR-302 inhibitor and pcDNA3.1(+)-mDNMT-1. Finally, CH223191 abolished the amelioration of alpinetin on colitis, induction of Treg cells and regulation of miR-302/DNMT-1/CREB signals in colons of colitis mice. In conclusion, alpinetin ameliorated colitis in mice via activating AhR, regulating miR-302/DNMT-1/CREB signals, therefore promoting Treg differentiation.
Collapse
|
138
|
Yu M, Luo Y, Cong Z, Mu Y, Qiu Y, Zhong M. MicroRNA-590-5p Inhibits Intestinal Inflammation by Targeting YAP. J Crohns Colitis 2018; 12:993-1004. [PMID: 29912317 DOI: 10.1093/ecco-jcc/jjy046] [Citation(s) in RCA: 39] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/22/2017] [Accepted: 04/15/2018] [Indexed: 12/21/2022]
Abstract
BACKGROUND AND AIMS Hippo signalling is an evolutionarily conserved pathway that controls organ size by regulating cell proliferation, survival, apoptosis, and stem cell self-renewal. In addition, Hippo signalling is profoundly implicated in intestinal regeneration and cancer. However, its roles in the pathogenesis of Crohn's disease [CD] remain largely unexplored. METHODS Quantitative reverse transcription-polymerase chain reaction [qRT-PCR] was performed to identify the deregulated molecules in Hippo signalling. Expression of the highly upregulated Yes-associated protein 1 [YAP] was subsequently examined by qRT-PCR, western blotting, and immunohistochemistry in the intestinal tissues of CD patients and the colons of 2,4,6-trinitrobenzene sulphonic acid [TNBS]-induced colitis mice. The microRNAs [miRNAs] predicted to target YAP were explored by transfection of miR-590-5p mimics or inhibitors and analyzed by luciferase reporter assay. The roles of the miR-590-5p/YAP axis in CD and colorectal cancer were studied in experimental colitis mice and colorectal cancer cell lines. RESULTS YAP mRNA was significantly upregulated in intestinal epithelial cells in CD patients and TNBS-induced colitis mice. MiR-590-5p suppressed YAP expression by directly targeting the YAP 3'-untranslated region in Caco-2 cells and SW620 cells. Upregulation of miR-590-5p in colon reduced YAP level and its downstream targets in intestinal epithelial cells [IECs]. Treatment of miR-590-5p or YAP inhibitor Verteporfin alleviated experimental colitis. Targeting the miR-590-5p/YAP axis inhibited cell proliferation and invasiveness of colorectal cancer [CRC] cells in vitro. CONCLUSIONS Our results suggest that miR-590-5p inhibits intestinal inflammation in mouse colon and tumourigenesis of colorectal cancer cells by inhibiting YAP. The miR-590-5p/YAP axis may be an important novel mechanism in the pathogenesis of CD and colorectal cancer.
Collapse
Affiliation(s)
- Minhao Yu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yang Luo
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Zhijie Cong
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yifei Mu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Yier Qiu
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| | - Ming Zhong
- Department of Gastrointestinal Surgery, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, P.R. China
| |
Collapse
|
139
|
Li N, Wang C, Zhang P, You S. Emodin inhibits pancreatic cancer EMT and invasion by up‑regulating microRNA‑1271. Mol Med Rep 2018; 18:3366-3374. [PMID: 30066876 PMCID: PMC6102704 DOI: 10.3892/mmr.2018.9304] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2018] [Accepted: 06/27/2018] [Indexed: 12/20/2022] Open
Abstract
Emodin has a direct inhibitory effect on the growth and metastasis of a variety of malignant tumor cells. MicroRNA-1271 (miR-1271) has an extensive tumor-suppression effect by inhibiting epithelial mesenchymal transition (EMT) in tumor cells and induces tumor cell apoptosis. Proceeding with the EMT regulatory mechanism of pancreatic carcinoma, the present study aimed to examine the inhibitory effect of miR-1271 and emodin against invasion and metastasis of pancreatic carcinoma. The expression of EMT-related markers (E-cadherin, ZEB1 and TWIST1) was analyzed by western blotting. mRNA levels of miR-1271, E-cadherin, ZEB1 and TWIST1 in pancreatic tumor cells (SW1990) were measured through reverse transcription-quantitative polymerase chain reaction and cell invasiveness was detected using Transwell assays. In addition, a liver metastatic model was established with an implantation of pancreatic tumor tissue into the spleens of nude mice to study the effect of emodin on pancreatic cancer liver metastasis. In the present study, it was demonstrated that miR-1271 significantly decreased in pancreatic cancer cells and tissues. Twist1 may be a target gene of miR-1271. Emodin could inhibit the proliferation ability of pancreatic cancer cells and increased miR-1271 expression level. Further, we found that miR-1271 significantly inhibited SW1990 cell EMT and invasive ability. We also provided the evidence that emodin inhibited SW1990 cell EMT by raising the level of miR-1271. Moreover, the in vivo experiments have verified the inhibiting effect of emodin against liver metastasis of pancreatic cancer. The data in the present study indicated that emodin inhibited pancreatic cancer EMT and invasion by increasing the content of miR-1271.
