101
|
Gu YH, Wang J, Lu WC, Cheng Y, Tao R, Zhang SJ, Xu T, Zhai KW, Luo SX, Xin WJ. POU2F1/DNMT3a Pathway Participates in Neuropathic Pain by Hypermethylation-Mediated LRFN4 Downregulation Following Oxaliplatin Treatment. Neurochem Res 2023; 48:3652-3664. [PMID: 37592110 DOI: 10.1007/s11064-023-04011-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/02/2023] [Accepted: 08/04/2023] [Indexed: 08/19/2023]
Abstract
Evidence demonstrates that DNA methylation is associated with the occurrence and development of various neurological diseases. However, the potential target genes undergoing DNA methylation, as well as their involvement in the chemotherapy drug oxaliplatin-induced neuropathic pain, are still unclear. Here, Lrfn4, which showed hypermethylation in the promoter regions, was screened from the SRA methylation database (PRJNA587622) following oxaliplatin treatment. MeDIP and qPCR assays identified that oxaliplatin treatment increased the methylation in Lrfn4 promoter region and decreased the expression of LRFN4 in the spinal dorsal horn. The assays with gain and loss of LRFN4 function demonstrated that LRFN4 downregulation in spinal dorsal horn contributed to the oxaliplatin-induced mechanical allodynia and cold hyperalgesia. Moreover, oxaliplatin treatment increased the DNA methyltransferases DNMT3a expression and the interaction between DNMT3a and Lrfn4 promoter, while inhibition of DNMT3a prevented the downregulation of LRFN4a induced by oxaliplatin. We also observed that the transcriptional factor POU2F1 can bind to the predicted sites in DNMT3a promoter region, oxaliplatin treatment upregulated the expression of transcriptional factor POU2F1 in dorsal horn neurons. Intrathecal injection of POU2F1 siRNA prevented the DNMT3a upregulation and the LRFN4 downregulation induced by oxaliplatin. Additionally, intrathecal injection of DNMT3a siRNA or POU2F1 siRNA alleviated the mechanical allodynia induced by oxaliplatin. These findings suggested that transcription factor POU2F1 upregulated the expression of DNMT3a, which subsequently decreased LRFN4 expression through hypermethylation modification in spinal dorsal horn, thereby mediating neuropathic pain following oxaliplatin treatment.
Collapse
Affiliation(s)
- Yan-Hui Gu
- Department of General Surgery, Cancer Hospital of Zhengzhou University, 127 Dongming Rd, Zhengzhou, China
- Guangdong Province Key Laboratory of Brain Function and Disease and Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Jing Wang
- Guangdong Province Key Laboratory of Brain Function and Disease and Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120, China
- Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Wei-Cheng Lu
- State Key Laboratory of Oncology in Southern China, Department of Anesthesiology, Collaborative Innovation for Cancer Medicine, Sun Yat- sen University Cancer Center, Guangzhou, China
| | - Yong Cheng
- Department of General Surgery, Cancer Hospital of Zhengzhou University, 127 Dongming Rd, Zhengzhou, China
| | - Rong Tao
- Department of Pain Management, Henan Provincial People's Hospital, Zhengzhou University, Zhengzhou, China
| | - Shi-Jia Zhang
- Department of General Surgery, Cancer Hospital of Zhengzhou University, 127 Dongming Rd, Zhengzhou, China
| | - Ting Xu
- Guangdong Province Key Laboratory of Brain Function and Disease and Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120, China
| | - Ke-Wei Zhai
- Department of General Surgery, Cancer Hospital of Zhengzhou University, 127 Dongming Rd, Zhengzhou, China
| | - Su-Xia Luo
- Department of General Surgery, Cancer Hospital of Zhengzhou University, 127 Dongming Rd, Zhengzhou, China.
| | - Wen-Jun Xin
- Guangdong Province Key Laboratory of Brain Function and Disease and Zhongshan School of Medicine, Sun Yat-Sen University, Guangzhou, 510120, China.
- Zhongshan Medical School, Sun Yat-sen University, Zhongshan Rd. 2, Guangzhou, China.
| |
Collapse
|
102
|
Chen S, Zhu X, Ou W, Kang L, Situ J, Liao Z, Huang L, Qi W, Ni S. ETS2 overexpression ameliorates cartilage injury in osteoarthritis by the ETS2/miR-155/STAT1/DNMT1 feedback loop pathway. BIOCHIMICA ET BIOPHYSICA ACTA. GENE REGULATORY MECHANISMS 2023; 1866:194965. [PMID: 37524226 DOI: 10.1016/j.bbagrm.2023.194965] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 07/14/2023] [Accepted: 07/26/2023] [Indexed: 08/02/2023]
Abstract
Osteoarthritis (OA) is the most common irreversible chronic joint dysfunction disease, which is pathologically characterized by disturbance of articular cartilage homeostasis leading to subsequent inflammatory response and cartilage extracellular matrix (ECM) degradation. Increasing evidence has demonstrated the dysregulation of transcription factors play crucial roles in the occurrence and development of osteoarthritis (OA), but the potential functions and mechanism of most transcription factors in OA has not been completely illuminated. In this study, we identified that transcription factor V-ets erythroblastosis virus E26 oncogene homolog 2 (ETS2) was significantly down-regulated in OA cartilage and IL-1β-induced OA chondrocytes. Functional experiments in vitro demonstrated that the overexpressed ETS2 strikingly enhanced proliferation, outstandingly suppressed apoptosis, and dramatically reduced inflammation and ECM degradation in IL-1β-induced OA chondrocytes, whereas the knockdown of ETS2 led to the opposite effects. Further in vivo studies have shown that up-regulated ETS2 dramatically ameliorates cartilage injury in DMM-induced OA mice. Mechanical studies have disclosed that DNMT1-mediated downregulation of ETS2 dramatically promotes STAT1 by inhibiting miR-155 transcription, and increased STAT1 initiates a feedback loop that may enhance DNMT1-mediated hypermethylation of ETS2 to inhibit ETS2 expression, thus forming a DNMT1/ETS2/miR-155/STAT1 feedback loop that inhibits MAPK signaling pathways and aggravates OA cartilage injury. In all, our results revealed that overexpression of ETS2 markedly ameliorated OA cartilage injury through the ETS2/miR-155/STAT1/DNMT1 feedback loop, providing a new perspective on the pathogenesis and therapeutic strategies for OA.
Collapse
Affiliation(s)
- Shuxiang Chen
- Department of Orthopaedic, Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, Guangdong, China
| | - Xiaotong Zhu
- Department of Rheumatology and Clinical Immunology, Zhujiang Hospital, Southern Medical University, Guangzhou, China
| | - Wenhuan Ou
- Department of Orthopaedic, Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, Guangdong, China
| | - Le Kang
- Department of Orthopaedic, Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, Guangdong, China
| | - Jian Situ
- Department of Orthopaedic, Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, Guangdong, China
| | - Zhipeng Liao
- Department of Orthopaedic, Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, Guangdong, China
| | - Li Huang
- Department of Orthopaedic, Jiangmen Wuyi Hospital of Traditional Chinese Medicine, Jiangmen, Guangdong, China
| | - Weizhong Qi
- Department of Orthopaedic, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| | - Songjia Ni
- Department of Orthopaedic, Zhujiang Hospital, Southern Medical University, Guangzhou, Guangdong, China.
| |
Collapse
|
103
|
Alhosin M. Epigenetics Mechanisms of Honeybees: Secrets of Royal Jelly. Epigenet Insights 2023; 16:25168657231213717. [PMID: 38033464 PMCID: PMC10687967 DOI: 10.1177/25168657231213717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Accepted: 10/25/2023] [Indexed: 12/02/2023] Open
Abstract
Early diets in honeybees have effects on epigenome with consequences on their phenotype. Depending on the early larval diet, either royal jelly (RJ) or royal worker, 2 different female castes are generated from identical genomes, a long-lived queen with fully developed ovaries and a short-lived functionally sterile worker. To generate these prominent physiological and morphological differences between queen and worker, honeybees utilize epigenetic mechanisms which are controlled by nutritional input. These mechanisms include DNA methylation and histone post-translational modifications, mainly histone acetylation. In honeybee larvae, DNA methylation and histone acetylation may be differentially altered by RJ. This diet has biologically active ingredients with inhibitory effects on the de novo methyltransferase DNMT3A or the histone deacetylase 3 HDAC3 to create and maintain the epigenetic state necessary for developing larvae to generate a queen. DNMT and HDAC enzymes work together to induce the formation of a compacted chromatin structure, repressing transcription. Such dialog could be coordinated by their association with other epigenetic factors including the ubiquitin-like containing plant homeodomain (PHD) and really interesting new gene (RING) finger domains 1 (UHRF1). Through its multiple functional domains, UHRF1 acts as an epigenetic reader of both DNA methylation patterns and histone marks. The present review discusses the epigenetic regulation of honeybee's chromatin and how the early diets in honeybees can affect the DNA/histone modifying types of machinery that are necessary to stimulate the larvae to turn into either queen or worker. The review also looks at future directions in epigenetics mechanisms of honeybees, mainly the potential role of UHRF1 in these mechanisms.
Collapse
Affiliation(s)
- Mahmoud Alhosin
- Biochemistry Department, Faculty of Science, King Abdulaziz University, Jeddah, Saudi Arabia
- Cancer and Mutagenesis Unit, King Fahd Medical Research Center, King Abdulaziz University, Jeddah, Saudi Arabia
- Centre for Artificial intelligence in Precision Medicines, King Abdulaziz University, Jeddah, Saudi Arabia
| |
Collapse
|
104
|
Tai WL, Cho KS, Kriukov E, Ashok A, Wang X, Monavarfeshani A, Yan W, Li Y, Guan T, Sanes JR, Baranov P, Chen DF. Suppressing DNMT3a Alleviates the Intrinsic Epigenetic Barrier for Optic Nerve Regeneration and Restores Vision in Adult Mice. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.17.567614. [PMID: 38014168 PMCID: PMC10680854 DOI: 10.1101/2023.11.17.567614] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
The limited regenerative potential of the optic nerve in adult mammals presents a major challenge for restoring vision after optic nerve trauma or disease. The mechanisms of this regenerative failure are not fully understood1,2. Here, through small-molecule and genetic screening for epigenetic modulators3, we identify DNA methyltransferase 3a (DNMT3a) as a potent inhibitor of axon regeneration in mouse and human retinal explants. Selective suppression of DNMT3a in retinal ganglion cells (RGCs) by gene targeting or delivery of shRNA leads to robust, full-length regeneration of RGC axons through the optic nerve and restoration of vision in adult mice after nerve crush injury. Genome-wide bisulfite and transcriptome profiling in combination with single nucleus RNA-sequencing of RGCs revealed selective DNA demethylation and reactivation of genetic programs supporting neuronal survival and axonal growth/regeneration by DNMT3a deficiency. This was accompanied by the suppression of gene networks associated with apoptosis and inflammation. Our results identify DNMT3a as the central orchestrator of an RGC-intrinsic mechanism that limits optic nerve regeneration. Suppressing DNMT3a expression in RGCs unlocks the epigenetic switch for optic nerve regeneration and presents a promising therapeutic avenue for effectively reversing vision loss resulted from optic nerve trauma or diseases.
Collapse
Affiliation(s)
- Wai Lydia Tai
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Kin-Sang Cho
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Emil Kriukov
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Ajay Ashok
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Xuejian Wang
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
- School of Pharmacy, Weifang Medical University, Weifang, Shandong, China
| | - Aboozar Monavarfeshani
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA, USA
| | - Wenjun Yan
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA, USA
| | - Yingqian Li
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Timothy Guan
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Joshua R Sanes
- Department of Cellular and Molecular Biology, Center for Brain Science, Harvard University, MA, USA
| | - Petr Baranov
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| | - Dong Feng Chen
- Schepens Eye Research Institute of Mass Eye and Ear, Department of Ophthalmology, Harvard Medical School, Boston, MA, USA
| |
Collapse
|
105
|
Vilkaitis G, Masevičius V, Kriukienė E, Klimašauskas S. Chemical Expansion of the Methyltransferase Reaction: Tools for DNA Labeling and Epigenome Analysis. Acc Chem Res 2023; 56:3188-3197. [PMID: 37904501 PMCID: PMC10666283 DOI: 10.1021/acs.accounts.3c00471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 10/19/2023] [Accepted: 10/19/2023] [Indexed: 11/01/2023]
Abstract
DNA is the genetic matter of life composed of four major nucleotides which can be further furnished with biologically important covalent modifications. Among the variety of enzymes involved in DNA metabolism, AdoMet-dependent methyltransferases (MTases) combine the recognition of specific sequences and covalent methylation of a target nucleotide. The naturally transferred methyl groups play important roles in biological signaling, but they are poor physical reporters and largely resistant to chemical derivatization. Therefore, an obvious strategy to unlock the practical utility of the methyltransferase reactions is to enable the transfer of "prederivatized" (extended) versions of the methyl group.However, previous enzymatic studies of extended AdoMet analogs indicated that the transalkylation reactions are drastically impaired as the size of the carbon chain increases. In collaborative efforts, we proposed that, akin to enhanced SN2 reactivity of allylic and propargylic systems, addition of a π orbital next to the transferable carbon atom might confer the needed activation of the reaction. Indeed, we found that MTase-catalyzed transalkylations of DNA with cofactors containing a double or a triple C-C bond in the β position occurred in a robust and sequence-specific manner. Altogether, this breakthrough approach named mTAG (methyltransferase-directed transfer of activated groups) has proven instrumental for targeted labeling of DNA and other types of biomolecules (using appropriate MTases) including RNA and proteins.Our further work focused on the propargylic cofactors and their reactions with DNA cytosine-5 MTases, a class of MTases common for both prokaryotes and eukaryotes. Here, we learned that the 4-X-but-2-yn-1-yl (X = polar group) cofactors suffered from a rapid loss of activity in aqueous buffers due to susceptibility of the triple bond to hydration. This problem was remedied by synthetically increasing the separation between X and the triple bond from one to three carbon units (6-X-hex-2-ynyl cofactors). To further optimize the transfer of the bulkier groups, we performed structure-guided engineering of the MTase cofactor pocket. Alanine replacements of two conserved residues conferred substantial improvements of the transalkylation activity with M.HhaI and three other engineered bacterial C5-MTases. Of particular interest were CpG-specific DNA MTases (M.SssI), which proved valuable tools for studies of mammalian methylomes and chemical probing of DNA function.Inspired by the successful repurposing of bacterial enzymes, we turned to more complex mammalian C5-MTases (Dnmt1, Dnmt3A, and Dnmt3B) and asked if they could ultimately lead to mTAG labeling inside mammalian cells. Our efforts to engineer mouse Dnmt1 produced a variant (Dnmt1*) that enabled efficient Dnmt1-directed deposition of 6-azide-hexynyl groups on DNA in vitro. CRISPR-Cas9 editing of the corresponding codons in the genomic Dnmt1 alleles established endogenous expression of Dnmt1* in mouse embryonic stem cells. To circumvent the poor cellular uptake of AdoMet and its analogs, we elaborated their efficient internalization by electroporation, which has finally enabled selective catalysis-dependent azide tagging of natural Dnmt1 targets in live mammalian cells. The deposited chemical groups were then exploited as "click" handles for reading adjoining sequences and precise genomic mapping of the methylation sites. These findings offer unprecedented inroads into studies of DNA methylation in a wide range of eukaryotic model systems.