Collapse
Affiliation(s)
- Nan Li
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin 300052, P.R. China
| | - Chunli Wang
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin 300052, P.R. China
| | - Peng Zhang
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin 300052, P.R. China
| | - Shengyi You
- Department of General Surgery, General Hospital of Tianjin Medical University, Tianjin 300052, P.R. China
| |
Collapse
|
140
|
Liefferinckx C, Franchimont D. Viewpoint: Toward the Genetic Architecture of Disease Severity in Inflammatory Bowel Diseases. Inflamm Bowel Dis 2018; 24:1428-1439. [PMID: 29788122 DOI: 10.1093/ibd/izy109] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/31/2017] [Indexed: 02/07/2023]
Abstract
Inflammatory bowel disease (IBD) is characterized by uneven disease courses with various clinical outcomes. A few prognostic markers of disease severity may help stratify patients and identify those who will benefit the most from early aggressive treatment. The concept of disease severity remains too broad and vague, mainly because the definition must embrace several disease mechanisms, mainly inflammation and fibrosis, with various rates of disease progression. The magnitude of inflammation is an obvious key driver of disease severity in IBD that ultimately influence disease behavior. Advances in the genetics underlying disease severity are currently emerging, but attempts to overlap the genetics of disease susceptibility and severity have until now been unsatisfactory, suggesting that the genetic architecture of disease severity may be distinct from the genetics of disease susceptibility. In this review, we report on the current knowledge on disease severity and on the main research venues to decipher the genetic architecture of disease severity.
Collapse
Affiliation(s)
| | - Denis Franchimont
- Department of Gastroenterology, Erasme Hospital, ULB, Brussels, Belgium
| |
Collapse
|
141
|
Schönauen K, Le N, von Arnim U, Schulz C, Malfertheiner P, Link A. Circulating and Fecal microRNAs as Biomarkers for Inflammatory Bowel Diseases. Inflamm Bowel Dis 2018; 24:1547-1557. [PMID: 29668922 DOI: 10.1093/ibd/izy046] [Citation(s) in RCA: 100] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/01/2017] [Indexed: 12/12/2022]
Abstract
BACKGROUND Assessment of the disease activity in inflammatory bowel disease (IBD) is essential for adequate treatment management and reliable noninvasive biomarkers for verification of mucosal healing are still needed. MicroRNAs (miRNAs) are differentially expressed in IBD and cancer. We aimed to evaluate the potential of circulating and fecal miRNAs as diagnostic biomarkers for IBD. METHODS In this proof-of-principle study we used 2 independent patient cohorts. Testing cohort (n = 96) included serum and fecal samples from controls (n = 35) and IBD patients (n = 61) including 43 patients with Crohn's disease (CD), 18 with ulcerative colitis (UC) with an active disease (n = 38), or in remission (n = 23). Validation cohort included fecal samples from patients with calprotectin/endoscopy-confirmed active disease (n = 30) or in remission (n = 15). Target-based approach (miR-16, miR-21, miR-155, and miR-223) has been used to evaluate miRNA expression. RESULTS Sera samples from IBD patients showed higher level of miR-16, miR-21, and miR-223, but not miR-155, compared to controls and was higher in CD than in UC patients. Much stronger miRNA expression changes were observed in feces from IBD patients for all studied miRNAs with highest expression of miR-155 and miR-223 in testing and validation cohorts. MiRNA expression correlated with clinical remission, however, only fecal but not circulating miRNAs, correlated with surrogate parameters such as fecal calprotectin or C-reactive protein. CONCLUSIONS Our data provide a novel evidence for differential expression level of fecal miRNAs in IBD. We demonstrate that miRNAs in feces correlate with disease activity and may be considered as potential tool for the further biomarker research in IBD. 10.1093/ibd/izy046_video1izy046.video15794822319001.