Collapse
Affiliation(s)
- Giedrius Vilkaitis
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Viktoras Masevičius
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
- Institute
of Chemistry, Department of Chemistry and Geosciences, Vilnius University, LT-03225 Vilnius, Lithuania
| | - Edita Kriukienė
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| | - Saulius Klimašauskas
- Institute
of Biotechnology, Life Sciences Center, Vilnius University, LT-10257 Vilnius, Lithuania
| |
Collapse
|
106
|
Wang W, Du X, Chu M, He X. Photoperiod Induces the Epigenetic Change of the GNAQ Gene in OVX+E 2 Ewes. Int J Mol Sci 2023; 24:16442. [PMID: 38003630 PMCID: PMC10671395 DOI: 10.3390/ijms242216442] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 11/26/2023] Open
Abstract
GNAQ, a member of the alpha subunit encoding the q-like G protein, is a critical gene in cell signaling, and multiple studies have shown that upregulation of GNAQ gene expression ultimately inhibits the proliferation of gonadotropin-releasing hormone (GnRH) neurons and GnRH secretion, and ultimately affects mammalian reproduction. Photoperiod is a key inducer which plays an important role in gene expression regulation by affecting epigenetic modification. However, fewer studies have confirmed how photoperiod induces epigenetic modifications of the GNAQ gene. In this study, we examined the expression and epigenetic changes of GNAQ in the hypothalamus in ovariectomized and estradiol-treated (OVX+E2) sheep under three photoperiod treatments (short photoperiod treatment for 42 days, SP42; long photoperiod treatment for 42 days, LP42; 42 days of short photoperiod followed by 42 days of long photoperiod, SP-LP42). The results showed that the expression of GNAQ was significantly higher in SP-LP42 than in SP42 and LP42 (p < 0.05). Whole genome methylation sequencing (WGBS) results showed that there are multiple differentially methylated regions (DMRs) and loci between different groups of GNAQ. Among them, the DNA methylation level of DMRs at the CpG1 locus in SP42 was significantly higher than that of SP-LP42 (p < 0.01). Subsequently, we confirmed that the core promoter region of the GNAQ gene was located with 1100 to 1500 bp upstream, and the DNA methylation level of all eight CpG sites in SP42 was significantly higher than those in LP42 (p < 0.01), and significantly higher than those in SP-LP42 (p < 0.01), except site 2 and site 4 in the first sequencing fragment (p < 0.05) in the core promoter region. The expression of acetylated GNAQ histone H3 was significantly higher than that of the control group under three different photoperiods (p < 0.01); the acetylation level of sheep hypothalamic GNAQ genomic protein H3 was significantly lower under SP42 than under SP-LP42 (p < 0.05). This suggests that acetylated histone H3 binds to the core promoter region of the GNAQ gene, implying that GNAQ is epigenetically regulated by photoperiod through histone acetylation. In summary, the results suggest that photoperiod can induce DNA methylation in the core promoter region and histone acetylation in the promoter region of the GNAQ gene, and hypothesize that the two may be key factors in regulating the differential expression of GNAQ under different photoperiods, thus regulating the hypothalamus-pituitary-gonadal axis (HPGA) through the seasonal estrus in sheep. The results of this study will provide some new information to understand the function of epigenetic modifications in reproduction in sheep.
Collapse
Affiliation(s)
| | | | - Mingxing Chu
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.W.); (X.D.)
| | - Xiaoyun He
- State Key Laboratory of Animal Biotech Breeding, Institute of Animal Science, Chinese Academy of Agricultural Sciences (CAAS), Beijing 100193, China; (W.W.); (X.D.)
| |
Collapse
|
107
|
Liu F, Ma Y, Sun H, Cai H, Liang X, Xu C, Du L, Wang Y, Liu Q. SUMO1 Modification Stabilizes TET3 Protein and Increases Colorectal Cancer Radiation Therapy Sensitivity. Int J Radiat Oncol Biol Phys 2023; 117:942-954. [PMID: 37244630 DOI: 10.1016/j.ijrobp.2023.05.037] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 04/23/2023] [Accepted: 05/18/2023] [Indexed: 05/29/2023]
Abstract
PURPOSE The aim of this work was to explore the role and mechanism of active DNA demethylase in colorectal cancer (CRC) radiation sensitization and better understand the function of DNA demethylation in tumor radiosensitization. METHODS AND MATERIALS Tested the effect of ten-eleven translocation 3 (TET3) overexpression on the sensitivity of CRC to radiation therapy through G2/M arrest, apoptosis, and clonogenic suppression. TET3 knockdown HCT 116 and TET3 knockdown LS 180 cell lines were constructed by siRNA technology, and the effect of exogenous knockdown of TET3 on radiation-induced apoptosis, cell cycle arrest, DNA damage, and clone formation in CRC cells were detected. The co-localization of TET3 and small ubiquitin-like modifier 1 (SUMO1), SUMO2/3 was detected by immunofluorescence and cytoplasmic-nuclear extraction, and the interaction between TET3 and SUMO1, SUMO2/3 was detected by a coimmunoprecipitation assay. RESULTS The malignant phenotype and radiosensitivity of CRC cell lines were favorably linked with TET3 protein and mRNA expression. TET3 is upregulated in 23 of the 27 tumor types investigated, including colon cancer. TET3 was shown to correlate with the CRC pathologic malignancy grade positively. Overexpression of TET3 in CRC cell lines increased radiation-induced apoptosis, G2/M phase arrest, DNA damage, and clonal suppression in vitro. The binding region of TET3 and SUMO2/3 was located at 833-1795 AA except for K1012, K1188, K1397, and K1623. SUMOylation of TET3 increased the stability of the TET3 protein without changing its nuclear localization. CONCLUSIONS We report the sensitizing role of TET3 protein in the radiation of CRC cells, depending on SUMO1 modification of TET3 at the lysine sites (K479, K758, K1012, K1188, K1397, K1623), in turn stabilizing TET3 expression in the nucleus and subsequently increasing the sensitivity of CRC to radiation therapy. Together, this study highlights the potentially critical role of TET3 SUMOylation in radiation regulation, which may contribute to an enhanced understanding of the relationship between DNA demethylation and radiation therapy.
Collapse
Affiliation(s)
- Fengting Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China; Department of Radiation Oncology, The Afliated Cancer Hospital of Zhengzhou University, No. 127 Dongming Road, Zhengzhou 450008, Henan, China
| | - Ya Ma
- Shandong First Medical University & Shandong Academy of Medical Sciences, Jinan, China
| | - Hao Sun
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Hui Cai
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Xin Liang
- School of Public Health, Tianjin Medical University, Tianjin, China; Tianjin Center for Disease Control and Prevention, Tianjin, China
| | - Chang Xu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Liqing Du
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Yan Wang
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Qiang Liu
- Institute of Radiation Medicine, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| |
Collapse
|
108
|
Behluli L, Fontanilla AM, Andessner-Angleitner L, Tolar N, Molina JM, Gahurova L. Expression analysis suggests that DNMT3L is required for oocyte de novo DNA methylation only in Muridae and Cricetidae rodents. Epigenetics Chromatin 2023; 16:43. [PMID: 37924163 PMCID: PMC10625200 DOI: 10.1186/s13072-023-00518-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2023] [Accepted: 10/25/2023] [Indexed: 11/06/2023] Open
Abstract
BACKGROUND During early mammalian development, DNA methylation undergoes two waves of reprogramming, enabling transitions between somatic cells, oocyte and embryo. The first wave of de novo DNA methylation establishment occurs in oocytes. Its molecular mechanisms have been studied in mouse, a classical mammalian model. Current model describes DNA methyltransferase 3A (DNMT3A) and its cofactor DNMT3L as two essential factors for oocyte DNA methylation-the ablation of either leads to nearly complete abrogation of DNA methylation. However, DNMT3L is not expressed in human oocytes, suggesting that the mechanism uncovered in mouse is not universal across mammals. RESULTS We analysed available RNA-seq data sets from oocytes of multiple mammals, including our novel data sets of several rodent species, and revealed that Dnmt3l is expressed only in the oocytes of mouse, rat and golden hamster, and at a low level in guinea pigs. We identified a specific promoter sequence recognised by an oocyte transcription factor complex associated with strong Dnmt3l activity and demonstrated that it emerged in the rodent clade Eumuroida, comprising the families Muridae (mice, rats, gerbils) and Cricetidae (hamsters). In addition, an evolutionarily novel promoter emerged in the guinea pig, driving weak Dnmt3l expression, likely without functional relevance. Therefore, Dnmt3l is expressed and consequently plays a role in oocyte de novo DNA methylation only in a small number of rodent species, instead of being an essential pan-mammalian factor. In contrast to somatic cells, where catalytically inactive DNMT3B interacts with DNMT3A, forming a heterotetramer, we did not find evidence for the expression of such inactive Dnmt3b isoforms in the oocytes of the tested species. CONCLUSIONS The analysis of RNA-seq data and genomic sequences revealed that DNMT3L is likely to play a role in oocytes de novo DNA methylation only in mice, rats, gerbils and hamsters. The mechanism governing de novo DNA methylation in the oocytes of most mammalian species, including humans, occurs through a yet unknown mechanism that differs from the current model discovered in mouse.
Collapse
Affiliation(s)
- Lirik Behluli
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic
| | - Alyssa M Fontanilla
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic
| | - Laura Andessner-Angleitner
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic
| | - Nikolas Tolar
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic
| | - Julia M Molina
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic
- Department of Biological Sciences, Faculty of Sciences and Languages, São Paulo State University "Júlio de Mesquita Filho" - UNESP, Assis, São Paulo, Brazil
| | - Lenka Gahurova
- Department of Molecular Biology and Genetics, Faculty of Science, University of South Bohemia, Branisovska 1760, 37005, Ceske Budejovice, Czech Republic.
| |
Collapse
|
109
|
Xi X, Wang M, Chen Q, Ma J, Zhang J, Li Y. DNMT1 regulates miR-20a/TXNIP-mediated pyroptosis of retinal pigment epithelial cells through DNA methylation. Mol Cell Endocrinol 2023; 577:112012. [PMID: 37506869 DOI: 10.1016/j.mce.2023.112012] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/24/2023] [Revised: 07/04/2023] [Accepted: 07/07/2023] [Indexed: 07/30/2023]
Abstract
BACKGROUND Pyroptosis of retinal pigment epithelium (RPE) cells is associated with the etiology of diabetic retinopathy (DR). In this study, we investigated the effect of DNMT1 on RPE cell pyroptosis by regulating miR-20a/TXNIP expression through DNA methylation. METHODS High glucose (HG)-induced ARPE-19 cells and mice were injected with streptozotocin (STZ) to generate DR cells and animal models. RT‒qPCR was used to detect the expression of miR-20a, and methylation-specific PCR (MS-PCR) was used to determine the occurrence of methylation of miR-20a. The expression of pyroptosis-related proteins (caspase-1 and NLRP3) and DNA methyltransferase (DNMT1) was detected by western blotting, and the expression of inflammatory factors (IL-1β and IL-18) was detected by ELISA. Apoptosis was detected by flow cytometry and TUNEL. HE staining was used to observe the pathological changes in retinal tissue in mice. RESULTS In HG-induced DR cell models, the expression of miR-20a was significantly downregulated, while the expression of inflammatory factors (IL-1β, IL-18) and pyroptosis-associated proteins (caspase-1, NLRP3) was significantly upregulated. Transfection of miR-20a mimic can effectively reverse HG-induced pyroptosis and release of inflammatory factors. DNMT1 promotes miR-20a methylation and inhibits the expression of miR-20a. DNMT1-mediated methylation is involved in the pyroptosis process of high glucose-induced RPE cells, and silencing DNMT1 can promote the expression of miR-20a, thereby inhibiting the release of IL-1β and IL-18 and reducing the occurrence of cell pyroptosis. miR-20a targets negative regulation of TXNIP expression, and overexpression of TXNIP can effectively reverse the inhibitory effect of miR-20a on pyroptosis. The methylation inhibitor 5-AZ can inhibit the occurrence of pyroptosis and DR processes, while treatment with a miR-20a inhibitor or OE-TXNIP can reverse the effect of 5-AZ. CONCLUSION DNMT1 promotes DNA methylation, decreases the expression of miR-20a and increases the expression of TXNIP, which ultimately leads to the occurrence of pyroptosis in RPE cells.
Collapse
Affiliation(s)
- Xiaoting Xi
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Min Wang
- Department of Ophthalmology, Eye and ENT Hospital of Fudan University, Shanghai, 200031, China
| | - Qianbo Chen
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Jia Ma
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China
| | - Junyan Zhang
- Department of Clinical Epidemiology and Evidence-based Medicine, Shanxi Bethune Hospital, Shanxi Academy of Medical Sciences, Taiyuan, 030032, China
| | - Yan Li
- Department of Ophthalmology, The First Affiliated Hospital of Kunming Medical University, Kunming, 650032, Yunnan, China.
| |
Collapse
|
110
|
Rajaram N, Kouroukli AG, Bens S, Bashtrykov P, Jeltsch A. Development of super-specific epigenome editing by targeted allele-specific DNA methylation. Epigenetics Chromatin 2023; 16:41. [PMID: 37864244 PMCID: PMC10589950 DOI: 10.1186/s13072-023-00515-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Accepted: 10/11/2023] [Indexed: 10/22/2023] Open
Abstract
BACKGROUND Epigenome editing refers to the targeted reprogramming of genomic loci using an EpiEditor which may consist of an sgRNA/dCas9 complex that recruits DNMT3A/3L to the target locus. Methylation of the locus can lead to a modulation of gene expression. Allele-specific DNA methylation (ASM) refers to the targeted methylation delivery only to one allele of a locus. In the context of diseases caused by a dominant mutation, the selective DNA methylation of the mutant allele could be used to repress its expression but retain the functionality of the normal gene. RESULTS To set up allele-specific targeted DNA methylation, target regions were selected from hypomethylated CGIs bearing a heterozygous SNP in their promoters in the HEK293 cell line. We aimed at delivering maximum DNA methylation with highest allelic specificity in the targeted regions. Placing SNPs in the PAM or seed regions of the sgRNA, we designed 24 different sgRNAs targeting single alleles in 14 different gene loci. We achieved efficient ASM in multiple cases, such as ISG15, MSH6, GPD1L, MRPL52, PDE8A, NARF, DAP3, and GSPT1, which in best cases led to five to tenfold stronger average DNA methylation at the on-target allele and absolute differences in the DNA methylation gain at on- and off-target alleles of > 50%. In general, loci with the allele discriminatory SNP positioned in the PAM region showed higher success rate of ASM and better specificity. Highest DNA methylation was observed on day 3 after transfection followed by a gradual decline. In selected cases, ASM was stable up to 11 days in HEK293 cells and it led up to a 3.6-fold change in allelic expression ratios. CONCLUSIONS We successfully delivered ASM at multiple genomic loci with high specificity, efficiency and stability. This form of super-specific epigenome editing could find applications in the treatment of diseases caused by dominant mutations, because it allows silencing of the mutant allele without repression of the expression of the normal allele thereby minimizing potential side-effects of the treatment.
Collapse
Affiliation(s)
- Nivethika Rajaram
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Alexandra G Kouroukli
- Institute of Human Genetics, University of Ulm and Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Susanne Bens
- Institute of Human Genetics, University of Ulm and Ulm University Medical Center, Albert-Einstein-Allee 11, 89081, Ulm, Germany
| | - Pavel Bashtrykov
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical Biochemistry, Department of Biochemistry, University of Stuttgart, Allmandring 31, 70569, Stuttgart, Germany.
| |
Collapse
|
111
|
Zhang L, Li J. Unlocking the secrets: the power of methylation-based cfDNA detection of tissue damage in organ systems. Clin Epigenetics 2023; 15:168. [PMID: 37858233 PMCID: PMC10588141 DOI: 10.1186/s13148-023-01585-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023] Open
Abstract
BACKGROUND Detecting organ and tissue damage is essential for early diagnosis, treatment decisions, and monitoring disease progression. Methylation-based assays offer a promising approach, as DNA methylation patterns can change in response to tissue damage. These assays have potential applications in early detection, monitoring disease progression, evaluating treatment efficacy, and assessing organ viability for transplantation. cfDNA released into the bloodstream upon tissue or organ injury can serve as a biomarker for damage. The epigenetic state of cfDNA, including DNA methylation patterns, can provide insights into the extent of tissue and organ damage. CONTENT Firstly, this review highlights DNA methylation as an extensively studied epigenetic modification that plays a pivotal role in processes such as cell growth, differentiation, and disease development. It then presents a variety of highly precise 5-mC methylation detection techniques that serve as powerful tools for gaining profound insights into epigenetic alterations linked with tissue damage. Subsequently, the review delves into the mechanisms underlying DNA methylation changes in organ and tissue damage, encompassing inflammation, oxidative stress, and DNA damage repair mechanisms. Next, it addresses the current research status of cfDNA methylation in the detection of specific organ tissues and organ damage. Finally, it provides an overview of the multiple steps involved in identifying specific methylation markers associated with tissue and organ damage for clinical trials. This review will explore the mechanisms and current state of research on cfDNA methylation-based assay detecting organ and tissue damage, the underlying mechanisms, and potential applications in clinical practice.
Collapse
Affiliation(s)
- Lijing Zhang
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing, People's Republic of China
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China
| | - Jinming Li
- National Center for Clinical Laboratories, Institute of Geriatric Medicine, Chinese Academy of Medical Sciences, Beijing Hospital/National Center of Gerontology, No. 1 Dahua Road, Dongdan, Beijing, 100730, People's Republic of China.
- Peking Union Medical College, Chinese Academy of Medical Sciences, Beijing Hospital, Beijing, People's Republic of China.
- Beijing Engineering Research Center of Laboratory Medicine, Beijing, People's Republic of China.
| |
Collapse
|
112
|
Xie J, Gan L, Xue B, Wang X, Pei X. Emerging roles of interactions between ncRNAs and other epigenetic modifications in breast cancer. Front Oncol 2023; 13:1264090. [PMID: 37901333 PMCID: PMC10602744 DOI: 10.3389/fonc.2023.1264090] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2023] [Accepted: 09/26/2023] [Indexed: 10/31/2023] Open
Abstract
Up till the present moment, breast cancer is still the leading cause of cancer-related death in women worldwide. Although the treatment methods and protocols for breast cancer are constantly improving, the long-term prognosis of patients is still not optimistic due to the complex heterogeneity of the disease, multi-organ metastasis, chemotherapy and radiotherapy resistance. As a newly discovered class of non-coding RNAs, ncRNAs play an important role in various cancers. Especially in breast cancer, lncRNAs have received extensive attention and have been confirmed to regulate cancer progression through a variety of pathways. Meanwhile, the study of epigenetic modification, including DNA methylation, RNA methylation and histone modification, has developed rapidly in recent years, which has greatly promoted the attention to the important role of non-coding RNAs in breast cancer. In this review, we carefully and comprehensively describe the interactions between several major classes of epigenetic modifications and ncRNAs, as well as their different subsequent biological effects, and discuss their potential for practical clinical applications.
Collapse
Affiliation(s)
| | | | | | | | - Xinhong Pei
- Department of Breast Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
113
|
Zhang G, Mao Y, Zhang Y, Huang H, Pan J. Assisted reproductive technology and imprinting errors: analyzing underlying mechanisms from epigenetic regulation. HUM FERTIL 2023; 26:864-878. [PMID: 37929309 DOI: 10.1080/14647273.2023.2261628] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 08/11/2023] [Indexed: 11/07/2023]
Abstract
With the increasing maturity and widespread application of assisted reproductive technology (ART), more attention has been paid to the health outcomes of offspring following ART. It is well established that children born from ART treatment are at an increased risk of imprinting errors and imprinting disorders. The disturbances of genetic imprinting are attributed to the overlap of ART procedures and important epigenetic reprogramming events during the development of gametes and early embryos, but the detailed mechanisms are hitherto obscure. In this review, we summarized the DNA methylation-dependent and independent mechanisms that control the dynamic epigenetic regulation of imprinted genes throughout the life cycle of a mammal, including erasure, establishment, and maintenance. In addition, we systematically described the dysregulation of imprinted genes in embryos conceived through ART and discussed the corresponding underlying mechanisms according to findings in animal models. This work is conducive to evaluating and improving the safety of ART.
Collapse
Affiliation(s)
- Gaochen Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
| | - Yiting Mao
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Yu Zhang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Jiexue Pan
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China
- Research Units of Embryo Original Diseases, Chinese Academy of Medical Sciences (No. 2019RU056), Shanghai, China
- Key Laboratory of Reproductive Genetics (Ministry of Education), Department of Reproductive Endocrinology, Women's Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
114
|
Chu L, Xie D, Xu D. Epigenetic Regulation of Fibroblasts and Crosstalk between Cardiomyocytes and Non-Myocyte Cells in Cardiac Fibrosis. Biomolecules 2023; 13:1382. [PMID: 37759781 PMCID: PMC10526373 DOI: 10.3390/biom13091382] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2023] [Revised: 08/10/2023] [Accepted: 09/07/2023] [Indexed: 09/29/2023] Open
Abstract
Epigenetic mechanisms and cell crosstalk have been shown to play important roles in the initiation and progression of cardiac fibrosis. This review article aims to provide a thorough overview of the epigenetic mechanisms involved in fibroblast regulation. During fibrosis, fibroblast epigenetic regulation encompasses a multitude of mechanisms, including DNA methylation, histone acetylation and methylation, and chromatin remodeling. These mechanisms regulate the phenotype of fibroblasts and the extracellular matrix composition by modulating gene expression, thereby orchestrating the progression of cardiac fibrosis. Moreover, cardiac fibrosis disrupts normal cardiac function by imposing myocardial mechanical stress and compromising cardiac electrical conduction. This review article also delves into the intricate crosstalk between cardiomyocytes and non-cardiomyocytes in the heart. A comprehensive understanding of the mechanisms governing epigenetic regulation and cell crosstalk in cardiac fibrosis is critical for the development of effective therapeutic strategies. Further research is warranted to unravel the precise molecular mechanisms underpinning these processes and to identify potential therapeutic targets.
Collapse
Affiliation(s)
| | | | - Dachun Xu
- Department of Cardiology, Shanghai Tenth People’s Hospital, Tongji University School of Medicine, 315 Yanchang Middle Road, Shanghai 200072, China; (L.C.); (D.X.)
| |
Collapse
|
115
|
Purnomo AF, Daryanto B, Seputra KP, Budaya TN, Lutfiana NC, Nurkolis F, Chung S, Suh JY, Park MN, Seo BK, Kim B. Methylenetetrahydrofolate Reductase C677T (rs1801133) Polymorphism Is Associated with Bladder Cancer in Asian Population: Epigenetic Meta-Analysis as Precision Medicine Approach. Cancers (Basel) 2023; 15:4402. [PMID: 37686678 PMCID: PMC10487222 DOI: 10.3390/cancers15174402] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Revised: 08/30/2023] [Accepted: 08/31/2023] [Indexed: 09/10/2023] Open
Abstract
The etiology of bladder cancer remains unclear. This study investigates the impact of gene polymorphisms, particularly methylenetetrahydrofolate reductase gene (MTHFR), on bladder cancer susceptibility, focusing on the rs1801133 single-nucleotide polymorphism (SNP). A meta-analysis was conducted after systematically reviewing the MTHFR gene literature, adhering to PRISMA guidelines and registering in PROSPERO (CRD42023423064). Seven studies were included, showing a significant association between the MTHFR C677T (rs1801133) polymorphism and bladder cancer susceptibility. Individuals with the T-allele or TT genotype had a higher likelihood of bladder cancer. In the Asian population, the overall analysis revealed an odds ratio (OR) of 1.15 (95% CI 1.03-1.30; p-value = 0.03) for T-allele versus C-allele and an OR of 1.34 (95% CI 1.04-1.72; p-value = 0.02) for TT genotype versus TC+CC genotype. The CC genotype, however, showed no significant association with bladder cancer. Notably, epigenetic findings displayed low sensitivity but high specificity, indicating reliable identified associations while potentially overlooking some epigenetic factors related to bladder cancer. In conclusion, the MTHFR T-allele and TT genotype were associated with increased bladder cancer risk in the Asian population. These insights into genetic factors influencing bladder cancer susceptibility could inform targeted prevention and treatment strategies. Further research is warranted to validate and expand these findings.
Collapse
Affiliation(s)
- Athaya Febriantyo Purnomo
- Department of Oncology, University of Oxford, Oxford OX3 7DQ, UK
- Department of Urology, Faculty of Medicine, Universitas Brawijaya, Malang 65142, Indonesia
| | - Besut Daryanto
- Department of Urology, Faculty of Medicine, Universitas Brawijaya, Malang 65142, Indonesia
| | - Kurnia Penta Seputra
- Department of Urology, Faculty of Medicine, Universitas Brawijaya, Malang 65142, Indonesia
| | - Taufiq Nur Budaya
- Department of Urology, Faculty of Medicine, Universitas Brawijaya, Malang 65142, Indonesia
| | - Nurul Cholifah Lutfiana
- Department of Biosciences and Biomedicine, Faculty of Medicine, Universitas Muhammadiyah Surabaya, Surabaya 36201, Indonesia
| | - Fahrul Nurkolis
- Department of Biological Sciences, State Islamic University of Sunan Kalijaga (UIN Sunan Kalijaga), Yogyakarta 55281, Indonesia;
| | - Sanghyun Chung
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Kyung Hee Myungbo Clinic of Korean Medicine, Hwaseong-si 18466, Republic of Korea
| | - Jin Young Suh
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Seoul Forest Korean Medicine Clinic, Ttukseomro 312, Seongdong-gu, Seoul 04773, Republic of Korea
| | - Moon Nyeo Park
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| | - Byung-Kwan Seo
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Department of Acupuncture and Moxibustion Medicine, Kyung Hee University College of Korean Medicine, Kyung Hee University Hospital at Gangdong, Seoul 05278, Republic of Korea
| | - Bonglee Kim
- Department of Pathology, College of Korean Medicine, Kyung Hee University, Hoegidong Dongdaemun-gu, Seoul 02447, Republic of Korea
- Korean Medicine-Based Drug Repositioning Cancer Research Center, College of Korean Medicine, Kyung Hee University, Seoul 02447, Republic of Korea
| |
Collapse
|
116
|
Zhang X, Zhang Y, Wang C, Wang X. TET (Ten-eleven translocation) family proteins: structure, biological functions and applications. Signal Transduct Target Ther 2023; 8:297. [PMID: 37563110 PMCID: PMC10415333 DOI: 10.1038/s41392-023-01537-x] [Citation(s) in RCA: 50] [Impact Index Per Article: 25.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2022] [Revised: 05/24/2023] [Accepted: 06/05/2023] [Indexed: 08/12/2023] Open
Abstract
Ten-eleven translocation (TET) family proteins (TETs), specifically, TET1, TET2 and TET3, can modify DNA by oxidizing 5-methylcytosine (5mC) iteratively to yield 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxycytosine (5caC), and then two of these intermediates (5fC and 5caC) can be excised and return to unmethylated cytosines by thymine-DNA glycosylase (TDG)-mediated base excision repair. Because DNA methylation and demethylation play an important role in numerous biological processes, including zygote formation, embryogenesis, spatial learning and immune homeostasis, the regulation of TETs functions is complicated, and dysregulation of their functions is implicated in many diseases such as myeloid malignancies. In addition, recent studies have demonstrated that TET2 is able to catalyze the hydroxymethylation of RNA to perform post-transcriptional regulation. Notably, catalytic-independent functions of TETs in certain biological contexts have been identified, further highlighting their multifunctional roles. Interestingly, by reactivating the expression of selected target genes, accumulated evidences support the potential therapeutic use of TETs-based DNA methylation editing tools in disorders associated with epigenetic silencing. In this review, we summarize recent key findings in TETs functions, activity regulators at various levels, technological advances in the detection of 5hmC, the main TETs oxidative product, and TETs emerging applications in epigenetic editing. Furthermore, we discuss existing challenges and future directions in this field.
Collapse
Affiliation(s)
- Xinchao Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Yue Zhang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China
| | - Chaofu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| | - Xu Wang
- Department of Pathology, Ruijin Hospital and College of Basic Medical Sciences, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
- Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University School of Medicine, Shanghai, 200025, China.
| |
Collapse
|
117
|
Wei Y, Hui VLZ, Chen Y, Han R, Han X, Guo Y. YAP/TAZ: Molecular pathway and disease therapy. MedComm (Beijing) 2023; 4:e340. [PMID: 37576865 PMCID: PMC10412783 DOI: 10.1002/mco2.340] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Revised: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 08/15/2023] Open
Abstract
The Yes-associated protein and its transcriptional coactivator with PDZ-binding motif (YAP/TAZ) are two homologous transcriptional coactivators that lie at the center of a key regulatory network of Hippo, Wnt, GPCR, estrogen, mechanical, and metabolism signaling. YAP/TAZ influences the expressions of downstream genes and proteins as well as enzyme activity in metabolic cycles, cell proliferation, inflammatory factor expression, and the transdifferentiation of fibroblasts into myofibroblasts. YAP/TAZ can also be regulated through epigenetic regulation and posttranslational modifications. Consequently, the regulatory function of these mechanisms implicates YAP/TAZ in the pathogenesis of metabolism-related diseases, atherosclerosis, fibrosis, and the delicate equilibrium between cancer progression and organ regeneration. As such, there arises a pressing need for thorough investigation of YAP/TAZ in clinical settings. In this paper, we aim to elucidate the signaling pathways that regulate YAP/TAZ and explore the mechanisms of YAP/TAZ-induce diseases and their potential therapeutic interventions. Furthermore, we summarize the current clinical studies investigating treatments targeting YAP/TAZ. We also address the limitations of existing research on YAP/TAZ and propose future directions for research. In conclusion, this review aims to provide fresh insights into the signaling mediated by YAP/TAZ and identify potential therapeutic targets to present innovative solutions to overcome the challenges associated with YAP/TAZ.