Collapse
Affiliation(s)
- Katharina Schönauen
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Nha Le
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
- Gastroenterology Division, First Department of Internal Medicine, Semmelweis University, Budapest, Hungary
| | - Ulrike von Arnim
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Christian Schulz
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
- Department of Medicine II, Klinikum der Universität München (KUM), Grosshadern, Ludwig-Maximilians University, Munich, Germany
| | - Peter Malfertheiner
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| | - Alexander Link
- Department of Gastroenterology, Hepatology and Infectious Diseases, Otto-von-Guericke University, Magdeburg, Germany
| |
Collapse
|
142
|
The Role of Autophagy and Related MicroRNAs in Inflammatory Bowel Disease. Gastroenterol Res Pract 2018; 2018:7565076. [PMID: 30046303 PMCID: PMC6038472 DOI: 10.1155/2018/7565076] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Revised: 04/26/2018] [Accepted: 05/15/2018] [Indexed: 12/21/2022] Open
Abstract
Accumulating evidence demonstrates that microRNA- (miR-) mediated posttranscriptional regulation plays an important role in autophagy in inflammatory bowel disease (IBD), a disease that is difficult to manage clinically because of the associated chronic recurrent nonspecific inflammation. Research indicates that microRNAs regulate autophagy via different pathways, playing an important role in the IBD process and providing a new perspective for IBD research. Related studies have shown that miR-142-3p, miR-320, miR-192, and miR-122 target NOD2, an IBD-relevant autophagy gene, to modulate autophagy in IBD. miR-142-3p, miR-93, miR-106B, miR-30C, miR-130a, miR-346, and miR-20a regulate autophagy by targeting ATG16L1 through several different pathways. miR-196 can downregulate IRGM and suppress autophagy by inhibiting the accumulation of LC3II. During the endoplasmic reticulum stress response, miR-665, miR-375, and miR-150 modulate autophagy by regulating the unfolded protein response, which may play an important role in IBD intestinal fibrosis. Regarding autophagy-related pathways, miR-146b, miR-221-5p, miR-132, miR-223, miR-155, and miR-21 regulate NF-κB or mTOR signaling to induce or inhibit autophagy in intestinal cells by releasing anti- or proinflammatory factors, respectively.
Collapse
|
143
|
De Iudicibus S, Lucafò M, Vitulo N, Martelossi S, Zimbello R, De Pascale F, Forcato C, Naviglio S, Di Silvestre A, Gerdol M, Stocco G, Valle G, Ventura A, Bramuzzo M, Decorti G. High-Throughput Sequencing of microRNAs in Glucocorticoid Sensitive Paediatric Inflammatory Bowel Disease Patients. Int J Mol Sci 2018; 19:1399. [PMID: 29738455 PMCID: PMC5983624 DOI: 10.3390/ijms19051399] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 04/27/2018] [Accepted: 05/03/2018] [Indexed: 01/02/2023] Open
Abstract
The aim of this research was the identification of novel pharmacogenomic biomarkers for better understanding the complex gene regulation mechanisms underpinning glucocorticoid (GC) action in paediatric inflammatory bowel disease (IBD). This goal was achieved by evaluating high-throughput microRNA (miRNA) profiles during GC treatment, integrated with the assessment of expression changes in GC receptor (GR) heterocomplex genes. Furthermore, we tested the hypothesis that differentially expressed miRNAs could be directly regulated by GCs through investigating the presence of GC responsive elements (GREs) in their gene promoters. Ten IBD paediatric patients responding to GCs were enrolled. Peripheral blood was obtained at diagnosis (T0) and after four weeks of steroid treatment (T4). MicroRNA profiles were analyzed using next generation sequencing, and selected significantly differentially expressed miRNAs were validated by quantitative reverse transcription-polymerase chain reaction. In detail, 18 miRNAs were differentially expressed from T0 to T4, 16 of which were upregulated and 2 of which were downregulated. Out of these, three miRNAs (miR-144, miR-142, and miR-96) could putatively recognize the 3’UTR of the GR gene and three miRNAs (miR-363, miR-96, miR-142) contained GREs sequences, thereby potentially enabling direct regulation by the GR. In conclusion, we identified miRNAs differently expressed during GC treatment and miRNAs which could be directly regulated by GCs in blood cells of young IBD patients. These results could represent a first step towards their translation as pharmacogenomic biomarkers.