Collapse
Affiliation(s)
- Yuzi Wei
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Victoria Lee Zhi Hui
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yilin Chen
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Ruiying Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Xianglong Han
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
| | - Yongwen Guo
- State Key Laboratory of Oral Diseases & National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsWest China Hospital of StomatologySichuan UniversityChengduSichuanChina
- Department of OrthodonticsLanzhou Stomatological HospitalLanzhouGansuChina
| |
Collapse
|
118
|
Chen Y, Wang L, Guo F, Dai X, Zhang X. Epigenetic reprogramming during the maternal-to-zygotic transition. MedComm (Beijing) 2023; 4:e331. [PMID: 37547174 PMCID: PMC10397483 DOI: 10.1002/mco2.331] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Revised: 06/19/2023] [Accepted: 06/21/2023] [Indexed: 08/08/2023] Open
Abstract
After fertilization, sperm and oocyte fused and gave rise to a zygote which is the beginning of a new life. Then the embryonic development is monitored and regulated precisely from the transition of oocyte to the embryo at the early stage of embryogenesis, and this process is termed maternal-to-zygotic transition (MZT). MZT involves two major events that are maternal components degradation and zygotic genome activation. The epigenetic reprogramming plays crucial roles in regulating the process of MZT and supervising the normal development of early development of embryos. In recent years, benefited from the rapid development of low-input epigenome profiling technologies, new epigenetic modifications are found to be reprogrammed dramatically and may play different roles during MZT whose dysregulation will cause an abnormal development of embryos even abortion at various stages. In this review, we summarized and discussed the important novel findings on epigenetic reprogramming and the underlying molecular mechanisms regulating MZT in mammalian embryos. Our work provided comprehensive and detailed references for the in deep understanding of epigenetic regulatory network in this key biological process and also shed light on the critical roles for epigenetic reprogramming on embryonic failure during artificial reproductive technology and nature fertilization.
Collapse
Affiliation(s)
- Yurong Chen
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Luyao Wang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Fucheng Guo
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Xiangpeng Dai
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| | - Xiaoling Zhang
- Key Laboratory of Organ Regeneration and Transplantation of Ministry of Education First Hospital of Jilin University Changchun China
- National-Local Joint Engineering Laboratory of Animal Models for Human Disease First Hospital of Jilin University Changchun China
| |
Collapse
|
119
|
Gao L, Zhang Z, Zheng X, Wang F, Deng Y, Zhang Q, Wang G, Zhang Y, Liu X. The Novel Role of Zfp296 in Mammalian Embryonic Genome Activation as an H3K9me3 Modulator. Int J Mol Sci 2023; 24:11377. [PMID: 37511136 PMCID: PMC10379624 DOI: 10.3390/ijms241411377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Revised: 07/05/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
The changes in epigenetic modifications during early embryonic development significantly impact mammalian embryonic genome activation (EGA) and are species-conserved to some degree. Here, we reanalyzed the published RNA-Seq of human, mouse, and goat early embryos and found that Zfp296 (zinc finger protein 296) expression was higher at the EGA stage than at the oocyte stage in all three species (adjusted p-value < 0.05 |log2(foldchange)| ≥ 1). Subsequently, we found that Zfp296 was conserved across human, mouse, goat, sheep, pig, and bovine embryos. In addition, we identified that ZFP296 interacts with the epigenetic regulators KDM5B, SMARCA4, DNMT1, DNMT3B, HP1β, and UHRF1. The Cys2-His2(C2H2) zinc finger domain TYPE2 TYPE3 domains of ZFP296 co-regulated the modification level of the trimethylation of lysine 9 on the histone H3 protein subunit (H3K9me3). According to ChIP-seq analysis, ZFP296 was also enriched in Trim28, Suv39h1, Setdb1, Kdm4a, and Ehmt2 in the mESC genome. Then, knockdown of the expression of Zfp296 at the late zygote of the mouse led to the early developmental arrest of the mouse embryos and failure resulting from a decrease in H3K9me3. Together, our results reveal that Zfp296 is an H3K9me3 modulator which is essential to the embryonic genome activation of mouse embryos.
Collapse
Affiliation(s)
- Lu Gao
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Zihan Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Xiaoman Zheng
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Fan Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Yi Deng
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Qian Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Guoyan Wang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Yong Zhang
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| | - Xu Liu
- College of Veterinary Medicine, Northwest A&F University, Xianyang 712100, China
- State Key Laboratory for Biology of Livestock, Northwest A&F University, Xianyang 712100, China
| |
Collapse
|
120
|
Knott MML, Rechavi O. Transgenerational inheritance of engineered cytosine methylation in mice. Cell Res 2023; 33:489-490. [PMID: 37012411 PMCID: PMC10313680 DOI: 10.1038/s41422-023-00799-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/05/2023] Open
Affiliation(s)
- Maximilian M L Knott
- Department of Neurobiology, George S. Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| | - Oded Rechavi
- Department of Neurobiology, George S. Wise Faculty of Life Sciences & Sagol School of Neuroscience, Tel Aviv University, Tel Aviv, Israel.
| |
Collapse
|
121
|
Wang H, Liu B, Chen H, Xu P, Xue H, Yuan J. Dynamic changes of DNA methylation induced by benzo(a)pyrene in cancer. Genes Environ 2023; 45:21. [PMID: 37391844 DOI: 10.1186/s41021-023-00278-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 06/07/2023] [Indexed: 07/02/2023] Open
Abstract
Benzo(a)pyrene (BaP), the earliest and most significant carcinogen among polycyclic aromatic hydrocarbons (PAHs), has been found in foods, tobacco smoke, and automobiles exhaust, etc. Exposure to BaP induced DNA damage directly, or oxidative stress-related damage, resulting in cell apoptosis and carcinogenesis in human respiratory system, digestive system, reproductive system, etc. Moreover, BaP triggered genome-wide epigenetic alterations by methylation, which might cause disturbances in regulation of gene expression, and thereby induced cancer. It has been proved that BaP reduced genome-wide DNA methylation, and activated proto-oncogene by hypomethylation in the promoter region, but silenced tumor suppressor genes by promoter hypermethylation, resulting in cancer initiation and progression. Here we summarized the changes in DNA methylation in BaP exposure, and revealed the methylation of DNA plays a role in cancer development.
Collapse
Affiliation(s)
- Huizeng Wang
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Bingchun Liu
- Stem Cell Research Center, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Hong Chen
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Peixin Xu
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China
| | - Huiting Xue
- College of Basic Medicine, Inner Mongolia Medical University, Hohhot, 010010, China.
| | - Jianlong Yuan
- Department of Laboratory Medicine, the Affiliated Hospital of Inner Mongolia Medical University, Hohhot, 010050, China.
| |
Collapse
|
122
|
Lin LC, Tu B, Song K, Liu ZY, Sun H, Zhou Y, Sha JM, Yang JJ, Zhang Y, Zhao JY, Tao H. Mitochondrial quality control in cardiac fibrosis: Epigenetic mechanisms and therapeutic strategies. Metabolism 2023:155626. [PMID: 37302693 DOI: 10.1016/j.metabol.2023.155626] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2023] [Revised: 06/05/2023] [Accepted: 06/05/2023] [Indexed: 06/13/2023]
Abstract
Cardiac fibrosis (CF) is considered an ultimate common pathway of a wide variety of heart diseases in response to diverse pathological and pathophysiological stimuli. Mitochondria are characterized as isolated organelles with a double-membrane structure, and they primarily contribute to and maintain highly dynamic energy and metabolic networks whose distribution and structure exert potent support for cellular properties and performance. Because the myocardium is a highly oxidative tissue with high energy demands to continuously pump blood, mitochondria are the most abundant organelles within mature cardiomyocytes, accounting for up to one-third of the total cell volume, and play an essential role in maintaining optimal performance of the heart. Mitochondrial quality control (MQC), including mitochondrial fusion, fission, mitophagy, mitochondrial biogenesis, and mitochondrial metabolism and biosynthesis, is crucial machinery that modulates cardiac cells and heart function by maintaining and regulating the morphological structure, function and lifespan of mitochondria. Certain investigations have focused on mitochondrial dynamics, including manipulating and maintaining the dynamic balance of energy demand and nutrient supply, and the resultant findings suggest that changes in mitochondrial morphology and function may contribute to bioenergetic adaptation during cardiac fibrosis and pathological remodeling. In this review, we discuss the function of epigenetic regulation and molecular mechanisms of MQC in the pathogenesis of CF and provide evidence for targeting MQC for CF. Finally, we discuss how these findings can be applied to improve the treatment and prevention of CF.
Collapse
Affiliation(s)
- Li-Chan Lin
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Bin Tu
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Kai Song
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Zhi-Yan Liu
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - He Sun
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Yang Zhou
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Ji-Ming Sha
- Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China
| | - Jing-Jing Yang
- Department of Clinical Pharmacy, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Ye Zhang
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China.
| | - Jian-Yuan Zhao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| | - Hui Tao
- Department of Anesthesiology and Perioperative Medicine, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Department of Cardiothoracic Surgery, The Second Affiliated Hospital of Anhui Medical University, Hefei 230601, PR China; Institute for Developmental and Regenerative Cardiovascular Medicine, MOE-Shanghai Key Laboratory of Children's Environmental Health, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, PR China.
| |
Collapse
|
123
|
Xie Z, Zhou Z, Yang S, Zhang S, Shao B. Epigenetic regulation and therapeutic targets in the tumor microenvironment. MOLECULAR BIOMEDICINE 2023; 4:17. [PMID: 37273004 DOI: 10.1186/s43556-023-00126-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2023] [Accepted: 04/02/2023] [Indexed: 06/06/2023] Open
Abstract
The tumor microenvironment (TME) is crucial to neoplastic processes, fostering proliferation, angiogenesis and metastasis. Epigenetic regulations, primarily including DNA and RNA methylation, histone modification and non-coding RNA, have been generally recognized as an essential feature of tumor malignancy, exceedingly contributing to the dysregulation of the core gene expression in neoplastic cells, bringing about the evasion of immunosurveillance by influencing the immune cells in TME. Recently, compelling evidence have highlighted that clinical therapeutic approaches based on epigenetic machinery modulate carcinogenesis through targeting TME components, including normalizing cells' phenotype, suppressing cells' neovascularization and repressing the immunosuppressive components in TME. Therefore, TME components have been nominated as a promising target for epigenetic drugs in clinical cancer management. This review focuses on the mechanisms of epigenetic modifications occurring to the pivotal TME components including the stroma, immune and myeloid cells in various tumors reported in the last five years, concludes the tight correlation between TME reprogramming and tumor progression and immunosuppression, summarizes the current advances in cancer clinical treatments and potential therapeutic targets with reference to epigenetic drugs. Finally, we summarize some of the restrictions in the field of cancer research at the moment, further discuss several interesting epigenetic gene targets with potential strategies to boost antitumor immunity.
Collapse
Affiliation(s)
- Zhuojun Xie
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Sichuan, 610041, Chengdu, China
| | - Zirui Zhou
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Sichuan, 610041, Chengdu, China
| | - Shuxian Yang
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Sichuan, 610041, Chengdu, China
| | - Shiwen Zhang
- Department of Oral Implantology, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Sichuan, 610041, Chengdu, China.
| | - Bin Shao
- State Key Laboratory of Oral Diseases and National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Sichuan University, No. 14, Section 3, South Renmin Road, Sichuan, 610041, Chengdu, China.
| |
Collapse
|
124
|
Long J, Li W, Chen M, Ding Y, Chen X, Tong C, Li N, Liu X, He J, Peng C, Geng Y, Liu T, Mu X, Li F, Wang Y, Gao R. Uterine deficiency of Dnmt3b impairs decidualization and causes consequent embryo implantation defects. Cell Biol Toxicol 2023; 39:1077-1098. [PMID: 34773530 DOI: 10.1007/s10565-021-09664-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2021] [Accepted: 09/24/2021] [Indexed: 12/19/2022]
Abstract
Uterine deficiency of Dnmt3b impairs decidualization and consequent embryo implantation defects. Recent advances in molecular technologies have allowed the unprecedented mapping of epigenetic modifications during embryo implantation. DNA methyltransferase 3a (DNMT3A) and DNMT3B are responsible for establishing DNA methylation patterns produced through their de novo-type DNA methylation activity in implantation stage embryos and during germ cell differentiation. It was reported that conditional knockout of Dnmt3a in the uterus does not markedly affect endometrial function during embryo implantation, but the tissue-specific functions of Dnmt3b in the endometrium during embryo implantation remain poorly understood to investigate the role of Dnmt3b during peri-implantation period. Here, we generated Dnmt3b conditional knockout (Dnmt3bd/d) female mice using progesterone receptor-Cre mice and examined the role of Dnmt3b during embryo implantation. Dnmt3bd/d female mice exhibited compromised fertility, which was associated with defective decidualization, but not endometrial receptivity. Furthermore, results showed loss of Dnmt3b did not lead to altered genomic methylation patterns of the decidual endometrium during early pregnancy. Transcriptome sequencing analysis of uteri from day 6 pregnant mice identified phosphoglycerate kinase 1 (Pgk1) as one of the most variable genes in Dnmt3bd/d decidual endometrium. Potential roles of PGK1 in the decidualization process during early pregnancy were confirmed. Lastly, the compromised decidualization upon the downregulation of Dnmt3b could be reversed by overexpression of Pgk1. Collectively, our findings indicate that uterine deficiency of Dnmt3b impairs decidualization and consequent embryo implantation defects.
Collapse
Affiliation(s)
- Jing Long
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Weike Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Mengyue Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yubin Ding
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xuemei Chen
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Chao Tong
- Department of Obstetrics, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Na Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xueqing Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Junlin He
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Chuan Peng
- The Chongqing Key Laboratory of Translational Medicine in Major Metabolic Diseases, The First Affiliated Hospital of Chongqing Medical University, Chongqing, 400016, China
| | - Yanqing Geng
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Taihang Liu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Xinyi Mu
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Fangfang Li
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China
| | - Yingxiong Wang
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China.
| | - Rufei Gao
- Laboratory of Reproductive Biology, School of Public Health and Management, Chongqing Medical University, Chongqing, 400016, China.