Collapse
Affiliation(s)
- Sara De Iudicibus
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
| | - Marianna Lucafò
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Nicola Vitulo
- Department of Biotechnology, University of Verona, 37100 Verona, Italy.
| | - Stefano Martelossi
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
| | - Rosanna Zimbello
- CRIBI Biotechnology Centre, University of Padua, 35100 Padua, Italy.
| | - Fabio De Pascale
- CRIBI Biotechnology Centre, University of Padua, 35100 Padua, Italy.
| | - Claudio Forcato
- CRIBI Biotechnology Centre, University of Padua, 35100 Padua, Italy.
| | - Samuele Naviglio
- PhD School in Science of Reproduction and Development, University of Trieste, 34127 Trieste, Italy.
| | - Alessia Di Silvestre
- PhD School in Science of Reproduction and Development, University of Trieste, 34127 Trieste, Italy.
| | - Marco Gerdol
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Gabriele Stocco
- Department of Life Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Giorgio Valle
- CRIBI Biotechnology Centre, University of Padua, 35100 Padua, Italy.
| | - Alessandro Ventura
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| | - Matteo Bramuzzo
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
| | - Giuliana Decorti
- Institute for Maternal and Child Health- IRCCS "Burlo Garofolo", 34127 Trieste, Italy.
- Department of Medicine, Surgery and Health Sciences, University of Trieste, 34127 Trieste, Italy.
| |
Collapse
|
144
|
Functional role of microRNA-135a in colitis. JOURNAL OF INFLAMMATION-LONDON 2018; 15:7. [PMID: 29636643 PMCID: PMC5889596 DOI: 10.1186/s12950-018-0181-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 02/22/2018] [Indexed: 02/07/2023]
Abstract
Background Inflammatory bowel disease (IBD) is one of the chronic gastrointestinal diseases with increasing risk of colon cancer development in the future. Apoptosis and inflammation play an important role in the etiology of this disease. MicroRNAs are associated with etiology of different diseases including IBD. In this study, we aimed to explore the role of miR-135a in the etiology of colitis in murine model of DSS-induced colitis. Results The results showed that expression of miR-135a in colonic cells was suppressed and up-regulating miR-135a inhibited apoptosis and inflammation of colonic epithelial cells. Additionally, Hif1α was identified as the target gene of miR-135a which promoted apoptosis and inflammation as knockdown of Hif1α led to the suppression of both apoptosis and inflammation. Conclusions Overexpression of miR-135a might be beneficial in IBD due to its anti-apoptosis and anti-inflammation effects in vitro.
Collapse
|
145
|
Mohammadi A, Kelly OB, Filice M, Kabakchiev B, Smith MI, Silverberg MS. Differential Expression of microRNAs in Peripheral Blood Mononuclear Cells Identifies Autophagy and TGF-Beta-Related Signatures Aberrantly Expressed in Inflammatory Bowel Disease. J Crohns Colitis 2018; 12:568-581. [PMID: 29420705 PMCID: PMC6018685 DOI: 10.1093/ecco-jcc/jjy010] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 01/23/2018] [Indexed: 12/13/2022]
Abstract
BACKGROUND AND AIMS MicroRNAs [miRNAs] have emerged as important regulators in inflammatory bowel disease [IBD]. This study investigated differential expression of miRNAs across clinical phenotypes in a well-characterized cohort of IBD patients and healthy controls [HCs]. METHODS A cohort of Crohn's disease [CD] and ulcerative colitis [UC] patients and HCs was prospectively accrued. Total RNA was extracted from peripheral blood mononuclear cells for all subjects. miRNA expression was measured using NanoString technologies. The subjects were stratified according to disease activity and location. Statistical significance was assessed per miRNA across outcomes and corrected for multiple testing. miRNA regulation of transcription of important results was confirmed in vitro by a dual luciferase reporter assay and autophagy function was evaluated using immunofluorescence imaging of LC3 puncta in HeLa cells. RESULTS In total, 120 subjects were enrolled. Seventy-four miRNAs were differentially expressed across CD, UC and HCs. Comparing quiescent CD [CDq] with HCs we found ten miRNAs upregulated in CDq. When comparing colonic CD [CCD] to UC, seven miRNAs were upregulated in CCD. The most differentially expressed miRNA in CCD vs UC was miR-874-3p, and we showed its possible utility as a biomarker of differential diagnosis. We showed miR-874-3p targets ATG16L1 and reduces its expression in vitro. An miR-874-3p mimic dysregulates autophagy by a reduction of LC3 in vitro. CONCLUSIONS We identified unique miRNA signatures expressed in distinct IBD phenotypes. These associations highlight pathways dysregulated by aberrant miRNA expression, revealing possible mechanisms underlying the pathophysiology of IBD, but also suggest a cluster of miRNAs as readily accessible biomarkers to aid in differential diagnosis.