- Joint International Research Laboratory of Reproduction & Development, Chongqing Medical University, Chongqing, China.
| |
Collapse
|
125
|
Zhao Y, Fan X, Wang Q, Zhen J, Li X, Zhou P, Lang Y, Sheng Q, Zhang T, Huang T, Zhao Y, Lv Z, Wang R. ROS promote hyper-methylation of NDRG2 promoters in a DNMTS-dependent manner: Contributes to the progression of renal fibrosis. Redox Biol 2023; 62:102674. [PMID: 36989575 PMCID: PMC10074964 DOI: 10.1016/j.redox.2023.102674] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 03/09/2023] [Accepted: 03/14/2023] [Indexed: 03/28/2023] Open
Abstract
Renal fibrosis is the common histopathological feature of chronic kidney diseases (CKD), and there is increasing evidence that epigenetic regulation is involved in the occurrence and progression of renal fibrosis. N-myc downstream-regulated gene 2 (NDRG2) is significantly down-regulated in renal fibrosis, the mechanism of which remains unclear. Previous studies have confirmed that the inhibition of NDRG2 expression in tumor cells is related to hyper-methylation, mainly regulated by DNA methyltransferases (DNMTS). Herein, we explored the expression of NDRG2 and its epigenetic regulatory mechanism in renal fibrosis. The results showed that the expression of NDRG2 was significantly inhibited in vivo and in vitro, while the overexpression of NDRG2 effectively alleviated renal fibrosis. Meanwhile, we found that the expression of DNMT1/3A/3B was significantly increased in hypoxia-induced HK2 cells and Unilateral Ureteral Obstruction (UUO) mice accompanied by hyper-methylation of the NDGR2 promoter. Methyltransferase inhibitor (5-AZA-dC) corrected the abnormal expression of DNMT1/3A/3B, reduced the methylation level of NDRG2 promoter and restored the expression of NDRG2. The upstream events that mediate changes in NDRG2 methylation were further explored. Reactive oxygen species (ROS) are important epigenetic regulators and have been shown to play a key role in renal injury due to various causes. Accordingly, we further explored whether ROS could induce DNA-epigenetic changes of the expression of NDRG2 and then participated in the development of renal fibrosis. Our results showed that mitochondria-targeted antioxidants (Mito-TEMPO) could reverse the epigenetic inhibition of NDRG2 in a DNMT-sensitive manner, showing strong ability of DNA demethylation, exhibiting epigenetic regulation and anti-fibrosis effects similar to 5-AZA-dC. More importantly, the anti-fibrotic effects of 5-AZA-dC and Mito-TEMPO were eliminated in HK2 cells with NDRG2 knockdown. These findings highlight that targeting ROS-mediated hyper-methylation of NDRG2 promoter is a potentially effective therapeutic strategy for renal fibrosis, which will provide new insights into the treatment of CKD.
Collapse
|
126
|
He Y, Liu T. Oxidized low-density lipoprotein regulates macrophage polarization in atherosclerosis. Int Immunopharmacol 2023; 120:110338. [PMID: 37210916 DOI: 10.1016/j.intimp.2023.110338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/10/2023] [Accepted: 05/11/2023] [Indexed: 05/23/2023]
Abstract
Atherosclerosis is the pathological basis of acute cardiovascular and cerebrovascular diseases. Oxidized LDL has been recognized as a major atherogenic factor in the vessel wall for decades. A growing body of evidence suggests that oxidized LDL modulates macrophage phenotypes in atherosclerosis. This article reviews the research progress on the regulation of macrophage polarization by oxidized LDL. Mechanistically, oxidized LDL induces macrophage polarization via cell signaling, metabolic reprogramming, epigenetic regulation, and intercellular regulation. This review is expected to provide new targets for the treatment of atherosclerosis.
Collapse
Affiliation(s)
- Yonghang He
- The Second Clinical Medical College, Guangdong Medical University, Dongguan, 523808, China
| | - Tingting Liu
- The First Dongguan Affiliated Hospital, Guangdong Medical University, No. 42 Jiaoping Road, Tangxia Town, Dongguan City, Guangdong Province 523710, China; The Second Clinical Medical College, Guangdong Medical University, Dongguan, 523808, China.
| |
Collapse
|
127
|
D’Silva SZ, Singh M, Pinto AS. NK cell defects: implication in acute myeloid leukemia. Front Immunol 2023; 14:1112059. [PMID: 37228595 PMCID: PMC10203541 DOI: 10.3389/fimmu.2023.1112059] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 04/25/2023] [Indexed: 05/27/2023] Open
Abstract
Acute Myeloid Leukemia (AML) is a complex disease with rapid progression and poor/unsatisfactory outcomes. In the past few years, the focus has been on developing newer therapies for AML; however, relapse remains a significant problem. Natural Killer cells have strong anti-tumor potential against AML. This NK-mediated cytotoxicity is often restricted by cellular defects caused by disease-associated mechanisms, which can lead to disease progression. A stark feature of AML is the low/no expression of the cognate HLA ligands for the activating KIR receptors, due to which these tumor cells evade NK-mediated lysis. Recently, different Natural Killer cell therapies have been implicated in treating AML, such as the adoptive NK cell transfer, Chimeric antigen receptor-modified NK (CAR-NK) cell therapy, antibodies, cytokine, and drug treatment. However, the data available is scarce, and the outcomes vary between different transplant settings and different types of leukemia. Moreover, remission achieved by some of these therapies is only for a short time. In this mini-review, we will discuss the role of NK cell defects in AML progression, particularly the expression of different cell surface markers, the available NK cell therapies, and the results from various preclinical and clinical trials.
Collapse
Affiliation(s)
- Selma Z. D’Silva
- Transplant Immunology and Immunogenetics Lab, Advanced Centre for Treatment, Education and Research in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Meenakshi Singh
- Transplant Immunology and Immunogenetics Lab, Advanced Centre for Treatment, Education and Research in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Homi Bhabha National Institute, Mumbai, India
| | - Andrea S. Pinto
- Transplant Immunology and Immunogenetics Lab, Advanced Centre for Treatment, Education and Research in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| |
Collapse
|
128
|
Zhang N, Gao X, Yuan Q, Fu X, Wang P, Cai F, Liu H, Zhang J, Liang H, Nie Y, Deng J. E3 ubiquitin ligase RNF180 prevents excessive PCDH10 methylation to suppress the proliferation and metastasis of gastric cancer cells by promoting ubiquitination of DNMT1. Clin Epigenetics 2023; 15:77. [PMID: 37147733 PMCID: PMC10163782 DOI: 10.1186/s13148-023-01492-y] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 04/25/2023] [Indexed: 05/07/2023] Open
Abstract
BACKGROUND Downregulation of certain tumor-suppressor genes (TSGs) by aberrant methylation of CpG islands in the promoter region contributes a great deal to the oncogenesis and progression of several cancers, including gastric cancer (GC). Protocadherin 10 (PCDH10) is a newly identified TSG in various cancers and is downregulated in GC; however, the specific mechanisms of PCDH10 in GC remain elusive. Here, we elucidated a novel epigenetic regulatory signaling pathway involving the E3 ubiquitin ligase RNF180 and DNA methyltransferase 1 (DNMT1), responsible for modulating PCDH10 expression by affecting its promoter methylation. RESULTS We revealed that PCDH10 was downregulated in GC cells and tissues, and low PCDH10 expression was correlated with lymph node metastasis and poor prognosis in patients with GC. Additionally, PCDH10 overexpression suppressed GC cell proliferation and metastasis. Mechanistically, DNMT1-mediated promoter hypermethylation resulted in decreased expression of PCDH10 in GC tissues and cells. Further analysis revealed that RNF180 can bind directly to DNMT1 and was involved in DNMT1 degradation via ubiquitination. Additionally, a positive correlation was found between RNF180 and PCDH10 expression and an inverse association between DNMT1 and PCDH10 expression showed considerable prognostic significance. CONCLUSION Our data showed that RNF180 overexpression upregulated PCDH10 expression via ubiquitin-dependent degradation of DNMT1, thus suppressing GC cell proliferation, indicating that the RNF180/DNMT1/PCDH10 axis could be a potential therapeutic target for GC treatment.
Collapse
Affiliation(s)
- Nannan Zhang
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Xiaoliang Gao
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Qiangqiang Yuan
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China
| | - Xin Fu
- Guangxi Medical University, Nanning, 530021, Guangxi, China
| | - Pengliang Wang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Fenglin Cai
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Hui Liu
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Jing Zhang
- College of Life Sciences, Northwest University, Xi'an, 710069, China
| | - Han Liang
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China
| | - Yongzhan Nie
- State Key Laboratory of Cancer Biology and National Clinical Research Center for Digestive Diseases, Xijing Hospital of Digestive Diseases, Fourth Military Medical University, Xi'an, 710032, China.
| | - Jingyu Deng
- Department of Gastric Surgery, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Tianjin's Clinical Research Center for Cancer and Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060, China.
| |
Collapse
|
129
|
Pisciotta A, Sampino AM, Presentato A, Galardini M, Manteca A, Alduina R. The DNA cytosine methylome revealed two methylation motifs in the upstream regions of genes related to morphological and physiological differentiation in Streptomyces coelicolor A(3)2 M145. Sci Rep 2023; 13:7038. [PMID: 37120673 PMCID: PMC10148868 DOI: 10.1038/s41598-023-34075-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2023] [Accepted: 04/24/2023] [Indexed: 05/01/2023] Open
Abstract
DNA methylation is an epigenetic modification detected in both prokaryotic and eukaryotic genomic DNAs. In bacteria, the importance of 5-methylcytosine (m5C) in gene expression has been less investigated than in eukaryotic systems. Through dot-blot analysis employing m5C antibodies against chromosomal DNA, we have previously demonstrated that m5C influences the differentiation of Streptomyces coelicolor A(3)2 M145 in solid sporulating and liquid non-sporulating complex media. Here, we mapped the methylated cytosines of the M145 strain growing in the defined Maltose Glutamate (MG) liquid medium. Sequencing of the M145 genome after bisulfite treatment (BS-sequencing) evidenced 3360 methylated cytosines and the two methylation motifs, GGCmCGG and GCCmCG, in the upstream regions of 321 genes. Besides, the role of cytosine methylation was investigated using the hypo-methylating agent 5'-aza-2'-deoxycytidine (5-aza-dC) in S. coelicolor cultures, demonstrating that m5C affects both growth and antibiotic biosynthesis. Finally, quantitative reverse-transcription polymerase-chain-reaction (RT-qPCR) analysis of genes containing the methylation motifs in the upstream regions showed that 5-aza-dC treatment influenced their transcriptional levels and those of the regulatory genes for two antibiotics. To the best of our knowledge, this is the first study that reports the cytosine methylome of S. coelicolor M145, supporting the crucial role ascribed to cytosine methylation in controlling bacterial gene expression.
Collapse
Affiliation(s)
- Annalisa Pisciotta
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Alessia Maria Sampino
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Alessandro Presentato
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy
| | - Marco Galardini
- Department of Biology, University of Florence, Florence, Italy
- EMBL-EBI, Wellcome Genome Campus, Cambridge, UK
- Institute for Molecular Bacteriology, TWINCORE, Centre for Experimental and Clinical Infection Research, A Joint Venture Between the Helmholtz Centre for Infection Research and the Hannover Medical School, Hannover, Germany
| | - Angel Manteca
- Área de Microbiología, Departamento de Biología Funcional, IUOPA and ISPA, Facultad de Medicina, Universidad de Oviedo, 33006, Oviedo, Spain
| | - Rosa Alduina
- Department of Biological, Chemical and Pharmaceutical Sciences and Technologies (STEBICEF), University of Palermo, 90128, Palermo, Italy.
| |
Collapse
|
130
|
Bryzgalov LO, Korbolina EE, Merkulova TI. Exploring the Genetic Predisposition to Epigenetic Changes in Alzheimer's Disease. Int J Mol Sci 2023; 24:ijms24097955. [PMID: 37175659 PMCID: PMC10177989 DOI: 10.3390/ijms24097955] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 04/05/2023] [Accepted: 04/21/2023] [Indexed: 05/15/2023] Open
Abstract
Alzheimer's disease (AD) is a prevalent type of dementia in elderly populations with a significant genetic component. The accumulating evidence suggests that AD involves a reconfiguration of the epigenetic landscape, including DNA methylation, post-translational modification of histone proteins, and chromatin remodeling. Along with environmental factors, individual specific genetic features play a considerable role in the formation of epigenetic architecture. In this study, we attempt to identify the non-coding regulatory SNPs (rSNPs) able to affect the epigenetic mechanisms in AD. To this end, the multi-omics approach is used. The GEO (Gene Expression Omnibus) available data (GSE153875) for AD patients and controls are integrated to reveal the rSNPs that display allele-specific features in both ChIP-seq profiles of four histone modifications and RNA-seq. Furthermore, we analyze the presence of rSNPs in the promoters of genes reported to be differentially expressed between AD and the normal brain (AD-related genes) and involved in epigenetic regulation according to the EpiFactors database. We also searched for the rSNPs in the promoters of the genes coding for transcription regulators of the identified AD-related genes. These regulators were selected based on the corresponding ChIP-seq peaks (ENCODE) in the promoter regions of these genes. Finally, we formed a panel of rSNPs localized to the promoters of genes that contribute to the epigenetic landscape in AD and, thus, to the genetic predisposition for this disease.
Collapse
Affiliation(s)
- Leonid O Bryzgalov
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, 630090 Novosibirsk, Russia
- Vector-Best, 630117 Novosibirsk, Russia
| | - Elena E Korbolina
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, 630090 Novosibirsk, Russia
| | - Tatiana I Merkulova
- The Federal Research Center Institute of Cytology and Genetics, The Siberian Branch of the Russian Academy of Science, 10 Lavrentyeva Prospekt, 630090 Novosibirsk, Russia
| |
Collapse
|
131
|
Tuo LJ, Song XY, Zhu YY, He HN, Song YP, Chen DZ, Zheng XM, Zhang H, Xu DX. Gestational folic acid supplement prevents vitamin D deficiency-induced depression-like behavior by reversing cortical DNA hypomethylation in adult offspring. J Steroid Biochem Mol Biol 2023; 231:106313. [PMID: 37075986 DOI: 10.1016/j.jsbmb.2023.106313] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 03/27/2023] [Accepted: 04/14/2023] [Indexed: 04/21/2023]
Abstract
Depression is a common mental disorder with an increasing incidence. Several studies have demonstrated that cortical DNA hypomethylation is associated with depression-like behaviors. This study aims to investigate whether maternal vitamin D deficiency (VDD) induces depression-like behaviors and to explore the effects of folic acid supplement on VDD-induced cortical DNA hypomethylation in adult offspring. Female mice were fed with a VDD diet, beginning at 5 weeks of age and throughout pregnancy. Depression-like behaviors were evaluated, and cortical 5-methylcytosine (5mC) content was detected in adult offspring. Results showed that depression-like behaviors were observed in adult offspring of the VDD group. Cortical Ache and Oxtr mRNAs were upregulated in female offspring of the VDD group. Cortical Cpt1a and Htr1b mRNAs were increased in male offspring of the VDD group. Moreover, cortical 5mC content was reduced in offspring of VDD-fed dams. The additional experiment showed that serum folate and cortical S-adenosylmethionine (SAM) contents were decreased in the offspring of the VDD group. Folic acid supplement attenuated VDD-induced SAM depletion and reversed cortical DNA methylation. Moreover, folic acid supplement attenuated VDD-induced upregulation of depression-related genes. In addition, folic acid supplement alleviated maternal VDD-induced depression-like behaviors in adult offspring. These results suggest that maternal VDD induces depression-like behavior in adult offspring by reducing cortical DNA methylation. The gestational folic acid supplement prevents VDD-induced depression-like behavior by reversing cortical DNA hypomethylation in adult offspring.
Collapse
Affiliation(s)
- Ling-Jin Tuo
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Xiao-Yue Song
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Yan-Yan Zhu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Hong-Ning He
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Ya-Ping Song
- Department of Toxicology, Anhui Medical University, Hefei 230032, China
| | - Dao-Zhen Chen
- Department of Clinical Laboratory, Wuxi Maternity and Child Health Care Hospital, Wuxi 214002, China; Laboratory Department of Haidong Second People's Hospital, Haidong, Qinghai 810699, China
| | - Xiao-Min Zheng
- Research Institute for Reproductive Medicine and Genetic Diseases, Wuxi Maternity and Child Health Hospital, Wuxi, 214002, China
| | - Heng Zhang
- Department of Toxicology, Anhui Medical University, Hefei 230032, China; Department of Child Health Care, Wuxi Maternity and Child Health Care Hospital, Wuxi 214002, China.
| | - De-Xiang Xu
- Department of Toxicology, Anhui Medical University, Hefei 230032, China.
| |
Collapse
|
132
|
Wang K, Sun X, Sun Y, Jiao B, Yao J, Hu Y, Deng Q, Dong J, Wang W, Wang Y, Li C. Transcriptional regulation of macrophages in heart failure. Front Cardiovasc Med 2023; 10:1148041. [PMID: 37063966 PMCID: PMC10097991 DOI: 10.3389/fcvm.2023.1148041] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Accepted: 03/13/2023] [Indexed: 04/03/2023] Open
Abstract
Adverse cardiac remodeling after acute myocardial infarction is the most important pathological mechanism of heart failure and remains a major problem in clinical practice. Cardiac macrophages, derived from tissue resident macrophages and circulating monocyte, undergo significant phenotypic and functional changes following cardiac injury and play crucial roles in inflammatory response and tissue repair response. Currently, numerous studies indicate that epigenetic regulatory factors and transcription factors can regulate the transcription of inflammatory and reparative genes and timely conversion of inflammatory macrophages into reparative macrophages and then alleviate cardiac remodeling. Accordingly, targeting transcriptional regulation of macrophages may be a promising option for heart failure treatment. In this review, we not only summarize the origin and function of cardiac macrophages, but more importantly, describe the transcriptional regulation of macrophages in heart failure, aiming to provide a potential therapeutic target for heart failure.
Collapse
Affiliation(s)
- Keyan Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Xiaoqian Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Ying Sun
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Boyang Jiao
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Junkai Yao
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yueyao Hu
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Qiong Deng
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Jianteng Dong
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Wei Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- School of Chinese Materia Medica, Guangzhou University of Chinese Medicine, Guangzhou, China
- Correspondence: Wei Wang Yong Wang Chun Li
| | - Yong Wang
- College of Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- Correspondence: Wei Wang Yong Wang Chun Li
| | - Chun Li
- Beijing Key Laboratory of Traditional Chinese Medicine (TCM) Syndrome and Formula, Beijing University of Chinese Medicine, Beijing, China
- Modern Research Center for Traditional Chinese Medicine (TCM), Beijing University of Chinese Medicine, Beijing, China
- Correspondence: Wei Wang Yong Wang Chun Li
| |
Collapse
|
133
|
Qiu D, Liu G, Li F, Kang J. Determination of 5-methyldeoxycytosine and oxidized derivatives by nano-liquid chromatography with zwitterionic monolithic capillary column. J Chromatogr A 2023; 1693:463895. [PMID: 36857983 DOI: 10.1016/j.chroma.2023.463895] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/08/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
DNA methylation is one of the epigenetic modifications at the 5-carbon of cytosine to form 5-methyl-2'-deoxycytidine (5mdC). In mammalian cells, 5mdC can be transferred to 5-hydroxymethyl-2'-deoxycytidine (5hmdC) by ten-eleven translocation (TET), and 5hmdC is further oxidized to 5-formyl-2'-deoxycytidine (5fodC) and 5-carboxyl-2'-deoxycytidine (5cadC). In the present work, we developed a highly sensitive nano liquid chromatographic method for the determination of 5mC and 5hmC with zwitterionic monolithic capillary column. The conditions for the preparation of zwitterionic monolithic capillary column were systematically optimized. The monolithic capillary column displayed high column efficiency for nucleoside dA (190,000 plates/m) and allowed the baseline separation of 10 standard nucleosides in HILIC mode. The detection sensitivity was improved significantly by using the large volume injection combined with sample stacking onto the head of the column when sample was dissolved in high content organic solvent (ACN: H2O = 97:3). The limit of detection for 5mdC and 5hmdC were determined as 4 nM and 3 nM, respectively, and the corresponding limit of quantification were determined as 12 nM and 10 nM, respectively. Further, the zwitterionic monolithic capillary column can be easily utilized in nano-LC and mass spectrometry coupling for qualitative analysis of 5mdC, 5hmdC, 5fodC and 5cadC in real mouse brain sample. The whole genomic DNA methylation levels in mouse brain sample can be easily determined with UV detection.
Collapse
Affiliation(s)
- Danye Qiu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Lingling Road 345, Shanghai 200032, China
| | - Guizhen Liu
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Lingling Road 345, Shanghai 200032, China; School of Physical Science and Technology, ShanghaiTech University, Haike Road 100, Shanghai 200031, China
| | - Feng Li
- School of Chemical Engineering, Xi'an Key Laboratory of Food Safety Testing and Risk Assessment, Xi'an University, Xi'an 710065, China
| | - Jingwu Kang
- State Key Laboratory of Bioorganic and Natural Products Chemistry, Center for Excellence in Molecular Synthesis, Shanghai Institute of Organic Chemistry, Chinese Academy of Sciences, Lingling Road 345, Shanghai 200032, China.
| |
Collapse
|
134
|
Lyu SY, Xiao W, Cui GZ, Yu C, Liu H, Lyu M, Kuang QY, Xiao EH, Luo YH. Role and mechanism of DNA methylation and its inhibitors in hepatic fibrosis. Front Genet 2023; 14:1124330. [PMID: 37056286 PMCID: PMC10086238 DOI: 10.3389/fgene.2023.1124330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2022] [Accepted: 03/15/2023] [Indexed: 03/30/2023] Open
Abstract
Liver fibrosis is a repair response to injury caused by various chronic stimuli that continually act on the liver. Among them, the activation of hepatic stellate cells (HSCs) and their transformation into a myofibroblast phenotype is a key event leading to liver fibrosis, however the mechanism has not yet been elucidated. The molecular basis of HSC activation involves changes in the regulation of gene expression without changes in the genome sequence, namely, via epigenetic regulation. DNA methylation is a key focus of epigenetic research, as it affects the expression of fibrosis-related, metabolism-related, and tumor suppressor genes. Increasing studies have shown that DNA methylation is closely related to several physiological and pathological processes including HSC activation and liver fibrosis. This review aimed to discuss the mechanism of DNA methylation in the pathogenesis of liver fibrosis, explore DNA methylation inhibitors as potential therapies for liver fibrosis, and provide new insights on the prevention and clinical treatment of liver fibrosis.
Collapse
Affiliation(s)
- Shi-Yi Lyu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Wang Xiao
- Department of Gastrointestinal Surgery, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Guang-Zu Cui
- XiangYa School of Medicine, Central South University, Changsha, Hunan, China
| | - Cheng Yu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Huan Liu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Min Lyu
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Qian-Ya Kuang
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - En-Hua Xiao
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| | - Yong-Heng Luo
- Department of Radiology, The Second Xiangya Hospital, Central-South University, Changsha, Hunan, China
| |
Collapse
|
135
|
Zhang H, Liu L, Liu J, Dang P, Hu S, Yuan W, Sun Z, Liu Y, Wang C. Roles of tumor-associated macrophages in anti-PD-1/PD-L1 immunotherapy for solid cancers. Mol Cancer 2023; 22:58. [PMID: 36941614 PMCID: PMC10029244 DOI: 10.1186/s12943-023-01725-x] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Accepted: 01/16/2023] [Indexed: 03/23/2023] Open
Abstract
In recent years, tumor immunotherapy has made significant progress. However, tumor immunotherapy, particularly immune checkpoint inhibitors (e.g., PD-1/PD-L1 inhibitors), benefits only a tiny proportion of patients in solid cancers. The tumor microenvironment (TME) acts a significant role in tumor immunotherapy. Studies reported that tumor-associated macrophages (TAMs), as one of the main components of TME, seriously affected the therapeutic effect of PD-1/PD-L1 inhibitors. In this review, we analyzed TAMs from epigenetic and single-cell perspectives and introduced the role and mechanisms of TAMs in anti-programmed death protein 1(anti-PD-1) therapy. In addition, we summarized combination regimens that enhance the efficacy of tumor PD-1/PD-L1 inhibitors and elaborated on the role of the TAMs in different solid cancers. Eventually, the clinical value of TAMs by influencing the therapeutic effect of tumor PD-1/PD-L1 inhibitors was discussed. These above are beneficial to elucidate poor therapeutic effect of PD-1/PD-L1 inhibitors in solid tumors from the point of view of TAMs and explore the strategies to improve its objective remission rate of solid cancers.
Collapse
Affiliation(s)
- Hao Zhang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Lin Liu
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China
| | - Jinbo Liu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Pengyuan Dang
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Shengyun Hu
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Weitang Yuan
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China
| | - Zhenqiang Sun
- Department of Colorectal Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450001, China.
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| | - Yang Liu
- Department of Radiotherapy, Henan Cancer Hospital, Affiliated Cancer Hospital of Zhengzhou University, Zhengzhou, 450001, China.
| | - Chengzeng Wang
- Henan Institute of Interconnected Intelligent Health Management, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
- Department of Ultrasound, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, 450052, Henan, China.
| |
Collapse
|
136
|
Thompson D, Lawrentschuk N, Bolton D. New Approaches to Targeting Epigenetic Regulation in Bladder Cancer. Cancers (Basel) 2023; 15:cancers15061856. [PMID: 36980741 PMCID: PMC10046617 DOI: 10.3390/cancers15061856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 03/14/2023] [Accepted: 03/17/2023] [Indexed: 03/22/2023] Open
Abstract
Epigenetics is a growing field and in bladder cancer, it is of particular interest in advanced or metastatic disease. As opposed to genetic mutations in which the nucleotide sequence itself is altered, epigenetic alterations refer to changes to the genome that do not involve nucleotides. This is of great interest in cancer research because epigenetic alterations are reversible, making them a promising target for pharmacological agents. While chemoimmunotherapy is the mainstay for metastatic disease, there are few alternatives for patients who have progressed on first- or second-line treatment. By targeting reversible epigenetic alterations, novel epigenetic therapies are important potential treatment options for these patients. A search of clinical registries was performed in order to identify and collate epigenetic therapies currently in human trials. A literature search was also performed to identify therapies that are currently in preclinical stages, whether this be in vivo or in vitro models. Twenty-five clinical trials were identified that investigated the use of epigenetic inhibitors in patients with bladder cancer, often in combination with another agent, such as platinum-based chemotherapy or pembrolizumab. The main classes of epigenetic inhibitors studied include DNA-methyltransferase (DNMT) inhibitors, histone deacetylase (HDAC) inhibitors, and histone methyltransferase (HMT) inhibitors. At present, no phase 3 clinical trials have been registered. Few trials have published results, though DNMT inhibitors have shown the most promise thus far. Many patients with advanced or metastatic bladder cancer have limited treatment options, particularly when first- or second-line chemoimmunotherapy fails. Epigenetic alterations, which are common in bladder cancer, are potential targets for drug therapies, and these epigenetic agents are already in use for many cancers. While they have shown promise in pre-clinical trials for bladder cancer, more research is needed to assess their benefit in clinical settings.
Collapse
Affiliation(s)
- Daryl Thompson
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia
| | - Nathan Lawrentschuk
- Division of Cancer Surgery, Peter MacCallum Cancer Centre, The University of Melbourne, Melbourne, VIC 3000, Australia
- Department of Urology, The Royal Melbourne Hospital, Melbourne, VIC 3050, Australia
- EJ Whitten Prostate Cancer Research Centre at Epworth Healthcare, Melbourne, VC 3121, Australia
| | - Damien Bolton
- Department of Surgery, Austin Health, The University of Melbourne, Heidelberg, VIC 3084, Australia
- Olivia Newton-John Cancer and Wellness Centre, Austin Health, Melbourne, VIC 3084, Australia
- Correspondence:
| |
Collapse
|
137
|
Wu YL, Lin ZJ, Li CC, Lin X, Shan SK, Guo B, Zheng MH, Li F, Yuan LQ, Li ZH. Epigenetic regulation in metabolic diseases: mechanisms and advances in clinical study. Signal Transduct Target Ther 2023; 8:98. [PMID: 36864020 PMCID: PMC9981733 DOI: 10.1038/s41392-023-01333-7] [Citation(s) in RCA: 142] [Impact Index Per Article: 71.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 01/02/2023] [Accepted: 01/18/2023] [Indexed: 03/04/2023] Open
Abstract
Epigenetics regulates gene expression and has been confirmed to play a critical role in a variety of metabolic diseases, such as diabetes, obesity, non-alcoholic fatty liver disease (NAFLD), osteoporosis, gout, hyperthyroidism, hypothyroidism and others. The term 'epigenetics' was firstly proposed in 1942 and with the development of technologies, the exploration of epigenetics has made great progresses. There are four main epigenetic mechanisms, including DNA methylation, histone modification, chromatin remodelling, and noncoding RNA (ncRNA), which exert different effects on metabolic diseases. Genetic and non-genetic factors, including ageing, diet, and exercise, interact with epigenetics and jointly affect the formation of a phenotype. Understanding epigenetics could be applied to diagnosing and treating metabolic diseases in the clinic, including epigenetic biomarkers, epigenetic drugs, and epigenetic editing. In this review, we introduce the brief history of epigenetics as well as the milestone events since the proposal of the term 'epigenetics'. Moreover, we summarise the research methods of epigenetics and introduce four main general mechanisms of epigenetic modulation. Furthermore, we summarise epigenetic mechanisms in metabolic diseases and introduce the interaction between epigenetics and genetic or non-genetic factors. Finally, we introduce the clinical trials and applications of epigenetics in metabolic diseases.