Collapse
Affiliation(s)
- Aylia Mohammadi
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada
| | - Orlaith B Kelly
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada,Division of Gastroenterology, Department of Medicine, University of Toronto, Toronto, ON, Canada
| | - Melissa Filice
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada
| | - Boyko Kabakchiev
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada
| | - Michelle I Smith
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada
| | - Mark S Silverberg
- Zane Cohen Centre for Digestive Diseases, Mount Sinai Hospital, Toronto, ON, Canada,Division of Gastroenterology, Department of Medicine, University of Toronto, Toronto, ON, Canada,Corresponding author: Mark Silverberg, 441-600 University Avenue, Toronto, Ontario M5G1X5, Canada. Tel: 1-416-586-4800 ext. 8236; Fax: 1-416-619-5524;
| |
Collapse
|
146
|
Kumar V, Mansfield J, Fan R, MacLean A, Li J, Mohan M. miR-130a and miR-212 Disrupt the Intestinal Epithelial Barrier through Modulation of PPARγ and Occludin Expression in Chronic Simian Immunodeficiency Virus-Infected Rhesus Macaques. THE JOURNAL OF IMMUNOLOGY 2018. [PMID: 29514950 DOI: 10.4049/jimmunol.1701148] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Intestinal epithelial barrier dysfunction is a well-known sequela of HIV/SIV infection that persists despite antiretroviral therapy. Although inflammation is a triggering factor, the underlying molecular mechanisms remain unknown. Emerging evidence suggests that epithelial barrier function is epigenetically regulated by inflammation-induced microRNAs (miRNAs). Accordingly, we profiled and characterized miRNA/mRNA expression exclusively in colonic epithelium and identified 46 differentially expressed miRNAs (20 upregulated and 26 downregulated) in chronically SIV-infected rhesus macaques (Macaca mulatta). We bioinformatically crossed the predicted miRNA targets to transcriptomic data and characterized miR-130a and miR-212 as both were predicted to interact with critical epithelial barrier-associated genes. Next, we characterized peroxisome proliferator-activated receptor γ (PPARγ) and occludin (OCLN), predicted targets of miR-130a and miR-212, respectively, as their downregulation has been strongly linked to epithelial barrier disruption and dysbiosis. Immunofluorescence, luciferase reporter, and overexpression studies confirmed the ability of miR-130a and miR-212 to decrease protein expression of PPARγ and OCLN, respectively, and reduce transepithelial electrical resistance. Because Δ-9-tetrahydrocannabinol exerted protective effects in the intestine in our previous studies, we successfully used it to reverse miR-130a- and miR-212-mediated reduction in transepithelial electrical resistance. Finally, ex vivo Δ-9-tetrahydrocannabinol treatment of colon tissue from chronically SIV-infected rhesus macaques significantly increased PPARγ expression. Our findings suggest that dysregulated miR-130a and miR-212 expression in colonic epithelium during chronic HIV/SIV infection can facilitate epithelial barrier disruption by downregulating OCLN and PPARγ expression. Most importantly, our results highlight the beneficial effects of cannabinoids on epithelial barrier function in not just HIV/SIV but potentially other chronic intestinal inflammatory diseases.