Collapse
Affiliation(s)
- Yan-Lin Wu
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Zheng-Jun Lin
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Chang-Chun Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Xiao Lin
- Department of Radiology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Su-Kang Shan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Bei Guo
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ming-Hui Zheng
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Fuxingzi Li
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China
| | - Ling-Qing Yuan
- National Clinical Research Center for Metabolic Disease, Department of Metabolism and Endocrinology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| | - Zhi-Hong Li
- Department of Orthopaedics, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China. .,Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital, Central South University, Changsha, Hunan, 410011, China.
| |
Collapse
|
138
|
Xia M, Yan R, Kim MH, Xu X. Tet Enzyme-Mediated Response in Environmental Stress and Stress-Related Psychiatric Diseases. Mol Neurobiol 2023; 60:1594-1608. [PMID: 36534335 DOI: 10.1007/s12035-022-03168-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Accepted: 12/10/2022] [Indexed: 12/23/2022]
Abstract
Mental disorders caused by stress have become a worldwide public health problem. These mental disorders are often the results of a combination of genes and environment, in which epigenetic modifications play a crucial role. At present, the genetic and epigenetic mechanisms of mental disorders such as posttraumatic stress disorder or depression caused by environmental stress are not entirely clear. Although many epigenetic modifications affect gene regulation, the most well-known modification in eukaryotic cells is the DNA methylation of CpG islands. Stress causes changes in DNA methylation in the brain to participate in the neuronal function or mood-modulating behaviors, and these epigenetic modifications can be passed on to offspring. Ten-eleven translocation (Tet) enzymes are the 5-methylcytosine (5mC) hydroxylases of DNA, which recognize 5mC on the DNA sequence and oxidize it to 5-hydroxymethylcytosine (5hmC), 5-formylcytosine (5fC), and 5-carboxylcytosine (5caC). Tet regulates gene expression at the transcriptional level through the demethylation of DNA. This review will elaborate on the molecular mechanism and the functions of Tet enzymes in environmental stress-related disorders and discuss future research directions.
Collapse
Affiliation(s)
- Meiling Xia
- Departments of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, 215006, China.,Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul City, 03080, Korea
| | - Rui Yan
- Institute of Neuroscience, Soochow University, Suzhou City, China
| | - Myoung-Hwan Kim
- Department of Physiology and Biomedical Sciences, Seoul National University College of Medicine, Seoul City, 03080, Korea.
| | - Xingshun Xu
- Departments of Neurology, the Second Affiliated Hospital of Soochow University, Suzhou City, 215006, China. .,Institute of Neuroscience, Soochow University, Suzhou City, China. .,Jiangsu Key Laboratory of Neuropsychiatric Diseases, Soochow University, Suzhou City, China.
| |
Collapse
|
139
|
Epigenetic Regulation in Breast Cancer: Insights on Epidrugs. EPIGENOMES 2023; 7:epigenomes7010006. [PMID: 36810560 PMCID: PMC9953240 DOI: 10.3390/epigenomes7010006] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 02/16/2023] [Accepted: 02/17/2023] [Indexed: 02/22/2023] Open
Abstract
Breast cancer remains a common cause of cancer-related death in women. Therefore, further studies are necessary for the comprehension of breast cancer and the revolution of breast cancer treatment. Cancer is a heterogeneous disease that results from epigenetic alterations in normal cells. Aberrant epigenetic regulation is strongly associated with the development of breast cancer. Current therapeutic approaches target epigenetic alterations rather than genetic mutations due to their reversibility. The formation and maintenance of epigenetic changes depend on specific enzymes, including DNA methyltransferases and histone deacetylases, which are promising targets for epigenetic-based therapy. Epidrugs target different epigenetic alterations, including DNA methylation, histone acetylation, and histone methylation, which can restore normal cellular memory in cancerous diseases. Epigenetic-targeted therapy using epidrugs has anti-tumor effects on malignancies, including breast cancer. This review focuses on the importance of epigenetic regulation and the clinical implications of epidrugs in breast cancer.
Collapse
|
140
|
Berger F, Muegge K, Richards EJ. Seminars in cell and development biology on histone variants remodelers of H2A variants associated with heterochromatin. Semin Cell Dev Biol 2023; 135:93-101. [PMID: 35249811 PMCID: PMC9440159 DOI: 10.1016/j.semcdb.2022.02.026] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 02/22/2022] [Accepted: 02/23/2022] [Indexed: 01/04/2023]
Abstract
Variants of the histone H2A occupy distinct locations in the genome. There is relatively little known about the mechanisms responsible for deposition of specific H2A variants. Notable exceptions are chromatin remodelers that control the dynamics of H2A.Z at promoters. Here we review the steps that identified the role of a specific class of chromatin remodelers, including LSH and DDM1 that deposit the variants macroH2A in mammals and H2A.W in plants, respectively. The function of these remodelers in heterochromatin is discussed together with their multiple roles in genome stability.
Collapse
Affiliation(s)
- Frédéric Berger
- Gregor Mendel Institute, Austrian Academy of Sciences, Vienna BioCenter, Dr. Bohr-Gasse 3, 1030 Vienna, Austria.
| | - Kathrin Muegge
- Epigenetics Section, Frederick National Laboratory for Cancer Research in the Mouse Cancer Genetics Program, National Cancer Institute, Frederick, MD, USA.
| | | |
Collapse
|
141
|
Wu H, Li Z, Yang Y, Zhang L, Yuan Y, Wang Y, Li G, Yang X. Rap1A accelerates homocysteine-induced ANA-1 cells inflammation via synergy of FoxO1 and DNMT3a. Cell Signal 2023; 106:110627. [PMID: 36791985 DOI: 10.1016/j.cellsig.2023.110627] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2022] [Revised: 01/10/2023] [Accepted: 02/08/2023] [Indexed: 02/17/2023]
Abstract
Abnormal elevation of homocysteine (Hcy) level accelerates atherosclerosis through promote macrophage inflammation, while the precise mechanisms remain to be well elucidated. Previous study revealed that Rap1A is involved in the development of atherosclerosis, but little is known regarding the regulation of macrophage inflammation induced by Hcy and its potential mechanisms. In the present study, we demonstrated that Hcy upregulates Rap1A expression and knockdown of Rap1A inhibited pro-inflammatory cytokines IL-6 and TNF-α levels in ANA-1 cells. Mechanistically, DNMT3a-mediated DNA hypomethylation of Rap1A promoter accelerates Hcy-induced ANA-1 cells inflammation. Furthermore, FoxO1 transcriptionally activate Rap1A by direct binding to its promoter. More importantly, Hcy could enhance FoxO1 interaction with DNMT3a and synergistically promote the expression of Rap1A resulting in accelerate ANA-1 cells inflammation. These data indicate that Rap1A is a novel and important regulator in Hcy-induced ANA-1 cells inflammation.
Collapse
Affiliation(s)
- Hui Wu
- Heart Centre & Department of Cardiovascular Diseases, General Hospital of Ningxia Medical University, Yinchuan 75004, China
| | - Zhen Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
| | - Yali Yang
- Department of Pathology, General Hospital of Ningxia Medical University, Yinchuan 750004, China
| | - Lin Zhang
- Department of Pathology, People's Hospital of Ningxia Hui Autonomous Region, Yinchuan 750000, China
| | - Yin Yuan
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Yanjia Wang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China
| | - Guizhong Li
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China
| | - Xiaoling Yang
- School of Basic Medical Sciences, Ningxia Medical University, Yinchuan 750004, China; NHC Key Laboratory of Metabolic Cardiovascular Diseases Research, Ningxia Medical University, Yinchuan 750004, China.
| |
Collapse
|
142
|
Takahashi E, Allan N, Peres R, Ortug A, van der Kouwe AJW, Valli B, Ethier E, Levman J, Baumer N, Tsujimura K, Vargas-Maya NI, McCracken TA, Lee R, Maunakea AK. Integration of structural MRI and epigenetic analyses hint at linked cellular defects of the subventricular zone and insular cortex in autism: Findings from a case study. Front Neurosci 2023; 16:1023665. [PMID: 36817099 PMCID: PMC9935943 DOI: 10.3389/fnins.2022.1023665] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2022] [Accepted: 12/20/2022] [Indexed: 02/05/2023] Open
Abstract
Introduction Autism Spectrum Disorder (ASD) is a neurodevelopmental disorder characterized by deficits in social interaction, communication and repetitive, restrictive behaviors, features supported by cortical activity. Given the importance of the subventricular zone (SVZ) of the lateral ventrical to cortical development, we compared molecular, cellular, and structural differences in the SVZ and linked cortical regions in specimens of ASD cases and sex and age-matched unaffected brain. Methods We used magnetic resonance imaging (MRI) and diffusion tractography on ex vivo postmortem brain samples, which we further analyzed by Whole Genome Bisulfite Sequencing (WGBS), Flow Cytometry, and RT qPCR. Results Through MRI, we observed decreased tractography pathways from the dorsal SVZ, increased pathways from the posterior ventral SVZ to the insular cortex, and variable cortical thickness within the insular cortex in ASD diagnosed case relative to unaffected controls. Long-range tractography pathways from and to the insula were also reduced in the ASD case. FACS-based cell sorting revealed an increased population of proliferating cells in the SVZ of ASD case relative to the unaffected control. Targeted qPCR assays of SVZ tissue demonstrated significantly reduced expression levels of genes involved in differentiation and migration of neurons in ASD relative to the control counterpart. Finally, using genome-wide DNA methylation analyses, we identified 19 genes relevant to neurological development, function, and disease, 7 of which have not previously been described in ASD, that were significantly differentially methylated in autistic SVZ and insula specimens. Conclusion These findings suggest a hypothesis that epigenetic changes during neurodevelopment alter the trajectory of proliferation, migration, and differentiation in the SVZ, impacting cortical structure and function and resulting in ASD phenotypes.
Collapse
Affiliation(s)
- Emi Takahashi
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Nina Allan
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Rafael Peres
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Alpen Ortug
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Andre J. W. van der Kouwe
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Briana Valli
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA, United States
| | - Elizabeth Ethier
- Department of Behavioral Neuroscience, Northeastern University, Boston, MA, United States
| | - Jacob Levman
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
- Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, NS, Canada
| | - Nicole Baumer
- Department of Neurology, Boston Children’s Hospital and Harvard Medical School, Boston, MA, United States
| | - Keita Tsujimura
- Department of Radiology, Athinoula A. Martinos Center for Biomedical Research, Massachusetts General Hospital and Harvard Medical School, Charlestown, MA, United States
- Department of Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, MA, United States
| | - Nauru Idalia Vargas-Maya
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Trevor A. McCracken
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Rosa Lee
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| | - Alika K. Maunakea
- Epigenomics Research Program, Department of Anatomy, Institute for Biogenesis Research, Biochemistry and Physiology, John A. Burns School of Medicine, University of Hawai’i at Mānoa, Honolulu, HI, United States
| |
Collapse
|
143
|
Tu CF, Peng SH, Chuang CK, Wong CH, Yang TS. - Invited Review - Reproductive technologies needed for the generation of precise gene-edited pigs in the pathways from laboratory to farm. Anim Biosci 2023; 36:339-349. [PMID: 36397683 PMCID: PMC9899582 DOI: 10.5713/ab.22.0389] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Accepted: 11/07/2022] [Indexed: 11/15/2022] Open
Abstract
Gene editing (GE) offers a new breeding technique (NBT) of sustainable value to animal agriculture. There are 3 GE working sites covering 5 feasible pathways to generate GE pigs along with the crucial intervals of GE/genotyping, microinjection/electroporation, induced pluripotent stem cells, somatic cell nuclear transfer, cryopreservation, and nonsurgical embryo transfer. The extension of NBT in the new era of pig breeding depends on the synergistic effect of GE and reproductive biotechnologies; the outcome relies not only on scientific due diligence and operational excellence but also on the feasibility of application on farms to improve sustainability.
Collapse
Affiliation(s)
- Ching-Fu Tu
- Division of Animal Technology, Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 30093,
Taiwan,Corresponding Author: Ching-Fu Tu, Tel: +886-37-585815, E-mail:
| | - Shu-Hui Peng
- Division of Animal Technology, Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 30093,
Taiwan
| | - Chin-kai Chuang
- Division of Animal Technology, Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 30093,
Taiwan
| | - Chi-Hong Wong
- Division of Animal Technology, Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 30093,
Taiwan
| | - Tien-Shuh Yang
- Division of Animal Technology, Animal Technology Research Center, Agricultural Technology Research Institute, Hsinchu 30093,
Taiwan,Department of Biotechnology and Animal Science, National Ilan University, Yilan 260007,
Taiwan
| |
Collapse
|
144
|
Zou Z, Zhang Y, Huang Y, Wang J, Min W, Xiang M, Zhou B, Li T. Integrated genome-wide methylation and expression analyses provide predictors of diagnosis and early response to antidepressant in panic disorder. J Affect Disord 2023; 322:146-155. [PMID: 36356898 DOI: 10.1016/j.jad.2022.10.049] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 08/29/2022] [Accepted: 10/31/2022] [Indexed: 11/09/2022]
Abstract
BACKGROUND We investigated differentially methylated and expressed genes between panic disorder (PD) and healthy controls (HCs) to determine whether DNA methylation and expression level of candidate genes can be used as biomarkers for diagnosis and early response. METHODS Illumina infiniun Methylation EPIC (850 k) Beadchip for genome-wide methylation screening and mRNA sequencing was conducted in a discovery set (30 patients with PD and 30 matched HCs). The candidate gene loci methylation and expression were verified in an independent validation sample (101 PD patients and 107 HCs). RESULTS In the discovery set, there were 3613 differentially methylated cytosine phosphate guanosine sites and these differential methylation positions were located within 1938 unique genes, including 1758 hypermethylated genes, 150 hypomethylated genes, and the coexistence of hypermethylation and hypomethylation sites were found in 30 genes. There were 1111 differential transcripts in PD compared to normal controls (850 down-regulated and 261 up-regulated). Further, 212 differentially expressed genes were screened (40 up-regulated and 172 down-regulated). In the validation set, compared with HCs, there was no significant difference in DNA methylation level of Casitas B-lineage lymphoma (CBL) gene loci (cg07123846). The expression level of CBL gene in PD patients was lower (vs. HCs). After four weeks' treatment, the baseline expression level of CBL gene in the responders was higher than nonresponders. LIMITATIONS The sample size was limited. We only chose CBL as a candidate gene. Follow-up periods were short. CONCLUSIONS There are differences in genome-wide DNA methylation and mRNA expression between PD patients and HCs. The changes in expression level of CBL gene may be an important molecular marker for PD diagnosis and early response.
Collapse
Affiliation(s)
- Zhili Zou
- Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China; Mental Health Center, West China University Hospital, Sichuan University, Chengdu 610041, China; Key Laboratory of psychosomatic medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China.
| | - Yuan Zhang
- Personalized Drug Therapy Key Laboratory of Sichuan Province, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Yulan Huang
- Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Jinyu Wang
- Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Wenjiao Min
- Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China
| | - Miao Xiang
- Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu 611731, China
| | - Bo Zhou
- Provincial Center for Mental Health, Sichuan Academy of Medical Sciences & Sichuan Provincial People's Hospital, Chengdu 610072, China; Key Laboratory of psychosomatic medicine, Chinese Academy of Medical Sciences, Chengdu 610072, China.
| | - Tao Li
- Mental Health Center, West China University Hospital, Sichuan University, Chengdu 610041, China.
| |
Collapse
|
145
|
Iannone C, Kainov Y, Zhuravskaya A, Hamid F, Nojima T, Makeyev EV. PTBP1-activated co-transcriptional splicing controls epigenetic status of pluripotent stem cells. Mol Cell 2023; 83:203-218.e9. [PMID: 36626906 DOI: 10.1016/j.molcel.2022.12.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2022] [Revised: 11/15/2022] [Accepted: 12/12/2022] [Indexed: 01/11/2023]
Abstract
Many spliceosomal introns are excised from nascent transcripts emerging from RNA polymerase II (RNA Pol II). The extent of cell-type-specific regulation and possible functions of such co-transcriptional events remain poorly understood. We examined the role of the RNA-binding protein PTBP1 in this process using an acute depletion approach followed by the analysis of chromatin- and RNA Pol II-associated transcripts. We show that PTBP1 activates the co-transcriptional excision of hundreds of introns, a surprising effect given that this protein is known to promote intron retention. Importantly, some co-transcriptionally activated introns fail to complete their splicing without PTBP1. In a striking example, retention of a PTBP1-dependent intron triggers nonsense-mediated decay of transcripts encoding DNA methyltransferase DNMT3B. We provide evidence that this regulation facilitates the natural decline in DNMT3B levels in developing neurons and protects differentiation-specific genes from ectopic methylation. Thus, PTBP1-activated co-transcriptional splicing is a widespread phenomenon mediating epigenetic control of cellular identity.
Collapse
Affiliation(s)
- Camilla Iannone
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Yaroslav Kainov
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Anna Zhuravskaya
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Fursham Hamid
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK
| | - Takayuki Nojima
- Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi-ku, Fukuoka 812-8582, Japan
| | - Eugene V Makeyev
- Centre for Developmental Neurobiology, King's College London, London SE1 1UL, UK.
| |
Collapse
|
146
|
Zhong D, Zhang L, Huang K, Chen M, Chen Y, Liu Q, Shi D, Li H. circRNA-miRNA-mRNA network analysis to explore the pathogenesis of abnormal spermatogenesis due to aberrant m6A methylation. Cell Tissue Res 2023; 392:605-620. [PMID: 36656346 DOI: 10.1007/s00441-022-03725-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Accepted: 12/10/2022] [Indexed: 01/20/2023]
Abstract
Many studies have shown that circRNAs and miRNAs play important roles in many different life processes. However, the function of circRNAs in spermatogenesis remains unknown. Here, we aimed to explore the mechanisms whereby circRNA-miRNAs-mRNAs regulate abnormal m6A methylation in GC-1spg spermatogonia. We first reduced m6A methylation in GC-1spg whole cells after knocking down the m6A methyltransferase enzyme, METTL3. Then, we performed circRNA- and miRNA-seq on GC-1spg cells with low m6A methylation and identified 48 and 50 differentially expressed circRNAs and miRNAs, respectively. We also predicted the targets of the differentially expressed miRNAs by using Miranda software and further constructed the differentially expressed circRNA-differentially expressed miRNA-mRNA ceRNA network. GO analysis was performed on the differentially expressed circRNAs and miRNA-targeted mRNAs, and an interaction network between the proteins of interest was constructed using Cytoscape. The final GO analysis showed that the target mRNAs were involved in sperm formation. Therefore, a PPI network was subsequently constructed and 2 hub genes (H2afx and Dnmt3a) were identified. In this study, we constructed a ceRNA network and explored the regulatory roles of circRNAs and miRNAs in the pathogenesis of abnormal spermatogenesis caused by low levels of methylated m6A. Also, we identified two pivotal genes that may be key factors in infertility caused by abnormal m6A methylation. This may provide some ideas for the treatment of infertility resulting from abnormal spermatogenesis.
Collapse
Affiliation(s)
- Dandan Zhong
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Liyin Zhang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Kongwei Huang
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Mengjie Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Yaling Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Qingyou Liu
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China.,Guangdong Provincial Key Laboratory of Animal Molecular Design and Precise Breeding, School of Life Science and Engineering, Foshan University, Foshan, 528225, China
| | - Deshun Shi
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China
| | - Hui Li
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-Bioresources, College of Animal Science and Technology, Guangxi University, Nanning, 530004, China. .,Shaanxi Key Laboratory of Molecular Biology for Agriculture, College of Animal Science and Technology, Northwest A&F University, Yangling, 712100, China.
| |
Collapse
|
147
|
An Y, Zhao X, Zhang Z, Xia Z, Yang M, Ma L, Zhao Y, Xu G, Du S, Wu X, Zhang S, Hong X, Jin X, Sun K. DNA methylation analysis explores the molecular basis of plasma cell-free DNA fragmentation. Nat Commun 2023; 14:287. [PMID: 36653380 PMCID: PMC9849216 DOI: 10.1038/s41467-023-35959-6] [Citation(s) in RCA: 38] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 01/10/2023] [Indexed: 01/19/2023] Open
Abstract
Plasma cell-free DNA (cfDNA) are small molecules generated through a non-random fragmentation procedure. Despite commendable translational values in cancer liquid biopsy, however, the biology of cfDNA, especially the principles of cfDNA fragmentation, remains largely elusive. Through orientation-aware analyses of cfDNA fragmentation patterns against the nucleosome structure and integration with multidimensional functional genomics data, here we report a DNA methylation - nuclease preference - cutting end - size distribution axis, demonstrating the role of DNA methylation as a functional molecular regulator of cfDNA fragmentation. Hence, low-level DNA methylation could increase nucleosome accessibility and alter the cutting activities of nucleases during DNA fragmentation, which further leads to variation in cutting sites and size distribution of cfDNA. We further develop a cfDNA ending preference-based metric for cancer diagnosis, whose performance has been validated by multiple pan-cancer datasets. Our work sheds light on the molecular basis of cfDNA fragmentation towards broader applications in cancer liquid biopsy.
Collapse
Affiliation(s)
- Yunyun An
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Xin Zhao
- Hepato-Biliary Surgery Division, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, 518100, Shenzhen, China
| | - Ziteng Zhang
- Hepato-Biliary Surgery Division, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, 518100, Shenzhen, China
| | - Zhaohua Xia
- Thoracic Surgical Department, Shenzhen Third People's Hospital, The Second Affiliated Hospital, Southern University of Science and Technology, 518100, Shenzhen, China
| | - Mengqi Yang
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Li Ma
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China
| | - Yu Zhao
- Molecular Cancer Research Center, School of Medicine, Shenzhen Campus of Sun Yat-sen University, Sun Yat-sen University, 518107, Shenzhen, China
| | - Gang Xu
- Department of Liver Surgery and Liver Transplant Center, West China Hospital of Sichuan University, 610041, Chengdu, China
| | - Shunda Du
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, 100730, Beijing, Dongcheng, China
| | - Xiang'an Wu
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, 100730, Beijing, Dongcheng, China
| | - Shuowen Zhang
- Department of Liver Surgery, Peking Union Medical College Hospital, PUMC and Chinese Academy of Medical Sciences, 100730, Beijing, Dongcheng, China
| | - Xin Hong
- Department of Biochemistry, School of Medicine, Southern University of Science and Technology, 518055, Shenzhen, China
| | - Xin Jin
- BGI-Shenzhen, 518083, Shenzhen, China.
- School of Medicine, South China University of Technology, 510006, Guangzhou, Guangdong, China.
| | - Kun Sun
- Institute of Cancer Research, Shenzhen Bay Laboratory, 518132, Shenzhen, China.
| |
Collapse
|
148
|
Wang J, Sun X, Yang Z, Li S, Wang Y, Ren R, Liu Z, Yu D. Epigenetic regulation in premature ovarian failure: A literature review. Front Physiol 2023; 13:998424. [PMID: 36685174 PMCID: PMC9846267 DOI: 10.3389/fphys.2022.998424] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 12/14/2022] [Indexed: 01/05/2023] Open
Abstract
Premature ovarian failure (POF), or premature ovarian insufficiency (POI), is a multifactorial and heterogeneous disease characterized by amenorrhea, decreased estrogen levels and increased female gonadotropin levels. The incidence of POF is increasing annually, and POF has become one of the main causes of infertility in women of childbearing age. The etiology and pathogenesis of POF are complex and have not yet been clearly elucidated. In addition to genetic factors, an increasing number of studies have revealed that epigenetic changes play an important role in the occurrence and development of POF. However, we found that very few papers have summarized epigenetic variations in POF, and a systematic analysis of this topic is therefore necessary. In this article, by reviewing and analyzing the most relevant literature in this research field, we expound on the relationship between DNA methylation, histone modification and non-coding RNA expression and the development of POF. We also analyzed how environmental factors affect POF through epigenetic modulation. Additionally, we discuss potential epigenetic biomarkers and epigenetic treatment targets for POF. We anticipate that our paper may provide new therapeutic clues for improving ovarian function and maintaining fertility in POF patients.
Collapse
Affiliation(s)
- Jing Wang
- Department of Reproductive Medicine, Department of Prenatal Diagnosis, Changchun, China
| | | | | | - Sijie Li
- Department of Breast Surgery, Changchun, China
| | - Yufeng Wang
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Ruoxue Ren
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Ziyue Liu
- Public Research Platform, The First Hospital of Jilin University, Jilin, China
| | - Dehai Yu
- Public Research Platform, The First Hospital of Jilin University, Jilin, China,*Correspondence: Dehai Yu,
| |
Collapse
|
149
|
Kunert S, Linhard V, Weirich S, Choudalakis M, Osswald F, Krämer L, Köhler AR, Bröhm A, Wollenhaupt J, Schwalbe H, Jeltsch A. The MECP2-TRD domain interacts with the DNMT3A-ADD domain at the H3-tail binding site. Protein Sci 2023; 32:e4542. [PMID: 36519786 PMCID: PMC9798253 DOI: 10.1002/pro.4542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 12/01/2022] [Accepted: 12/12/2022] [Indexed: 12/23/2022]
Abstract
The DNMT3A DNA methyltransferase and MECP2 methylation reader are highly expressed in neurons. Both proteins interact via their DNMT3A-ADD and MECP2-TRD domains, and the MECP2 interaction regulates the activity and subnuclear localization of DNMT3A. Here, we mapped the interface of both domains using peptide SPOT array binding, protein pull-down, equilibrium peptide binding assays, and structural analyses. The region D529-D531 on the surface of the ADD domain was identified as interaction point with the TRD domain. This includes important residues of the histone H3 N-terminal tail binding site to the ADD domain, explaining why TRD and H3 binding to the ADD domain is competitive. On the TRD domain, residues 214-228 containing K219 and K223 were found to be essential for the ADD interaction. This part represents a folded patch within the otherwise largely disordered TRD domain. A crystal structure analysis of ADD revealed that the identified H3/TDR lysine binding pocket is occupied by an arginine residue from a crystallographic neighbor in the ADD apoprotein structure. Finally, we show that mutations in the interface of ADD and TRD domains disrupt the cellular interaction of both proteins in NIH3T3 cells. In summary, our data show that the H3 peptide binding cleft of the ADD domain also mediates the interaction with the MECP2-TRD domain suggesting that this binding site may have a broader role also in the interaction of DNMT3A with other proteins leading to complex regulation options by competitive and PTM specific binding.
Collapse
Affiliation(s)
- Stefan Kunert
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartStuttgartGermany
| | - Verena Linhard
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical BiologyGoethe UniversityFrankfurtGermany
| | - Sara Weirich
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartStuttgartGermany
| | - Michel Choudalakis
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartStuttgartGermany
| | - Florian Osswald
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartStuttgartGermany
| | - Lisa Krämer
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartStuttgartGermany
| | - Anja R. Köhler
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartStuttgartGermany
| | - Alexander Bröhm
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartStuttgartGermany
| | - Jan Wollenhaupt
- Macromolecular Crystallography GroupHelmholtz‐Zentrum BerlinBerlinGermany
| | - Harald Schwalbe
- Center for Biomolecular Magnetic Resonance (BMRZ), Institute for Organic Chemistry and Chemical BiologyGoethe UniversityFrankfurtGermany
| | - Albert Jeltsch
- Institute of Biochemistry and Technical BiochemistryUniversity of StuttgartStuttgartGermany
| |
Collapse
|
150
|
Kim M, Delgado E, Ko S. DNA methylation in cell plasticity and malignant transformation in liver diseases. Pharmacol Ther 2023; 241:108334. [PMID: 36535346 PMCID: PMC9841769 DOI: 10.1016/j.pharmthera.2022.108334] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Revised: 12/09/2022] [Accepted: 12/14/2022] [Indexed: 12/23/2022]
Abstract
The liver possesses extraordinary regenerative capacity mainly attributable to the ability of hepatocytes (HCs) and biliary epithelial cells (BECs) to self-replicate. This ability is left over from their bipotent parent cell, the hepatoblast, during development. When this innate regeneration is compromised due to the absence of proliferative parenchymal cells, such as during cirrhosis, HCs and BEC can transdifferentiate; thus, adding another layer of complexity to the process of liver repair. In addition, dysregulated lineage maintenance in these two cell populations has been shown to promote malignant growth in experimental conditions. Here, malignant transformation, driven in part by insufficient maintenance of lineage reprogramming, contributes to end-stage liver disease. Epigenetic changes are key drivers for cell fate decisions as well as transformation by finetuning overall transcription and gene expression. In this review, we address how altered DNA methylation contributes to the initiation and progression of hepatic cell fate conversion and cancer formation. We also discussed the diagnostic and therapeutic potential of targeting DNA methylation in liver cancer, its current limitations, and what future research is necessary to facilitate its contribution to clinical translation.
Collapse
Affiliation(s)
- Minwook Kim
- Department of Developmental Biology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Evan Delgado
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America
| | - Sungjin Ko
- Department of Pathology, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America; Pittsburgh Liver Research Center, University of Pittsburgh School of Medicine, Pittsburgh, PA, United States of America.
| |
Collapse
|