Collapse
Affiliation(s)
- Vinay Kumar
- Eurofins Bioanalytics USA, Saint Charles, MO 63304
| | - Joshua Mansfield
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| | - Rong Fan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| | - Andrew MacLean
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| | - Jian Li
- Department of Global Biostatistics and Data Science, Tulane University School of Public Health and Tropical Medicine, New Orleans, LA 70112
| | - Mahesh Mohan
- Division of Comparative Pathology, Tulane National Primate Research Center, Covington, LA 70433; and
| |
Collapse
|
147
|
Jia X, Liao Q, Chen S, Wang J, Lai S. Investigation of significant microRNA-mRNA pairs associated with nonspecific digestive disorder in rabbits. WORLD RABBIT SCIENCE 2017. [DOI: 10.4995/wrs.2017.6839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
Abstract
Nonspecific digestive disorders (NSDD) are one of the major intestinal problems in rabbit, with considerable economic losses in industrial rabbit farms. MicroRNAs (miRNAs), as small non-coding RNAs, have significant biological involvement in intestinal disorders. In this study, we investigated the expression levels of 25 genes and 25 miRNAs in ileum, rabbit sacculus rotundus (RSR) and colon tissues from 9 rabbits with different severity of NSDD. These molecules have been found to be related to NSDD or inflammatory bowel disease, which will help recognise the miRNA-mRNA pairs. Finally, 108 possible pairs of miRNA-mRNA pairs with an anti-correlation were identified by Pearson’s correlation analysis between differentially expressed 25 miRNAs and 23 mRNAs. Ninety-five of these miRNA-mRNA pairs were hitherto unexplored, and their roles in NSDD biology require further elucidation. Our results give a clue to the potential miRNA-mRNA pairs for the NSDD that can further improve the understanding of the pathogenesis of NSDD in rabbit.
Collapse
|
148
|
Large-Scale Integrative Analysis of Epigenetic Modifications Induced by Isotretinoin, Doxycycline and Metronidazole in Murine Colonic Intestinal Epithelial Cells. EPIGENOMES 2017. [DOI: 10.3390/epigenomes1030024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
|
149
|
Cummins G, Yung DE, Cox BF, Koulaouzidis A, Desmulliez MPY, Cochran S. Luminally expressed gastrointestinal biomarkers. Expert Rev Gastroenterol Hepatol 2017; 11:1119-1134. [PMID: 28849686 DOI: 10.1080/17474124.2017.1373017] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
A biomarker is a measurable indicator of normal biologic processes, pathogenic processes or pharmacological responses. The identification of a useful biomarker is challenging, with several hurdles to overcome before clinical adoption. This review gives a general overview of a range of biomarkers associated with inflammatory bowel disease or colorectal cancer along the gastrointestinal tract. Areas covered: These markers include those that are already clinically accepted, such as inflammatory markers such as faecal calprotectin, S100A12 (Calgranulin C), Fatty Acid Binding Proteins (FABP), malignancy markers such as Faecal Occult Blood, Mucins, Stool DNA, Faecal microRNA (miRNA), other markers such as Faecal Elastase, Faecal alpha-1-antitrypsin, Alpha2-macroglobulin and possible future markers such as microbiota, volatile organic compounds and pH. Expert commentary: There are currently a few biomarkers that have been sufficiently validated for routine clinical use at present such as FC. However, many of these biomarkers continue to be limited in sensitivity and specificity for various GI diseases. Emerging biomarkers have the potential to improve diagnosis and monitoring but further study is required to determine efficacy and validate clinical utility.
Collapse
Affiliation(s)
- Gerard Cummins
- a Institute of Sensors, Signals and Systems, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh , UK
| | - Diana E Yung
- b The Royal Infirmary of Edinburgh , Endoscopy Unit , Edinburgh , UK
| | - Ben F Cox
- c School of Medicine , University of Dundee , Dundee , UK
| | | | - Marc P Y Desmulliez
- a Institute of Sensors, Signals and Systems, School of Engineering and Physical Sciences , Heriot-Watt University , Edinburgh , UK
| | - Sandy Cochran
- d Medical and Industrial Ultrasonics, School of Engineering , University of Glasgow , Glasgow , UK
| |
Collapse
|
150
|
MicroRNA in gastrointestinal cell signalling. Inflammopharmacology 2017; 26:1-14. [PMID: 29110118 DOI: 10.1007/s10787-017-0414-4] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2017] [Accepted: 10/28/2017] [Indexed: 12/17/2022]
Abstract
Our gut forms an important organ and its formation, functioning and homeostasis are maintained by several factors including cell signalling pathways and commensal microflora. These factors affect pathological, physiological and immunological parameters to maintain gut health and prevent its inflammation. Among these, different intracellular signalling pathways play an important role in regulating gut homeostasis. These pathways are in turn regulated by various microRNAs that play a key role in maintaining the balance between tolerance and inflammation. This review highlights the importance of various cell signalling pathways in modulating gut homeostasis and the role specific miRNAs play in their regulation.
Collapse
|